JP2005242531A - Installation work management system utilizing 3d-cad - Google Patents

Installation work management system utilizing 3d-cad Download PDF

Info

Publication number
JP2005242531A
JP2005242531A JP2004049435A JP2004049435A JP2005242531A JP 2005242531 A JP2005242531 A JP 2005242531A JP 2004049435 A JP2004049435 A JP 2004049435A JP 2004049435 A JP2004049435 A JP 2004049435A JP 2005242531 A JP2005242531 A JP 2005242531A
Authority
JP
Japan
Prior art keywords
installation
installation work
management system
model
structural model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004049435A
Other languages
Japanese (ja)
Inventor
Yuya Tatsui
優也 立井
Hiroshi Tezuka
洋 手塚
Keiji Tanaka
啓嗣 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004049435A priority Critical patent/JP2005242531A/en
Publication of JP2005242531A publication Critical patent/JP2005242531A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an installation work management system ensuring the consideration of an interference or the like of an installation carry-in route, and allowing dynamic production and a change of an installation process. <P>SOLUTION: This installation work management system has: a material model database 102 for storing a material model formed by 3D-CAD modeling a plurality of materials constituting a plant structure; a structure model database 103 for storing a structure model configured by connecting a plurality of material models; an input means 104 for inputting and setting installation data including a reception day and an installation completion setting day of the material related to the structure model; and an installation work confirmation means 105 for confirming an installation progress situation of the structure model on a designated day input by the input means 104 on the basis of the installation data, and displaying a 3D image of the structure model completed with installation on a display screen 106 on the basis of the confirmed installation progress situation. Because the 3D image of a plant on the input designated day is displayed, an installation planner can easily confirm the installation progress situation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プラント建設における工事計画および工事工程の管理等に好適な3D−CADを活用した据付工事管理システムに関する。   The present invention relates to an installation work management system using 3D-CAD suitable for a construction plan and construction process management in plant construction.

3D−CADシステムを利用して、プラント建造物の建設工程全体を計画する方法が提案されている(例えば、特許文献1)。この方法によれば、一連の建設作業に関連する複数の部品を、3D−CADシステムにより作成された個々の部品の属性データ(部品種類、口径、接続関係等)を用いてグループ化し、グループ単位で据付などの建設工程を検討して工程データを作成するようにしている。また、必要に応じて、グループを統合し、あるいは分割して再編するようにしている。さらに、CAD図面データと建設作業とをリンクさせて、プラントの工事の進め方をアニメーションで確認しながら工程表を作成するなど、建設工程作成の合理化を図ることが提案されている。   A method of planning the entire construction process of a plant building using a 3D-CAD system has been proposed (for example, Patent Document 1). According to this method, a plurality of parts related to a series of construction work are grouped by using attribute data (part type, caliber, connection relation, etc.) of each part created by the 3D-CAD system, and a group unit. Therefore, the construction process such as installation is examined and process data is created. In addition, groups are integrated or divided and reorganized as necessary. Further, it has been proposed to streamline construction process creation by linking CAD drawing data and construction work and creating a process chart while confirming how to proceed with plant construction with animation.

特開2002−123786号公報JP 2002-123786 A

しかしながら、特許文献1に記載された従来の技術は、次の事項について配慮されていないという問題がある。   However, the conventional technique described in Patent Document 1 has a problem that the following matters are not considered.

建設現場における施工は、建設現場の敷地面積の制約、あるいは精密機器などのように屋外の仮置きが許されないなどの制約により、建設現場において資材の物流管理が必要となる。特に、資材の荷受日の変更や工事の進捗状況に動的に対応して管理することについて配慮されていない。   Construction work at a construction site requires material logistics management at the construction site due to restrictions on the site area of the construction site, or restrictions such as that temporary placement is not permitted, such as precision equipment. In particular, no consideration is given to the management of dynamically responding to changes in material receipt date and construction progress.

また、資材を据付場所に搬入する搬入ルート上に、他の資材や機器が既に据え付けられている場合、そのままでは据付できなくなるが、従来は、据付搬入ルートの干渉チェックについては配慮されていない。   In addition, when other materials and equipment are already installed on the carry-in route for carrying the material to the installation location, the installation cannot be performed as it is, but conventionally, no consideration is given to the interference check of the installation carry-in route.

また、配管の現地ブロック化による仮設材物量や工事工数の低減を目的とした据付作業および据付工程の計画に配慮されていない。   In addition, there is no consideration for the installation work and the planning of the installation process for the purpose of reducing the amount of temporary materials and construction man-hours by making the piping on-site blocks.

本発明は、資材の荷受日の変更や工事の進捗状況に対応して据付工程を動的に作成ないし変更可能な据付工事管理システムを提供することを課題とする。   It is an object of the present invention to provide an installation management system that can dynamically create or change an installation process in response to a change in material receipt date and a progress of construction.

また、据付搬入ルートの干渉の有無および仮設材物量や工事工数を判断して、据付作業および据付工程を動的に作成ないし変更可能な据付工事管理システムを提供することを他の課題とする。   It is another object of the present invention to provide an installation management system capable of dynamically creating or changing an installation operation and an installation process by judging the presence / absence of interference in the installation carry-in route, the amount of temporary materials, and the number of construction steps.

本発明は、次に説明する手段により、上記の課題を解決するものである。基本的に、プラント設計においては、3D−CADシステムを利用して、プラントを構成する資材をモデル化して3D図面化することが多くなっている。このとき、3D図面上に作成される資材モデルは、そのモデル作成時に、種類、材質、寸法、重量、ユーザ定義情報などの資材データが付加して作成される。また、資材モデルのプラントにおける配置情報、資材相互の接続関係などの配置データからなる構造モデルが作成される。そこで、本発明は、プラント設計段階で作成された資材モデルデータベースおよび構造モデルデータベースを利用して据付工事管理システムを構築するものである。   The present invention solves the above problems by means described below. Basically, in plant design, a 3D-CAD system is often used to model materials constituting a plant to form a 3D drawing. At this time, the material model created on the 3D drawing is created by adding material data such as type, material, dimensions, weight, and user-defined information when the model is created. In addition, a structural model is created that includes arrangement data such as arrangement information of the material model in the plant and connection relations between the materials. Therefore, the present invention constructs an installation work management system using a material model database and a structural model database created at the plant design stage.

具体的には、本発明の据付工事管理システムは、プラント構造物を構成する複数の資材を3D−CADモデル化してなる資材モデルが格納された資材モデルデータベースと、前記資材モデルを複数接続して構成される構造モデルが格納された構造モデルデータベースと、前記構造モデルに係る前記資材の荷受日と据付完了設定日を含む据付データを入力設定する入力手段と、前記入力手段により入力された指定日における前記構造モデルの据付進行状況を前記据付データに基づいて確認し、確認した据付進行状況に基づいて据付が完了している前記構造モデルの3D画像を表示画面に表示する据付作業確認手段を備えてなることを特徴とする。   Specifically, the installation work management system of the present invention connects a plurality of material models with a material model database storing a material model formed by 3D-CAD modeling of a plurality of materials constituting a plant structure. A structural model database in which the structural model to be configured is stored; input means for inputting and setting installation data including a receiving date and an installation completion setting date of the material related to the structural model; and a specified date input by the input means Installation work confirming means for confirming the installation progress status of the structural model based on the installation data and displaying on the display screen a 3D image of the structural model that has been installed based on the confirmed installation progress status It is characterized by.

