JP2005241813A - Optical path converting optical waveguide and its manufacturing method - Google Patents

Optical path converting optical waveguide and its manufacturing method Download PDF

Info

Publication number
JP2005241813A
JP2005241813A JP2004049578A JP2004049578A JP2005241813A JP 2005241813 A JP2005241813 A JP 2005241813A JP 2004049578 A JP2004049578 A JP 2004049578A JP 2004049578 A JP2004049578 A JP 2004049578A JP 2005241813 A JP2005241813 A JP 2005241813A
Authority
JP
Japan
Prior art keywords
optical path
optical
laser
waveguide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004049578A
Other languages
Japanese (ja)
Inventor
Seiki Miura
清貴 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2004049578A priority Critical patent/JP2005241813A/en
Publication of JP2005241813A publication Critical patent/JP2005241813A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an optical path converting optical waveguide in which positioning of waveguides of the optical path converting portions is not required, transmission loss is made low and no variation exists between the waveguides. <P>SOLUTION: A first optical path is formed by illuminating laser light beams in a converging manner onto the inside of a substrate having at least one surface that totally reflects laser light beams with respect to the optical axis of the laser light beams and by linearly moving a converging lens of the laser light beams or the substrate along the direction in parallel with the optical axis prior to the incident onto the substrate. A second optical path is formed by converting the direction of the laser light beams at the total reflection surface and the first and second optical paths that sandwich the reflection surface are continuously formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光路変換光導波路の作製方法に関するもので、光を拡散させることなく90°もしくはそれに近い角度で光路を変換する光導波路を提供するものである。   The present invention relates to a method for manufacturing an optical path conversion optical waveguide, and provides an optical waveguide that converts an optical path at an angle of 90 ° or close to it without diffusing light.

レーザーの集光照射により、ガラスのような透明材料の内部を局所的に高屈折率化し、高屈折率化した領域を連続的に形成させることでガラス内部に導波路が形成できることが知られている(特許文献1参照)。   It is known that a waveguide can be formed inside the glass by locally forming a high refractive index inside a transparent material such as glass and continuously forming a high refractive index region by condensing laser irradiation. (See Patent Document 1).

前記、導波路形成方法を利用して、まず、レーザーにより基材に第1の導波路を形成させ、次に基材を90°回転させて先に形成した導波路と直交するように第2の導波路を形成させ、その後、直交部分を45°反射面がでるように切断除去することで光路変換導波路を作製する方法や、基材を予め45°研磨した後に、まず、第一の導波路を形成させ、次に基材を90°回転させて先に形成した導波路と45°研磨面で接触するように第二の導波路を形成させることで光路変換導波路を作製する方法(特許文献2、3参照)が知られている。   Using the above-described waveguide formation method, first, a first waveguide is formed on a substrate by a laser, and then the substrate is rotated by 90 ° so that the second waveguide is orthogonal to the previously formed waveguide. After that, a method for producing an optical path conversion waveguide by cutting and removing an orthogonal portion so that a 45 ° reflection surface appears, or after polishing the substrate in advance by 45 °, first, Method of forming an optical path conversion waveguide by forming a waveguide and then forming a second waveguide so that the substrate is rotated 90 ° to contact the previously formed waveguide at a 45 ° polished surface (See Patent Documents 2 and 3).

しかしながら、前記方法においては、反射部での僅かな位置ずれが損失の増大に繋がることから、第一の導波路と第二の導波路との位置合わせを高精度で行う必要があり、特に、コア径が10ミクロン以下のシングルモードタイプの光路変換光導波路作製においては、低伝送損失化及び複数の光路変換導波路間での伝送損失のバラツキ抑制が容易ではない。
特開平09−311237号公報 特開2003−315578号公報 特開2003−315579号公報
However, in the above method, since a slight misalignment in the reflecting portion leads to an increase in loss, it is necessary to perform alignment between the first waveguide and the second waveguide with high accuracy. In the production of a single-mode type optical path conversion optical waveguide having a core diameter of 10 microns or less, it is not easy to reduce transmission loss and suppress variations in transmission loss among a plurality of optical path conversion waveguides.
JP 09-311237 A JP 2003-315578 A JP 2003-315579 A

光路変換光導波路の作製方法において、光路変換部分の導波路同士の位置合わせが不要で、低伝送損失かつ導波路間のバラツキがない光路変換導波路の作製方法を提供することを課題とする。   An object of the present invention is to provide a method for manufacturing an optical path conversion waveguide that does not require alignment between the waveguides in the optical path conversion portion, has a low transmission loss, and does not vary between the waveguides.

