JP2005241610A - Crew load detector - Google Patents

Crew load detector Download PDF

Info

Publication number
JP2005241610A
JP2005241610A JP2004055562A JP2004055562A JP2005241610A JP 2005241610 A JP2005241610 A JP 2005241610A JP 2004055562 A JP2004055562 A JP 2004055562A JP 2004055562 A JP2004055562 A JP 2004055562A JP 2005241610 A JP2005241610 A JP 2005241610A
Authority
JP
Japan
Prior art keywords
strain
gauge
detection device
load detection
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004055562A
Other languages
Japanese (ja)
Inventor
Sadami Sekiguchi
定美 関口
Yoshiro Nojiri
芳郎 野尻
Naomichi Hirama
直道 平間
Yuji Nemoto
裕二 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Electronic Engineering Co Ltd filed Critical Toshiba Electronic Engineering Co Ltd
Priority to JP2004055562A priority Critical patent/JP2005241610A/en
Publication of JP2005241610A publication Critical patent/JP2005241610A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crew load detector whose load measurement errors are few, in spite of being small in size, low in height, and having a simple structure. <P>SOLUTION: The crew load detector is provided with a strain-sensing portion being a component for uniting a seat and a car body, and is composed of a beam-like strain element, two sheets of stiffening plates, strain gauges, ladder-shaped resistors, and gauge tabs; a circuit portion composed of a gauge input/output circuit, a terminal block, and input/output cables; and a wiring portion for connecting between the strain sensing portion and the circuit portion. In the detector, a first strain gauge forming an angle of approximately +45 degrees, with respect to the longitudinal direction of the beam-like strain element; and a second strain gauge forming an angle of approximately -45 degrees, with respect to the longitudinal direction of the beam-like strain element are arranged on a side surface of the beam-like strain element; a third strain gauge and a fourth strain gauge are arranged on its different side surface so as to be rotation-symmetric to the first and second strain gages; and a Wheatstone bridge circuit is formed by the use of the four strain gauges. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、乗員の体格や姿勢に応じて適正にエアバッグを展開させるために、乗員の状況を検知することを目的とした乗員検知システムに関し、そのなかでも特にシート上の重量を計測する方式の乗員荷重検出装置に関するものである。   The present invention relates to an occupant detection system for detecting an occupant's situation in order to appropriately deploy an airbag according to the physique and posture of the occupant, and in particular, a method for measuring the weight on a seat. The present invention relates to an occupant load detection device.

シートおよびシート上の荷重を計測する方法として、シートクッション内に感圧素子を多数配列させシート上の圧力分布を計測する方式が製品化されているが、乗員の姿勢によっては正しい体格が識別できないという問題があった。そこで近年、シートの取り付け装置部分に荷重検出装置を設置する方法が多く採用されてきており、この方法であれば、乗員姿勢やシート位置によらずある程度正確に乗員の重量が計測可能である。しかし、現在提供されている製品は曲げ応力検知方式を採用しているため起歪体が負荷を受けた時のねじれ、支点の移動、水平方向負荷の影響で計測に誤差を生じやすく、この誤差を低減させるために、荷重検出装置の取り付け構造が複雑になったり、起歪体形状が複雑になったりしている(特許第3444810号、特許第3468728号)。また、微小ひずみを高倍率で増幅するため、ゼロ点ばらつきや、温度による出力ドリフトが大きく計測に支障が出るほか、製品毎に出力特性がばらつくなどの問題が出ているため、この問題の解決も求められている。特開平11-304579、特開平11-351952には、起歪体の側面にひずみゲージを配設し、せん断力を検出する形態が示されているが、片面のみの配設であり、この方法では、ねじれによるひずみも出力してしまうという問題がある。
特許第3444810号明細書 特許第3468728号明細書 特開平11−304579号公報 特開平11−351952号公報
As a method of measuring the seat and the load on the seat, a system that measures the pressure distribution on the seat by arranging a number of pressure sensitive elements in the seat cushion has been commercialized, but the correct physique cannot be identified depending on the posture of the occupant There was a problem. Thus, in recent years, a method of installing a load detection device in the seat attachment device portion has been often employed. With this method, the weight of the occupant can be measured to some extent accurately regardless of the occupant posture and the seat position. However, because the products currently offered use the bending stress detection method, the measurement is likely to cause errors in measurement due to the effects of twisting, fulcrum movement, and horizontal load when the strain generating body is subjected to a load. In order to reduce the load, the mounting structure of the load detection device is complicated, and the shape of the strain body is complicated (Patent No. 3448810, No. 3468728). In addition, since the minute strain is amplified at a high magnification, there are problems such as zero point variation, large output drift due to temperature, which hinders measurement, and output characteristics vary from product to product. Is also sought. Japanese Patent Application Laid-Open No. 11-304579 and Japanese Patent Application Laid-Open No. 11-351952 show a mode in which a strain gauge is provided on the side surface of a strain generating body and a shear force is detected. Then, there is a problem that distortion due to torsion is also output.
Japanese Patent No. 3444810 Japanese Patent No. 3468728 JP-A-11-304579 JP 11-351952 A

小型低背で簡単な構造でありながら、荷重計測誤差の少ない乗員荷重検出装置を提供することを目的とする。   An object of the present invention is to provide an occupant load detection device that is small and has a low profile and a simple structure, and that has little load measurement error.

上記の課題を解決するため、請求項1にかかる乗員検出装置は、ビーム状起歪体の側面2面にそれぞれ2軸のせん断応力を検出するためのグリッドパターンを有し、2面のグリッドパターンはお互いに非対称となるようにひずみゲージを配置し、合計4軸のゲージによりホイートストンブリッジ回路を構成することを特徴とする。この請求項1記載の発明によれば、負荷の増大に伴って起歪体の支点固定状態に変化があっても起歪体に生じるせん断応力の値は変化しないので、無負荷から定格負荷まで、出力の非直線性・ヒステリシスといった計測誤差が発生しない。また起歪体長手方向のせん断応力分布が均一(単位長さあたりのせん断ひずみは長手方向のどの部分も均一)なので、ゲージの貼付け時に長手方向の貼付け位置誤差があっても出力性能には影響しない。さらにせん断応力測定用2軸ゲージを起歪体の両側面に貼付け、この4ゲージでブリッジ回路を構成することにより、温度変化による起歪体の膨張収縮でゲージに引張・圧縮応力がかかってもブリッジ回路構成によりキャンセルされ、温度影響は出力されない(自己温度補償機能)。さらに本発明によるゲージ配置とブリッジ配線によれば、起歪体をねじるような負荷がかかってもねじれによるひずみはブリッジ回路によりキャンセルされ、出力しない。   In order to solve the above-described problem, an occupant detection device according to claim 1 has grid patterns for detecting biaxial shear stress on each of two side surfaces of a beam-shaped strain body, and the two-side grid pattern. Is characterized in that strain gauges are arranged so as to be asymmetric with each other, and a Wheatstone bridge circuit is constituted by a total of four-axis gauges. According to the first aspect of the present invention, since the value of the shear stress generated in the strain generating body does not change even if the fulcrum fixed state of the strain generating body is changed as the load increases, from no load to the rated load. Measurement errors such as output nonlinearity and hysteresis do not occur. In addition, since the shear stress distribution in the longitudinal direction of the strain generating body is uniform (the shear strain per unit length is uniform in any part of the longitudinal direction), output performance is affected even if there is a longitudinal attachment position error when attaching the gauge. do not do. Furthermore, by attaching a biaxial gauge for measuring shear stress to both sides of the strain-generating body and constructing a bridge circuit with these 4 gauges, even if tensile or compressive stress is applied to the gauge due to expansion and contraction of the strain-generating body due to temperature changes Canceled by the bridge circuit configuration, temperature effect is not output (self-temperature compensation function). Furthermore, according to the gauge arrangement and the bridge wiring according to the present invention, even if a load that twists the strain generating body is applied, the strain due to torsion is canceled by the bridge circuit and is not output.