これにより、本発明によれば、入力手段から据付進行状況の確認をしたい指定日を入力すると、その指定日におけるプラントの状態図が3D画像として表示されるから、その3D画像により据付計画者は容易に据付進行状況を確認することができる。また、入力手段から構造モデルに係る資材の荷受日または据付完了設定日の変更を入力すると、その据付データの変更に対応して動的に3D画像が変わるから、それらの変更に伴う据付進行状況の変動を容易に把握できる。   Thus, according to the present invention, when the designated date for which the installation progress status is to be confirmed is input from the input means, the plant state diagram on the designated date is displayed as a 3D image. You can easily check the installation progress. In addition, when a change in the date of receiving or setting completion date of materials related to the structural model is input from the input means, the 3D image changes dynamically in response to the change in the installation data. Can easily grasp the fluctuations.

特に、設計者により入力された資材相互の接続関係に対し、据付工事計画者が具体的な接続方法、時期を与えることを可能とすることが好ましい。また、構造モデルの据付搬入ルートを据付データに入力設定可能に形成し、据付作業確認手段は、前記資材の据付搬入ルートが、先に据付完了した構造モデルによって干渉を受けるか否か判断する据付搬入ルート干渉チェック手段を備えてなるものとすることが好ましい。これによれば、資材の荷受日の変更や工事の進行状況に対応して、据付方法や据付搬入ルートの干渉の有無を判断して、据付作業および据付工程を動的に作成ないし変更することができる。その結果に基づいて、据付計画の検証及びプラント納期に及ぼす影響を判断できるから、構造モデルの構成の変更、あるいは荷受日を早めに変更するなどの対応を取ることにより、最適納期の計画および管理をすることができる。   In particular, it is preferable that the installation planner can give a specific connection method and timing to the connection relation between materials input by the designer. In addition, the installation route for the structural model is formed so that the installation data can be input and set, and the installation work confirmation means determines whether the installation delivery route for the material is subject to interference by the previously completed structural model. It is preferable to include a carry-in route interference check means. According to this, the installation method and the installation process can be dynamically created or changed by judging whether there is any interference with the installation method and installation carry-in route according to the change of the material receiving date and the progress of construction. Can do. Based on the results, the installation plan can be verified and the impact on the plant delivery date can be determined. Plan and manage the optimum delivery date by taking measures such as changing the structure model structure or changing the delivery date earlier. Can do.

また、据付作業確認手段は、入力手段により設定される据付データが変更されたときに実行することが好ましい。これにより、例えば、据付搬入ルート干渉チェックの結果に基づいて、据付計画者が据付データのうちの例えば据付搬入ルートを変更すると、変更後の据付搬入ルートによれば、干渉を回避できるか否かを直ちに把握することができる。この場合、据付搬入ルート干渉チェック手段は、前記干渉を受ける据付搬入ルートに係る前記構造モデルを識別可能に前記表示画面に表示することが好ましい。また、前記入力手段を、前記据付データを入力する入力画面として、前記据付作業確認手段により表示される前記3D画像と並べて同一画面に表示することが好ましい。   Further, it is preferable that the installation work confirmation means is executed when the installation data set by the input means is changed. Thus, for example, if the installation planner changes, for example, the installation carry-in route in the installation data based on the result of the installation carry-in route interference check, whether the interference can be avoided according to the changed installation carry-in route. Can be grasped immediately. In this case, it is preferable that the installation carry-in route interference checking means displays the structural model related to the installation carry-in route that receives the interference on the display screen in an identifiable manner. In addition, it is preferable that the input unit is displayed on the same screen as the input screen for inputting the installation data side by side with the 3D image displayed by the installation work confirmation unit.

ここで、資材モデルには、種類、材質、重量、寸法の資材データを含ませ、前記構造モデルには、配置位置、据付フロア、資材相互の接続関係の配置データを含ませることができる。また、据付データには、構造モデルに係る資材の仮置場情報を含ませることができる。   Here, the material model can include material data of type, material, weight, and dimensions, and the structural model can include arrangement data of the arrangement position, the installation floor, and the connection relationship between the materials. The installation data can include temporary storage information of materials related to the structural model.

さらに、据付作業確認手段は、資材モデルや据付データが変更されたとき、変更後の資材モデル、構造モデルおよび据付データに基づいて、前記構造モデルの据付作業に必要な仮設材物量と工事工数を算出して、前記据付データに付加する構成とすることができる。   Further, when the material model and the installation data are changed, the installation work confirmation means calculates the temporary material amount and the construction man-hour required for the installation work of the structural model based on the changed material model, the structural model and the installation data. It can be configured to calculate and add to the installation data.

言い換えれば、本発明の据付工事管理システムは、プラント建設に係る3D−CADシステムのモデルの対象範囲を、資材置場、倉庫及び仮設工場を含む現場サイト全体に広げ、資材(含む機材)の発注、荷受、保管、据付完了等のサイト内の資材の物流情報を一元管理することができる。   In other words, the installation management system of the present invention extends the scope of the model of the 3D-CAD system model for plant construction to the entire site site including the material storage, warehouse, and temporary factory, and orders for materials (including equipment) It is possible to centrally manage the logistics information of materials in the site such as receiving, storing and completing installation.

本発明の据付工事管理システムによれば、資材の荷受日の変更や工事の進捗状況に対応して据付工程を動的に作成ないし変更可できる。   According to the installation work management system of the present invention, it is possible to dynamically create or change an installation process in response to a change in the material receipt date and the progress of construction.

また、据付搬入ルートの干渉有の判断や、仮設材物量や工事工数を比較しながら、据付作業および据付工程を動的に作成ないし変更することができる。   In addition, the installation work and the installation process can be dynamically created or changed while judging whether there is interference in the installation carry-in route, and comparing the amount of temporary material and the number of construction steps.

本発明の実施の形態を図面に基づいて説明する。図1に本発明の一実施の形態の据付工事管理システムの全体構成図を示し、図2に本実施の形態の据付工事管理の処理手順の概要を示す。また、図3乃至図5に、各部の詳細な処理手順を示す。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an overall configuration diagram of an installation work management system according to an embodiment of the present invention, and FIG. 2 shows an outline of a processing procedure of installation work management according to the present embodiment. 3 to 5 show the detailed processing procedure of each part.

図1に示すように、本実施の形態の据付工事管理システム101は、資材モデルデータベース102、構造モデルデータベース103、据付データ入力手段104、据付作業確認手段105、3D画像表示装置106を含んでなる、いわゆる3D−CADシステムで構成されている。   As shown in FIG. 1, an installation work management system 101 according to the present embodiment includes a material model database 102, a structural model database 103, installation data input means 104, installation work confirmation means 105, and a 3D image display device 106. The so-called 3D-CAD system is used.

資材モデルデータベース102には、プラント建造物を構成する様々な資材を3D−CADによりモデル化してなる資材モデル107が格納されている。個々の資材モデルi(i=1、2、3、・・・、n)107は、資材データ108として、種類109、材質110、寸法111などの属性データが付与されている。   The material model database 102 stores a material model 107 obtained by modeling various materials constituting a plant building by 3D-CAD. Each material model i (i = 1, 2, 3,..., N) 107 is provided with attribute data such as a type 109, a material 110, and a dimension 111 as the material data 108.

