JP2005243151A - Diffraction optical element, objective lens, optical pickup device, and optical information recording and reproducing device - Google Patents
Diffraction optical element, objective lens, optical pickup device, and optical information recording and reproducing device Download PDFInfo
- Publication number
- JP2005243151A JP2005243151A JP2004052070A JP2004052070A JP2005243151A JP 2005243151 A JP2005243151 A JP 2005243151A JP 2004052070 A JP2004052070 A JP 2004052070A JP 2004052070 A JP2004052070 A JP 2004052070A JP 2005243151 A JP2005243151 A JP 2005243151A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- optical
- diffractive
- diffraction
- optical element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Lenses (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Optical Head (AREA)
Abstract
Description
本発明は、短波長の光束を用いて光情報記録媒体に対して情報の再生および/または記録を行う光ピックアップ装置に用いると好適な回折光学素子、並びにそれを含む対物レンズ、それを用いた光ピックアップ装置及び光情報記録再生装置に関する。 The present invention relates to a diffractive optical element suitable for use in an optical pickup device that reproduces and / or records information on an optical information recording medium using a light beam having a short wavelength, and an objective lens including the same. The present invention relates to an optical pickup device and an optical information recording / reproducing device.
近年、映像情報などを記録する光情報記録媒体として、DVD(デジタルバーサタイルディスク;DVDと略記する)が急速に普及しつつある。DVDは、そのプレーヤーに搭載した光ピックアップ装置に、波長650nmの赤色半導体レーザと開口数(NA)0.6の対物レンズを使用することで1面あたり4.7GBの情報の記録が可能である。 In recent years, DVD (digital versatile disc; abbreviated as DVD) is rapidly spreading as an optical information recording medium for recording video information and the like. A DVD can record information of 4.7 GB per surface by using a red semiconductor laser having a wavelength of 650 nm and an objective lens having a numerical aperture (NA) of 0.6 in an optical pickup device mounted on the player. .
ところが、1枚のDVDでは、ハイビジョン画質の映像情報を1面あたり30分程度しか記録することができないので、来るデジタルハイビジョン放送時代における光情報記録媒体として用いるには容量が小さすぎるという指摘がある。このような背景のもと、近年、波長405nmの青紫色半導体レーザとNA0.85の対物レンズを使用する高密度記録光ディスクシステムの研究・開発が進んでおり、かかる高密度光ディスクの規格であるBD(ブルーレイディスク;BDと略記する)が2002年2月に発表された。BDは1面あたり23.3−27GB程度の記録容量を有するため、それを用いれば、ハイビジョン画質の映像情報を1面あたり2時間程度記録できることとなる。又、HD DVDと呼ばれる高密度光ディスクの規格も存在する。尚、本明細書においては、記録/再生用の光源として青紫色半導体レーザを使用する光ディスクを総称して「高密度光ディスク」とよぶものとする。 However, since one DVD can record high-definition image information only for about 30 minutes per side, it is pointed out that the capacity is too small to be used as an optical information recording medium in the coming digital high-definition broadcasting era. . Against this background, in recent years, research and development of a high-density recording optical disk system using a blue-violet semiconductor laser with a wavelength of 405 nm and an objective lens with NA of 0.85 has progressed. (Blu-ray Disc; abbreviated as BD) was announced in February 2002. Since a BD has a recording capacity of about 23.3-27 GB per side, if it is used, high-definition image information can be recorded for about 2 hours per side. There is also a standard for high density optical disks called HD DVDs. In this specification, an optical disk using a blue-violet semiconductor laser as a recording / reproducing light source is generically called a “high density optical disk”.
しかるに、青紫色半導体レーザから出射される短波長の光束については、軸上色収差の補正が不可欠である。これに対し、軸上色収差の補正のために、光学面に回折構造を設けた回折光学素子が上記特許文献1に記載されている。そのような回折光学素子は、単レンズ構成でかかる軸上色収差の補正が可能であるため、コスト的に有利である。しかし、一般的には光学面に輪帯状の回折構造を設けようとすると、軸上色収差の補正量に比例して回折輪帯の幅が細かくなるため、比較的大きな軸上色収差補正が必要となる短波長用の回折光学素子では、特に有効径の周辺近傍において回折輪帯が非常に細かくなり、そのような細かい回折輪帯を回折光学素子の金型に形成することが困難となり、また回折光学素子の成形時に転写不良の恐れもある。設計値通りに光学面に回折輪帯を形成できないと、回折効率が低下するため、所望の光学特性を発揮できないこととなる。上記特許文献1に記載の回折光学素子は、このような課題に対する解決策を何ら開示していない。 However, correction of axial chromatic aberration is indispensable for a short wavelength light beam emitted from a blue-violet semiconductor laser. In contrast, Patent Document 1 discloses a diffractive optical element in which a diffractive structure is provided on an optical surface in order to correct axial chromatic aberration. Such a diffractive optical element is advantageous in terms of cost because it can correct such longitudinal chromatic aberration with a single lens configuration. However, in general, when an annular diffractive structure is provided on the optical surface, the width of the diffractive annular zone becomes smaller in proportion to the correction amount of the axial chromatic aberration, so that a relatively large axial chromatic aberration correction is required. In such a short-wavelength diffractive optical element, the diffractive ring zone becomes extremely fine, particularly in the vicinity of the periphery of the effective diameter, and it becomes difficult to form such a fine diffractive ring zone in the mold of the diffractive optical element. There is also a risk of transfer failure during molding of the optical element. If the diffraction ring zone cannot be formed on the optical surface according to the design value, the diffraction efficiency is lowered, so that desired optical characteristics cannot be exhibited. The diffractive optical element described in Patent Document 1 does not disclose any solution to such a problem.
また、近年においては、例えば互換性を確保するために、単一の光学系を用いて複数の異なる波長の光源からの光束を集光することによって、BDやDVDなど保護層厚みの異なる光ディスクに対して、適切に情報の記録及び/又は再生を行う光ピックアップ装置も開発されており、そのような光ピックアップ装置においては、回折光学素子を利用して使用波長が異なる光ディスクに対する互換を達成する。かかる互換性を有する光ピックアップ装置用の回折光学素子では、軸上色収差補正に加えて、保護層厚みの違いに起因する球面収差も補正する必要があり、より一層回折輪帯の幅が細かくなるため上記の課題がより顕在化する。 In recent years, for example, in order to ensure compatibility, a single optical system is used to condense light beams from a plurality of light sources having different wavelengths, so that optical disks having different protective layer thicknesses such as BD and DVD can be used. On the other hand, an optical pickup apparatus that appropriately records and / or reproduces information has been developed. In such an optical pickup apparatus, compatibility with optical disks having different operating wavelengths is achieved by using a diffractive optical element. In such a diffractive optical element for an optical pickup device having compatibility, in addition to correcting axial chromatic aberration, it is necessary to correct spherical aberration due to the difference in the thickness of the protective layer, and the width of the diffraction ring zone is further reduced. Therefore, the above problem becomes more obvious.
本発明では、かかる従来技術の問題に鑑みてなされたものであり、製造誤差に対して許容度が高いにも関わらず、短波長の光束に対して軸上色収差等の補正を適切に行える回折光学素子、保護層厚みの異なる光情報記録媒体に対する互換性を有する光ピックアップ装置に使用可能な回折光学素子、並びにそれを用いた光ピックアップ装置及び光情報記録再生装置を提供することを目的とする。 The present invention has been made in view of such a problem of the prior art, and is a diffraction that can appropriately correct axial chromatic aberration and the like for a short-wavelength light beam despite a high tolerance for manufacturing errors. It is an object to provide an optical element, a diffractive optical element that can be used in an optical pickup device having compatibility with optical information recording media having different protective layer thicknesses, and an optical pickup device and an optical information recording / reproducing device using the same. .
請求項1に記載の回折光学素子は、複数の輪帯段差から構成される回折構造が形成された回折面を有する回折光学素子において、
光学面内の光軸から所定の高さより内側の前記輪帯段差の光軸方向の深さdINと、前記所定の高さより外側の前記輪帯段差の光軸方向の深さdOUTが、それぞれ、以下の(1)式乃至(3)式を満たすことを特徴とする。
m=Int(|dIN|・(N−1)/λ) (1)
n=Int(|dOUT|・(N−1)/λ) (2)
m<n (3)
但し、Int(X)は、Xに最も近い整数であり、λは、前記回折構造に入射する光束の波長であり、Nは、前記波長λでの前記回折光学素子の屈折率である。
The diffractive optical element according to claim 1, wherein the diffractive optical element has a diffractive surface on which a diffractive structure including a plurality of annular zone steps is formed.
Depth d IN in the optical axis direction of the annular zone step inside the predetermined height from the optical axis in the optical surface, and a depth d OUT in the optical axis direction of the annular zone step outside the predetermined height, Each of them satisfies the following expressions (1) to (3).
m = Int (| d IN | · (N−1) / λ) (1)
n = Int (| d OUT | · (N−1) / λ) (2)
m <n (3)
Where Int (X) is an integer closest to X, λ is the wavelength of the light beam incident on the diffractive structure, and N is the refractive index of the diffractive optical element at the wavelength λ.
本発明は、回折光学素子において、例えば回折次数が倍になるように設計すると、光束の回折角は不変、即ち光学特性は不変であるが、回折輪帯の幅は倍になるという回折構造の特性を利用したものである。即ち、有効径内で同じ回折次数の回折構造の場合には、回折輪帯の幅が一般的に有効径の周辺に行くほど細かくなるので、実際の製造時において有効径周辺では回折構造の形成が困難となる恐れがある。これに対し、回折次数を有効径途中で大きくすることによって、回折光学素子の光学特性を維持したまま、有効径周辺の回折輪帯の幅を大きくし、実際の製造時において回折構造の形成を容易にしているのである。 When the diffractive optical element is designed so that, for example, the diffraction order is doubled, the diffraction angle of the light beam is unchanged, that is, the optical characteristics are unchanged, but the width of the diffraction zone is doubled. It uses characteristics. That is, in the case of a diffractive structure having the same diffraction order within the effective diameter, the width of the diffraction zone generally becomes finer as it goes to the periphery of the effective diameter. May become difficult. On the other hand, by increasing the diffraction order in the middle of the effective diameter, the width of the diffraction ring zone around the effective diameter is increased while maintaining the optical characteristics of the diffractive optical element, and the diffraction structure is formed during actual manufacturing. It is easy.
回折構造における回折次数をdor、段差をd、波長をλ、屈折率をNとしたとき、段差dは、以下の一般式
d=dor・λ/(N−1) (13)
で表されるので、有効径途中で回折次数dorをより大きいdor’とすれば、段差の深さは(dor’/dor)倍となるが、回折輪帯の幅も(dor’/dor)倍(>1倍)となるから、その分製造しやすい回折構造を提供できることとなる。
When the diffraction order in the diffractive structure is do, the step is d, the wavelength is λ, and the refractive index is N, the step d is expressed by the following general formula: d = dor · λ / (N−1) (13)
Therefore, if the diffraction order dor is set to a larger dor 'in the middle of the effective diameter, the depth of the step becomes (dor' / dor) times, but the width of the diffracting zone is also (dor '/ dor). Therefore, it is possible to provide a diffraction structure that is easy to manufacture.
より具体的には、図11に示す回折光学素子の回折構造の概略断面図において、有効半径をDeとし、光軸Xから所定の高さhの範囲内の回折構造をdor次回折とし、光軸Xから所定の高さhより外側の回折構造をdor’次回折とし、dor次回折の場合の回折輪帯の幅をΔとすると、dor’次回折の場合の回折輪帯の幅Δ’は、(dor’/dor)Δとなる。しかるに、dor’>dorであれば、Δ’>Δとなるため、所定の高さhより外側の回折構造において、回折輪帯の幅を広くすることが可能となる。 More specifically, in the schematic cross-sectional view of the diffractive structure of the diffractive optical element shown in FIG. 11, the effective radius is De, the diffractive structure within a predetermined height h from the optical axis X is the dor-order diffraction, and the light If the diffraction structure outside the predetermined height h from the axis X is defined as dor′-order diffraction, and the width of the diffraction ring zone in the case of dor-order diffraction is Δ, the width of the diffraction ring zone in the case of dor′-order diffraction Δ ′ Becomes (dor ′ / dor) Δ. However, if dor ′> dor, Δ ′> Δ, so that the width of the diffraction zone can be increased in the diffractive structure outside the predetermined height h.
回折構造を球面上、或いは非球面上に形成する場合、有効径内の全ての段差dは上記(13)式とは厳密には一致しない。これは、回折作用に加えて屈折作用も考慮して段差dが決定されるためである。一般的に光軸から離れるに従って上記(13)式からのズレが大きくなる。例えば、正の回折パワーを有する回折構造を近軸パワーが正の非球面上に形成する場合には、光軸から離れるに従って段差dが大きくなる傾向がある。 When the diffractive structure is formed on a spherical surface or an aspherical surface, all the steps d within the effective diameter do not exactly match the above equation (13). This is because the step d is determined in consideration of the refractive action in addition to the diffraction action. Generally, the deviation from the above equation (13) increases as the distance from the optical axis increases. For example, when a diffractive structure having a positive diffractive power is formed on an aspheric surface having a positive paraxial power, the step d tends to increase as the distance from the optical axis increases.