請求項2に記載の乗員荷重検出装置は、ビーム状起歪体が、2つ以上のボルト貫通穴を有し、車体側のみを締結する支点と、シート側のみを締結する支点を有し、支点間にひずみゲージを有し、定格荷重においてゲージを配した箇所のせん断ひずみが±(300〜2000)×10-6であり、最大計測荷重において起歪体上下面に生ずる最大曲げ応力が、起歪体材料の引張強度の0.1〜0.3であり起歪体材料の耐力の0.2〜0.8 であることを特徴とする。起歪体の材質、寸法をこの請求範囲に入るよう選ぶことにより、負荷耐久性と出力確保の両立が図れる。   The occupant load detection device according to claim 2, wherein the beam-shaped strain body has two or more bolt through holes, a fulcrum that fastens only the vehicle body side, and a fulcrum that fastens only the seat side, A strain gauge is provided between the fulcrums, the shear strain at the place where the gauge is placed at the rated load is ± (300 to 2000) x 10-6, and the maximum bending stress generated on the upper and lower surfaces of the strained body at the maximum measured load is The tensile strength of the strain-generating material is 0.1 to 0.3, and the yield strength of the strain-generating material is 0.2 to 0.8. By selecting the material and dimensions of the strain generating body so as to fall within this claim range, both load durability and output securing can be achieved.

請求項3に記載の乗員荷重検出装置は、ビーム状起歪体が、一部に断面の小さい箇所を有し、その断面の小さい箇所の側面にひずみゲージを有することを特徴とする。この請求項3記載の発明によれば、断面積の小さい箇所にひずみが集中するようにひずみ分布を変えることができ、その箇所にひずみゲージを配置することにより出力の向上が図れる。   The occupant load detection device according to claim 3 is characterized in that the beam-shaped strain generating body has a portion having a small cross section in part and a strain gauge on a side surface of the portion having a small cross section. According to the third aspect of the present invention, the strain distribution can be changed so that the strain is concentrated at a portion having a small cross-sectional area, and the output can be improved by arranging the strain gauge at the portion.

請求項4に記載の乗員荷重検出装置は、ビーム状起歪体側面に設けるひずみゲージが、抵抗値が調整可能なラダー状パターンを有し、これがひずみゲージと同一素材によって連続一体に形成されていることを特徴とする。この請求項5に記載の発明によれば、ブリッジのゼロバランスを調整する場合に2ゲージの抵抗値をそれぞれ測定し、抵抗値の低い方のゲージのラダー抵抗を切断することで抵抗値の高い方のゲージとほぼ同じ抵抗値に合わせることができる。ブリッジ内を抵抗温度係数が同じ抵抗体のみで構成できるため出力の温度ドリフトが小さい荷重検出装置が得られる。この方法によれば、一般的に行なわれているブリッジへの固定抵抗を挿入する補正方法よりも大幅に作業を簡素化できる。   In the occupant load detection device according to claim 4, the strain gauge provided on the side surface of the beam-shaped strain generating body has a ladder-like pattern whose resistance value can be adjusted, and this is continuously formed integrally with the same material as the strain gauge. It is characterized by being. According to the invention described in claim 5, when the zero balance of the bridge is adjusted, the resistance value of each of the two gauges is measured, and the ladder resistance of the gauge having the lower resistance value is cut to thereby increase the resistance value. It can be set to the same resistance value as the gauge. Since the inside of the bridge can be constituted only by resistors having the same resistance temperature coefficient, a load detection device with a small output temperature drift can be obtained. According to this method, the work can be greatly simplified as compared with a correction method in which a fixed resistor is inserted into a bridge that is generally performed.

請求項5に記載の乗員荷重検出装置は、ビーム状起歪体側面に設けるひずみゲージが、抵抗体が金属抵抗体であり、この抵抗体の厚みが0.2〜6μmであり、1軸のゲージ抵抗が350〜5000Ωであることを特徴とする。この請求項6記載の範囲の高抵抗ゲージとすることにより、ゲージ電流を小さく抑えることができるので、ジュール熱によるゲージ自体の発熱の影響が無く計測安定性が得られる。また抵抗体の厚みを本請求範囲とすることにより高抵抗のゲージが小さい面積で実現できるので、起歪体のせん断面の面積が小さい場合でも装着可能である。   In the occupant load detection device according to claim 5, the strain gauge provided on the side surface of the beam-shaped strain body is a metal resistor, the thickness of the resistor is 0.2 to 6 μm, and the uniaxial gauge resistance Is 350 to 5000Ω. By using a high resistance gauge within the range described in claim 6, the gauge current can be kept small, so that the measurement stability is obtained without being affected by the heat generated by the gauge itself due to Joule heat. Moreover, since the high resistance gauge can be realized with a small area by setting the thickness of the resistor to be within the scope of the claims, it can be mounted even when the area of the shear surface of the strain generating body is small.

請求項6に記載の乗員荷重検出装置は、ブリッジ回路は、ビーム状起歪体に隣接して配置した回路基板上に形成し、ゲージ側端子と回路側端子との間が直径0.1〜0.4mmのアルミ線でボンディングされていることを特徴とする。ひずみゲージと回路配線の間をワイヤボンディングで接続しているので、はんだなどの接合よりも配線の信頼性が向上する。   The occupant load detection device according to claim 6, wherein the bridge circuit is formed on a circuit board disposed adjacent to the beam-shaped strain body, and a diameter between the gauge side terminal and the circuit side terminal is 0.1 to 0.4 mm. It is characterized by being bonded with aluminum wire. Since the strain gauge and the circuit wiring are connected by wire bonding, the reliability of the wiring is improved as compared with bonding by solder or the like.

本発明は、以上説明したように、ビーム状起歪体の両側面にそれぞれ2軸のせん断ひずみゲージを配設して、ブリッジ回路配線するという単純な構造で誤差の少ない計測が可能なので、従来の製品よりも小型化、薄型化が実現できる。座席と車体とを締結する部分が単純な構造となるので、さまざまな車種や座席サイズに適用できる。   As described above, the present invention can measure with a simple structure in which biaxial shear strain gauges are arranged on both side surfaces of a beam-shaped strain body and a bridge circuit is wired, so that less errors can be measured. Can be made smaller and thinner than other products. Since the portion for fastening the seat and the vehicle body has a simple structure, it can be applied to various vehicle types and seat sizes.

以下に、本発明を車のシート・車体への取り付けに適用した実施形態を図に従って説明する。   Hereinafter, an embodiment in which the present invention is applied to a vehicle seat and a vehicle body will be described with reference to the drawings.

図22は、本発明の実施例を示している。   FIG. 22 shows an embodiment of the present invention.