構造モデルデータベース103には、プラント建造物を構成する全ての構造モデル112の3D−CADデータが格納されている。構造モデル112は、複数の資材モデル107から構成される構造物のモデルであり、複数の資材からなる一纏まりの資材グループを構造モデルとして、プラントの設計者により適宜定義される。図示例では、構造モデルj(j=1、2、3、・・・、k)112は、配置データ113として、構造モデル112を構成する資材モデル107、その資材モデル107の配置位置114、資材モデル107の相互接続関係115、階層(フロア)を有する建造物における据付フロア116などの属性データが付与されている。   The structural model database 103 stores 3D-CAD data of all the structural models 112 constituting the plant building. The structural model 112 is a model of a structure composed of a plurality of material models 107, and is appropriately defined by a plant designer using a group of material groups composed of a plurality of materials as a structural model. In the illustrated example, the structural model j (j = 1, 2, 3,..., K) 112 includes, as the arrangement data 113, the material model 107 constituting the structural model 112, the arrangement position 114 of the material model 107, and the material. Attribute data such as the interconnection relationship 115 of the model 107 and the installation floor 116 in a building having a hierarchy (floor) are given.

据付データ入力手段104からは、据付データ117として、構造モデル112を構成する資材について、工事現場であるサイトへの荷受日118、仮置位置119、据付完了設定日120、据付搬入ルート121、資材相互接続関係122が入力設定されるようになっている。入力設定された据付データ117の荷受日118、仮置位置119、据付完了設定日120、据付搬入ルート121、資材相互接続関係122は、構造モデル112に付与されるようになっている。ここで、、資材相互接続関係122は、設計者により与えられた、資材相互接続関係116に、据付工事計画者が具体的な接続方法、時期を与えるようになっている。   From the installation data input means 104, as the installation data 117, the materials constituting the structural model 112 are received at the site that is the construction site 118, temporary placement position 119, installation completion setting date 120, installation carry-in route 121, materials The interconnection relation 122 is set as an input. The receiving date 118, temporary placement position 119, installation completion setting date 120, installation carry-in route 121, and material interconnection relation 122 of the installation data 117 set as input are assigned to the structural model 112. Here, the material interconnection relationship 122 is such that the installation planner gives a specific connection method and timing to the material interconnection relationship 116 given by the designer.

据付作業確認手段105は、工事進行状況/作業内容確認手段123、据付搬入ルート干渉チェック手段124、仮設材物量算出手段125、工事工数算出手段126を有して構成されている。仮設材物量算出手段125と工事工数算出手段126で算出された工事工数と仮設材物量は、据付データ117として登録されるようになっている。   The installation work confirmation unit 105 includes a construction progress / work content confirmation unit 123, an installation carry-in route interference check unit 124, a temporary material amount calculation unit 125, and a construction man-hour calculation unit 126. The construction man-hours and the temporary material quantities calculated by the temporary material quantity calculator 125 and the construction man-hour calculator 126 are registered as installation data 117.

次に、図2を参照して、据付工事管理の処理手順の概要を説明する。処理開始(ステップ201)に続いて、プラント設計者は既に登録済みの資材モデル107を3D画面上に構造モデル112として配置することにより、プラント建造物の3D画像モデルを作成する(ステップ202)。その際、構造モデル112に個々の配置データ113を付与する。次いで、据付計画者により、据付データ117が入力される(ステップ203)。据付データ117が入力されると、据付作業確認手段105が作動する(ステップ204)。このステップ204の詳細は、図3乃至図5を参照して後述する。次いで、据付作業確認手段105の処理結果が、据付完了設定日を満足しない場合、据付搬入ルートが他の構造モデルと干渉するなどの不都合がある場合は、それらの据付データ117を変更してステップ203に戻り、上記処理を繰り返す(ステップ205)。つまり、据付作業を再検討して、荷受日、据付搬入ルート、据付完了設定日などの据付データ117の変更を行い、全ての構造モデルjに据付データ117を付与する。このようにして、据付作業に不都合がなくなった場合は、据付作業確認手段105の処理を終了する(ステップ206)。これにより、サイト荷受けから据付完了設定日までの3D画像により、据付作業を確認しながら据付工程を決定することができる。また、可視化されたサイト内物流の把握が可能である。   Next, with reference to FIG. 2, an outline of the processing procedure of the installation work management will be described. Following the start of the process (step 201), the plant designer creates a 3D image model of the plant building by placing the already registered material model 107 as the structural model 112 on the 3D screen (step 202). At that time, the individual arrangement data 113 is given to the structural model 112. Next, installation data 117 is input by the installation planner (step 203). When the installation data 117 is input, the installation work confirmation unit 105 operates (step 204). Details of step 204 will be described later with reference to FIGS. Next, if the processing result of the installation work confirmation means 105 does not satisfy the installation completion setting date, or if there is an inconvenience such as the installation carry-in route interfering with another structural model, the installation data 117 is changed and the step is performed. Returning to 203, the above process is repeated (step 205). In other words, the installation work is re-examined, the installation data 117 such as the delivery date, the installation carry-in route, and the installation completion setting date is changed, and the installation data 117 is assigned to all the structural models j. In this way, when there is no inconvenience in the installation work, the process of the installation work confirmation means 105 is ended (step 206). Thereby, it is possible to determine the installation process while confirming the installation work based on the 3D images from the site reception to the installation completion setting date. It is also possible to grasp the on-site logistics visualized.

ここで、図3を参照して、据付作業確認手段105の工事進行状況/作業内容確認手段123の処理について説明する。据付工事の計画者は、工事進行状況を確認したい日付を指定日(X)301として選択するか(ステップ301)、又は工事進行状況を確認したい構造モデル112を選択する(ステップ302)。ここで、構造モデル112の選択を行った場合は、その構造モデルの据付完了設定日(X)を据付データ117から抽出する(ステップ303)。据付作業確認手段105は、全ての構成モデル117の荷受日(Aj)118、据付完了設定日(Bj)120を抽出し(ステップ304)、指定日Xと設定日Bjまたは荷受日Ajを比較して(ステップ305a〜305c)、全ての構造モデルに係る資材を、据付済資材306、工事中資材307、仮置中資材308、未着手資材309に自動分別する。   Here, with reference to FIG. 3, the process of the construction progress / work content confirmation unit 123 of the installation work confirmation unit 105 will be described. The planner of the installation work selects the date on which the construction progress status is to be confirmed as the designated date (X) 301 (step 301), or selects the structural model 112 on which the construction progress status is to be confirmed (step 302). Here, when the structural model 112 is selected, the installation completion setting date (X) of the structural model is extracted from the installation data 117 (step 303). The installation work confirmation unit 105 extracts the receipt date (Aj) 118 and the installation completion set date (Bj) 120 of all the configuration models 117 (step 304), and compares the designated date X with the set date Bj or the receipt date Aj. (Steps 305a to 305c), the materials related to all the structural models are automatically sorted into the installed material 306, the material under construction 307, the temporary material 308, and the unstarted material 309.