そこで、請求項1に記載の回折光学素子では、光学面内の光軸から所定の高さより内側の回折構造の回折次数を上記(1)式により定義し、光学面内の光軸から所定の高さより外側の回折構造の回折次数を上記(2)式により定義した。 Therefore, in the diffractive optical element according to claim 1, the diffraction order of the diffractive structure inside the predetermined height from the optical axis in the optical surface is defined by the above equation (1), and a predetermined order is determined from the optical axis in the optical surface. The diffraction order of the diffraction structure outside the height was defined by the above equation (2).
請求項2に記載の回折光学素子は、請求項1に記載の発明において、前記波長λが450nm以下であることを特徴とする。 The diffractive optical element according to claim 2 is characterized in that, in the invention according to claim 1, the wavelength λ is 450 nm or less.
青紫色波長領域では、比較的大きな軸上色収差補正が必要となるため回折輪帯の幅が細かくなる傾向があるが、本発明による回折光学素子では、有効径途中で回折次数を切り替えて大きくするため、形状誤差による回折効率の低下を防ぐことが出来る。 In the blue-violet wavelength region, a relatively large axial chromatic aberration correction is required, so the width of the diffraction zone tends to be narrow. However, in the diffractive optical element according to the present invention, the diffraction order is switched and increased in the middle of the effective diameter. Therefore, it is possible to prevent a decrease in diffraction efficiency due to a shape error.
請求項3に記載の回折光学素子は、請求項1又は2に記載の発明において、前記波長λの光束が、前記所定の高さより内側の前記輪帯段差に入射した場合に回折効率が最大となる回折次数に対して、前記波長λより長い波長の光束が、前記所定の高さより内側の前記輪帯段差に入射した場合に回折効率が最大となる回折次数が小さくなるように前記dINが決定されていることを特徴とする。 The diffractive optical element according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the diffraction efficiency is maximized when the light flux having the wavelength λ is incident on the annular zone step inside the predetermined height. The d IN is set so that the diffraction order at which the diffraction efficiency becomes maximum when the luminous flux having a wavelength longer than the wavelength λ is incident on the annular zone step inside the predetermined height becomes smaller than the diffraction order. It has been determined.
本発明による回折光学素子を、使用波長が異なる複数の光ディスクに対して互換性を有する光ピックアップ装置に使用する場合には、請求項3に記載のように、所定の高さより内側の回折構造で発生する波長λの光束の回折光の回折次数よりも波長λより長い波長の光束の回折光の回折次数が低くなるように段差dINを決定することで、何れの波長の光束に対しても高い回折効率を確保することが可能となる。 When the diffractive optical element according to the present invention is used in an optical pickup device having compatibility with a plurality of optical disks having different operating wavelengths, a diffractive structure inside a predetermined height is used as described in claim 3. by diffraction order of the diffracted light of the light beam generated wavelength longer than the wavelength λ than the diffraction order of the diffracted light of the light beam having the wavelength λ determines the level difference d iN to be lower, even for the light flux of any wavelength It becomes possible to ensure high diffraction efficiency.
請求項4に記載の回折光学素子は、請求項3に記載の発明において、前記波長λが450nm以下であり、前記波長λより長い波長が640nmから690nmの範囲内であることを特徴とする。 The diffractive optical element according to claim 4 is characterized in that, in the invention according to claim 3, the wavelength λ is 450 nm or less, and a wavelength longer than the wavelength λ is in a range of 640 nm to 690 nm.
請求項3に記載の構成は、2つの波長が請求項4に記載の範囲内であるときに特に有効である。450nm以下の波長λの光束の回折光の回折次数m1と、640nmから690nmの範囲内の波長の光束の回折光の回折次数m2は、具体的には以下の組合せが好ましい。
(m1,m2)=(2,1)、(3,2)、(4,2)、(5,3)、(6,4)、(7,4)、(8,5)、(9,6)、(10,6)
これらの回折次数の組合せのうち、特に好ましいのは、(m1,m2)=(2,1)、(3,2)、(5,3)である。
The configuration described in claim 3 is particularly effective when the two wavelengths are within the range described in claim 4. Specifically, the following combinations of the diffraction order m 1 of the diffracted light of the light beam having the wavelength λ of 450 nm or less and the diffraction order m 2 of the diffracted light of the light beam having a wavelength in the range of 640 nm to 690 nm are preferable.
(M 1 , m 2 ) = (2,1), (3,2), (4,2), (5,3), (6,4), (7,4), (8,5), (9,6), (10,6)
Of these combinations of diffraction orders, (m 1 , m 2 ) = (2, 1), (3, 2), (5, 3) are particularly preferable.
請求項5に記載の回折光学素子は、請求項4に記載の発明において、前記波長λをλ1、前記波長λより長い波長をλ2、前記波長λ1での前記回折光学素子の屈折率をNλ1、前記波長λ2での前記回折光学素子の屈折率をNλ2、前記波長λ1の光束が、前記所定の高さより内側の前記輪帯段差に入射した場合に回折効率が最大となる回折次数をm1、前記波長λ2の光束が、前記所定の高さより内側の前記輪帯段差に入射した場合に回折効率が最大となる回折次数をm2としたとき、以下の(4)式を満たすとともに、前記回折構造は入射光束の波長が長くなった場合に球面収差が補正過剰方向に変化するような球面収差の波長依存性を有することを特徴とする。
{m1・λ1/(Nλ1−1)}/{m2・λ2/(Nλ2−1)}>1 (4)
The diffractive optical element according to claim 5 is the refracting optical element according to claim 4, wherein the wavelength λ is λ 1 , the wavelength longer than the wavelength λ is λ 2 , and the refractive index of the diffractive optical element is the wavelength λ 1. N λ1 , the refractive index of the diffractive optical element at the wavelength λ 2 is N λ2 , and the light flux having the wavelength λ 1 is incident on the annular step inside the predetermined height, the diffraction efficiency is maximum. When the diffraction order is m 1 , and the diffraction order at which the diffraction efficiency becomes maximum when the light flux having the wavelength λ 2 is incident on the annular zone step inside the predetermined height is m 2 , the following (4 The diffraction structure is characterized in that it has a wavelength dependency of the spherical aberration such that the spherical aberration changes in the overcorrection direction when the wavelength of the incident light beam becomes long.
{M 1 · λ 1 / (N λ1 -1)} / {m 2 · λ 2 / (N λ2 -1)}> 1 (4)
請求項5に記載の発明は、本発明による回折光学素子を使用波長と保護層厚みが異なる複数の光ディスクに対して互換性を有する光ピックアップ装置において、保護層厚みの差に起因する球面収差を補正するための互換回折光学素子として使用する場合の好ましい構成である。それぞれの波長に対する屈折率と回折次数が上記(4)式を満たす場合には、回折構造に入射光束の波長が長くなった場合に球面収差が補正過剰方向に変化するような球面収差の波長依存性を持たせることで、複数の光ディスクの保護層厚みの差に起因する球面収差を補正することが可能となる。かかる構成の回折光学素子において、好ましい回折次数の組合せは(m1,m2)=(2,1)である。 According to a fifth aspect of the present invention, there is provided an optical pickup device having compatibility with a plurality of optical discs having different working wavelengths and protective layer thicknesses using the diffractive optical element according to the present invention. This is a preferred configuration when used as a compatible diffractive optical element for correction. When the refractive index and diffraction order for each wavelength satisfy the above equation (4), the wavelength dependence of the spherical aberration such that the spherical aberration changes in the overcorrected direction when the wavelength of the incident light beam in the diffractive structure becomes longer. Thus, it is possible to correct spherical aberration due to the difference in the protective layer thickness of a plurality of optical disks. In the diffractive optical element having such a configuration, a preferable combination of diffraction orders is (m 1 , m 2 ) = (2, 1).
請求項6に記載の回折光学素子は、請求項4に記載の発明において、前記波長λをλ1、前記波長λより長い波長をλ2、前記波長λ1での前記回折光学素子の屈折率をNλ1、前記波長λ2での前記回折光学素子の屈折率をNλ2、前記波長λ1の光束が、前記所定の高さより内側の前記輪帯段差に入射した場合に回折効率が最大となる回折次数をm1、前記波長λ2の光束が、前記所定の高さより内側の前記輪帯段差に入射した場合に回折効率が最大となる回折次数をm2としたとき、以下の(5)式を満たすとともに、前記回折構造は入射光束の波長が長くなった場合に球面収差が補正不足方向に変化するような球面収差の波長依存性を有することを特徴とする。
{m1・λ1/(Nλ1−1)}/{m2・λ2/(Nλ2−1)}<1 (5)
A diffractive optical element according to a sixth aspect is the refracting optical element according to the fourth aspect, wherein the wavelength λ is λ 1 , the wavelength longer than the wavelength λ is λ 2 , and the refractive index of the diffractive optical element is the wavelength λ 1. N λ1 , the refractive index of the diffractive optical element at the wavelength λ 2 is N λ2 , and the light flux having the wavelength λ 1 is incident on the annular step inside the predetermined height, the diffraction efficiency is maximum. When the diffraction order is m 1 , and the diffraction order at which the diffraction efficiency is maximum when the luminous flux of wavelength λ 2 is incident on the annular zone step inside the predetermined height is m 2 , the following (5 The diffraction structure is characterized in that it has a wavelength dependency of the spherical aberration so that the spherical aberration changes in the direction of insufficient correction when the wavelength of the incident light beam becomes longer.
{M 1 · λ 1 / (N λ1 -1)} / {m 2 · λ 2 / (N λ2 -1)} <1 (5)
請求項6に記載の発明も、請求項5に記載の発明と同様に、本発明による回折光学素子を使用波長と保護層厚みが異なる複数の光ディスクに対して互換性を有する光ピックアップ装置において、保護層厚みの差に起因する球面収差を補正するための互換回折光学素子として使用する場合の好ましい構成である。それぞれの波長に対する屈折率と回折次数が上記(5)式を満たす場合には、回折構造に入射光束の波長が長くなった場合に球面収差が補正不足方向に変化するような球面収差の波長依存性を持たせることで、複数の光ディスクの保護層厚みの差に起因する球面収差を補正することが可能となる。かかる構成の回折光学素子において、好ましい回折次数の組合せは(m1,m2)=(3,2)である。 The invention according to claim 6 is also an optical pickup device having compatibility with a plurality of optical discs having different working wavelengths and protective layer thicknesses, as in the invention according to claim 5. This is a preferred configuration when used as a compatible diffractive optical element for correcting spherical aberration due to a difference in thickness of the protective layer. When the refractive index and diffraction order for each wavelength satisfy the above equation (5), the wavelength dependence of the spherical aberration such that the spherical aberration changes in the direction of insufficient correction when the wavelength of the incident light beam in the diffractive structure becomes longer. Thus, it is possible to correct spherical aberration due to the difference in the protective layer thickness of a plurality of optical disks. In the diffractive optical element having such a configuration, a preferable combination of diffraction orders is (m 1 , m 2 ) = (3, 2).
請求項7に記載の回折光学素子は、請求項1乃至6のいずれかに記載の発明において、前記回折光学素子は、近軸における屈折パワーが負である光学面を更に有し、前記回折構造は、前記近軸における屈折パワーが負である光学面上に形成されており、前記回折構造の光軸を含む断面形状は階段形状であることを特徴とする。かかる構成の回折構造の模式的な断面図を図4、図6、及び図8に示す。 The diffractive optical element according to claim 7 is the diffractive optical element according to any one of claims 1 to 6, wherein the diffractive optical element further includes an optical surface having a negative refractive power in a paraxial axis, and the diffractive structure. Is formed on an optical surface whose refractive power in the paraxial axis is negative, and the cross-sectional shape including the optical axis of the diffractive structure is a staircase shape. Typical sectional views of the diffractive structure having such a configuration are shown in FIGS. 4, 6, and 8.
請求項8に記載の回折光学素子は、請求項1乃至6のいずれかに記載の発明において、前記回折光学素子は、近軸における屈折パワーが負である光学面を更に有し、前記回折構造は、近軸における屈折パワーが負である光学面の反対側の、巨視的な平面上に形成されており、前記回折構造の光軸を含む断面形状は鋸歯形状であることを特徴とする。かかる構成の回折構造の模式的な断面図を図10に示す。 The diffractive optical element according to an eighth aspect of the present invention is the diffractive optical element according to any one of the first to sixth aspects, wherein the diffractive optical element further includes an optical surface whose refractive power in the paraxial axis is negative, and the diffractive structure. Is formed on a macroscopic plane opposite to the optical surface where the refractive power in the paraxial is negative, and the cross-sectional shape including the optical axis of the diffractive structure is a sawtooth shape. FIG. 10 shows a schematic cross-sectional view of the diffractive structure having such a configuration.