起歪体として金属焼結体を用い、補強板としてばね用ステンレス鋼を用いた。金属焼結体は、重量比で3%Cr-0.5%Mo-0.3%Cで残部が実質的にほぼFeからなる組成の原料粉をプレス成形、焼結することにより作製した。その結果、密度7.05g/cm3、縦弾性係数140GPa、耐力320MPa、引張強さ810MPaの金属焼結体を得た。金属焼結体の形状は、図16のようなボルト締結部とくびれ部を持つI型形状とした。寸法は、全体が厚さ6mm、幅20mm、長さ55mmであり、ボルト締結部は、Φ8.5mmボルト穴2つをピッチ30mmで設けてあり、ボルト穴間に幅4.0mm、長さ8mmのくびれ部を設けた。一方、補強板は、ばね用ステンレス鋼SUS301-CSP 3/4H調質圧延材 板厚1.0mmをプレスで打抜き、上部補強板と下部補強板の2つの補強板を得た。上部補強板として、幅27mm、長さ60mm、Φ8.5mmボルト穴2つをピッチ30mmで設けたもの。下部補強板として幅27mm、長さ95mm、Φ8.5mmボルト穴2つをピッチ30mmで設けたものの2種類である。そして、起歪体と2つの補強板を重ね合わせ、接着剤で固定し、三層複合構造とした。   A metal sintered body was used as the strain generating body, and spring stainless steel was used as the reinforcing plate. The metal sintered body was produced by press-molding and sintering raw material powder having a composition of 3% Cr-0.5% Mo-0.3% C by weight and the balance substantially consisting of Fe. As a result, a sintered metal body having a density of 7.05 g / cm3, a longitudinal elastic modulus of 140 GPa, a yield strength of 320 MPa, and a tensile strength of 810 MPa was obtained. The shape of the metal sintered body was an I shape having a bolt fastening portion and a constricted portion as shown in FIG. The overall dimensions are 6mm thick, 20mm wide and 55mm long. The bolt fastening part has two Φ8.5mm bolt holes with a pitch of 30mm, and the width between the bolt holes is 4.0mm wide and 8mm long. A constricted part was provided. On the other hand, for the reinforcing plate, stainless steel SUS301-CSP 3 / 4H temper rolled material for spring was punched out with a press to obtain two reinforcing plates, an upper reinforcing plate and a lower reinforcing plate. The upper reinforcing plate is 27mm wide, 60mm long, and two Φ8.5mm bolt holes with a pitch of 30mm. There are two types of lower reinforcement plates: 27mm wide, 95mm long, and two Φ8.5mm bolt holes with a pitch of 30mm. Then, the strain body and the two reinforcing plates were overlapped and fixed with an adhesive to form a three-layer composite structure.

荷重により材料に生じる応力とひずみを、材料の縦弾性係数から計算し、また材料の耐力、引張強さの値から過負荷安全率を計算して、適切な起歪体および補強板の寸法を求めた。図22の構成では、定格荷重100kgによる起歪体に生じる最大ひずみは、およそ750×10-6で、過負荷500kgでの起歪体の安全率は1.9、補強板の安全率は1.5となった。   Calculate the stress and strain generated in the material by the load from the longitudinal elastic modulus of the material, and calculate the overload safety factor from the material's yield strength and tensile strength values, and determine the appropriate strain body and reinforcement plate dimensions. Asked. In the configuration of FIG. 22, the maximum strain generated in the strain body under the rated load of 100 kg is approximately 750 × 10−6, the strain factor safety factor is 1.9 and the reinforcement plate safety factor is 1.5 when the overload is 500 kg. It was.

起歪体の材質は、実施形態ではFe系合金の焼結体の例を示したが、アルミニウム合金で作製することもできる。補強板の材質は、実施形態ではばね用ステンレス鋼としているが、鉄鋼や非鉄の圧延材で作ることもできる。しかし、補強板の材料は、起歪体材料の縦弾性係数と同じかそれ以上の縦弾性係数を持つ材料にするのが好ましい。具体的には、起歪体には縦弾性係数が30〜180GPaの材料、補強板には起歪体の縦弾性係数の 1.0〜3.5倍の材料を用いるのが好ましい。補強板材料の弾性係数が起歪体材料の縦弾性係数より小さい場合、起歪体にかかる応力が増加するので、ひずみ出力は向上するが、過負荷500kgで、補強板および起歪体に引張強さを超えるような応力がかかることになるので、締結部品としての機能が満足きなくなる。   Although the example of the sintered body of the Fe-based alloy is shown in the embodiment as the material of the strain generating body, it can be made of an aluminum alloy. In the embodiment, the reinforcing plate is made of stainless steel for springs, but can be made of steel or non-ferrous rolled material. However, the material of the reinforcing plate is preferably a material having a longitudinal elastic modulus equal to or higher than that of the strain-generating material. Specifically, it is preferable to use a material having a longitudinal elastic modulus of 30 to 180 GPa for the strain body and a material 1.0 to 3.5 times the longitudinal elastic coefficient of the strain body for the reinforcing plate. If the elastic modulus of the reinforcing plate material is smaller than the longitudinal elastic modulus of the strain-generating body material, the stress applied to the strain-generating body will increase, so the strain output will improve, but it will pull on the reinforcing plate and the strain-generating body at an overload of 500 kg. Since stress exceeding the strength is applied, the function as a fastening part is not satisfied.

ひずみゲージは、重量比で20%Cr-2.8%Al-2.0%Cuで残部が実質的にほぼNiからなる組成の合金を厚さ5μmまで圧延した金属抵抗箔を、厚さ25μmのポリイミドフィルムと熱硬化性接着剤で貼り合わせ、これを使用して図15のように、受感軸方向の異なる2つのゲージR1、R2を備え、そのゲージに付随してラダー状抵抗を備え、さらに配線接続用ゲージタブを備えるパターンをフォトリソグラフィーのプロセスにより形成した。金属抵抗箔からひずみゲージのパターンを形成するとき、図20のように、近接配置させた受感軸方向の異なる2つのゲージのうち、一方のゲージ軸方向が抵抗箔圧延方向に略+θをなし、もう一方のゲージ軸方向が抵抗箔圧延方向に略−θをなすように形成した。   A strain gauge is a metal resistance foil obtained by rolling an alloy having a composition of 20% Cr-2.8% Al-2.0% Cu with the balance substantially consisting of Ni to a thickness of 5 μm, and a polyimide film with a thickness of 25 μm. Bonded with thermosetting adhesive, and using this, as shown in Fig. 15, two gauges R1 and R2 with different sensitive axis directions are provided, ladder resistance is attached to the gauges, and wiring is connected. A pattern having a gauge tab for use was formed by a photolithography process. When a strain gauge pattern is formed from a metal resistance foil, one gauge axis direction is substantially + θ in the resistance foil rolling direction, as shown in FIG. The other gauge axis direction was formed so as to form approximately -θ in the resistance foil rolling direction.