次に、据付工事の計画者は、据付済資材306、工事中資材307、仮置中資材308、未着手資材309の表示有無/表示色を選択する(ステップ310)。これにより、3D画像表示装置106に据付工事の進行状況に応じて色分け等による識別表示された3D画像により、全ての構造モデルの据付工事の進行状況および資材の物流状態を容易に確認できる。また、工事中資材307の据付搬入ルート312と仮置中資材308の仮設場配置313を、3D画像上に表示する(ステップ311)。これにより、据付作業状況、荷受状況およびサイト内における仮置き場など、据付に必要な資材の物流を容易に確認することができる。   Next, the planner of the installation work selects the display presence / absence / display color of the installed material 306, the material under construction 307, the temporarily placed material 308, and the unstarted material 309 (step 310). As a result, the progress of the installation work of all the structural models and the physical distribution state of the materials can be easily confirmed by the 3D image identified and displayed by color coding or the like on the 3D image display device 106 according to the progress of the installation work. In addition, the installation carry-in route 312 of the material under construction 307 and the temporary site arrangement 313 of the temporary material 308 are displayed on the 3D image (step 311). As a result, it is possible to easily confirm the physical distribution of materials necessary for installation, such as installation work status, cargo reception status, and temporary storage in the site.

図4に、据付搬入ルート干渉チェック手段124の詳細な処理手順を示す。干渉チェック手段124の開始処理(ステップ401)に続いて、据付計画者が搬入ルートの干渉チェックを行いたい資材を3D画像上にて選択する(ステップ402)。これに応動して、据付搬入ルート干渉チェック手段123は選択された資材に係る構造モデルの据付データ117を自動的に抽出する(ステップ403)。次いで、選択された構造モデルの据付完了設定日における据付搬入ルートの干渉チェックを実行する(ステップ404)。据付計画者は、干渉チェックの結果に基づき、必要に応じ据付データの変更を入力すると(ステップ405)、この変更された据付データに基づいて据付搬入ルート干渉チェック404を繰り返し、据付搬入ルートが他の資材や構造モデルと干渉していない結果が得られたら、干渉チェックを終了する(ステップ406)。   FIG. 4 shows a detailed processing procedure of the installation carry-in route interference check means 124. Subsequent to the start processing (step 401) of the interference check means 124, the installation planner selects a material on the 3D image for which the interference check of the carry-in route is to be performed (step 402). In response to this, the installation carry-in route interference checking means 123 automatically extracts the installation data 117 of the structural model related to the selected material (step 403). Next, the interference check of the installation carry-in route on the installation completion setting date of the selected structural model is executed (step 404). When the installation planner inputs a change in installation data as necessary based on the result of the interference check (step 405), the installation planner repeats the installation carry-in route interference check 404 based on the changed installation data, and the installation carry-in route is changed. If a result that does not interfere with the material or the structural model is obtained, the interference check is terminated (step 406).

ここで、ステップ404における据付搬入ルートの干渉チェックの具体的な手順の一例を説明する。図4に示すように、据付計画者は構造モデルを選択する(ステップ404a)。選択された構造モデルの据付搬入ルートが、1(X,Y,Z)、2(X,Y,Z)、… 、i−1(Xi−1,Yi−1,Zi−1)、i(X,Y,Z)であったとする。ここで、X、Y、Zは直交座標上の座標位置を示し、iは据付搬入ルート上に設定されたチェックポイントのカウンタである。据付搬入ルート干渉チェック手段124は、チェックポイント1〜2、2〜3、・・・、i−1、iまでの個々のルートについて干渉をチェックする(ステップ404b)。この干渉チェックは、据付搬入ルートを据付計画者が定めた分割数n(=1〜K)で分割したルート上に、選択された構造モデルを連続して配置する(ステップ404c)。次いで、分割数nを1〜Kまでインクリメントし(ステップ404d)、配置した構造モデルが1つでも他の構造モデルと接触するなどの干渉がある場合は、干渉ありと決定する(ステップ404f)。ステップ404dの判定で、干渉が無い場合は、ステップ404eに進んでチェックポイントiをインクリメントして、ステップ404b〜404dを繰り返す。これらの処理を実行して、据付搬入ルートに干渉が無ければ、干渉無しと判定して処理を終了する(ステップ404g)。この場合の干渉対象物は、選択された資材の据付完了設定日において据付済みの全ての構造モデルであり、前述した据付済資材306の3D画像により干渉チェックを行う。 Here, an example of a specific procedure of the interference check of the installation carry-in route in step 404 will be described. As shown in FIG. 4, the installation planner selects a structural model (step 404a). The installation route of the selected structural model is 1 (X 1 , Y 1 , Z 1 ), 2 (X 2 , Y 2 , Z 2 ), ..., i-1 (X i-1 , Y i-1 , Z i-1 ), i (X i , Y i , Z i ). Here, X, Y, and Z indicate coordinate positions on Cartesian coordinates, and i is a checkpoint counter set on the installation carry-in route. The installation carry-in route interference check means 124 checks interference for individual routes up to check points 1-2, 2-3,..., I-1, i (step 404b). In this interference check, the selected structural models are continuously arranged on the route obtained by dividing the installation carry-in route by the division number n (= 1 to K) determined by the installation planner (step 404c). Next, the division number n is incremented from 1 to K (step 404d), and if there is any interference such as contact with another structural model even if one structural model is arranged, it is determined that there is interference (step 404f). If it is determined in step 404d that there is no interference, the process proceeds to step 404e, the check point i is incremented, and steps 404b to 404d are repeated. These processes are executed, and if there is no interference in the installation carry-in route, it is determined that there is no interference and the process is terminated (step 404g). The interference objects in this case are all the structural models that have been installed on the installation completion setting date of the selected material, and an interference check is performed using the 3D image of the installed material 306 described above.

図5に、据付作業確認手段105における仮設材物量算出手段124と工事工数算出手段125の詳細処理手順を示す。処理開始(ステップ501)に続いて、据付計画者により据付データ入力の指令が入力される(ステップ502)。これにより、仮設材物量と工事工数の算出手段は、自動的に構造モデルに係る工事工数と仮設材物量に影響を与えるデータ(種類K、材質M、重量T、寸法φ、資材相互の接続関係Z、据付高さH、等)を資材モデルおよび構造モデルから抽出する(ステップ503)。次いで、係数Ki、Hi、Zi、Mi、・・・を摘出し(ステップ504)、工事工数と仮設材物量の算出する(ステップ505)。ここで、係数Ki等は、工事工数と仮設材物量に影響を与える資材の種類K、据付高さH、資材相互の接続関係Z、材質Mなどのデータに基づいて予め設定されている。また、工事工数Wに影響を及ぼす資材の重要度を示す重み係数W、Wφ、・・・、および仮設材物量Qに影響を及ぼす資材の重要度を示す重み係数Q、Q、・・・が予め設定されている。また、これらの係数は、据付作業を行う土地や作業員の質等の違いにより係数、重み係数等を変化させることができる。ステップ505において算出された工事工数と仮設材物量は、自動的に据付データに入力され(ステップ506)、本処理は終了する(ステップ507)。 FIG. 5 shows the detailed processing procedure of the temporary material amount calculation means 124 and the construction man-hour calculation means 125 in the installation work confirmation means 105. Following the start of processing (step 501), an installation data input command is input by the installation planner (step 502). As a result, the means for calculating the amount of temporary material and the number of construction man-hours are automatically influenced by the data (type K, material M, weight T, dimension φ, and the connection relationship between materials) Z, installation height H, etc.) are extracted from the material model and the structural model (step 503). Next, coefficients Ki, Hi, Zi, Mi,... Are extracted (step 504), and the number of construction man-hours and the amount of temporary material are calculated (step 505). Here, the coefficient Ki and the like are set in advance based on data such as the material type K, the installation height H, the mutual connection relationship Z, and the material M, which affect the construction man-hour and the amount of temporary material. Further, weighting factors W T , Wφ,... Indicating the importance of the material affecting the construction man-hour W, and weighting factors Q K , Q H , indicating the importance of the material affecting the temporary material amount Q,.・ ・ Is preset. Moreover, these coefficients can change a coefficient, a weighting coefficient, etc. with the difference in the land etc. which perform installation work, and the quality of a worker. The construction man-hours and the amount of temporary material calculated in step 505 are automatically input to the installation data (step 506), and this process ends (step 507).