本発明は、レーザーの集光照射により、基材の内部を高屈折率化し、高屈折率化した領域を連続的に形成させることで光路変換導波路を作製する方法において、反射面前後で光軸の方向が変化した第一の光導波路と第二の光導波路を連続して一体的に形成することを特徴とする光路変換素子の製造方法であり、レーザーの光軸に対して、少なくとも1面以上がレーザー光を全反射する面を有している基材内部にレーザーを集光照射し、レーザーの集光レンズもしくは基材を、基材入射前のレーザーの光軸に対して平行に直線移動させることで、第一の光路を形成し、続いて全反射面でレーザー光の方向を変換することで、第二の光路部分にレーザー集光点に移動し、反射面前後の第一の光導波路と第二の光導波路を連続して形成することを特徴とする光路変換導波路の製造方法である。本方法と逆に第二の導波路を先に形成し続いて第一の導波路を形成することも有効である。   The present invention relates to a method for producing an optical path conversion waveguide by continuously forming a region having a high refractive index by increasing the refractive index inside a substrate by condensing irradiation of a laser. A method of manufacturing an optical path conversion element, characterized in that a first optical waveguide and a second optical waveguide whose axis directions are changed are continuously and integrally formed, and at least 1 with respect to the optical axis of the laser. The laser beam is focused and irradiated inside the base material that has a surface that totally reflects the laser beam, and the laser condensing lens or base material is parallel to the laser optical axis before the base material is incident. By moving in a straight line, the first optical path is formed, and then the direction of the laser beam is changed at the total reflection surface, so that the laser beam is moved to the second optical path portion, and the first optical path before and after the reflection surface. The optical waveguide and the second optical waveguide are formed continuously. It is a manufacturing method of the optical path conversion waveguide to. In contrast to this method, it is also effective to form the second waveguide first and then form the first waveguide.

また、複数の反射面をもつ光路変換導波路において、これらの方法を繰り返すことにより複数の部分で光路を変換する特徴とする多段光路変換素子の製造方法に関するものであり、これらの方法で作製された光路変換光導波路を含む光デバイスに関するものである。   The present invention also relates to a method of manufacturing a multistage optical path conversion element characterized by converting an optical path at a plurality of portions by repeating these methods in an optical path conversion waveguide having a plurality of reflecting surfaces. The present invention relates to an optical device including an optical path conversion optical waveguide.

本発明の光導波路の作製方法は、レーザーの集光照射により、基材の内部を高屈折率化し、高屈折率化した領域を連続的に形成させることで導波路を作製する方法において、導波路を形成させようとする基材の構成面の内、レーザーの光軸に対して少なくとも1面以上がレーザー光を全反射する入射角となるような面を有している状態でレーザーを基材内部に集光照射することで、レーザーの集光レンズもしくは基材をレーザーの光軸に対して平行に直線移動させるだけで、進行方向が異なる2本以上の直線導波路を反射面上で結合させることができることから、導波路特性にバラツキが無く、伝送損失が低い光路変換導波路を作製することができる。   The optical waveguide manufacturing method of the present invention is a method of manufacturing a waveguide by continuously forming a region having a high refractive index by increasing the refractive index inside the substrate by condensing laser irradiation. Of the constituent surfaces of the base material on which the waveguide is to be formed, at least one surface with respect to the optical axis of the laser has a surface that has an incident angle that totally reflects the laser light. By focusing and irradiating the inside of the material, it is possible to create two or more linear waveguides with different traveling directions on the reflecting surface simply by linearly moving the laser condensing lens or base material parallel to the optical axis of the laser. Since they can be coupled, it is possible to produce an optical path conversion waveguide with no variation in waveguide characteristics and low transmission loss.

以下、本発明について、図面を参照して実施の形態(実施例)とともに詳細に説明する。   Hereinafter, the present invention will be described in detail together with embodiments (examples) with reference to the drawings.

(実施例1) 図は、本発明による実施例1の光路変換光導波路の製造方法を示す模式図であり、図1の基材に図3に示す、1列が8本の直角に曲がった高屈折率ラインLを2列、図2の方法で形成する。まず、図1に示す形状に石英ガラスよりなる基材1を加工・研磨する。サイズは図1中、Aが20mm、B及びCが10mmでDの角度は45°である。表面は全面を光学研磨してある。   (Example 1) The figure is a schematic diagram showing a method of manufacturing an optical path converting optical waveguide of Example 1 according to the present invention, and one row shown in FIG. Two rows of high refractive index lines L are formed by the method shown in FIG. First, the substrate 1 made of quartz glass is processed and polished into the shape shown in FIG. In FIG. 1, A is 20 mm, B and C are 10 mm, and the angle of D is 45 °. The entire surface is optically polished.