ラダー状抵抗は、0.2〜50Ωの範囲で調整可能なように形成し、ラダー状抵抗を含むゲージタブ間の抵抗値がそれぞれほぼ1000Ωで、2つのゲージ抵抗値差が0.2Ω以内の2軸ゲージを作製した。さらにR1、R2の2軸と回転対称の2軸ゲージをR3、R4を備え、同様のラダー状抵抗と配線接続用のゲージタブを備えた別の2軸ゲージを作成した。この2種類の2軸ひずみゲージを、起歪体の側面2箇所に、それぞれ熱硬化接着剤で接着した。さらに2つの補強板を積層し接着剤で固定した。   Ladder resistance is formed so that it can be adjusted in the range of 0.2 to 50Ω, and the resistance value between the gauge tabs including the ladder resistance is approximately 1000Ω, and the difference between the two gauge resistance values is within 0.2Ω. Produced. In addition, two biaxial gauges with R1 and R2 and rotationally symmetric biaxial gauges with R3 and R4, and similar ladder resistors and gauge tabs for wiring connection were created. These two types of biaxial strain gauges were bonded to the two side surfaces of the strain generating body with a thermosetting adhesive, respectively. Further, two reinforcing plates were laminated and fixed with an adhesive.

そして下部補強板上で、起歪体がない部分に回路部品が実装された配線回路基板を接着固定した。回路基板上には、増幅器(オペアンプ)、オフセット電圧シフト回路、感度補正回路、AD変換器、ノイズフィルター、その他信号処理に必要な回路部品を搭載し、回路の起歪体側はゲージと配線で接続するための端子台を実装した。   Then, on the lower reinforcing plate, the printed circuit board on which the circuit components were mounted was bonded and fixed to the portion where there was no strain generating body. On the circuit board, an amplifier (op-amp), offset voltage shift circuit, sensitivity correction circuit, AD converter, noise filter, and other circuit components necessary for signal processing are mounted, and the strain generator side of the circuit is connected to the gauge by wiring. A terminal block was installed.

図1は、本発明による乗員荷重検出装置を車のシートおよび車体に取り付けた状態の全体構成を示している。座席はシートレール上で前後にスライドできるような構造になっており、また背もたれが前後するリクライニング構造を備えている。乗員荷重検出装置は座席シート2本のレールの下に取り付け、レール1本あたり前方に1個、後方に1個、でシートには合計4個を取り付ける。4個の荷重検出装置を用い、各計測値の和を演算することによりシート上の荷重を求めることができる。着座位置や姿勢、シートの背もたれ、シートスライドがどのような状態であっても、重力方向荷重と重力逆方向荷重の両方を検知可能な荷重検出装置を用いることにより、荷重計測が可能である。4個の荷重検出装置の計測データを短い周期で繰り返し取り込むことで車走行時の動的な環境でもシート上の荷重を検知することができる。   FIG. 1 shows the overall configuration of a state in which an occupant load detection device according to the present invention is attached to a vehicle seat and a vehicle body. The seat has a structure that can slide back and forth on the seat rail, and has a reclining structure in which the backrest moves back and forth. The occupant load detection device is attached under the two seat seat rails, one for the front and one for the rear per rail, and a total of four on the seat. The load on the seat can be obtained by calculating the sum of each measurement value using four load detection devices. Load measurement is possible by using a load detection device capable of detecting both the gravity direction load and the gravity reverse direction load regardless of the seating position and posture, the seat back, and the seat slide. The load on the seat can be detected even in a dynamic environment when the vehicle is running by repeatedly taking in the measurement data of the four load detection devices in a short cycle.

図2および図3は、乗員荷重検出装置の取り付け構造を示している。乗員荷重検出装置の一方の支点が、座席のシートレールに固定され、もう一方の支点が車体ブラケットに固定されている。シートレールとの固定部は車体側との間に隙間があり、車体との固定部はシートレールとの間に隙間があるので、ビーム(梁)状の乗員荷重検出装置によって車体とシートが締結されている。過大な負荷がシートに加わった場合はこの隙間が無くなり、ストッパーとして機能させることもできる。乗員荷重検出装置は、図2のように車体ブラケットの上に取り付ける構造でもよく、図3のように車体ブラケットの下に取り付ける構造でもよい。この発明によれば、ボルトの締め付けトルクの管理をすれば、乗員荷重検出装置の車体およびシートへの取り付けが容易にかつ締結強度ばらつき少なく実施できる。乗員荷重検出装置を車体とシートレールとの間に固定するとき、強度区分10.9相当以上のボルト、ナット、およびワッシャーを用いることにより、支点の固定条件が安定し、荷重による出力の直線性が得られる。   2 and 3 show the mounting structure of the occupant load detection device. One fulcrum of the occupant load detection device is fixed to the seat rail of the seat, and the other fulcrum is fixed to the vehicle body bracket. Since there is a gap between the fixed part of the seat rail and the vehicle body and there is a gap between the fixed part of the vehicle and the seat rail, the vehicle body and the seat are fastened by a beam-shaped occupant load detection device. Has been. When an excessive load is applied to the sheet, this gap is eliminated and the sheet can function as a stopper. The occupant load detection device may have a structure that is mounted on the body bracket as shown in FIG. 2, or may be a structure that is mounted under the body bracket as shown in FIG. According to the present invention, if the tightening torque of the bolt is managed, the occupant load detection device can be easily attached to the vehicle body and the seat and with less variation in fastening strength. When fixing the occupant load detection device between the vehicle body and the seat rail, bolts, nuts, and washers with a strength category equivalent to 10.9 or higher are used to stabilize the fulcrum fixing conditions and to obtain output linearity due to the load. It is done.

図4は乗員荷重検出装置の構成を示している。起歪体には、荷重の支点および荷重点となるボルト貫通用の丸穴を備え、長手方向で丸穴の無い2面にひずみゲージが配設されている。長手方向で丸穴の無い2面は、荷重が負荷された場合にせん断応力が生じる面、すなわち、せん断面となる。ひずみゲージはせん断面片面に2軸のグリッドを備え、各軸は長手方向にほぼ45度をなしている。起歪体長手方向にほぼ45度をなす2軸のグリッドを備えるひずみゲージを配設することによってせん断ひずみを効率よく計測することができる。2軸のグリッドはせん断面に「<<<」または「>>>」のように配置させても、「\\\///」のように配置させてもよい。   FIG. 4 shows the configuration of the occupant load detection device. The strain generating body is provided with a load fulcrum and a round hole for penetrating a bolt to be a load point, and strain gauges are disposed on two surfaces having no round hole in the longitudinal direction. The two surfaces having no round holes in the longitudinal direction are surfaces on which shear stress occurs when a load is applied, that is, shear surfaces. The strain gauge includes a biaxial grid on one side of the shear surface, and each axis forms approximately 45 degrees in the longitudinal direction. By arranging a strain gauge having a biaxial grid forming approximately 45 degrees in the longitudinal direction of the strain generating body, the shear strain can be efficiently measured. The biaxial grid may be arranged on the shear plane as “<<” or “>>” or “\\\ ///”.