以上説明したように、本実施の形態によれば、資材の荷受日の変更や工事の進行状況に対応して据付工程を動的に作成ないし変更できる。また、据付搬入ルートの干渉の有無を判断して、据付作業および据付工程を動的に作成ないし変更することができる。その結果、据付計画の検証及びプラント納期に及ぼす影響を判断できるから、構造モデルの構成の変更、あるいは荷受日を早めに変更するなどの対応を取ることにより、最適納期を計画および管理することができる。   As described above, according to the present embodiment, the installation process can be dynamically created or changed in accordance with the change of the material receiving date and the progress of the construction. Further, it is possible to dynamically create or change the installation work and the installation process by determining the presence or absence of interference in the installation carry-in route. As a result, it is possible to determine the impact on the verification of the installation plan and the plant delivery date, so that the optimal delivery date can be planned and managed by taking measures such as changing the structure model structure or changing the delivery date earlier. it can.

また、本実施の形態によれば、資材(または、機器)の発注、荷受、保管、据付日程の設定等、サイト内資材物流の動的管理が可能となる。また、据付作業の比較により、資機材の最適納期、効率的な据付作業手順の検討が可能となる。   Further, according to the present embodiment, it is possible to dynamically manage the material distribution within the site, such as ordering materials (or equipment), receiving goods, storing them, and setting the installation schedule. In addition, by comparing the installation work, it is possible to examine the optimal delivery date of materials and equipment and efficient installation work procedures.

また、工事工数と仮設材物量の算出、工事進行状況および作業内容を3D画像に表示するようにしたことから、据付作業の適否の比較を容易に行うことができる。   In addition, since the calculation of the construction man-hour and the amount of temporary material, the progress of the construction, and the work content are displayed on the 3D image, it is possible to easily compare the suitability of the installation work.

ここで、上記実施の形態の据付作業確認手段105をプラント配管の据付工事計画に適用した一実施例を図6と図7を参照して説明する。据付工事計画者は、図6に示す3D画像によりプラントの完成図を確認しながら、それぞれの構造モデルに据付完了設定日、据付搬入ルート等の据付データを入力する。据付作業確認手段105は、与えられた据付データと、各構造モデルが持つ資材データ108と配置データ113に基づいて自動的に工事工数と仮設材物量を計算し、3D画像表示装置106等に表示して出力することにより、据付工事計画者に知らせる。同時に、据付搬入ルート干渉チェックが自動的に行われ、干渉がある場合にはその構造モデルの表示色を変えることにより、干渉があることを据付工事計画者に知らせる。据付工事計画者は、3D画像を確認しながら据付データの変更作業を行い、据付搬入ルートの干渉がない据付データを完成させる。   Here, an example in which the installation work confirmation unit 105 of the above embodiment is applied to a plant piping installation work plan will be described with reference to FIGS. The installation planner inputs installation data such as an installation completion setting date and an installation carry-in route to each structural model while confirming the completed drawing of the plant from the 3D image shown in FIG. The installation work confirmation means 105 automatically calculates the construction man-hours and the temporary material quantity based on the given installation data, the material data 108 and the arrangement data 113 of each structural model, and displays them on the 3D image display device 106 and the like. To output to the installation planner. At the same time, an installation carry-in route interference check is automatically performed, and if there is interference, the installation planner is notified of the interference by changing the display color of the structural model. The installation construction planner changes the installation data while confirming the 3D image, and completes the installation data free from interference with the installation carry-in route.

ここで、図6に示す3Dプラント完成図において、据付工事計画者が配管P003の据付作業を確認しながら修正する一例を図7に示す。ここで示す配管P003とは、据付完了設定日が同一であり、資材相互接続関係を共有する複数の資材モデルが自動的にグループ化された配管グループである。据付工事計画者が据付作業を確認しながら修正する配管として配管グループP003に含まれる資材モデルを選択すると、据付作業確認手段105は自動的にその配管グループP003の据付完了設定日を確認し、その設定日におけるプラント据付状態を3D画像として表示する。図7の例では、その設定日に据付完了していない配管グループP005、P006は3D画像に表示されない。また、それぞれのモデルの資材相互接続関係である溶接点W001〜W010が表示される。   Here, FIG. 7 shows an example in which the installation planner corrects the installation work of the pipe P003 in the 3D plant completion drawing shown in FIG. The piping P003 shown here is a piping group in which a plurality of material models having the same installation completion setting date and sharing a material interconnection relationship are automatically grouped. When the installation planner selects a material model included in the piping group P003 as a pipe to be corrected while checking the installation work, the installation work confirmation means 105 automatically checks the installation completion setting date of the piping group P003, The plant installation state on the set date is displayed as a 3D image. In the example of FIG. 7, the piping groups P005 and P006 that have not been installed on the set date are not displayed in the 3D image. In addition, welding points W001 to W010, which are material interconnection relationships of the respective models, are displayed.

図7に示す例の場合、溶接点W001、W003、W004、W009、W010が現地溶接として表示され、溶接点W002、W005、W006、W007、W008が工場溶接として表示される。配管グループP003の搬入時に配管グループP005、P006は据付けられていないから、配管グループP003の搬入時には干渉が無いことを確認できる。そこで、現地溶接点W004、W009を現地ブロック溶接とすることにより、高所作業や、それに伴う仮設足場の組立作業を削減し、工事工数を短縮させるとともに、仮設材物量の低減を図ることができる。   In the example shown in FIG. 7, the welding points W001, W003, W004, W009, and W010 are displayed as on-site welding, and the welding points W002, W005, W006, W007, and W008 are displayed as factory welding. Since the piping groups P005 and P006 are not installed when the piping group P003 is loaded, it can be confirmed that there is no interference when the piping group P003 is loaded. Therefore, by using on-site block welding at the local welding points W004 and W009, it is possible to reduce the work at high places and the assembly work of the temporary scaffolding associated therewith, shorten the number of construction steps, and reduce the amount of temporary materials. .

本発明の据付作業確認手段105は、実際の工事において、配管の納期遅れやその他要因により配管の据付完了設定日の変更が発生した場合に、据付作業の変更の妥当性を判断することができる。例えば、図6に示す3Dプラント完成図に前記実施例1の据付データを設定した場合に、配管グループP003の据付完了前に配管グループP005を据付完了したいという変更が発生した場合の例を説明する。   The installation work confirmation means 105 of the present invention can determine the appropriateness of the change of the installation work when a change in the installation completion date of the pipe occurs due to a delay in the delivery date of the pipe or other factors in actual construction. . For example, in the case where the installation data of the first embodiment is set in the 3D plant completion drawing shown in FIG. 6, an example will be described in which a change is made that the installation of the piping group P005 is completed before the installation of the piping group P003 is completed. .