請求項9に記載の回折光学素子は、請求項1乃至8のいずれかに記載の発明において、前記波長λに対する前記回折構造の近軸における回折パワーをP1(mm−1)、前記波長λより5nm長い波長に対する前記回折構造の近軸における回折パワーをP2(mm−1)、前記波長λより5nm短い波長に対する前記回折構造の近軸における回折パワーをP3(mm−1)としたとき、以下の(6)式を満たすことを特徴とするので、軸上色収差を効果的に補正できる。
P2>P1>P3 (6)
A diffractive optical element according to a ninth aspect is the invention according to any one of the first to eighth aspects, wherein the diffraction power in the paraxial axis of the diffractive structure with respect to the wavelength λ is P 1 (mm −1 ), and the wavelength λ. The diffraction power at the paraxial axis of the diffraction structure for a wavelength longer than 5 nm is P 2 (mm −1 ), and the diffraction power at the paraxial axis of the diffraction structure for a wavelength 5 nm shorter than the wavelength λ is P 3 (mm −1 ). At this time, since the following expression (6) is satisfied, axial chromatic aberration can be effectively corrected.
P 2 > P 1 > P 3 (6)
請求項10に記載の対物レンズは、請求項1乃至9の何れか一項に記載の回折光学素子と一体化されて成ることを特徴とする。 An objective lens according to a tenth aspect is characterized by being integrated with the diffractive optical element according to any one of the first to ninth aspects.
請求項1乃至9に記載の回折光学素子を、対物レンズと一体化してトラッキング駆動を行う構成とすると、回折光学素子と対物レンズとの偏芯によるコマ収差の発生が起こらないので、良好なトラッキング特性を得ることが可能となる。 When the diffractive optical element according to any one of claims 1 to 9 is integrated with an objective lens and tracking driving is performed, coma aberration due to decentering of the diffractive optical element and the objective lens does not occur, so that good tracking is achieved. It becomes possible to obtain characteristics.
請求項11に記載の光ピックアップ装置は、第1の波長λ1の光束を出射する第1の光源と、対物レンズを含む集光光学系とを有する光ピックアップ装置であって、前記集光光学系を介して、前記第1の光源からの光束を、第1光情報記録媒体の情報記録面に集光させることによって、情報の記録及び/又は再生を行うことが可能となっている光ピックアップ装置において、
前記集光光学系は、複数の輪帯段差から構成される回折構造が形成された回折面を有する回折光学素子を有し、
前記回折光学素子において、光学面内の光軸から所定の高さより内側の前記輪帯段差の光軸方向の深さdINと、前記所定の高さより外側の前記輪帯段差の光軸方向の深さdOUTが、それぞれ、以下の(7)式乃至(9)式を満たすことを特徴とする特徴とする。本発明の作用効果は、請求項1に記載の発明と同様である。
m=Int(|dIN|・(Nλ1−1)/λ1) (7)
n=Int(|dOUT|・(Nλ1−1)/λ1) (8)
m<n (9)
但し、Int(X)は、Xに最も近い整数であり、λ1は、前記回折構造に入射する光束の波長であり、Nλ1は、前記波長λ1での前記回折光学素子の屈折率である。
The optical pickup device according to claim 11, wherein the optical pickup device includes a first light source that emits a light beam having a first wavelength λ 1 and a condensing optical system including an objective lens. An optical pickup capable of recording and / or reproducing information by condensing the light beam from the first light source on the information recording surface of the first optical information recording medium via the system In the device
The condensing optical system has a diffractive optical element having a diffractive surface on which a diffractive structure composed of a plurality of annular zone steps is formed,
In the diffractive optical element, the inside of the annular zone step from a predetermined height from the optical axis of the optical surface and the depth d IN of the optical axis, the optical axis direction of the annular zone step outside than the predetermined height The depth d OUT satisfies the following expressions (7) to (9), respectively. The operational effects of the present invention are the same as those of the first aspect of the present invention.
m = Int (| d IN | · (N λ1 −1) / λ 1 ) (7)
n = Int (| d OUT | · (N λ1 −1) / λ 1 ) (8)
m <n (9)
Where Int (X) is an integer closest to X, λ 1 is the wavelength of the light beam incident on the diffractive structure, and N λ1 is the refractive index of the diffractive optical element at the wavelength λ 1. is there.
請求項12に記載の光ピックアップ装置は、請求項11に記載の発明において、前記第1の波長λ1が450nm以下であることを特徴とする。本発明の作用効果は、請求項2に記載の発明と同様である。 An optical pickup device according to a twelfth aspect is characterized in that, in the invention according to the eleventh aspect, the first wavelength λ 1 is 450 nm or less. The effect of the present invention is the same as that of the invention described in claim 2.
請求項13に記載の光ピックアップ装置は、請求項11又は12に記載の発明において、 更に、前記光ピックアップ装置は、前記第1の波長λ1より長い第2の波長λ2(λ2>λ1)の光束を出射する第2の光源を有し、前記集光光学系を介して、前記第2の光源からの光束を、第2光情報記録媒体の情報記録面に集光させることによって、情報の記録及び/又は再生を行うことが可能となっており、
前記第1の波長λ1の光束が、前記所定の高さより内側の前記輪帯段差に入射した場合に回折効率が最大となる回折次数に対して、前記第2の波長λ2の光束が、前記所定の高さより内側の前記輪帯段差に入射した場合に回折効率が最大となる回折次数が小さくなるように前記dINが決定されていることを特徴とする。本発明の作用効果は、請求項3に記載の発明と同様である。
The optical pickup device according to a thirteenth aspect is the invention according to the eleventh or twelfth aspect, wherein the optical pickup device further includes a second wavelength λ 2 (λ 2 > λ that is longer than the first wavelength λ 1. 1 ) by having a second light source that emits the luminous flux of 1 ) and condensing the luminous flux from the second light source on the information recording surface of the second optical information recording medium via the condensing optical system. , It is possible to record and / or reproduce information,
For the diffraction order at which the diffraction efficiency is maximized when the light beam of the first wavelength λ 1 is incident on the annular zone step inside the predetermined height, the light beam of the second wavelength λ 2 is The dIN is determined so that the diffraction order that maximizes the diffraction efficiency when entering the annular zone step inside the predetermined height is reduced. The function and effect of the present invention are the same as those of the third aspect of the present invention.
請求項14に記載の光ピックアップ装置は、請求項13に記載の発明において、前記第1の波長λ1が450nm以下であり、前記第2の波長λ2が640nmから690nmの範囲内であることを特徴とする。本発明の作用効果は、請求項4に記載の発明と同様である。 The optical pickup device according to a fourteenth aspect is the optical pickup device according to the thirteenth aspect, wherein the first wavelength λ 1 is 450 nm or less and the second wavelength λ 2 is in the range of 640 nm to 690 nm. It is characterized by. The function and effect of the present invention are the same as those of the invention described in claim 4.
請求項15に記載の光ピックアップ装置は、請求項14に記載の発明において、前記第1の波長λ1での前記回折光学素子の屈折率をNλ1、前記第2の波長λ2での前記回折光学素子の屈折率をNλ2、前記第1の波長λ1の光束が、前記所定の高さより内側の前記輪帯段差に入射した場合に回折効率が最大となる回折次数をm1、前記第2の波長λ2の光束が、前記所定の高さより内側の前記輪帯段差に入射した場合に回折効率が最大となる回折次数をm2としたとき、以下の(10)式を満たすとともに、前記回折構造は入射光束の波長が長くなった場合に球面収差が補正過剰方向に変化するような球面収差の波長依存性を有することを特徴とする。
{m1・λ1/(Nλ1−1)}/{m2・λ2/(Nλ2−1)}>1 (10)
本発明の作用効果は、請求項5に記載の発明と同様である。
An optical pickup device according to a fifteenth aspect is the optical pickup apparatus according to the fourteenth aspect, wherein the refractive index of the diffractive optical element at the first wavelength λ 1 is N λ1 , and the second wavelength λ 2 is the refractive index. The refractive index of the diffractive optical element is N λ2 , the diffraction order that maximizes the diffraction efficiency when the light beam having the first wavelength λ 1 is incident on the annular zone step inside the predetermined height is m 1 , When the light beam having the second wavelength λ 2 is incident on the annular step inside the predetermined height and the diffraction order that maximizes the diffraction efficiency is m 2 , the following expression (10) is satisfied. The diffraction structure is characterized in that the spherical aberration has a wavelength dependency such that the spherical aberration changes in the overcorrection direction when the wavelength of the incident light beam becomes long.
{M 1 · λ 1 / (N λ1 -1)} / {m 2 · λ 2 / (N λ2 -1)}> 1 (10)
The function and effect of the present invention are the same as those of the fifth aspect of the invention.
請求項16に記載の光ピックアップ装置は、請求項14に記載の発明において、前記第1の波長λ1での前記回折光学素子の屈折率をNλ1、前記第2の波長λ2での前記回折光学素子の屈折率をNλ2、前記第1の波長λ1の光束が、前記所定の高さより内側の前記輪帯段差に入射した場合に回折効率が最大となる回折次数をm1、前記第2の波長λ2の光束が、前記所定の高さより内側の前記輪帯段差に入射した場合に回折効率が最大となる回折次数をm2としたとき、以下の(11)式を満たすとともに、前記回折構造は入射光束の波長が長くなった場合に球面収差が補正不足方向に変化するような球面収差の波長依存性を有することを特徴とする。
{m1・λ1/(Nλ1−1)}/{m2・λ2/(Nλ2−1)}>1 (11)
本発明の作用効果は、請求項6に記載の発明と同様である。
An optical pickup device according to a sixteenth aspect is the optical pickup device according to the fourteenth aspect, wherein the refractive index of the diffractive optical element at the first wavelength λ 1 is N λ1 , and the second wavelength λ 2 is the refractive index. The refractive index of the diffractive optical element is N λ2 , the diffraction order that maximizes the diffraction efficiency when the light beam having the first wavelength λ 1 is incident on the annular zone step inside the predetermined height is m 1 , When the light beam having the second wavelength λ 2 is incident on the annular zone step inside the predetermined height and the diffraction order that maximizes the diffraction efficiency is m 2 , the following expression (11) is satisfied. The diffractive structure is characterized in that the spherical aberration has a wavelength dependency such that the spherical aberration changes in the direction of insufficient correction when the wavelength of the incident light beam becomes long.
{M 1 · λ 1 / (N λ1 -1)} / {m 2 · λ 2 / (N λ2 -1)}> 1 (11)
The effect of the present invention is the same as that of the invention described in claim 6.
請求項17に記載の光ピックアップ装置は、請求項11乃至16のいずれかに記載の発明において、前記回折光学素子は、近軸における屈折パワーが負である光学面を更に有し、前記回折構造は、前記近軸における屈折パワーが負である光学面上に形成されており、前記回折構造の光軸を含む断面形状は階段形状であることを特徴とする。本発明の作用効果は、請求項7に記載の発明と同様である。 An optical pickup device according to a seventeenth aspect is the invention according to any one of the eleventh to sixteenth aspects, wherein the diffractive optical element further includes an optical surface whose refractive power in the paraxial axis is negative, and the diffractive structure. Is formed on an optical surface whose refractive power in the paraxial axis is negative, and the cross-sectional shape including the optical axis of the diffractive structure is a staircase shape. The function and effect of the present invention are the same as those of the seventh aspect of the invention.
請求項18に記載の光ピックアップ装置は、請求項11乃至16の何れかに記載の発明において、前記回折光学素子は、近軸における屈折パワーが負である光学面を更に有し、前記回折構造は、近軸における屈折パワーが負である光学面の反対側の、巨視的な平面上に形成されており、前記回折構造の光軸を含む断面形状は鋸歯形状であることを特徴とする。本発明の作用効果は、請求項8に記載の発明と同様である。 An optical pickup device according to an eighteenth aspect is the optical pickup device according to any one of the eleventh to sixteenth aspects, wherein the diffractive optical element further includes an optical surface whose refractive power in a paraxial axis is negative, and the diffractive structure. Is formed on a macroscopic plane opposite to the optical surface where the refractive power in the paraxial is negative, and the cross-sectional shape including the optical axis of the diffractive structure is a sawtooth shape. The function and effect of the present invention are the same as those of the eighth aspect of the invention.
請求項19に記載の光ピックアップ装置は、請求項11乃至18のいずれかに記載の発明において、前記第1の波長λ1に対する前記回折構造の近軸における回折パワーをP1(mm−1)、前記第1の波長λ1より5nm長い波長に対する前記回折構造の近軸における回折パワーをP2(mm−1)、前記第1の波長λ1より5nm短い波長に対する前記回折構造の近軸における回折パワーをP3(mm−1)としたとき、以下の(12)式を満たすことを特徴とする。
P2>P1>P3 (12)
本発明の作用効果は、請求項9に記載の発明と同様である。
An optical pickup device according to a nineteenth aspect is the invention according to any one of the eleventh to eighteenth aspects, wherein the diffraction power in the paraxial axis of the diffractive structure with respect to the first wavelength λ 1 is P 1 (mm −1 ). P 2 (mm −1 ) is the paraxial power of the diffractive structure for the wavelength 5 nm longer than the first wavelength λ 1, and the paraxial power of the diffractive structure is 5 nm shorter than the first wavelength λ 1 . When the diffraction power is P 3 (mm −1 ), the following expression (12) is satisfied.