次に、図2(a)に示すように基材1をガラス基盤4上に置き、基材1の下部より対物レンズ2を通して、全反射面5で反射してレーザー光3の最初の焦点位置がE点になるように基材1と対物レンズ2の位置を調節する。この際、レーザー3が対物レンズ2に入射される前のビーム径は5mmで、レーザーには波長:800nm、パルス幅:150fs、パルスエネルギー:2μJ、繰り返し周波数:200kHzのパルスレーザーを使用した。
次に、図2(b)のように基材1を図の上方向に直線移動させることで、図2(a)の集光点Eを連続的に図2(b)のF点まで移動させた。その際、集光点の奇跡は点線Gをたどり、集光点の奇跡が周囲に比べ高屈折率化している直角ラインが形成されていることを確認した。
Next, as shown in FIG. 2A, the base material 1 is placed on the glass substrate 4, reflected from the lower surface of the base material 1 through the objective lens 2, the total reflection surface 5, and the initial focal position of the laser light 3. The positions of the base material 1 and the objective lens 2 are adjusted so that becomes an E point. At this time, the beam diameter before the laser 3 was incident on the objective lens 2 was 5 mm, and a pulse laser having a wavelength of 800 nm, a pulse width of 150 fs, a pulse energy of 2 μJ, and a repetition frequency of 200 kHz was used.
Next, as shown in FIG. 2 (b), the base 1 is linearly moved upward in the figure, so that the condensing point E in FIG. 2 (a) is continuously moved to the point F in FIG. 2 (b). I let you. At that time, the miracle of the condensing point followed the dotted line G, and it was confirmed that a right-angle line was formed in which the miracle of the condensing point had a higher refractive index than the surroundings.

その後、レーザー光3を遮断し、基材1と対物レンズ2の位置関係を図2(a)の状態に戻し、更に基材1のみをY軸方向に250μm移動させ、図2(a)〜(b)の操作を再び繰り返しおこなった。この操作を、高屈折率化している直角ラインが8本形成されるまで繰り返した。
次に、基材1をX軸方向に250μm移動させ、同様に図2(a)〜(b)の操作を行い、更に−Y軸方向に250μm間隔で、(a)〜(b)の操作を繰り返しながら移動させることで、図3に示すような、基材1中に、1列が8本の直角に曲がった高屈折率ラインLを2列形成した。図3のH方向より各ラインに波長1300nmのレーザー光を入射し、I方向への出射光を測定することで、直角ライン内を透過した光の損失を調べたところ、16本の導波路の内部損失はいずれも0.2dB以下であり、95%以上の効率で光路を直角に変換できる光導波路が形成されていることを確認した。また、導波路のモードフィールド径は8μm、開口数は0.1であり、各導波路間におけるバラツキは認められなかった。
Thereafter, the laser beam 3 is blocked, the positional relationship between the base material 1 and the objective lens 2 is returned to the state shown in FIG. 2A, and only the base material 1 is moved by 250 μm in the Y-axis direction. The operation of (b) was repeated again. This operation was repeated until eight right-angle lines having a high refractive index were formed.
Next, the substrate 1 is moved 250 μm in the X-axis direction, and the operations shown in FIGS. 2A to 2B are performed in the same manner. Further, the operations shown in FIGS. As shown in FIG. 3, two rows of high refractive index lines L in which one row is bent at a right angle are formed as shown in FIG. When laser light having a wavelength of 1300 nm is incident on each line from the H direction in FIG. 3 and the outgoing light in the I direction is measured, the loss of light transmitted through the right angle line is examined. All internal losses were 0.2 dB or less, and it was confirmed that an optical waveguide capable of converting the optical path to a right angle with an efficiency of 95% or more was formed. Further, the mode field diameter of the waveguide was 8 μm, the numerical aperture was 0.1, and no variation was observed between the waveguides.