据付工事計画者が、配管グループP005の据付完了設定日を配管グループP003の据付完了設定日よりも前の日付で入力すると、現地ブロック溶接によって配管グループW0003における溶接点W003から溶接点W010まで長尺化した配管ブロックは、配管グループP005の据付完了設定日の変更により、据付搬入ルートに干渉が発生する。この場合、自動的に配管グループP003の3D画像の表示色が変わるので、据付工事計画者は据付搬入ルートの変更、又は溶接方法の変更を行うことにより、干渉を回避させることができる。例えば、図7に示す例の場合、溶接点W004、W009の現地ブロック溶接を、現地溶接に変更することにより、配管を個々に搬入することで干渉を回避させることができる。このとき、据付工事計画者は現地高所溶接箇所の増加に伴う工事工数、仮設財物量の増加が自動計算により確認可能である。   When the installation planner inputs the installation completion setting date of the piping group P005 as a date before the installation completion setting date of the piping group P003, the long length from the welding point W003 to the welding point W010 in the piping group W0003 by on-site block welding. The changed piping block causes interference in the installation carry-in route due to the change of the installation completion setting date of the piping group P005. In this case, since the display color of the 3D image of the piping group P003 automatically changes, the installation work planner can avoid interference by changing the installation carry-in route or the welding method. For example, in the case of the example shown in FIG. 7, by changing the local block welding of the welding points W004 and W009 to the local welding, interference can be avoided by carrying in the pipes individually. At this time, the installation planner can confirm the increase in the number of construction man-hours and the amount of temporary assets accompanying the increase in the number of welds at local high places by automatic calculation.

本発明の一実施の形態の据付工事管理システムの全体構成図である。1 is an overall configuration diagram of an installation work management system according to an embodiment of the present invention. 図1の据付工事管理システムの処理手順の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of the process sequence of the installation work management system of FIG. 据付状況と作業内容の確認の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the confirmation of an installation condition and work content. 据付搬入ルート干渉チェックの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of an installation carrying-in route interference check. 仮設材物量と工事工数の算出の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of calculation of temporary material amount and construction man-hour. 本発明をプラント配管の据付工事計画に適用した一実施例を説明するための3D画像の一例を示す図である。It is a figure which shows an example of 3D image for demonstrating one Example which applied this invention to the installation construction plan of plant piping. 本発明をプラント配管の据付工事計画に適用した一実施例を説明するための3D画像の一例を示す図である。It is a figure which shows an example of 3D image for demonstrating one Example which applied this invention to the installation construction plan of plant piping.

符号の説明Explanation of symbols

101 据付工事管理システム
102 資材モデルデータベース
103 構造モデルデータベース
104 据付データ入力手段
105 据付作業確認手段
106 3D画像表示装置
107 資材モデル
108 資材データ
112 構造モデル
113 配置データ
116 資材相互接続関係
117 据付データ
118 サイト荷受日
119 仮置位置
120 据付完了設定日
121 据付搬入ルート
122 資材相互接続関係
123 工事進行状況/作業内容確認手段
124 据付搬入ルート干渉チェック手段
125 仮設材物量算出手段
126 工事工数算出手段
DESCRIPTION OF SYMBOLS 101 Installation work management system 102 Material model database 103 Structural model database 104 Installation data input means 105 Installation work confirmation means 106 3D image display device 107 Material model 108 Material data 112 Structural model 113 Arrangement data 116 Material interconnection relation 117 Installation data 118 Site Receipt date 119 Temporary placement position 120 Installation completion setting date 121 Installation carry-in route 122 Material interconnection relation 123 Construction progress / work content confirmation means 124 Installation carry-in route interference check means 125 Temporary material amount calculation means 126 Construction man-hour calculation means

Claims (11)

プラント構造物を構成する複数の資材を3D−CADモデル化してなる資材モデルが格納された資材モデルデータベースと、前記資材モデルを複数接続して構成される構造モデルが格納された構造モデルデータベースと、
前記構造モデルに係る前記資材の荷受日と据付完了設定日を含む据付データを入力設定する入力手段と、
前記入力手段により入力された指定日における前記構造モデルの据付進行状況を前記据付データに基づいて確認し、確認した据付進行状況に基づいて据付が完了している前記構造モデルの3D画像を表示画面に表示する据付作業確認手段を備えてなる3D−CADを活用した据付工事管理システム。
A material model database storing a material model formed by converting a plurality of materials constituting a plant structure into a 3D-CAD model; a structure model database storing a structure model configured by connecting a plurality of the material models;
An input means for inputting and setting installation data including a date of receipt of the material and an installation completion setting date according to the structural model;
The installation progress status of the structural model on the specified date input by the input means is confirmed based on the installation data, and a 3D image of the structural model that has been installed based on the confirmed installation progress status is displayed on the display screen. An installation work management system using 3D-CAD, which is provided with a means for confirming the installation work.
前記入力手段は、前記据付データに前記構造モデルの据付搬入ルートを入力設定可能に形成され、
前記据付作業確認手段は、前記構造モデルの据付搬入ルートが、先に据付完了した構造モデルによって干渉を受けるか否か判断する据付搬入ルート干渉チェック手段を備えてなることを特徴とする請求項1に記載の据付工事管理システム。
The input means is configured to be able to input and set an installation carry-in route of the structural model in the installation data,
2. The installation work confirmation means comprises installation / loading route interference checking means for judging whether or not the installation / loading route of the structural model is subject to interference by a structural model that has been previously installed. The installation management system described in 1.
前記据付作業確認手段は、前記入力手段により設定される前記据付データが変更されたときに実行されることを特徴とする請求項1または2に記載の据付工事管理システム。 The installation work management system according to claim 1, wherein the installation work confirmation unit is executed when the installation data set by the input unit is changed. 前記据付搬入ルート干渉チェック手段は、前記干渉を受ける据付搬入ルートに係る前記構造モデルを識別可能に前記表示画面に表示することを特徴とする請求項3に記載の据付工事管理システム。 4. The installation work management system according to claim 3, wherein the installation carry-in route interference checking means displays the structural model related to the installation carry-in route that receives the interference on the display screen in an identifiable manner. 前記据付作業確認手段は、前記構造モデルを据付済み、工事中、仮置中、未着手に分類して前記3D画像に表示することを特徴とする請求項1に記載の据付工事管理システム。 2. The installation work management system according to claim 1, wherein the installation work confirmation unit classifies the structural model into installed, under construction, temporarily placed, and not yet started and displays it on the 3D image. 前記入力手段は、前記据付データを入力する入力画面であり、前記据付作業確認手段により表示される前記3D画像と並べて同一画面に表示されることを特徴とする請求項1乃至5のいずれか1項に記載の据付工事管理システム。 The said input means is an input screen for inputting the installation data, and is displayed on the same screen side by side with the 3D image displayed by the installation work confirmation means. The installation work management system described in the section. 前記資材モデルは、種類、材質、重量、寸法の資材データを含んでなり、前記構造モデルは、配置位置、据付フロア、資材相互の接続関係の配置データを含んでなることを特徴とする請求項1に記載の据付工事管理システム。 The material model includes material data of type, material, weight, and dimensions, and the structural model includes arrangement data of an arrangement position, an installation floor, and a connection relation between materials. The installation work management system according to 1. 前記据付データは、前記構造モデルに係る資材の仮置場情報を含むことを特徴とする請求項1に記載の据付工事管理システム。 The installation work management system according to claim 1, wherein the installation data includes temporary storage information of materials related to the structural model. 工事中の構造モデルの据付搬入ルート、仮置中の構造モデルに係る資材の仮置位置に分類して前記3D画像に表示することを特徴とする請求項8に記載の据付工事管理システム。 9. The installation work management system according to claim 8, wherein the installation work management system is classified into an installation carry-in route of a structural model under construction and a temporary placement position of a material related to the structural model under temporary placement and displayed in the 3D image. 前記据付作業確認手段は、前記資材モデル、前記構造モデル、および前記据付データに基づいて、前記構造モデルの据付作業に必要な仮設材物量と工事工数を算出して、前記据付データに付加することを特徴とする請求項1に記載の据付工事管理システム。 The installation work confirmation means calculates a temporary material amount and construction man-hour required for the installation work of the structural model based on the material model, the structural model, and the installation data, and adds the calculated temporary work material amount and construction man-hours to the installation data. The installation work management system according to claim 1. 前記据付作業確認手段は、前記資材モデル、前記据付データが変更されたとき、前記構造モデルの据付作業に必要な仮設材物量と工事工数を算出して、前記据付データに付加することを特徴とする請求項10に記載の据付工事管理システム。 The installation work confirmation means, when the material model and the installation data are changed, calculates a temporary material amount and construction man-hours necessary for the installation work of the structural model, and adds to the installation data The installation work management system according to claim 10.
JP2004049435A 2004-02-25 2004-02-25 Installation work management system utilizing 3d-cad Pending JP2005242531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049435A JP2005242531A (en) 2004-02-25 2004-02-25 Installation work management system utilizing 3d-cad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049435A JP2005242531A (en) 2004-02-25 2004-02-25 Installation work management system utilizing 3d-cad