ひずみゲージは起歪体のせん断面片面あたり2グリッドで両面に4グリッドを配設する。これらの4グリッドでホイートストンブリッジ(図5)を構成するようにリード線で配線する。各グリッドは抵抗体をフォトリソグラフィーで細線がつづれ折りパターンに形成され、それぞれほぼ同じ抵抗値を持つようにしている。荷重点に負荷がかかると、プラスのせん断応力を受けるように配設されたグリッドは引張応力によって抵抗値が上がり、マイナスのせん断応力を受けるように配設されたグリッドは圧縮応力により抵抗値が下がる(図6)。負荷を受けて、抵抗値が上がるグリッド部がブリッジ回路の対辺同士になり、抵抗値が下がるグリッド部がブリッジ回路の対辺同士になるようにブリッジ回路を組む。このブリッジ回路に入力電圧を与えると、負荷の大きさに応じて電圧を出力するので、荷重値と出力の関係を校正すれば荷重計測が可能になる。   The strain gauge is provided with 2 grids on one side of the shear surface of the strain generating body and 4 grids on both sides. These 4 grids are wired with lead wires so as to form a Wheatstone bridge (FIG. 5). In each grid, the resistors are formed in a folded pattern by photolithography using thin lines so that they have substantially the same resistance value. When a load is applied to a load point, the grid arranged to receive a positive shear stress increases its resistance value due to a tensile stress, and the grid arranged to receive a negative shear stress has a resistance value due to a compressive stress. Lower (Figure 6). In response to the load, the bridge circuit is assembled so that the grid portion where the resistance value increases becomes the opposite sides of the bridge circuit, and the grid portion where the resistance value decreases becomes the opposite sides of the bridge circuit. When an input voltage is applied to the bridge circuit, a voltage is output according to the magnitude of the load. Therefore, the load can be measured by calibrating the relationship between the load value and the output.

図2および図3の取り付け構造に対し別の構成を図7および図8に示す。この構成でも、起歪体の支点、荷重点となる丸穴と、ひずみゲージを有しているが、丸穴とひずみゲージは同一面に配置させる。この構成では、車体側フレームと荷重検出装置、荷重検出装置とシートレールを締結するボルトが車体とほぼ水平方向に貫通する。この構成によっても、シート荷重によって起歪体がひずみ、このひずみ量をせん断ひずみとして検出する。   FIGS. 7 and 8 show another configuration for the mounting structure shown in FIGS. Even in this configuration, the strain hole has a round hole serving as a fulcrum of the strain generating body and a load point, and a strain gauge, but the round hole and the strain gauge are arranged on the same plane. In this configuration, the vehicle body side frame and the load detection device, and the bolt for fastening the load detection device and the seat rail penetrate substantially horizontally with the vehicle body. Also with this configuration, the strain body is distorted by the sheet load, and the amount of strain is detected as a shear strain.

図2、3、図7、8のいずれの場合でもせん断応力(ひずみ)の分布は、図9のように起歪体の長手方向で一定である。荷重Wが一定であれば起歪体の長手方向のどこでせん断ひずみを検出しても同じ測定値が得られる。さらにボルト、ワッシャーで荷重検出装置を締結する時に支点の位置がばらついたり、使用中に支点の位置が移動したりしても荷重Wが一定であればせん断応力は変化しない。図10は従来採用されていた板状起歪体の表裏面にひずみゲージを配置させる曲げ応力(ひずみ)を検出する方法であるが、この場合は曲げモーメント分布が生じるため、長手方向の位置により起歪体にかかる応力は異なる。さらに図10の構成の場合、ボルトやワッシャーの締結位置ばらつきの影響を受けて応力が変化する。したがって、ゲージの貼付け位置ずれ、支点間距離のばらつきの影響を受けるため荷重検出が適切に行われないという不具合が出ることになる。このような不具合を回避するためには、支点をリベット止めとする、溶接するなど極めて手間のかかる締結方向を採用するか、または、S型(Z型)状の起歪体として支点間距離を一定に保つなどの工夫をする必要があった(図11)。本発明による起歪体構造によれば単純な構造の起歪体をボルトで固定するだけで計測誤差の小さい乗員荷重検出装置が実現できる。   In any of FIGS. 2, 3, 7, and 8, the distribution of shear stress (strain) is constant in the longitudinal direction of the strain generating body as shown in FIG. If the load W is constant, the same measurement value can be obtained no matter where the shear strain is detected in the longitudinal direction of the strain generating body. Further, even if the position of the fulcrum varies when the load detection device is fastened with a bolt or washer, or the position of the fulcrum moves during use, the shear stress does not change if the load W is constant. FIG. 10 shows a method of detecting a bending stress (strain) in which strain gauges are arranged on the front and back surfaces of a plate-like strain body that has been conventionally employed. In this case, a bending moment distribution is generated, and therefore, depending on the position in the longitudinal direction. The stress applied to the strain body is different. Furthermore, in the case of the configuration shown in FIG. 10, the stress changes due to the influence of variations in the fastening positions of the bolts and washers. Therefore, there is a problem that load detection is not properly performed because of the influence of the deviation of the position where the gauge is attached and the variation in the distance between the fulcrums. In order to avoid such a problem, it is necessary to adopt an extremely troublesome fastening direction such as riveting a fulcrum or welding, or to increase the distance between fulcrums as an S-shaped (Z-shaped) strain generator. It was necessary to devise such as keeping constant (FIG. 11). According to the strain-generating body structure according to the present invention, it is possible to realize an occupant load detection device with a small measurement error by simply fixing a strain-generating body having a simple structure with a bolt.

図12に、本発明による計測例を示す。4つの荷重検出装置を取り付けたシートに人間が座り、乗員荷重計測を行なった。乗員がシート上の着座位置を変えて重心を変化させても、4つの荷重検出装置の出力値を合計は、ほぼ同じ値が得られた。ここで、荷重検出装置1つ1つの計測データを個別に採ることにすれば、乗員の姿勢がどのような状態であるかについても認識することが可能となる。図13は、普通の姿勢でシートの位置・リクライニング状態を変えて計測した結果である。体重の異なる何名かの乗員で評価を行なったところ、シートの状態に影響されずほぼ正しい荷重計測が行なわれた。図14は、車が静止した状態と、走行した状態での荷重計測結果である。動的状態でも一定時間内の計測値を平均化処理すれば、ほぼ正しい荷重が求められることが確認されている。このことから本発明による乗員荷重検出装置によれば、乗員の姿勢や体格についての的確な識別が可能である。   FIG. 12 shows a measurement example according to the present invention. A human sits on a seat with four load detection devices attached, and the occupant load is measured. Even when the occupant changed the seating position on the seat and changed the center of gravity, the total output values of the four load detection devices were almost the same. Here, if the measurement data for each load detection device is taken individually, it is possible to recognize the state of the occupant's posture. FIG. 13 shows the measurement results obtained by changing the seat position and the reclining state in a normal posture. When several passengers with different weights were evaluated, almost correct load measurement was performed without being affected by the condition of the seat. FIG. 14 shows load measurement results when the vehicle is stationary and when the vehicle is traveling. It has been confirmed that an almost correct load can be obtained by averaging the measured values within a certain time even in a dynamic state. Therefore, according to the occupant load detection device of the present invention, it is possible to accurately identify the occupant's posture and physique.

図15に、本発明によるひずみゲージの抵抗調整用ラダー抵抗パターンを示す。同一抵抗体材料からフォトリソグラフィーにより一括でパターニングを行い作成する。2軸のグリッド間の抵抗値差が生じた場合、差の大きさに応じて所定のラダー部を切断することにより2軸の抵抗値を揃えることができる。ブリッジ内各ゲージの抵抗値をそろえる方法としては、ブリッジ回路内の抵抗の低い1辺にコンスタンタンワイヤやニクロムワイヤを追加する方法があるが、この方法に比べ、容易に実施でき、補正作業の自動化も可能である。この形態によれば、ブリッジのオフセット電圧の小さな乗員荷重検出装置を容易に得ることができる。   FIG. 15 shows a ladder resistance pattern for adjusting the resistance of a strain gauge according to the present invention. It is created by patterning from the same resistor material at once by photolithography. When a resistance value difference between the biaxial grids occurs, the biaxial resistance values can be made uniform by cutting a predetermined ladder portion according to the magnitude of the difference. As a method of aligning the resistance value of each gauge in the bridge, there is a method of adding a constantan wire or nichrome wire to one side of the bridge circuit where the resistance is low, but this method is easier to implement and automates the correction work. Is also possible. According to this aspect, it is possible to easily obtain an occupant load detection device with a small bridge offset voltage.