P 2 > P 1 > P 3 (12)
The function and effect of the present invention are the same as those of the ninth aspect of the invention.
請求項20に記載の光ピックアップ装置は、請求項11乃至19のいずれかに記載の発明において、前記回折光学素子は、前記対物レンズと一体化されて成ることを特徴とする。本発明の作用効果は、請求項10に記載の発明と同様である。 An optical pickup device according to a twentieth aspect is characterized in that, in the invention according to any one of the eleventh to nineteenth aspects, the diffractive optical element is integrated with the objective lens. The effect of the present invention is the same as that of the invention described in claim 10.
請求項21に記載の光情報記録再生装置は、請求項11乃至20の何れか一項に記載の光ピックアップ装置と、前記光ピックアップ装置による情報信号の記録及び/又は再生が可能に前記光情報記録媒体を支持する光情報記録媒体支持手段とを備えたことを特徴とする。 An optical information recording / reproducing apparatus according to claim 21 is an optical pickup apparatus according to any one of claims 11 to 20, and the optical information can be recorded and / or reproduced by the optical pickup apparatus. And an optical information recording medium supporting means for supporting the recording medium.
本明細書中において、「対物レンズ」とは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された波長が互いに異なる光束を記録密度が互いに異なる光ディスクのそれぞれの情報記録面上に集光する機能を有する集光素子を指す。また、この集光素子と共にアクチュエータによって少なくともその光軸方向に作動可能な光学素子がある場合には、上記の集光素子と光学素子とから構成される光学系を対物レンズとする。 In the present specification, the “objective lens” is arranged on a position opposite to the optical disk in the optical pickup device, and light beams emitted from the light sources having different wavelengths are recorded on the information recording surfaces of the optical disks having different recording densities. It points out the condensing element which has the function to condense. In addition, when there is an optical element that can be operated at least in the optical axis direction by an actuator together with the condensing element, an optical system constituted by the condensing element and the optical element is used as an objective lens.
本明細書中で用いる回折構造とは、光学素子の表面にレリーフを設けて回折作用を持たせた形態のことをいい、一つの光学面に回折を生じる領域と生じない領域がある場合は、回折を生じる領域をいう。レリーフの形状としては、例えば、光学素子の表面に光軸を中心とする略同心円状の輪帯として形成され、光軸を含む平面でその断面をみれば各輪帯は階段もしくは鋸歯のような形状が知られているが、そのような形状を含むものである。 The diffractive structure used in this specification refers to a form in which a relief is provided on the surface of the optical element to give a diffractive action. When there is a region where diffraction occurs on one optical surface and a region where it does not occur, A region where diffraction occurs. As the shape of the relief, for example, it is formed on the surface of the optical element as a substantially concentric annular zone centered on the optical axis, and each annular zone is like a staircase or a sawtooth if the cross section is viewed in a plane including the optical axis. Shapes are known, but include such shapes.
本明細書中において、第1光情報記録媒体とは、例えば、BD(ブルーレイディスク)又はHD DVDのごとき、記録/再生用の光源として青紫色半導体レーザを使用する高密度光ディスクをいい、第2光情報記録媒体とは、再生専用に用いるDVD−ROM,DVD−Video、DVD−Audioの他、再生/記録を兼ねるDVD−RAM,DVD±R,DVD±RW等の各種DVD系の光ディスク、又はCD−ROM、CD−R,CD−RW等のCD系の光ディスクをいう。 In the present specification, the first optical information recording medium refers to a high-density optical disk that uses a blue-violet semiconductor laser as a recording / reproducing light source, such as BD (Blu-ray Disc) or HD DVD. The optical information recording medium is a DVD-ROM, DVD-Video, DVD-Audio used exclusively for reproduction, various DVD-type optical disks such as DVD-RAM, DVD ± R, DVD ± RW, etc. A CD-type optical disk such as a CD-ROM, CD-R, CD-RW and the like.
本発明によれば、製造誤差に対して許容度が高いにも関わらず、短波長の光束に対して軸上色収差等の補正を適切に行える回折光学素子、保護層厚みの異なる光情報記録媒体に対する互換性を有する光ピックアップ装置に使用可能な回折光学素子、対物レンズ並びにそれを用いた光ピックアップ装置及び光情報記録再生装置を提供することができる。 According to the present invention, a diffractive optical element capable of appropriately correcting axial chromatic aberration and the like with respect to a light beam having a short wavelength despite an high tolerance for manufacturing errors, and an optical information recording medium having different protective layer thicknesses It is possible to provide a diffractive optical element that can be used in an optical pickup device having compatibility with the above, an objective lens, an optical pickup device using the same, and an optical information recording / reproducing device.
以下、本発明による実施の形態について図面を用いて説明する。
〈第1の実施の形態〉
図1(a)は、第1光情報記録媒体である高密度光ディスクHDと、第2光情報記録媒体である光ディスクDVDの何れに対しても適切に情報の記録/再生を行える第1の光ピックアップ装置PU1の構成を概略的に示す図である。図1(b)は、図1(a)の光ピックアップ装置に用いる光源の正面図である。尚、光ピックアップ装置PU1と、光ディスクを支持する支持手段(不図示)とで、光情報記録再生装置を構成する。
Embodiments of the present invention will be described below with reference to the drawings.
<First Embodiment>
FIG. 1A shows a first light that can appropriately record / reproduce information on both the high-density optical disk HD that is the first optical information recording medium and the optical disk DVD that is the second optical information recording medium. It is a figure which shows schematically the structure of pick-up apparatus PU1. FIG. 1B is a front view of a light source used in the optical pickup device of FIG. The optical pickup device PU1 and a support means (not shown) for supporting the optical disk constitute an optical information recording / reproducing device.
高密度光ディスクHDの光学的仕様は、情報の記録及び/又は再生に用いる光束の(第1の)波長λ1=405nm、第1保護層PL1の厚さt1=0.1mm、第1開口数NA1=0.85であり、光ディスクDVDの光学的仕様は、情報の記録及び/又は再生に用いる光束の(第2の)波長λ2=655nm、第2保護層PL2の厚さt2=0.6mm、第2開口数NA2=0.65である。但し、波長、保護層の厚さ、及び開口数の組合せはこれに限られない。 The optical specifications of the high-density optical disk HD are as follows: (first) wavelength λ1 = 405 nm of the light beam used for recording and / or reproducing information, the thickness t1 of the first protective layer PL1 = 0.1 mm, and the first numerical aperture NA1. = 0.85, and the optical specifications of the optical disc DVD are (second) wavelength λ2 = 655 nm of the light beam used for recording and / or reproducing information, the thickness t2 of the second protective layer PL2 is 0.6 mm, The second numerical aperture NA2 = 0.65. However, the combination of the wavelength, the thickness of the protective layer, and the numerical aperture is not limited to this.
光ピックアップ装置PU1は、高密度光ディスクHDに対して情報の記録/再生を行う場合に発光され、405nmのレーザ光束を射出する第1の発光部(第1の光源)EP1と、光ディスクDVDに対して情報の記録/再生を行う場合に発光され、655nmのレーザ光束を射出する第2の発光部(第2の光源)EP2と、高密度光ディスクHDの情報記録面RL1からの反射光束を受光する第1の受光部DS1と、DVDの情報記録面RL2からの反射光束を受光する第2の受光部DS2と、プリズムPSとから構成された高密度光ディスク/DVD用レーザモジュールLMと、回折光学素子DOE及びこの回折光学素子DOEを透過したレーザ光束を情報記録面RL1、RL2上に集光させる機能を有する両面が非球面とされた対物レンズOBJから構成された対物レンズユニットと、2軸アクチュエータACと、高密度光ディスクHDの第1開口数NA1=0.85に対応した絞りSTOと、コリメートレンズCOLと、ビーム整形レンズSHと、光ディスクDVDに対する情報の記録/再生時に対物レンズユニットの開口数を制限するための開口制限素子APとから構成されている。 The optical pickup device PU1 emits light when recording / reproducing information with respect to the high-density optical disc HD, and emits a laser beam of 405 nm and emits a 405 nm laser beam and the optical disc DVD. The second light emitting part (second light source) EP2 that emits light when emitting / recording information and emits a 655 nm laser light beam and the reflected light beam from the information recording surface RL1 of the high-density optical disk HD are received. A high-density optical disk / DVD laser module LM composed of a first light-receiving unit DS1, a second light-receiving unit DS2 that receives a reflected light beam from the DVD information recording surface RL2, and a prism PS, and a diffractive optical element An objective lens in which both surfaces of the DOE and the laser beam transmitted through the diffractive optical element DOE have a function of condensing on the information recording surfaces RL1 and RL2. OBJ objective lens unit, biaxial actuator AC, diaphragm STO corresponding to the first numerical aperture NA1 = 0.85 of the high density optical disk HD, collimating lens COL, beam shaping lens SH, optical disk It comprises an aperture limiting element AP for limiting the numerical aperture of the objective lens unit when recording / reproducing information with respect to a DVD.
光ピックアップ装置PU1において、高密度光ディスクHDに対して情報の記録/再生を行う場合には、第1の発光部EP1を発光させる。第1の発光部EP1から射出された発散光束は、図1において実線でその光線経路を描いたように、プリズムPSで反射された後、ビーム整形レンズSHによりその断面形状が楕円形から円形に整形され、コリメートレンズCOLにより平行光束に変換され、絞りSTOにより光束径が規制された後、開口制限素子APを透過し、対物レンズユニットによって高密度光ディスクHDの第1保護層PL1を介して第1情報記録面RL1上に形成されるスポットとなる。対物レンズユニットは、その周辺に配置された2軸アクチュエータACによってフォーカシングやトラッキングを行う。第1情報記録面RL1で情報ピットにより変調された反射光束は、再び対物レンズユニット、開口制限素子AP、絞りSTO、コリメートレンズCOL、ビーム整形レンズSHを透過し、プリズムPS内部で2回反射され受光部DS1に集光する。そして、受光部DS1の出力信号を用いて高密度光ディスクHDに記録された情報を読み取ることができる。 In the optical pickup device PU1, when information is recorded / reproduced with respect to the high density optical disk HD, the first light emitting unit EP1 is caused to emit light. The divergent light beam emitted from the first light emitting unit EP1 is reflected by the prism PS as illustrated by the solid line in FIG. After being shaped and converted into a collimated light beam by the collimating lens COL, the diameter of the light beam is regulated by the stop STO, and then transmitted through the aperture limiting element AP. One spot is formed on the information recording surface RL1. The objective lens unit performs focusing and tracking by a biaxial actuator AC arranged around the objective lens unit. The reflected light beam modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens unit, the aperture limiting element AP, the stop STO, the collimating lens COL, and the beam shaping lens SH, and reflected twice inside the prism PS. The light is condensed on the light receiving part DS1. Then, information recorded on the high density optical disk HD can be read using the output signal of the light receiving unit DS1.
また、光ピックアップ装置PU1において、光ディスクDVDに対して情報の記録/再生を行う場合には、第2の発光部EP2を発光させる。第2の発光部EP2から射出された発散光束は、図1において破線でその光線経路を描いたように、プリズムPSで反射された後、ビーム整形レンズSHによりその断面形状が楕円形から円形に整形され、コリメートレンズCOLにより平行光束に変換され、開口制限素子APにより光束径が規制された後、対物レンズユニットによってDVDの第2保護層PL2を介して第2情報記録面RL2上に形成されるスポットとなる。対物レンズユニットは、その周辺に配置された2軸アクチュエータACによってフォーカシングやトラッキングを行う。再び対物レンズユニット、開口制限素子AP、絞りSTO、コリメートレンズCOL、ビーム整形レンズSHを透過し、プリズムPS内部で2回反射され受光部DS2に集光する。そして、受光部DS2の出力信号を用いてDVDに記録された情報を読み取ることができる。 Further, in the optical pickup device PU1, when recording / reproducing information with respect to the optical disc DVD, the second light emitting unit EP2 is caused to emit light. The divergent light beam emitted from the second light emitting unit EP2 is reflected by the prism PS as shown by the broken line in FIG. After being shaped, converted into a parallel light beam by the collimating lens COL, and the light beam diameter is regulated by the aperture limiting element AP, it is formed on the second information recording surface RL2 via the second protective layer PL2 of the DVD by the objective lens unit. It becomes a spot. The objective lens unit performs focusing and tracking by a biaxial actuator AC arranged around the objective lens unit. The light again passes through the objective lens unit, the aperture limiting element AP, the stop STO, the collimating lens COL, and the beam shaping lens SH, is reflected twice inside the prism PS, and is condensed on the light receiving unit DS2. And the information recorded on DVD can be read using the output signal of light-receiving part DS2.