本実施例1では基材に石英ガラスを使用し、1列が8本で2列からなる16本の直角光路変換導波路を取り上げたが、基材は使用するレーザーで高屈折率化が生じる、いわゆる光誘起屈折率変化が起きる材料であれば特に限定されるものでは無く、他の酸化物ガラスやハロゲン化物ガラス、カルコゲナイドガラスや無機単結晶材料、あるいは有機高分子を使用することもできる。また、紫外線レーザーを使用することで、光硬化性樹脂内に光路変換光導波路を形成することも可能である。また、本実施例1の内容を逸脱しない範囲であれば、全反射面への入射角度は任意で構わない。また、導波路数として16本の例を取り上げたが、本実施例1の内容を逸脱しない範囲であれば、列数や導波路数は任意で構わず、さらに、隣り合う光導波路の間隔や距離は必ずしも一定である必要はない。   In the first embodiment, quartz glass is used as a base material, and 16 right-angle optical path conversion waveguides each consisting of two rows and eight rows are taken up. However, the base material has a high refractive index due to the laser used. The material is not particularly limited as long as it is a material in which a so-called photoinduced refractive index change occurs, and other oxide glass, halide glass, chalcogenide glass, inorganic single crystal material, or organic polymer can also be used. Moreover, it is also possible to form an optical path conversion optical waveguide in the photocurable resin by using an ultraviolet laser. Moreover, as long as it does not deviate from the content of the first embodiment, the incident angle on the total reflection surface may be arbitrary. Further, although the example of 16 waveguides has been taken up, the number of columns and the number of waveguides may be arbitrary as long as they do not deviate from the contents of the first embodiment. The distance does not necessarily have to be constant.

更に、基材と周囲との屈折率差を大きくしたり、反射面に多層膜コーティングを予め施したりすることで、全反射条件を満足するレーザーの入射角を45°より小さくすることも可能であり、この場合は鋭角で光路を変換する導波路の作製も可能である。本方法とは逆に基材入射前のレーザー光軸に平行な導波路を先に形成し、続いて光路を変換した導波路を形成することも有効である。   Furthermore, by increasing the difference in refractive index between the base material and the surroundings, or by applying a multilayer coating on the reflective surface in advance, it is possible to make the laser incident angle satisfying the total reflection condition smaller than 45 ° In this case, it is also possible to produce a waveguide that converts the optical path at an acute angle. Contrary to this method, it is also effective to first form a waveguide parallel to the laser optical axis before incidence on the substrate, and then form a waveguide obtained by converting the optical path.

また、実施例1では1つの全反射面のみを有する基材を使用しているが、基材へのレーザー入射後、レーザーの第1全反射面以降の面が、連続してレーザーの光軸に対して全反射条件を満足する角度になっていることで、各全反射面により連続的に複数回折り曲げられた光導波路を形成させることも可能である。   In Example 1, a base material having only one total reflection surface is used. However, after the laser is incident on the base material, the surfaces after the first total reflection surface of the laser are continuously connected to the optical axis of the laser. In contrast, since the angle satisfies the total reflection condition, it is possible to form an optical waveguide that is continuously bent a plurality of times by each total reflection surface.

図1は、実施例1における反射面をもつ基材の形状を示す模式図である。FIG. 1 is a schematic diagram illustrating the shape of a substrate having a reflective surface in Example 1. FIG. 図2は、実施例1において、レーザーの集光照射により、光路変換導波路を作製する工程を示す模式図である。FIG. 2 is a schematic diagram illustrating a process of manufacturing an optical path conversion waveguide by focused laser irradiation in the first embodiment. 図3は、実施例1によって製造された、8×2列の光路変換光導波路を示す模式図である。FIG. 3 is a schematic diagram showing 8 × 2 rows of optical path conversion optical waveguides manufactured according to the first embodiment.

符号の説明Explanation of symbols

1 基材
2 対物レンズ
3 レーザ光
4 ガラス基盤
5 反射面
E 最初のレーザ集光点
F 最終のレーザ集光点
G レーザー集光点の軌跡
DESCRIPTION OF SYMBOLS 1 Base material 2 Objective lens 3 Laser beam 4 Glass substrate 5 Reflective surface E First laser condensing point F Final laser condensing point G Laser condensing point locus

Claims (4)