起歪体は、図16に示したように一部の断面を小さくし、断面の小さい箇所にひずみゲージを配置することで、荷重による出力値を増やすことが可能である。断面積を小さくする方法としては、中央部に窓をあけて断面を2分割する方法もあるが、図16のように1つの断面にする方が好ましい。   As shown in FIG. 16, the strain generating body can be increased in the output value due to the load by reducing a part of the cross section and disposing a strain gauge in a portion having a small cross section. As a method of reducing the cross-sectional area, there is a method of dividing the cross-section into two by opening a window in the center, but it is preferable to make one cross-section as shown in FIG.

また、起歪体は複合積層構造にすることも可能である。図17は、アルミ合金起歪体の上下2面にばね用ステンレス板を重ねた構造である。この構造によれば、鋼やステンレスのみで起歪体を構成した場合と同等の負荷耐久性と出力特性を保持しながら軽量化が図れる。図18は、一部に断面の小さい箇所を有する焼結合金起歪体と、その上下にばね用ステンレス板を重ねた構造である。このような構造でも、断面の小さい箇所にひずみゲージを配置することで、荷重による出力値を増やすことが可能である。起歪体中央部の断面が小さい複雑な形状でもアルミの押し出し成形や焼結粉末の成形であれば容易に製造が可能であり、ステンレス板もプレスによる打抜き加工が容易にできるので、効率的に生産できる。   In addition, the strain generating body may have a composite laminated structure. FIG. 17 shows a structure in which stainless steel plates for springs are stacked on two upper and lower surfaces of an aluminum alloy strain body. According to this structure, it is possible to reduce the weight while maintaining the load durability and the output characteristics equivalent to the case where the strain body is composed of only steel or stainless steel. FIG. 18 shows a structure in which a sintered alloy strain body having a portion having a small cross section in part and a stainless steel plate for springs stacked on top and bottom thereof. Even in such a structure, it is possible to increase an output value due to a load by disposing a strain gauge in a portion having a small cross section. Even a complicated shape with a small cross section at the center of the strain body can be easily manufactured by extrusion molding of aluminum or sintering powder, and the stainless steel plate can also be easily punched by pressing, so it is efficient. Can be produced.

これらの実施例の荷重測定結果を図19に示す。   The load measurement results of these examples are shown in FIG.

車用座席を4箇所の締結部品で固定する場合、1箇所あたり500kgの負荷がかかっても破壊は許されず、150kgまでの負荷以内なら計測性能が劣化すること許されない。一方、荷重計測において1kg以内の分解能を得ようとした場合、ひずみ出力は、およそ300×10-6以上を確保することが好ましい。本発明の請求範囲による構成とすれば、負荷耐久性確保とひずみ出力向上という相反する要求を満足することができる。   When fixing a car seat with four fastening parts, even if a load of 500 kg per place is applied, destruction is not permitted, and measurement performance is not allowed to deteriorate within a load of up to 150 kg. On the other hand, when trying to obtain a resolution of 1 kg or less in load measurement, it is preferable to secure a strain output of about 300 × 10 −6 or more. If it is set as the structure by the claim of this invention, the conflicting request | requirement of load durability ensuring and distortion output improvement can be satisfied.

図20は、ビーム状起歪体の片側側面に配置させる2軸ひずみゲージのグリッドパターンである。このゲージは次に述べる方法で製作した。重量比で20%Cr-2.8%Al-2.0%Cuで残りがほぼNiからなる合金を5μmの厚さまで圧延した箔を、厚さ12.5μmのポリイミドフィルムと接着剤で貼り合わせ、これをフォトリソグラフィーのプロセスで抵抗値1000Ωのゲージパターンを形成した。近接配置させた2軸ゲージ受感部のうち、一方のゲージ軸方向が抵抗箔圧延方向に略+θをなし、もう一方のゲージ軸方向が抵抗箔圧延方向に略−θをなすように形成されている。2軸のゲージのグリッド方向がお互いに圧延方向に対し同じ角度でパターニングすれば、2軸のゲージ間の抵抗値および温度抵抗係数をそろえ易くなる。2ゲージ間の抵抗値の差が小さいほどブリッジのオフセット電圧が小さくなるので、ゼロバランス調整作業が容易または不要になる。また2ゲージ間の温度抵抗係数の差が小さいほど、出力の温度によるドリフトが小さくなり、計測精度が向上する。
別の製造方法として、起歪体のゲージ配設面にポリイミド樹脂やAl2O3、SiO2などの絶縁層を形成後、この面にスパッタリングで厚さおよそ1μmの20%Cr-Ni合金薄膜を形成し、フォトリソグラフィーによりゲージ抵抗4000Ωのゲージパターンを得ることも可能である。
FIG. 20 is a grid pattern of a biaxial strain gauge disposed on one side surface of the beam-shaped strain body. This gauge was manufactured by the method described below. A foil of 20% Cr-2.8% Al-2.0% Cu in weight ratio, which is made of the remaining Ni and rolled to a thickness of 5μm, is bonded to a polyimide film with a thickness of 12.5μm using an adhesive, and this is photolithography A gauge pattern having a resistance value of 1000Ω was formed by the above process. Of the two-axis gauge sensing parts arranged in close proximity, one gauge axis direction forms approximately + θ in the resistance foil rolling direction, and the other gauge axis direction forms approximately −θ in the resistance foil rolling direction. ing. If the grid directions of the biaxial gauges are patterned at the same angle with respect to the rolling direction, the resistance value and the temperature resistance coefficient between the biaxial gauges can be easily aligned. The smaller the difference in resistance between the two gauges, the smaller the bridge offset voltage, making the zero balance adjustment work easier or unnecessary. Further, the smaller the difference in temperature resistance coefficient between the two gauges, the smaller the drift due to the temperature of the output, and the measurement accuracy improves.
As another manufacturing method, after forming an insulating layer of polyimide resin, Al2O3, SiO2, etc. on the gauge placement surface of the strain generating body, a 20% Cr-Ni alloy thin film with a thickness of about 1 μm is formed on this surface by sputtering, It is also possible to obtain a gauge pattern with a gauge resistance of 4000Ω by photolithography.

ブリッジ電圧5Vの場合、ゲージ抵抗が350Ω以下では電流が14mA以上となりジュール熱による抵抗体発熱の影響により計測値が不安定となる。350Ωより高抵抗で、より小型のひずみゲージを形成しようとした場合、比抵抗の高いNi-Cr系合金を用いるか、または厚さの薄いコンスタンタン箔を用いる。   When the bridge voltage is 5V, when the gauge resistance is 350Ω or less, the current is 14mA or more, and the measured value becomes unstable due to the effect of resistor heating by Joule heat. When trying to form a smaller strain gauge with a resistance higher than 350Ω, use a Ni-Cr alloy with a high specific resistance, or use a constantan foil with a small thickness.