次に、対物レンズユニットの構成について説明する。図1に示す回折光学素子DOEと対物レンズOBJは、何れもプラスチックレンズであり、対物レンズOBJは、高密度光ディスクHD専用の対物レンズである。また、それぞれの光学領域(波長λ1のレーザ光束が通過する回折光学素子DOEと対物レンズOBJの領域)の周囲には、光学機能部と一体に成形されたフランジ部FL1、FL2を有し、かかるフランジ部FL1、FL2の一部同士を接合することで一体化されている。更に、対物レンズユニットと開口制限素子APは、鏡枠Bを介して一体化されている。 Next, the configuration of the objective lens unit will be described. The diffractive optical element DOE and the objective lens OBJ shown in FIG. 1 are both plastic lenses, and the objective lens OBJ is an objective lens dedicated to the high-density optical disc HD. Further, around each optical region (region of the diffractive optical element DOE and objective lens OBJ through which the laser beam of wavelength λ1 passes), there are flange portions FL1 and FL2 formed integrally with the optical function portion. The flange portions FL1 and FL2 are integrated by joining a part thereof. Furthermore, the objective lens unit and the aperture limiting element AP are integrated via a lens frame B.
回折光学素子DOEの光源側の光学面S1の第2開口数NA2内に対応する領域には、図8に模式的に示したように、その内部に階段構造が形成された複数の輪帯が光軸を中心として配列された構造である重畳型回折構造が形成されており、かかる重畳型回折構造の回折作用により第1保護層PL1と第2保護層PL2の厚みの差に起因する球面収差を補正することで、高密度光ディスクHDと光ディスクDVDとの互換を達成している。尚、重畳型回折構造による球面収差補正の原理は、後述する実施例3において説明するのでここでは詳細な説明は割愛する。 In the region corresponding to the second numerical aperture NA2 of the optical surface S1 on the light source side of the diffractive optical element DOE, as schematically shown in FIG. 8, there are a plurality of annular zones in which a staircase structure is formed. A superposition type diffractive structure having a structure arranged around the optical axis is formed, and spherical aberration caused by the difference in thickness between the first protective layer PL1 and the second protective layer PL2 due to the diffractive action of the superposition type diffractive structure. By correcting the above, compatibility between the high-density optical disk HD and the optical disk DVD is achieved. Note that the principle of spherical aberration correction by the superposition type diffractive structure will be described in Example 3 to be described later, so a detailed description is omitted here.
更に、回折光学素子DOEの光ディスク側の光学面S2には、図8に模式的に示したように、平面状の輪帯が内側に隣接する輪帯に対して段差dだけ光軸から離れるに従って光ディスク側にシフトした構成を有する回折構造が形成されている。 Further, on the optical surface S2 on the optical disk side of the diffractive optical element DOE, as schematically shown in FIG. 8, the planar annular zone is separated from the optical axis by a step d with respect to the annular zone adjacent to the inside. A diffractive structure having a configuration shifted to the optical disc side is formed.
この回折構造は、青紫色のごとき短波長の領域における対物レンズOBJの軸上色収差と、入射波長変化に伴う球面収差変化を抑制するための構造であり、第2開口数NA2内に対応する領域では、その段差dINが
m=Int(|dIN|・(Nλ1−1)/λ1)=2 (14)
を満たす深さに設定されており、第2開口数NA2から外側に対応する領域では、その段差dOUTが
n=Int(|dOUT|・(Nλ1−1)/λ1)=4 (15)
を満たす深さに設定されている。ここで、Nλ1は第1の波長λ1に対する回折光学素子DOEの屈折率である。
This diffractive structure is a structure for suppressing the longitudinal chromatic aberration of the objective lens OBJ in a short wavelength region such as blue-violet and the spherical aberration change accompanying the change in incident wavelength, and the region corresponding to the second numerical aperture NA2. Then, the step d IN is m = Int (| d IN | · (N λ1 −1) / λ 1 ) = 2 (14)
In a region corresponding to the outside from the second numerical aperture NA2, the step d OUT is n = Int (| d OUT | · (N λ1 −1) / λ 1 ) = 4 ( 15)
The depth is set to satisfy. Here, N .lambda.1 is the refractive index of the diffractive optical element DOE for the first wavelength lambda 1.
第2開口数NA2内に対応する領域では、第1の波長λ1の光束が入射した場合に、+2次回折光が100%の回折効率で発生し、第2の波長λ2の光束が入射した場合に、+1次回折光が87%の回折効率で発生する。このように、両方の波長の光束が通過する第2開口数NA2内に対応する領域では、何れの波長に対しても高い回折効率が確保されている。 In a region corresponding to the second numerical aperture NA2, when a light beam having the first wavelength λ1 is incident, + 2nd order diffracted light is generated with a diffraction efficiency of 100%, and a light beam having the second wavelength λ2 is incident. + 1st order diffracted light is generated with a diffraction efficiency of 87%. Thus, high diffraction efficiency is ensured for any wavelength in the region corresponding to the second numerical aperture NA2 through which the light beams of both wavelengths pass.
本実施の形態の回折光学素子DOEでは、光源側の光学面S1に重畳型回折構造を形成し、光ディスク側の光学面S2に回折構造を形成した構成としたが、これとは、逆に、光源側の光学面S1に回折構造を形成し、光ディスク側の光学面S2に重畳型回折構造を形成した構成としてもよい。 In the diffractive optical element DOE of the present embodiment, a superposition type diffractive structure is formed on the optical surface S1 on the light source side and a diffractive structure is formed on the optical surface S2 on the optical disc side. A configuration may be adopted in which a diffractive structure is formed on the optical surface S1 on the light source side and a superposition type diffractive structure is formed on the optical surface S2 on the optical disc side.
また、本実施の形態の回折光学素子DOEでは、より第1保護層PL1と第2保護層PL2の厚みの差に起因する球面収差を補正するための構造として、重畳型回折構造を利用する構成としたが、後述する実施例1や実施例2にあるような、回折構造を利用する構成としても良い。 Further, in the diffractive optical element DOE of the present embodiment, a configuration using a superposition type diffractive structure as a structure for correcting spherical aberration caused by the difference in thickness between the first protective layer PL1 and the second protective layer PL2 However, a configuration using a diffractive structure as in Example 1 or Example 2 described later may be used.
〈第2の実施の形態〉
図2は、高密度光ディスクHDに対して適切に情報の記録/再生を行える第2の光ピックアップ装置PU2の構成を概略的に示す図である。尚、光ピックアップ装置PU2と、光ディスクを支持する支持手段(不図示)とで、光情報記録再生装置を構成する。
<Second Embodiment>
FIG. 2 is a diagram schematically showing a configuration of the second optical pickup device PU2 capable of appropriately recording / reproducing information with respect to the high density optical disc HD. The optical pickup device PU2 and a support means (not shown) for supporting the optical disk constitute an optical information recording / reproducing device.
高密度光ディスクHDの光学的仕様は、第1の波長λ1=405nm、第1保護層PL1の厚さt1=0.1mm、第1開口数NA1=0.85である。但し、波長、保護層の厚さ、及び開口数の組合せはこれに限られない。 The optical specifications of the high-density optical disk HD are the first wavelength λ1 = 405 nm, the thickness t1 of the first protective layer PL1 = 0.1 mm, and the first numerical aperture NA1 = 0.85. However, the combination of the wavelength, the thickness of the protective layer, and the numerical aperture is not limited to this.
光ピックアップ装置PU2は、高密度光ディスクHDに対して情報の記録/再生を行う場合に発光され405nmのレーザ光束を射出する青紫色半導体レーザLDと、高密度光ディスクHDの情報記録面RL1からの反射光束を受光する光検出器PDと、回折光学素子DOEと、この回折光学素子DOEを透過したレーザ光束を情報記録面RL1、RL2上に集光させる機能を有する両面が非球面とされた対物レンズOBJと、2軸アクチュエータACと、高密度光ディスクHDの第1開口数NA1=0.85に対応した絞りSTOと、コリメートレンズCOLと、ビーム整形レンズSHと、偏光ビームスプリッタBSと、センサーレンズSENとから構成されている。尚、上記青紫色半導体レーザの替わりに、第2次高調波発生(SHG)を利用する青紫色SHGレーザを使用しても良い。 The optical pickup device PU2 is a blue-violet semiconductor laser LD that emits a 405 nm laser beam when recording / reproducing information on the high-density optical disk HD, and a reflection from the information recording surface RL1 of the high-density optical disk HD. Photodetector PD for receiving the light beam, diffractive optical element DOE, and objective lens having aspherical surfaces on both sides having a function of condensing the laser light beam transmitted through the diffractive optical element DOE on the information recording surfaces RL1 and RL2. OBJ, biaxial actuator AC, stop STO corresponding to the first numerical aperture NA1 = 0.85 of the high-density optical disc HD, collimating lens COL, beam shaping lens SH, polarizing beam splitter BS, and sensor lens SEN It is composed of. In place of the blue-violet semiconductor laser, a blue-violet SHG laser using second harmonic generation (SHG) may be used.
光ピックアップ装置PU2において、高密度光ディスクHDに対して情報の記録/再生を行う場合には、青紫色半導体レーザLDを発光させる。青紫色半導体レーザLDから射出された発散光束は、図2において実線でその光線経路を描いたように、ビーム整形レンズSHによりその断面形状が楕円形から円形に整形され、偏光ビームスプリッタBSを透過した後、コリメートレンズCOLにより平行光束に変換され、回折光学素子DOEを透過し、絞りSTOにより光束径が規制された後、対物レンズOBJによって高密度光ディスクHDの第1保護層PL1を介して第1情報記録面RL1上に形成されるスポットとなる。対物レンズOBJは、その周辺に配置された2軸アクチュエータACによってフォーカシングやトラッキングを行う。第1情報記録面RL1で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りSTO、回折光学素子DOE、コリメートレンズCOLを透過し、偏光ビームスプリッタBSにより反射された後、センサーレンズSENを透過することにより非点収差が与えられ、光検出器PDの受光面上に集光する。そして、光検出器PDの出力信号を用いて高密度光ディスクHDに記録された情報を読み取ることができる。 In the optical pickup device PU2, when recording / reproducing information with respect to the high density optical disk HD, the blue-violet semiconductor laser LD is caused to emit light. The divergent light beam emitted from the blue-violet semiconductor laser LD is shaped from an elliptical shape to a circular shape by the beam shaping lens SH as shown by the solid line in FIG. 2, and is transmitted through the polarization beam splitter BS. After that, the light beam is converted into a parallel light beam by the collimating lens COL, transmitted through the diffractive optical element DOE, and the diameter of the light beam is regulated by the stop STO. Then, the objective lens OBJ passes through the first protective layer PL1 of the high-density optical disk HD. One spot is formed on the information recording surface RL1. The objective lens OBJ performs focusing and tracking by a biaxial actuator AC arranged around the objective lens OBJ. The reflected light beam modulated by the information pits on the first information recording surface RL1 is transmitted again through the objective lens OBJ, the stop STO, the diffractive optical element DOE, and the collimating lens COL, and is reflected by the polarization beam splitter BS, and then the sensor lens SEN. Astigmatism is given by passing through the light, and the light is condensed on the light receiving surface of the photodetector PD. Then, information recorded on the high density optical disk HD can be read using the output signal of the photodetector PD.
回折光学素子DOEの光源側の光学面S1には、図10に模式的に示したように、断面形状が鋸歯形状とされた回折構造が平面上に形成されており、この回折構造は、鋸歯形状の輪帯が内側に隣接する輪帯に対して段差dだけ光軸から離れるに従って光源側にシフトした構成を有する。 On the optical surface S1 on the light source side of the diffractive optical element DOE, as schematically shown in FIG. 10, a diffractive structure having a sawtooth shape in cross section is formed on a plane. The shape of the annular zone is shifted to the light source side as it moves away from the optical axis by a level difference d with respect to the annular zone adjacent to the inside.
この回折構造は、青紫色領域における対物レンズOBJの軸上色収差を抑制するための構造であり、対物レンズOBJの入射瞳径内に対応する領域では、その段差dINが
m=Int(|dIN|・(Nλ1−1)/λ1)=2 (16)
を満たす深さに設定されており、対物レンズOBJの入射瞳径から外側に対応する領域では、その段差dOUTが
n=Int(|dOUT|・(Nλ1−1)/λ1)=4 (17)
を満たす深さに設定されている。ここで、Nλ1は第1の波長λ1に対する回折光学素子DOEの屈折率である。
This diffractive structure is a structure for suppressing axial chromatic aberration of the objective lens OBJ in the blue-violet region. In the region corresponding to the entrance pupil diameter of the objective lens OBJ, the step d IN is m = Int (| d IN | • (N λ1 −1) / λ 1 ) = 2 (16)
In the region corresponding to the outside from the entrance pupil diameter of the objective lens OBJ, the step d OUT is n = Int (| d OUT | · (N λ1 −1) / λ 1 ) = 4 (17)
The depth is set to satisfy. Here, N .lambda.1 is the refractive index of the diffractive optical element DOE for the first wavelength lambda 1.