反射面を挟む第一の光路と第二の光路の、方向が異なる光路変換光導波路を、レーザーの集光照射で基材の内部を高屈折率化することにより製造する方法において、反射面を挟む二つの光導波路を連続して一体的に形成することを特徴とする光路変換光導波路の製造方法。 In a method of manufacturing an optical path conversion optical waveguide having different directions of a first optical path and a second optical path sandwiching a reflective surface by increasing the refractive index inside the substrate by condensing irradiation of a laser, the reflective surface is A method of manufacturing an optical path conversion optical waveguide, wherein two sandwiched optical waveguides are formed continuously and integrally. レーザーの集光照射により、基材の内部を高屈折率化し、高屈折率化した領域を連続的に形成させることで光路変換光導波路を製造する方法において、レーザーの光軸に対して、少なくとも1面以上がレーザー光を全反射する面を有している基材内部にレーザーを集光照射し、レーザーの集光レンズもしくは基材を、基材入射前のレーザーの光軸に対して平行に直線移動させることで、第一の光路を形成するとともに、全反射面でレーザー光の方向を変換することで、第一の光路と光軸の異なった第二の光路を形成し、反射面を挟む第一の光路と第二の光路を連続して形成することを特徴とする請求項1記載の光路変換光導波路の製造方法。 In a method of manufacturing an optical path conversion optical waveguide by continuously forming a region having a high refractive index by increasing the refractive index inside the substrate by condensing laser irradiation, at least with respect to the optical axis of the laser, One or more surfaces condense and irradiate a laser inside a substrate having a surface that totally reflects the laser beam, and the laser condensing lens or substrate is parallel to the optical axis of the laser before incidence on the substrate The first optical path is formed by linearly moving the first optical path, and the second optical path having a different optical axis from the first optical path is formed by changing the direction of the laser light at the total reflection surface. 2. The method of manufacturing an optical path converting optical waveguide according to claim 1, wherein the first optical path and the second optical path sandwiching the first and second optical paths are formed continuously. 複数の反射面をもつ光路変換光導波路において、請求項1、または請求項2に記載の方法を繰り返すことを特徴とする、複数段の光路変換光導波路の製造方法。 A method of manufacturing a multistage optical path conversion optical waveguide, wherein the method according to claim 1 or 2 is repeated for an optical path conversion optical waveguide having a plurality of reflecting surfaces. 請求項1〜請求項3のいずれかに記載の方法で作製された光路変換光導波路を含む光デバイス。 An optical device comprising an optical path conversion optical waveguide produced by the method according to claim 1.
JP2004049578A 2004-02-25 2004-02-25 Optical path converting optical waveguide and its manufacturing method Pending JP2005241813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049578A JP2005241813A (en) 2004-02-25 2004-02-25 Optical path converting optical waveguide and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049578A JP2005241813A (en) 2004-02-25 2004-02-25 Optical path converting optical waveguide and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005241813A true JP2005241813A (en) 2005-09-08

Family

ID=35023630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049578A Pending JP2005241813A (en) 2004-02-25 2004-02-25 Optical path converting optical waveguide and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005241813A (en)

Similar Documents

Publication Publication Date Title
US7324723B2 (en) Optical waveguide having specular surface formed by laser beam machining
US9488778B2 (en) Method for realizing an optical waveguide in a substrate by means of a femtosecond laser
US7426328B2 (en) Varying refractive index optical medium using at least two materials with thicknesses less than a wavelength
US20100178007A1 (en) Waveguide device
US7643719B1 (en) Superlens and a method for making the same
Boivin Thin-film laser-to-fiber coupler
US6606432B2 (en) Phase mask consisting of an array of multiple diffractive elements for simultaneous accurate fabrication of large arrays of optical couplers and method for making same
JP2004196585A (en) Method for forming heterogeneous phase within material with laser beam, structure and optical parts
CN108303767A (en) A method of preparing concave mirror in optical waveguide
WO2011089592A1 (en) A method of laser processing
Ji et al. Inline fiber optic power sensor featuring a variable tap ratio based on a tightly focused femtosecond laser inscription
JP2005241813A (en) Optical path converting optical waveguide and its manufacturing method
WO2022118366A1 (en) Quantum circuit, quantum computer, and method for producing quantum circuit
US8515223B2 (en) Lens
WO2016194032A1 (en) Optical device and optical device manufacturing method
CN102565935A (en) Resonant-coupling two-way transmission photon crystal waveguide and manufacturing method thereof
CN115968448A (en) Method for manufacturing continuous diffractive optical element, apparatus for carrying out the method, and continuous diffractive optical element
Grunwald et al. Scalable multichannel micromachining with pseudo-nondiffracting vacuum ultraviolet beam arrays generated by thin-film axicons
JP4241291B2 (en) Manufacturing method of Y-branch waveguide
JP4631929B2 (en) Manufacturing method of Y-branch waveguide
JP2007271676A (en) Fiber type optical path, fiber type component and optical module
JP6846145B2 (en) Photonic crystal vertical optical waveguide device
JPS635310A (en) Production of optical connecting circuit
JP2004029285A (en) Manufacturing method of optical waveguide
JP2006330067A (en) Right-angle bending waveguide and its manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028