図21は、ブリッジ回路配線や増幅回路などの回路を有する回路基板と、ひずみゲージを配設した起歪体とを電気的に接続するために、ゲージ側端子と回路側端子との間の配線にワイヤーボンディングを行なった状態を示している。ゲージの抵抗体材料は表面の酸化膜により、はんだ濡れ性が悪く、はんだによるリード線接続は困難である。直径0.2〜0.4mmのアルミ線をボンディングすることで、車における振動や衝撃など動的環境に対する信頼性が向上する。補強板に接着した回路基板は起歪体の複数支点の外側に位置しているので、起歪体の締結先部材の剛性によっては回路基板が傾く場合がある。そのため回路側起歪体支点は、剛性の高い車体側との間で締結することにする。これにより回路基板に加わる振動、衝撃負荷が低減される。   FIG. 21 shows a wiring between a gauge side terminal and a circuit side terminal in order to electrically connect a circuit board having a circuit such as a bridge circuit wiring or an amplifier circuit and a strain generating body provided with a strain gauge. The state which performed wire bonding is shown. The resistor material of the gauge has poor solder wettability due to the oxide film on the surface, and it is difficult to connect lead wires with solder. Bonding aluminum wires with a diameter of 0.2 to 0.4 mm improves the reliability against dynamic environments such as vibration and impact in cars. Since the circuit board bonded to the reinforcing plate is located outside the plurality of fulcrums of the strain generating body, the circuit board may be inclined depending on the rigidity of the fastening member of the strain generating body. Therefore, the circuit side strain body fulcrum is fastened with the highly rigid vehicle body side. As a result, vibrations and impact loads applied to the circuit board are reduced.

図22は、起歪体と起歪体の一部を延長した板状基板上に回路基板を搭載して組み立てた状態を示している。回路には、増幅器(オペアンプ)、オフセット電圧シフト回路、感度補正回路、AD変換器、その他必要な部品を搭載している。ひずみゲージを用いた荷重変換器を活用する場合に必要な各種補正機能および信号変換機能を備えているので、あらかじめオフセットゼロ点調整、感度調整を済ませておき、補正の必要の無く性能ばらつきの少ない荷重検出装置をシート・車体に組み付けられる。ゲージ実装部および回路部品実装部は樹脂モールドし、電源ライン、信号ラインをコネクタ付きケーブルで引き出す構造としている。ゲージ実装部と回路部品実装部が同じゴム状弾性のある樹脂でモールドするので、車用シートに求められる防水性を満足しつつ、ゲージによるひずみ検知機能も損なわれない。さらに、荷重検出装置内で信号をデジタル化できるので、電磁ノイズの影響を受けにくいものとなる。   FIG. 22 shows a state where the circuit board is mounted and assembled on the strain-generating body and a plate-like board obtained by extending a part of the strain-generating body. The circuit is equipped with an amplifier (op-amp), offset voltage shift circuit, sensitivity correction circuit, AD converter, and other necessary components. Since it has various correction functions and signal conversion functions required when using a load transducer that uses a strain gauge, offset zero point adjustment and sensitivity adjustment are completed in advance, and there is little need for correction and performance variation is small. The load detection device can be assembled to the seat / body. The gauge mounting portion and the circuit component mounting portion are resin-molded, and the power supply line and signal line are drawn out by a cable with a connector. Since the gauge mounting portion and the circuit component mounting portion are molded with the same rubber-like elastic resin, the waterproofness required for the vehicle seat is satisfied, and the strain detection function by the gauge is not impaired. Further, since the signal can be digitized in the load detection device, it is less susceptible to electromagnetic noise.

車体および座席へ取り付けた形態の図である。It is a figure of the form attached to the vehicle body and a seat. 図1の取り付け部の詳細を示した図である。It is the figure which showed the detail of the attaching part of FIG. 車体および座席へ取り付けた別の形態の図である。It is a figure of another form attached to the vehicle body and a seat. 起歪体に配設するひずみゲージのグリッド方向を示した図である。It is the figure which showed the grid direction of the strain gauge arrange | positioned in a strain body. ゲージの配線図を示した図である。It is the figure which showed the wiring diagram of a gauge. せん断ひずみを電圧として出力する原理を示した図である。It is the figure which showed the principle which outputs a shearing strain as a voltage. 車体および座席へ取り付けた別の形態の図である。It is a figure of another form attached to the vehicle body and a seat. 図7の取り付け部の詳細を示した図である。It is the figure which showed the detail of the attaching part of FIG. 起歪体に荷重がかかった時の応力分布、モーメント分布を示した図である。It is the figure which showed the stress distribution and moment distribution when a load is applied to the strain body. 従来の曲げひずみ検出方式における応力分布を示した図である。It is the figure which showed the stress distribution in the conventional bending strain detection system. 従来の曲げひずみ検出方式の起歪体構造とその応力分布を示した図である。It is the figure which showed the bending body structure of the conventional bending strain detection system, and its stress distribution. 座席と車体に取り付けて乗員の荷重を計測した結果を示した図である。It is the figure which showed the result of having measured the passenger | crew's load attached to the seat and the vehicle body. 乗員の体格と座席・背もたれの位置を変えて計測した結果を示した図である。It is the figure which showed the result of having changed and measured the position of the occupant's physique and the seat / backrest. 車の停止状態と走行状態の計測結果を示した図である。It is the figure which showed the measurement result of the stop state of a car, and a driving state. 抵抗調整用ラダー抵抗を有するひずみゲージの形状を示した図である。It is the figure which showed the shape of the strain gauge which has ladder resistance for resistance adjustment. 断面の小さい箇所を有する起歪体を示した図である。It is the figure which showed the strain body which has a location with a small cross section. 複数の板状起歪体を積層した構造を示した図である。It is the figure which showed the structure which laminated | stacked the several plate-shaped strain body. 断面の小さい箇所を有する起歪体を含む積層構造を示した図である。It is the figure which showed the laminated structure containing the strain body which has a location with a small cross section. 起歪体の材質・寸法を変えて、ひずみ出力・負荷耐久性を計算した結果である。This is the result of calculating strain output and load durability by changing the material and dimensions of the strain generating body. ひずみゲージのグリッドパターンを示した図である。It is the figure which showed the grid pattern of the strain gauge. ひずみゲージと回路の配線接続を示した図である。It is the figure which showed the wiring connection of a strain gauge and a circuit. 荷重検出装置の全体構成を示した図である。It is the figure which showed the whole structure of the load detection apparatus. 荷重による出力特性を示した図である。It is the figure which showed the output characteristic by a load. ゼロ点の温度影響を示した図である。It is the figure which showed the temperature influence of a zero point.