尚、本実施の形態の回折光学素子DOEでは、光ディスクHD側の光学面S2の近軸における屈折パワーは、その絶対値が、回折構造の近軸における回折パワーの絶対値と等しくなるように決定されているので、コリメートレンズCOLと対物レンズOBJとの間の平行光束中に配置することが可能である。 In the diffractive optical element DOE of the present embodiment, the refractive power on the paraxial axis of the optical surface S2 on the optical disc HD side is determined so that the absolute value thereof is equal to the absolute value of the diffractive power on the paraxial axis of the diffractive structure. Therefore, it can be arranged in a parallel light beam between the collimating lens COL and the objective lens OBJ.
また、本実施の形態では、対物レンズOBJを1群構成のレンズとしたが、2群、或いはそれ以上の数のレンズ群から構成される対物レンズを使用しても良い。 Further, in the present embodiment, the objective lens OBJ is a lens having a one-group configuration, but an objective lens including two or more lens groups may be used.
(実施例)
次に、上述した実施の形態に用いることができる回折光学素子の実施例について説明する。なお、以下の実施例における回折光学素子の光学面が非球面に構成される場合には、各々の非球面は次の数1で表される非球面形状を有している。ただし、Z(mm)はその光学面の頂点に接する平面からの変形量で、h(mm)は光軸に垂直な方向の高さ、r(mmn)は近軸曲率半径、κは円錐係数、A2iは非球面係数である。
(Example)
Next, examples of the diffractive optical element that can be used in the above-described embodiment will be described. In addition, when the optical surface of the diffractive optical element in the following embodiments is configured as an aspherical surface, each aspherical surface has an aspherical shape represented by the following formula 1. Where Z (mm) is the amount of deformation from the plane contacting the vertex of the optical surface, h (mm) is the height in the direction perpendicular to the optical axis, r (mmn) is the paraxial radius of curvature, and κ is the cone coefficient , A 2i is an aspheric coefficient.
また、回折光学素子に形成される回折構造は、この回折構造により透過波面に付加される光路差で表される。かかる光路差は、光軸に垂直な方向の高さをh(mm)、B2jを光路差関数係数、入射光束の波長をλ(nm)、製造波長をλB(nm)、波長λの光束が入射した際にこの回折構造で発生する回折光のうち、最大の回折効率を有する回折光の回折次数をdorとするとき、次の数2で定義される光路差関数Φb(mm)で表される。 The diffractive structure formed in the diffractive optical element is represented by an optical path difference added to the transmitted wavefront by this diffractive structure. The optical path difference is expressed as follows. The height in the direction perpendicular to the optical axis is h (mm), B 2j is the optical path difference function coefficient, the wavelength of the incident light beam is λ (nm), the manufacturing wavelength is λ B (nm), and the wavelength λ is Of the diffracted light generated by this diffractive structure when a light beam is incident, when the diffraction order of the diffracted light having the maximum diffraction efficiency is defined as do, the optical path difference function Φ b (mm) defined by the following expression 2 It is represented by
実施例1は、図1の実施の形態に適用可能である、回折光学素子と対物レンズとから構成された高密度光ディスクHDとDVDとに互換性を有する対物レンズユニットである。回折光学素子は樹脂製で、対物レンズはガラス製である。尚、対物レンズは、高密度光ディスクHD専用の対物レンズである。実施例1にかかるレンズデータを表1に、その回折構造のデータを表2に、そのレンズ断面図を図3に示す。 Example 1 is an objective lens unit that can be applied to the embodiment of FIG. 1 and is compatible with a high-density optical disk HD and a DVD that are composed of a diffractive optical element and an objective lens. The diffractive optical element is made of resin, and the objective lens is made of glass. The objective lens is an objective lens dedicated to the high density optical disc HD. The lens data according to Example 1 is shown in Table 1, the diffraction structure data is shown in Table 2, and the lens cross-sectional view is shown in FIG.
尚、表1において、10のべき乗数(例えば 2.5×10−03)を、E(例えば 2.5E―03)を用いて表すものとし、これ以降のレンズデータ表においても同様である。 In Table 1, a power of 10 (for example, 2.5 × 10 −03 ) is represented using E (for example, 2.5E-03), and the same applies to the lens data tables thereafter.
また、表1において、NA1は高密度光ディスクHDの開口数、NA2はDVDの開口数、f1(mm)は波長λ1に対する焦点距離、f2(mm)は波長λ2に対する焦点距離、λ1(nm)は高密度光ディスクHDの使用波長、λ2(nm)はDVDの使用波長、M1は波長λ1に対する倍率、M2は波長λ2に対する倍率、t1(mm)は高密度光ディスクHDの保護層厚み、t2(mm)はDVDの保護層厚み、r(mm)は近軸曲率半径、d1(mm)は波長λ1に対する面間隔、d2(mm)は波長λ2に対する面間隔、Nλ1は波長λ1に対する屈折率、Nλ2は波長λ2に対する屈折率、νdはアッベ数、dorは光束が回折構造の入射した際に発生する回折光のうち、最も回折効率が高い回折光の回折次数を表し、これ以降のレンズデータにおいても同様である。 In Table 1, NA 1 is the numerical aperture of the high-density optical disk HD, NA 2 is the numerical aperture of the DVD, f 1 (mm) is the focal length with respect to the wavelength λ 1 , and f 2 (mm) is the focal length with respect to the wavelength λ 2 . , Λ 1 (nm) is the wavelength used for the high-density optical disk HD, λ 2 (nm) is the wavelength used for the DVD, M 1 is the magnification with respect to the wavelength λ 1 , M 2 is the magnification with respect to the wavelength λ 2 , and t 1 (mm) is protective layer thickness of the high density optical disk HD, t 2 (mm) protective layer thickness of DVD, r (mm) is a paraxial radius of curvature, d1 (mm) is the axial distance relative to the wavelength λ 1, d2 (mm) is the wavelength lambda surface separation for 2, N .lambda.1 is the refractive index for the wavelength lambda 1, N .lambda.2 is the refractive index for the wavelength lambda 2, [nu] d is Abbe's number, dor is in the diffracted light generated when the light flux is incident of the diffractive structure, most diffraction Represents the diffraction order of diffracted light with high efficiency The same applies to the subsequent lens data.
また、表2において、段差深さの符号は、回折輪帯が内側に隣接する回折輪帯に対して光源側にシフトする場合を「−」、回折輪帯が内側に隣接する回折輪帯に対して光ディスク側にシフトする場合を「+」とし、これ以降の回折構造のデータにおいても同様である。 In Table 2, the step depth sign is “−” when the diffraction zone is shifted to the light source side with respect to the diffraction zone adjacent to the inner side, and the diffraction zone is set to the diffraction zone adjacent to the inner side. On the other hand, the case of shifting to the optical disc side is set to “+”, and the same applies to the data of the diffraction structure thereafter.
表2に示すように、回折光学素子の第1面には、全部で89の回折輪帯から構成された回折構造が形成されており、図4に模式的に示したように、平面状の回折輪帯が内側に隣接する回折輪帯に対して段差dだけシフトした構成をとる。第32輪帯までは光軸から離れるに従って光源側にシフトしており、第33輪帯から外側は、光軸から離れるに従って光ディスク側にシフトしている。 As shown in Table 2, the first surface of the diffractive optical element is formed with a diffractive structure composed of a total of 89 diffractive ring zones. As schematically shown in FIG. The diffraction ring zone is shifted by a step d with respect to the diffraction ring zone adjacent to the inside. Up to the 32nd ring zone is shifted to the light source side as it is away from the optical axis, and the outside from the 33rd ring zone is shifted to the optical disk side as it is away from the optical axis.
また、第35輪帯から内側の回折輪帯は内側に隣接する回折輪帯に対して1.54μmだけシフトし、第36輪帯から外側の回折輪帯は内側に隣接する回折輪帯に対して3.09μmだけシフトしている。即ち、第35輪帯までは、(1)式又は(7)式においてm=2であり、第36輪帯から外側では(2)式又は(8)式においてn=4である。 Also, the diffraction zone inside from the 35th zone is shifted by 1.54 μm with respect to the diffraction zone adjacent to the inside, and the diffraction zone outside from the 36th zone is relative to the diffraction zone adjacent to the inside. This is shifted by 3.09 μm. That is, up to the 35th zone, m = 2 in the formula (1) or (7), and n = 4 in the formula (2) or (8) from the 36th zone.
この回折構造は、高密度光ディスクHDとDVDの保護層厚みの差による球面収差を補正し、高密度光ディスクHDとDVDの互換を達成するための構造であり、(4)式を満たす。この回折構造では、波長λ1の光束の2次回折光と、波長λ2の光束の1次回折光が最も回折効率が高くなり、第35輪帯から内側での回折効率は、波長λ1の光束の2次回折光が100%であり、波長λ2の光束の1次回折光は88.2%である。 This diffractive structure is a structure for correcting spherical aberration due to the difference in the protective layer thickness between the high-density optical disk HD and the DVD and achieving compatibility between the high-density optical disk HD and the DVD, and satisfies the equation (4). In this diffractive structure, 2-order diffracted light of the light flux of the wavelength lambda 1, most diffraction efficiency 1-order diffracted light of the light flux of wavelength lambda 2 is increased, the diffraction efficiency in the interior from the 35 annular, the wavelength lambda 1 of the light beam The second-order diffracted light is 100%, and the first-order diffracted light of the light beam having the wavelength λ 2 is 88.2%.
実施例2は、図1の実施の形態に適用可能である、回折光学素子と対物レンズとから構成された高密度光ディスクHDとDVDとに互換性を有する対物レンズユニットである。回折光学素子は樹脂製で、対物レンズはガラス製である。尚、対物レンズは、高密度光ディスクHD専用の対物レンズである。レンズデータを表3に、その回折構造のデータを表2に、そのレンズ断面図を図5に示す。 Example 2 is an objective lens unit that can be applied to the embodiment of FIG. 1 and is compatible with a high-density optical disk HD and DVD composed of a diffractive optical element and an objective lens. The diffractive optical element is made of resin, and the objective lens is made of glass. The objective lens is an objective lens dedicated to the high density optical disc HD. The lens data is shown in Table 3, the diffraction structure data is shown in Table 2, and the lens cross-sectional view is shown in FIG.
表4に示すように、回折光学素子の第2面には、全部で65の輪帯から構成された回折構造が形成されており、図6に模式的に示したように、平面状の回折輪帯が内側に隣接する回折輪帯に対して段差dだけシフトした構成をとる。第23輪帯までは光軸から離れるに従って光源側にシフトしており、第24輪帯から外側は、光軸から離れるに従って光ディスク側にシフトしている。 As shown in Table 4, the second surface of the diffractive optical element is formed with a diffractive structure composed of a total of 65 ring zones. As schematically shown in FIG. The annular zone is shifted by a level difference d with respect to the diffraction zone adjacent to the inside. Up to the 23rd annular zone is shifted to the light source side as it is away from the optical axis, and the outside from the 24th annular zone is shifted to the optical disc side as it is away from the optical axis.
また、第30輪帯から内側の回折輪帯は内側に隣接する回折輪帯に対して2.32μmだけシフトし、第30輪帯から外側の回折輪帯は内側に隣接する回折輪帯に対して3.86μmだけシフトしている。即ち、第30輪帯までは、(1)式又は(7)式においてm=3であり、第30輪帯から外側では(2)式又は(8)式においてn=5である。 In addition, the inner diffraction zone from the 30th annular zone is shifted by 2.32 μm relative to the diffraction zone adjacent to the inner side, and the outer diffraction zone from the 30th annular zone is shifted relative to the diffraction zone adjacent to the inner side. This is shifted by 3.86 μm. That is, up to the 30th annular zone, m = 3 in the formula (1) or (7), and n = 5 in the formula (2) or (8) outside the 30th annular zone.
この回折構造は、高密度光ディスクHDとDVDの保護層厚みの差による球面収差を補正し、高密度光ディスクHDとDVDの互換を達成するための構造であり、(5)式を満たす。この回折構造では、波長λ1の光束の3次回折光と、波長λ2の光束の2次回折光が最も回折効率が高くなり、第30輪帯から内側での回折効率は、波長λ1の光束の3次回折光が100%であり、波長λ2の光束の2次回折光は86.4%である。 This diffractive structure is a structure for correcting spherical aberration due to the difference in the protective layer thickness between the high-density optical disk HD and the DVD and achieving compatibility between the high-density optical disk HD and the DVD, and satisfies the equation (5). In this diffractive structure, the third-order diffracted light of the light beam of wavelength λ 1 and the second-order diffracted light of the light beam of wavelength λ 2 have the highest diffraction efficiency, and the diffraction efficiency inside the 30th annular zone is the light beam of wavelength λ 1 . The third-order diffracted light is 100%, and the second-order diffracted light of the light beam having the wavelength λ 2 is 86.4%.