Publications (1)

Publication Number Publication Date
JP2005242531A true JP2005242531A (en) 2005-09-08

Family

ID=35024233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049435A Pending JP2005242531A (en) 2004-02-25 2004-02-25 Installation work management system utilizing 3d-cad

Country Status (1)

Country Link
JP (1) JP2005242531A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220027A (en) * 2006-02-20 2007-08-30 Hitachi Ltd Module evaluation method and device
JP2008225596A (en) * 2007-03-09 2008-09-25 Lexer Research Inc System for supporting confirmation of work progress
US7567844B2 (en) * 2006-03-17 2009-07-28 Honeywell International Inc. Building management system
JP2010079466A (en) * 2008-09-25 2010-04-08 Hitachi-Ge Nuclear Energy Ltd Progress state management method, program and progress state management apparatus
JP2012014309A (en) * 2010-06-30 2012-01-19 Hitachi-Ge Nuclear Energy Ltd Construction simulation method and apparatus
JP2013016055A (en) * 2011-07-05 2013-01-24 Japan Atomic Energy Agency Facility demolition support method and device
US8532962B2 (en) 2009-12-23 2013-09-10 Honeywell International Inc. Approach for planning, designing and observing building systems
US8538687B2 (en) 2010-05-04 2013-09-17 Honeywell International Inc. System for guidance and navigation in a building
US8577505B2 (en) 2010-01-27 2013-11-05 Honeywell International Inc. Energy-related information presentation system
US8584030B2 (en) 2009-09-29 2013-11-12 Honeywell International Inc. Systems and methods for displaying HVAC information
US8620708B2 (en) 2007-11-09 2013-12-31 Hitachi-Ge Nuclear Energy, Ltd. Progress status management method, program, and progress status management device
US8773946B2 (en) 2010-12-30 2014-07-08 Honeywell International Inc. Portable housings for generation of building maps
JP2014170315A (en) * 2013-03-01 2014-09-18 Toshiba Elevator Co Ltd Bim system, method and program
US8947437B2 (en) 2012-09-15 2015-02-03 Honeywell International Inc. Interactive navigation environment for building performance visualization
US8990049B2 (en) 2010-05-03 2015-03-24 Honeywell International Inc. Building structure discovery and display from various data artifacts at scene
US9170574B2 (en) 2009-09-29 2015-10-27 Honeywell International Inc. Systems and methods for configuring a building management system
US9342928B2 (en) 2011-06-29 2016-05-17 Honeywell International Inc. Systems and methods for presenting building information
JP2018088139A (en) * 2016-11-29 2018-06-07 株式会社東芝 Three-dimensional space visualization device, three-dimensional space visualization method and program
CN109162459A (en) * 2018-09-21 2019-01-08 中建局集团第二建筑有限公司 A kind of big section rings beam construction method of hyperbolic bonded prestress
CN111395744A (en) * 2020-03-10 2020-07-10 江苏南通二建集团有限公司 Construction method of aluminum template in horizontal flowing section process of villa
US10978199B2 (en) 2019-01-11 2021-04-13 Honeywell International Inc. Methods and systems for improving infection control in a building
US11184739B1 (en) 2020-06-19 2021-11-23 Honeywel International Inc. Using smart occupancy detection and control in buildings to reduce disease transmission
US11288945B2 (en) 2018-09-05 2022-03-29 Honeywell International Inc. Methods and systems for improving infection control in a facility
US11372383B1 (en) 2021-02-26 2022-06-28 Honeywell International Inc. Healthy building dashboard facilitated by hierarchical model of building control assets
US11402113B2 (en) 2020-08-04 2022-08-02 Honeywell International Inc. Methods and systems for evaluating energy conservation and guest satisfaction in hotels
US11474489B1 (en) 2021-03-29 2022-10-18 Honeywell International Inc. Methods and systems for improving building performance
US11619414B2 (en) 2020-07-07 2023-04-04 Honeywell International Inc. System to profile, measure, enable and monitor building air quality
US11620594B2 (en) 2020-06-12 2023-04-04 Honeywell International Inc. Space utilization patterns for building optimization
US11662115B2 (en) 2021-02-26 2023-05-30 Honeywell International Inc. Hierarchy model builder for building a hierarchical model of control assets
US11783658B2 (en) 2020-06-15 2023-10-10 Honeywell International Inc. Methods and systems for maintaining a healthy building
US11783652B2 (en) 2020-06-15 2023-10-10 Honeywell International Inc. Occupant health monitoring for buildings
US11823295B2 (en) 2020-06-19 2023-11-21 Honeywell International, Inc. Systems and methods for reducing risk of pathogen exposure within a space
US11894145B2 (en) 2020-09-30 2024-02-06 Honeywell International Inc. Dashboard for tracking healthy building performance
US11914336B2 (en) 2020-06-15 2024-02-27 Honeywell International Inc. Platform agnostic systems and methods for building management systems