Claims (6)

座席と車体とを締結する部品であって、ビーム(梁)状起歪体と、2枚の補強板と、ひずみゲージと、ラダー状抵抗と、ゲージタブからなるひずみ受感部と、ゲージ入出力回路、端子台、入出力ケーブルからなる回路部と、前記ひずみ受感部と回路部との間を結ぶ配線部からなる乗員荷重検出装置において、ビーム状起歪体長手方向にほぼ+45度の角度をなす第1のひずみゲージと、ビーム状起歪体長手方向にほぼ−45度の角度をなす第2のひずみゲージをビーム状起歪体の側面に配設し、異なる側面には前記第1のひずみゲージおよび第2のひずみゲージと回転対称となるように第3、第4のひずみゲージを配設し、4つのひずみゲージでホイートストンブリッジ回路を構成することを特徴とする乗員荷重検出装置。   A part that fastens the seat and the vehicle body. It is composed of a beam-shaped strain body, two reinforcing plates, a strain gauge, a ladder-like resistor, a strain sensing part consisting of a gauge tab, and a gauge input / output. In an occupant load detection device comprising a circuit portion comprising a circuit, a terminal block, and an input / output cable, and a wiring portion connecting the strain sensing portion and the circuit portion, an angle of approximately +45 degrees in the longitudinal direction of the beam-shaped strain generator And a second strain gauge having an angle of about −45 degrees in the longitudinal direction of the beam-like straining body are arranged on the side surface of the beam-like straining body, and the first strain gauge is arranged on the side surface of the beam-like straining body. An occupant load detection device, wherein a third and a fourth strain gauge are arranged so as to be rotationally symmetric with the second strain gauge and the second strain gauge, and a Wheatstone bridge circuit is constituted by four strain gauges. ひずみ受感部は、車体側のみを締結するボルト穴と、シート側のみを締結するボルト穴を有し、起歪体材料の縦弾性係数が30〜180GPaであって、前記起歪体の上下に積層する補強板の縦弾性係数が起歪体材料の1.0〜3.5倍であり、起歪部のボルト穴間側面に前記第1ないし第4のひずみゲージを配設することを特徴とする請求項1に記載の乗員荷重検出装置。   The strain sensing part has a bolt hole for fastening only the vehicle body side and a bolt hole for fastening only the seat side, and the longitudinal elastic modulus of the strain body material is 30 to 180 GPa, and the top and bottom of the strain body The longitudinal elastic modulus of the reinforcing plate laminated on the reinforcing plate is 1.0 to 3.5 times that of the strain-generating material, and the first to fourth strain gauges are disposed on the side surfaces between the bolt holes of the strain-generating portion. The occupant load detection device according to Item 1. ビーム状起歪体は、ボルト穴間に凹状のくびれ部を有し、凹状くびれ部の側面に前記第1ないし第4のひずみゲージを配設することを特徴とする請求項1ないし請求項2に記載の乗員荷重検出装置。   The beam-shaped strain generating body has a concave constricted portion between bolt holes, and the first to fourth strain gauges are disposed on a side surface of the concave constricted portion. The occupant load detection device described in 1. ビーム状起歪体側面に設けるひずみゲージは、ラダー状抵抗を有し、これがひずみゲージと同一素材によって連続一体に形成されていることを特徴とする請求項1ないし請求項3に記載の乗員荷重検出装置。   The occupant load according to any one of claims 1 to 3, wherein the strain gauge provided on the side surface of the beam-shaped strain generating body has a ladder-like resistance, and is formed integrally and continuously by the same material as the strain gauge. Detection device. ビーム状起歪体側面に設けるひずみゲージは、抵抗体が金属抵抗体であり、この抵抗体の厚みが0.2〜6μmであり、1つのゲージ抵抗が350〜5000Ωであることを特徴とする請求項1ないし請求項4に記載の乗員荷重検出装置。   The strain gauge provided on the side surface of the beam-shaped strain generating body is characterized in that the resistor is a metal resistor, the thickness of the resistor is 0.2 to 6 μm, and one gauge resistance is 350 to 5000 Ω. The passenger | crew load detection apparatus of Claim 1 thru | or 4. ゲージタブと回路側端子との間が、直径0.05〜0.4mmのアルミ線でボンディングされていることを特徴とする請求項1ないし請求項5に記載の乗員荷重検出装置。   6. The occupant load detection device according to claim 1, wherein the gauge tab and the circuit side terminal are bonded with an aluminum wire having a diameter of 0.05 to 0.4 mm.
JP2004055562A 2004-02-27 2004-02-27 Crew load detector Withdrawn JP2005241610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004055562A JP2005241610A (en) 2004-02-27 2004-02-27 Crew load detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004055562A JP2005241610A (en) 2004-02-27 2004-02-27 Crew load detector

Publications (1)

Publication Number Publication Date
JP2005241610A true JP2005241610A (en) 2005-09-08

Family

ID=35023465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004055562A Withdrawn JP2005241610A (en) 2004-02-27 2004-02-27 Crew load detector

Country Status (1)

Country Link
JP (1) JP2005241610A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5275507B1 (en) * 2012-09-25 2013-08-28 株式会社タニタ Strain body and weight measuring device
JP5557359B1 (en) * 2013-06-21 2014-07-23 株式会社タニタ Straining body, load cell and weight measuring device
JP2014190779A (en) * 2013-03-27 2014-10-06 Tanita Corp Strain body, load cell, and weight measurement device
US9151659B2 (en) 2012-09-25 2015-10-06 Tanita Corporation Flexure element where the gap between the first arm and the second arm or between an arm and the strain generating region are equal to or smaller than one half the thickness
CN108240844A (en) * 2018-01-10 2018-07-03 银川奥特信息技术股份公司 Hangers and Supports in Power Plants detecting system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5275507B1 (en) * 2012-09-25 2013-08-28 株式会社タニタ Strain body and weight measuring device
US9151659B2 (en) 2012-09-25 2015-10-06 Tanita Corporation Flexure element where the gap between the first arm and the second arm or between an arm and the strain generating region are equal to or smaller than one half the thickness
JP2014190779A (en) * 2013-03-27 2014-10-06 Tanita Corp Strain body, load cell, and weight measurement device
JP5557359B1 (en) * 2013-06-21 2014-07-23 株式会社タニタ Straining body, load cell and weight measuring device
JP2014190979A (en) * 2013-06-21 2014-10-06 Tanita Corp Strain body, load cell, and weight measurement device
CN108240844A (en) * 2018-01-10 2018-07-03 银川奥特信息技术股份公司 Hangers and Supports in Power Plants detecting system
CN108240844B (en) * 2018-01-10 2024-01-30 银川奥特信息技术股份公司 Power plant support and hanger detecting system

Similar Documents

Publication Publication Date Title
US6407350B1 (en) Laminated beam weight sensor
JP4585054B2 (en) Seat weight measuring device
JP2004205410A (en) Load sensor and sheet weight measuring device
JP4887260B2 (en) Passenger load sensor for vehicle seat
WO2018105209A1 (en) Torque sensor
US6345543B1 (en) Seat weight measuring apparatus
US7490523B2 (en) Occupant load detecting device of seat for vehicle
US20060185446A1 (en) Printed strain gage for vehicle seats
JP3468728B2 (en) Seat weight measuring device
JP3675710B2 (en) Sensing element fixing structure
JP4741169B2 (en) Automotive seat force transducer
WO2007002241A2 (en) Strain gage with off axis creep compensation feature
EP1043573B1 (en) Shear beam load cell
US6467361B2 (en) Strain gage sensor having an unstrained area
JP2005241610A (en) Crew load detector
JP2009128106A (en) Vehicular seat load detector
JP3444810B2 (en) Seat weight measuring device
US9389116B2 (en) Weight detection sensor and vehicle seat apparatus including a strain body between the floor and the vehicle seat
JP4129336B2 (en) Seat weight measuring device
US7049529B2 (en) Occupant classification sense element
US20170236625A1 (en) Resistance adjustment circuit, load detector, and resistance adjustment method
JP2002139389A (en) Sensing element for measuring load
JP3663406B2 (en) Seat weight measuring device
JPH0830716B2 (en) Semiconductor acceleration detector
JP2016090378A (en) Strain sensor and load detection device using the strain sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501