実施例3は、図1の実施の形態に適用可能である回折光学素子と対物レンズとから構成された高密度光ディスクHDとDVDとに互換性を有する対物レンズユニットである。回折光学素子と対物レンズはともに樹脂製である。尚、対物レンズは、高密度光ディスクHD専用の対物レンズである。レンズデータを表5に、その回折構造のデータを表6に、そのレンズ断面図を図7に示す。 Example 3 is an objective lens unit that is compatible with a high-density optical disk HD and a DVD that are composed of a diffractive optical element and an objective lens that can be applied to the embodiment of FIG. Both the diffractive optical element and the objective lens are made of resin. The objective lens is an objective lens dedicated to the high density optical disc HD. The lens data is shown in Table 5, the diffraction structure data is shown in Table 6, and the lens cross-sectional view is shown in FIG.
表6に示すように、回折光学素子の第2面には、全部で61の回折輪帯から構成された回折構造が形成されており、図8に模式的に示したように、平面状の回折輪帯が内側に隣接する回折輪帯に対して段差dだけ光軸から離れるに従って光ディスク側にシフトした構成をとる。 As shown in Table 6, the second surface of the diffractive optical element is formed with a diffractive structure composed of a total of 61 diffractive ring zones. As schematically shown in FIG. The diffraction ring zone is shifted to the optical disc side as the distance from the optical axis is increased by a level difference d with respect to the diffraction ring zone adjacent to the inside.
また、第36輪帯から内側の回折輪帯は内側に隣接する回折輪帯に対して1.56μmだけシフトし、第37輪帯から外側の回折輪帯は内側に隣接する回折輪帯に対して3.11μmだけシフトしている。即ち、第36輪帯までは、(1)式又は(7)式においてm=2であり、第37輪帯から外側では(2)式又は(8)式においてn=4である。 Also, the diffraction zone inside from the 36th zone is shifted by 1.56 μm with respect to the diffraction zone adjacent inside, and the diffraction zone outside from the 37th zone is relative to the diffraction zone adjacent inside. Shifted by 3.11 μm. That is, up to the 36th ring zone, m = 2 in the expression (1) or (7), and n = 4 in the expression (2) or (8) outside the 37th ring zone.
この回折構造は、青紫色波長領域の軸上色収差と色球面収差を補正するための構造であり、(6)式を満たす。この回折構造では、波長λ1の光束の2次回折光と、波長λ2の光束の1次回折光が最も回折効率が高くなり、第36輪帯から内側での回折効率は、波長λ1の光束の3次回折光が100%であり、波長λ2の光束の2次回折光は88.2%である。 This diffractive structure is a structure for correcting axial chromatic aberration and chromatic spherical aberration in the blue-violet wavelength region, and satisfies the equation (6). In this diffractive structure, the second-order diffracted light of the light beam with wavelength λ 1 and the first-order diffracted light of the light beam with wavelength λ 2 have the highest diffraction efficiency, and the diffraction efficiency inside the 36th annular zone is the light beam with wavelength λ 1 . The third-order diffracted light is 100%, and the second-order diffracted light of the light beam having the wavelength λ 2 is 88.2%.
尚、回折光学素子の第1面に形成した回折構造は、高密度光ディスクHDとDVDの保護層厚みの差による球面収差を補正し、高密度光ディスクHDとDVDとの互換を達成するための構造である。この回折構造は、図8に模式的に示したように、その内部に階段構造が形成された複数の輪帯が、光軸を中心として配列された構造をとる(本明細書では、かかる回折構造を「重畳型回折構造」という)。この重畳型回折構造において、各輪帯内に形成された階段構造の1段あたりの深さDは、
D=2・λ1/(Nλ1−1)(μm) (18)
で算出される値に設定され、各輪帯の分割数は5に設定されている。但し、λ1は例えば青紫色半導体レーザから射出される光束の波長をミクロン単位で表したものであり(ここでは、λ1=0.408μm)、Nλ1は回折光学素子の波長λ1に対する屈折率である(ここでは、Nλ1=1.5242)。
The diffractive structure formed on the first surface of the diffractive optical element is a structure for correcting spherical aberration due to the difference in the protective layer thickness between the high-density optical disk HD and DVD and achieving compatibility between the high-density optical disk HD and DVD. It is. As schematically shown in FIG. 8, this diffractive structure has a structure in which a plurality of annular zones each having a staircase structure formed therein are arranged with the optical axis as the center (in this specification, such a diffraction structure). The structure is called “superimposed diffraction structure”). In this superposition type diffractive structure, the depth D per step of the staircase structure formed in each annular zone is:
D = 2 · λ 1 / (N λ1 −1) (μm) (18)
And the number of divisions of each annular zone is set to 5. However, λ 1 represents, for example, the wavelength of a light beam emitted from a blue-violet semiconductor laser in units of micron (here, λ 1 = 0.408 μm), and N λ1 is a refraction with respect to the wavelength λ 1 of the diffractive optical element. Rate (here, N λ1 = 1.5242).
この重畳型回折構造に対して、波長λ1の光束が入射した場合、隣接する階段間では2×λ1(μm)の光路差が発生し、波長λ1の光束は実質的に位相差が与えられないので回折されずにそのまま透過する。尚、以下の説明では、重畳型回折構造により実質的に位相差が与えられずにそのまま透過する光束を0次回折光という。 When a light beam having a wavelength λ 1 is incident on the superposition type diffractive structure, an optical path difference of 2 × λ 1 (μm) is generated between adjacent steps, and the light beam having a wavelength λ 1 has a substantial phase difference. Since it is not given, it passes through without being diffracted. In the following description, a light beam that is transmitted without being substantially given a phase difference by the superposition type diffractive structure is referred to as zero-order diffracted light.
一方、この重畳型回折構造に対して、例えば赤色半導体レーザから射出される波長λ2(ここでは、λ2=0.658m)の光束が入射した場合、隣接する階段間ではD×(Nλ2−1)−λ2=0.13μmの光路差が生じることになり、5分割された輪帯1つ分では、0.13×5=0.65μmと波長λ2の略1波長分の光路差が生じるので、隣接する輪帯を透過した波面がそれぞれ1波長ずれて重なり合うことになる。即ち、この重畳型回折構造により波長λ2の光束は1次方向に回折される回折光となる。本実施例の対物レンズユニットでは、重畳型回折構造の波長λ2に対する回折作用を利用して、高密度光ディスクHDとDVDの保護層厚みの違いに起因する球面収差を補正している。尚、Nλ2は回折光学素子の波長λ2に対する屈折率である(ここでは、Nλ2=1.5064)。このときの波長λ2の光束の1次回折光の回折効率は、87.3%となるが、DVDに対する情報の記録/再生には十分な光量である。 On the other hand, for example, when a light beam having a wavelength λ 2 (here, λ 2 = 0.658 m) emitted from a red semiconductor laser is incident on this superposition type diffractive structure, D × (N λ2 between adjacent stairs. -1) An optical path difference of -λ 2 = 0.13 μm is generated, and for one ring zone divided into five, the optical path for approximately one wavelength of 0.13 × 5 = 0.65 μm and wavelength λ 2 Since a difference occurs, the wavefronts that have passed through the adjacent annular zones overlap each other with a shift of one wavelength. That is, the light beam having the wavelength λ 2 becomes diffracted light diffracted in the first-order direction by the superposition type diffractive structure. In the objective lens unit of the present embodiment, the spherical aberration due to the difference in the protective layer thickness between the high-density optical disk HD and the DVD is corrected using the diffractive action with respect to the wavelength λ 2 of the superposition type diffractive structure. N λ2 is a refractive index with respect to the wavelength λ 2 of the diffractive optical element (here, N λ2 = 1.5064). At this time, the diffraction efficiency of the first-order diffracted light of the light beam having the wavelength λ 2 is 87.3%, but the amount of light is sufficient for recording / reproducing information with respect to the DVD.
実施例4は、図2の実施の形態に適用可能である、回折光学素子と対物レンズとから構成された高密度光ディスクHD専用の光学系である。回折光学素子と対物レンズはともに樹脂製である。レンズデータを表7に、その回折構造のデータを表8に、そのレンズ断面図を図9に示す。 Example 4 is an optical system dedicated to a high-density optical disc HD, which is configured by a diffractive optical element and an objective lens, and can be applied to the embodiment of FIG. Both the diffractive optical element and the objective lens are made of resin. The lens data is shown in Table 7, the diffraction structure data is shown in Table 8, and the lens sectional view is shown in FIG.
表8に示すように、回折光学素子の第1面には、表全部で56の輪帯から構成された回折構造が形成されており、図10に模式的に示したように、断面形状が鋸歯形状である回折輪帯が内側に隣接する回折輪帯に対して段差dだけ光軸から離れるに従って光源側にシフトした構成をとる。 As shown in Table 8, the first surface of the diffractive optical element is formed with a diffractive structure composed of a total of 56 ring zones, and the cross-sectional shape is as shown schematically in FIG. The diffraction ring zone having a sawtooth shape is shifted to the light source side as the distance from the optical axis is increased by a level difference d with respect to the diffraction ring zone adjacent to the inside.
また、第44輪帯から内側の回折輪帯は内側に隣接する回折輪帯に対して1.55μmだけシフトし、第45輪帯から外側の回折輪帯は内側に隣接する回折輪帯に対して3.11μmだけシフトしている。即ち、第44輪帯までは、(1)式又は(7)式においてm=2であり、第45輪帯から外側では(2)式又は(8)式においてn=4である。 Also, the diffraction zone inside from the 44th zone is shifted by 1.55 μm with respect to the diffraction zone adjacent inside, and the diffraction zone outside from the 45th zone is relative to the diffraction zone adjacent inside. Shifted by 3.11 μm. That is, up to the 44th ring zone, m = 2 in the expression (1) or (7), and n = 4 in the expression (2) or (8) outside the 45th ring zone.
この回折構造は、対物レンズの青紫色波長領域の軸上色収差を補正するための構造であり、(6)式を満たす。 This diffractive structure is a structure for correcting axial chromatic aberration in the blue-violet wavelength region of the objective lens, and satisfies the equation (6).
以上のように本発明を実施の形態及び実施例により説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。 As described above, the present invention has been described by the embodiments and examples. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention.
AC 2軸アクチュエータ
AP 開口制限素子
B 鏡枠
BS 偏光ビームスプリッタ
COL コリメートレンズ
DOE 回折光学素子
DS1 受光部
DS2 受光部
DVD 光ディスク
EP1 発光部
EP2 発光部
FL1 フランジ部
HD 高密度光ディスク
LD 青紫色半導体レーザ
LM 用レーザモジュール
OBJ 対物レンズ
PD 光検出器
PL1 保護層
PL2 保護層
PS プリズム
PU1 光ピックアップ装置
PU2 光ピックアップ装置
RL1 情報記録面
RL2 情報記録面
S1 光学面
S2 光学面
SEN センサーレンズ
SH ビーム整形レンズ
STO 絞り
AC biaxial actuator AP Aperture limiting element B Mirror frame BS Polarizing beam splitter COL Collimating lens DOE Diffractive optical element DS1 Light receiving part DS2 Light receiving part DVD Optical disk EP1 Light emitting part EP2 Light emitting part FL1 Flange part HD High density optical disk LD For blue-violet semiconductor laser LM Laser module OBJ Objective lens PD Photodetector PL1 Protective layer PL2 Protective layer PS Prism PU1 Optical pickup device PU2 Optical pickup device RL1 Information recording surface RL2 Information recording surface S1 Optical surface S2 Optical surface SEN Sensor lens SH Beam shaping lens STO Aperture
Claims (21)
光学面内の光軸から所定の高さより内側の前記輪帯段差の光軸方向の深さdINと、前記所定の高さより外側の前記輪帯段差の光軸方向の深さdOUTが、それぞれ、以下の(1)式乃至(3)式を満たすことを特徴とする回折光学素子。
m=Int(|dIN|・(N−1)/λ) (1)
n=Int(|dOUT|・(N−1)/λ) (2)
m<n (3)
但し、Int(X)は、Xに最も近い整数であり、λは、前記回折構造に入射する光束の波長であり、Nは、前記波長λでの前記回折光学素子の屈折率である。 In a diffractive optical element having a diffractive surface formed with a diffractive structure composed of a plurality of annular zone steps,
Depth d IN in the optical axis direction of the annular zone step inside the predetermined height from the optical axis in the optical surface, and a depth d OUT in the optical axis direction of the annular zone step outside the predetermined height, A diffractive optical element that satisfies the following expressions (1) to (3), respectively.
m = Int (| d IN | · (N−1) / λ) (1)
n = Int (| d OUT | · (N−1) / λ) (2)
m <n (3)
Where Int (X) is an integer closest to X, λ is the wavelength of the light beam incident on the diffractive structure, and N is the refractive index of the diffractive optical element at the wavelength λ.
{m1・λ1/(Nλ1−1)}/{m2・λ2/(Nλ2−1)}>1 (4) The wavelength λ is λ 1 , the wavelength longer than the wavelength λ is λ 2 , the refractive index of the diffractive optical element at the wavelength λ 1 is N λ1 , and the refractive index of the diffractive optical element at the wavelength λ 2 is N λ2. When the light beam having the wavelength λ 1 is incident on the annular zone step inside the predetermined height, the diffraction order that maximizes the diffraction efficiency is m 1 , and the light beam having the wavelength λ 2 is from the predetermined height. When the diffraction order that maximizes the diffraction efficiency when incident on the inner annular zone step is m 2 , the following equation (4) is satisfied, and the diffraction structure is used when the wavelength of the incident light beam becomes longer. 5. The diffractive optical element according to claim 4, wherein the spherical aberration has a wavelength dependency such that the spherical aberration changes in an overcorrection direction.