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4629594B2 (en) * 2006-02-20 2011-02-09 株式会社日立製作所 Module evaluation method and apparatus
JP2007220027A (en) * 2006-02-20 2007-08-30 Hitachi Ltd Module evaluation method and device
US7567844B2 (en) * 2006-03-17 2009-07-28 Honeywell International Inc. Building management system
JP2008225596A (en) * 2007-03-09 2008-09-25 Lexer Research Inc System for supporting confirmation of work progress
US8620708B2 (en) 2007-11-09 2013-12-31 Hitachi-Ge Nuclear Energy, Ltd. Progress status management method, program, and progress status management device
JP4654285B2 (en) * 2008-09-25 2011-03-16 日立Geニュークリア・エナジー株式会社 Progress management method, program, and progress management device
JP2010079466A (en) * 2008-09-25 2010-04-08 Hitachi-Ge Nuclear Energy Ltd Progress state management method, program and progress state management apparatus
US8584030B2 (en) 2009-09-29 2013-11-12 Honeywell International Inc. Systems and methods for displaying HVAC information
US9170574B2 (en) 2009-09-29 2015-10-27 Honeywell International Inc. Systems and methods for configuring a building management system
US8532962B2 (en) 2009-12-23 2013-09-10 Honeywell International Inc. Approach for planning, designing and observing building systems
US8577505B2 (en) 2010-01-27 2013-11-05 Honeywell International Inc. Energy-related information presentation system
US8990049B2 (en) 2010-05-03 2015-03-24 Honeywell International Inc. Building structure discovery and display from various data artifacts at scene
US8538687B2 (en) 2010-05-04 2013-09-17 Honeywell International Inc. System for guidance and navigation in a building
JP2012014309A (en) * 2010-06-30 2012-01-19 Hitachi-Ge Nuclear Energy Ltd Construction simulation method and apparatus
US8773946B2 (en) 2010-12-30 2014-07-08 Honeywell International Inc. Portable housings for generation of building maps
US9342928B2 (en) 2011-06-29 2016-05-17 Honeywell International Inc. Systems and methods for presenting building information
JP2013016055A (en) * 2011-07-05 2013-01-24 Japan Atomic Energy Agency Facility demolition support method and device
US10429862B2 (en) 2012-09-15 2019-10-01 Honeywell International Inc. Interactive navigation environment for building performance visualization
US10921834B2 (en) 2012-09-15 2021-02-16 Honeywell International Inc. Interactive navigation environment for building performance visualization
US9760100B2 (en) 2012-09-15 2017-09-12 Honeywell International Inc. Interactive navigation environment for building performance visualization
US11592851B2 (en) 2012-09-15 2023-02-28 Honeywell International Inc. Interactive navigation environment for building performance visualization
US8947437B2 (en) 2012-09-15 2015-02-03 Honeywell International Inc. Interactive navigation environment for building performance visualization
JP2014170315A (en) * 2013-03-01 2014-09-18 Toshiba Elevator Co Ltd Bim system, method and program
JP2018088139A (en) * 2016-11-29 2018-06-07 株式会社東芝 Three-dimensional space visualization device, three-dimensional space visualization method and program
US11288945B2 (en) 2018-09-05 2022-03-29 Honeywell International Inc. Methods and systems for improving infection control in a facility
US11626004B2 (en) 2018-09-05 2023-04-11 Honeywell International, Inc. Methods and systems for improving infection control in a facility
CN109162459A (en) * 2018-09-21 2019-01-08 中建局集团第二建筑有限公司 A kind of big section rings beam construction method of hyperbolic bonded prestress
US10978199B2 (en) 2019-01-11 2021-04-13 Honeywell International Inc. Methods and systems for improving infection control in a building
US11887722B2 (en) 2019-01-11 2024-01-30 Honeywell International Inc. Methods and systems for improving infection control in a building
CN111395744A (en) * 2020-03-10 2020-07-10 江苏南通二建集团有限公司 Construction method of aluminum template in horizontal flowing section process of villa
US11620594B2 (en) 2020-06-12 2023-04-04 Honeywell International Inc. Space utilization patterns for building optimization
US11914336B2 (en) 2020-06-15 2024-02-27 Honeywell International Inc. Platform agnostic systems and methods for building management systems
US11783658B2 (en) 2020-06-15 2023-10-10 Honeywell International Inc. Methods and systems for maintaining a healthy building
US11783652B2 (en) 2020-06-15 2023-10-10 Honeywell International Inc. Occupant health monitoring for buildings
US11823295B2 (en) 2020-06-19 2023-11-21 Honeywell International, Inc. Systems and methods for reducing risk of pathogen exposure within a space
US11184739B1 (en) 2020-06-19 2021-11-23 Honeywel International Inc. Using smart occupancy detection and control in buildings to reduce disease transmission
US11778423B2 (en) 2020-06-19 2023-10-03 Honeywell International Inc. Using smart occupancy detection and control in buildings to reduce disease transmission
US11619414B2 (en) 2020-07-07 2023-04-04 Honeywell International Inc. System to profile, measure, enable and monitor building air quality
US11402113B2 (en) 2020-08-04 2022-08-02 Honeywell International Inc. Methods and systems for evaluating energy conservation and guest satisfaction in hotels
US11894145B2 (en) 2020-09-30 2024-02-06 Honeywell International Inc. Dashboard for tracking healthy building performance
US11662115B2 (en) 2021-02-26 2023-05-30 Honeywell International Inc. Hierarchy model builder for building a hierarchical model of control assets
US11815865B2 (en) 2021-02-26 2023-11-14 Honeywell International, Inc. Healthy building dashboard facilitated by hierarchical model of building control assets
US11599075B2 (en) 2021-02-26 2023-03-07 Honeywell International Inc. Healthy building dashboard facilitated by hierarchical model of building control assets
US11372383B1 (en) 2021-02-26 2022-06-28 Honeywell International Inc. Healthy building dashboard facilitated by hierarchical model of building control assets
US11474489B1 (en) 2021-03-29 2022-10-18 Honeywell International Inc. Methods and systems for improving building performance

Similar Documents

Publication Publication Date Title
JP2005242531A (en) Installation work management system utilizing 3d-cad
Luo et al. Supply chain management for prefabricated building projects in Hong Kong
Aram et al. Requirements for BIM platforms in the concrete reinforcement supply chain
Chavada et al. Construction workspace management: the development and application of a novel nD planning approach and tool
Heravi et al. Production process improvement of buildings’ prefabricated steel frames using value stream mapping
Ballard et al. Lean construction tools and techniques
US20050171790A1 (en) Construction project management system and method
US8326664B2 (en) System for supporting carry-in operation planning
Shahnavaz et al. Multi crane lift simulation using Building Information Modeling
CN115510525A (en) Automatic labeling method and system for pipeline three-dimensional building information model
Taghaddos et al. Simulation-based multiple heavy lift planning in industrial construction
Jang et al. Cloud-based information system for automated precast concrete transportation planning
Ko et al. Enhancing submittal review and construction inspection in public projects
KR101485635B1 (en) Simulation based steel management system and method thereof
JP6593194B2 (en) PBS shipping permutation determination device for automobile production line
JP5175891B2 (en) Plant process display system
JP4629594B2 (en) Module evaluation method and apparatus
Wandt et al. Simulation aided disturbance management in one-of-a-kind production on the assembly site
Gutfeld et al. A technical concept for plant engineering by simulation-based and logistic-integrated project management
Shin et al. A concept and framework for a shipyard layout design based on simulation
JPH07141405A (en) Method and device for supporting design operation
Vimonsatit et al. Use of BIM tools for site layout planning
JPH07244686A (en) Plant integration cae system
JP2023047914A (en) Data processing device, data processing method, and attribute data
Olearczyk et al. Intelligent crane management algorithm for construction operation (iCrane)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826