{M 1 · λ 1 / (N λ1 -1)} / {m 2 · λ 2 / (N λ2 -1)}> 1 (4)
{m1・λ1/(Nλ1−1)}/{m2・λ2/(Nλ2−1)}<1 (5) The wavelength λ is λ 1 , the wavelength longer than the wavelength λ is λ 2 , the refractive index of the diffractive optical element at the wavelength λ 1 is N λ1 , and the refractive index of the diffractive optical element at the wavelength λ 2 is N λ2. When the light beam having the wavelength λ 1 is incident on the annular zone step inside the predetermined height, the diffraction order that maximizes the diffraction efficiency is m 1 , and the light beam having the wavelength λ 2 is from the predetermined height. When the diffraction order that maximizes the diffraction efficiency when incident on the inner annular zone step is m 2 , the following equation (5) is satisfied, and the diffractive structure is used when the wavelength of the incident light beam becomes longer. 5. The diffractive optical element according to claim 4, wherein the spherical aberration has a wavelength dependency such that the spherical aberration changes in a direction of insufficient correction.
{M 1 · λ 1 / (N λ1 -1)} / {m 2 · λ 2 / (N λ2 -1)} <1 (5)
P2>P1>P3 (6) The diffraction power on the paraxial axis of the diffraction structure with respect to the wavelength λ is P 1 (mm −1 ), the diffraction power on the paraxial axis of the diffraction structure with respect to a wavelength longer than the wavelength λ by 5 nm is P 2 (mm −1 ), and the wavelength. 9. The following expression (6) is satisfied, where P 3 (mm −1 ) is a paraxial power of the diffraction structure for a wavelength shorter than λ by 5 nm. The diffractive optical element according to 1.
P 2 > P 1 > P 3 (6)
前記集光光学系は、複数の輪帯段差から構成される回折構造が形成された回折面を有する回折光学素子を有し、
前記回折光学素子において、光学面内の光軸から所定の高さより内側の前記輪帯段差の光軸方向の深さdINと、前記所定の高さより外側の前記輪帯段差の光軸方向の深さdOUTが、それぞれ、以下の(7)式乃至(9)式を満たすことを特徴とする特徴とする光ピックアップ装置。
m=Int(|dIN|・(Nλ1−1)/λ1) (7)
n=Int(|dOUT|・(Nλ1−1)/λ1) (8)
m<n (9)
但し、Int(X)は、Xに最も近い整数であり、λ1は、前記回折構造に入射する光束の波長であり、Nλ1は、前記波長λ1での前記回折光学素子の屈折率である。 An optical pickup device having a first light source that emits a light beam having a first wavelength λ 1 and a condensing optical system including an objective lens, the optical pick-up device via the condensing optical system from the first light source In the optical pickup device capable of recording and / or reproducing information by condensing the light beam on the information recording surface of the first optical information recording medium,
The condensing optical system has a diffractive optical element having a diffractive surface on which a diffractive structure composed of a plurality of annular zone steps is formed,
In the diffractive optical element, the inside of the annular zone step from a predetermined height from the optical axis of the optical surface and the depth d IN of the optical axis, the optical axis direction of the annular zone step outside than the predetermined height A depth d OUT satisfies the following expressions (7) to (9), respectively.
m = Int (| d IN | · (N λ1 −1) / λ 1 ) (7)
n = Int (| d OUT | · (N λ1 −1) / λ 1 ) (8)
m <n (9)
Where Int (X) is an integer closest to X, λ 1 is the wavelength of the light beam incident on the diffractive structure, and N λ1 is the refractive index of the diffractive optical element at the wavelength λ 1. is there.
前記第1の波長λ1の光束が、前記所定の高さより内側の前記輪帯段差に入射した場合に回折効率が最大となる回折次数に対して、前記第2の波長λ2の光束が、前記所定の高さより内側の前記輪帯段差に入射した場合に回折効率が最大となる回折次数が小さくなるように前記dINが決定されていることを特徴とする請求項11又は12に記載の光ピックアップ装置。 Further, the optical pickup device includes a second light source that emits a light beam having a second wavelength λ 2 (λ 2 > λ 1 ) longer than the first wavelength λ 1 , and the optical pickup device passes through the condensing optical system. Thus, it is possible to record and / or reproduce information by condensing the light beam from the second light source on the information recording surface of the second optical information recording medium,
For the diffraction order at which the diffraction efficiency is maximized when the light beam of the first wavelength λ 1 is incident on the annular zone step inside the predetermined height, the light beam of the second wavelength λ 2 is The dIN is determined so that a diffraction order that maximizes diffraction efficiency when incident on the annular zone step inside the predetermined height is reduced. Optical pickup device.
{m1・λ1/(Nλ1−1)}/{m2・λ2/(Nλ2−1)}>1 (10) The refractive index of the diffractive optical element at the first wavelength λ 1 is N λ1 , the refractive index of the diffractive optical element at the second wavelength λ 2 is N λ2 , and the light beam of the first wavelength λ 1 is The diffraction order at which the diffraction efficiency is maximized when entering the annular zone step inside the predetermined height is m 1 , and the luminous flux having the second wavelength λ 2 is inside the predetermined height. When the diffraction order that maximizes the diffraction efficiency when incident on a step is m 2 , the following equation (10) is satisfied, and the diffractive structure is overcorrected for spherical aberration when the wavelength of the incident light beam becomes long. The optical pickup device according to claim 14, wherein the optical pickup device has wavelength dependency of spherical aberration that changes in a direction.
{M 1 · λ 1 / (N λ1 -1)} / {m 2 · λ 2 / (N λ2 -1)}> 1 (10)
{m1・λ1/(Nλ1−1)}/{m2・λ2/(Nλ2−1)}>1 (11) The refractive index of the diffractive optical element at the first wavelength λ 1 is N λ1 , the refractive index of the diffractive optical element at the second wavelength λ 2 is N λ2 , and the light beam of the first wavelength λ 1 is The diffraction order at which the diffraction efficiency is maximized when entering the annular zone step inside the predetermined height is m 1 , and the luminous flux having the second wavelength λ 2 is inside the predetermined height. When the diffraction order that maximizes the diffraction efficiency when incident on a step is m 2 , the following equation (11) is satisfied, and the diffractive structure has insufficient correction of spherical aberration when the wavelength of the incident light beam becomes long The optical pickup device according to claim 14, wherein the optical pickup device has wavelength dependency of spherical aberration that changes in a direction.
{M 1 · λ 1 / (N λ1 -1)} / {m 2 · λ 2 / (N λ2 -1)}> 1 (11)
P2>P1>P3 (12) The diffraction power at the paraxial axis of the diffractive structure with respect to the first wavelength λ 1 is P 1 (mm −1 ), and the diffraction power at the paraxial axis of the diffractive structure with respect to a wavelength 5 nm longer than the first wavelength λ 1 is P 2. (Mm −1 ), where P 3 (mm −1 ) is the paraxial power of the diffraction structure for a wavelength shorter than the first wavelength λ 1 by 5 nm, and satisfies the following expression (12): The optical pickup device according to any one of claims 11 to 18.
P 2 > P 1 > P 3 (12)
21. The optical pickup device according to claim 11, and an optical information recording medium support unit that supports the optical information recording medium so that an information signal can be recorded and / or reproduced by the optical pickup device. An optical information recording / reproducing apparatus comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004052070A JP4348617B2 (en) | 2004-02-26 | 2004-02-26 | Diffractive optical element, objective lens, optical pickup device, and optical information recording / reproducing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004052070A JP4348617B2 (en) | 2004-02-26 | 2004-02-26 | Diffractive optical element, objective lens, optical pickup device, and optical information recording / reproducing device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009130297A Division JP2009187671A (en) | 2009-05-29 | 2009-05-29 | Diffractive optical element, optical pickup device, and optical information recording and reproducing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005243151A true JP2005243151A (en) | 2005-09-08 |
JP4348617B2 JP4348617B2 (en) | 2009-10-21 |
Family
ID=35024719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004052070A Expired - Fee Related JP4348617B2 (en) | 2004-02-26 | 2004-02-26 | Diffractive optical element, objective lens, optical pickup device, and optical information recording / reproducing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4348617B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008146706A (en) * | 2006-12-06 | 2008-06-26 | Hitachi Maxell Ltd | Coupling lens and optical pickup device |
WO2011093007A1 (en) * | 2010-01-27 | 2011-08-04 | パナソニック株式会社 | Compound objective lens, optical head device, optical information device and information processing device |
US8611199B2 (en) | 2010-09-29 | 2013-12-17 | Panasonic Corporation | Objective lens element and optical pickup device |
US8767518B2 (en) | 2010-09-29 | 2014-07-01 | Panasonic Corporation | Objective lens element and optical pickup device |
JP2015515640A (en) * | 2012-02-27 | 2015-05-28 | イービジョン スマート オプティクス インコーポレイテッド | Electroactive lens with multiple depth diffractive structures |
-
2004
- 2004-02-26 JP JP2004052070A patent/JP4348617B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008146706A (en) * | 2006-12-06 | 2008-06-26 | Hitachi Maxell Ltd | Coupling lens and optical pickup device |
WO2011093007A1 (en) * | 2010-01-27 | 2011-08-04 | パナソニック株式会社 | Compound objective lens, optical head device, optical information device and information processing device |
CN102365682A (en) * | 2010-01-27 | 2012-02-29 | 松下电器产业株式会社 | Compound objective lens, optical head device, optical information device and information processing device |
US8305864B2 (en) | 2010-01-27 | 2012-11-06 | Panasonic Corporation | Compound objective lens, optical head device, optical information device, and information processing device |
JP5583700B2 (en) * | 2010-01-27 | 2014-09-03 | パナソニック株式会社 | Compound objective lens, optical head device, optical information device, and information processing device |
US8611199B2 (en) | 2010-09-29 | 2013-12-17 | Panasonic Corporation | Objective lens element and optical pickup device |
US8767518B2 (en) | 2010-09-29 | 2014-07-01 | Panasonic Corporation | Objective lens element and optical pickup device |
JP2015515640A (en) * | 2012-02-27 | 2015-05-28 | イービジョン スマート オプティクス インコーポレイテッド | Electroactive lens with multiple depth diffractive structures |
US9329309B2 (en) | 2012-02-27 | 2016-05-03 | E-Vision Smart Optics, Inc. | Electroactive lens with multiple depth diffractive structures |
US10054725B2 (en) | 2012-02-27 | 2018-08-21 | E-Vision Smart Optics, Inc. | Electroactive lens with multiple depth diffractive structures |
Also Published As
Publication number | Publication date |
---|---|
JP4348617B2 (en) | 2009-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4433818B2 (en) | Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device | |
JP5136810B2 (en) | Optical pickup device | |
WO2010013616A1 (en) | Objective lens and optical pickup device | |
JP4736071B2 (en) | Optical pickup device and objective optical element | |
JP4992103B2 (en) | Objective optical system, optical pickup device, and optical information recording / reproducing device | |
JP5024041B2 (en) | Objective optical element for optical pickup device, optical element for optical pickup device, objective optical element unit for optical pickup device, and optical pickup device | |
JP2005135555A (en) | Optical element, optical pickup device, and optical information recording and reproducing device | |
JPWO2007123112A1 (en) | Optical pickup device, optical element, optical information recording / reproducing apparatus, and optical element design method | |
JP4348617B2 (en) | Diffractive optical element, objective lens, optical pickup device, and optical information recording / reproducing device | |
JP4370619B2 (en) | Optical element, optical pickup device and drive device | |
JP2005310315A (en) | Objective lens, optical pickup device, and optical information recording and reproducing device | |
JP2009110591A (en) | Objective lens and optical pickup device | |
JPWO2005088625A1 (en) | Objective optical element and optical pickup device | |
JP4400326B2 (en) | Optical pickup optical system, optical pickup device, and optical disk drive device | |
JP2010055683A (en) | Objective optical element and optical pickup device | |
JP2010153006A (en) | Objective optical element and optical pickup device | |
JP2009037721A (en) | Optical pickup device and objective optical element | |
JP2006012393A (en) | Objective optical system, optical pickup device, and optical disk driving device | |
JP2009187671A (en) | Diffractive optical element, optical pickup device, and optical information recording and reproducing device | |
JP2005317105A (en) | Optical pickup device | |
JP2010055732A (en) | Objective optical element and optical pickup device | |
JP2005196930A (en) | Diffractive optical element and optical pickup device | |
JP2005276418A (en) | Objective optical system, optical pickup device, and optical information recording/reproducing device | |
JP2007273085A (en) | Optical element for optical pickup device, coupling lens, and optical pickup device | |
JP2009245585A (en) | Diffractive optical element and optical pickup device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090625 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090708 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120731 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4348617 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120731 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120731 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130731 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |