JP2005241239A - Drying apparatus with superheated steam - Google Patents

Drying apparatus with superheated steam Download PDF

Info

Publication number
JP2005241239A
JP2005241239A JP2005041261A JP2005041261A JP2005241239A JP 2005241239 A JP2005241239 A JP 2005241239A JP 2005041261 A JP2005041261 A JP 2005041261A JP 2005041261 A JP2005041261 A JP 2005041261A JP 2005241239 A JP2005241239 A JP 2005241239A
Authority
JP
Japan
Prior art keywords
steam
superheated steam
heating
drying
dryer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005041261A
Other languages
Japanese (ja)
Inventor
Minoru Morita
稔 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005041261A priority Critical patent/JP2005241239A/en
Publication of JP2005241239A publication Critical patent/JP2005241239A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To construct an effective system which reforms steam generated in a dryer into good superheated steam to increase the condensing temperature and improve the heat transfer coefficient as well, and converts the heat energy thereof into power easy to use. <P>SOLUTION: The drying apparatus comprises a dryer 10 which allows a heating medium to flow into a heating medium flow passage to dry an object to be dried by indirect heating, wherein the dryer 10 has a substantially sealed structure, and is configured to allow the superheated steam to circulate and flow therein. The drying apparatus further comprises a temperature raising means 23 for drying in the circulating passage for the superheated steam, a heating means for power generation in an air extracting path for the circulating steam, a steam turbine using the superheated steam as a driving source, and a power generating means 42 which is coupled thereto. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、過熱水蒸気による乾燥装置に関する。  The present invention relates to a drying apparatus using superheated steam.

湿潤の被乾燥物より水分を除去する乾燥法は、液体より水を蒸発させる操作と異なり水分が固形物(被乾燥物)中を移動するので蒸発速度は遅い。
また蒸発気体は空気を含有しており、凝縮させて再利用する場合、凝縮温度が低く、かつ伝熱係数は低く、この伝熱係数を高めるために複雑な伝熱面を採用するとすれば、単位伝熱面積あたりの設備費は高くなり、また多大の伝熱面積を必要とすることから、経済的ではない。
Unlike the operation of evaporating water from the liquid, the drying method that removes moisture from the wet material to be dried has a low evaporation rate because the water moves through the solid material (the material to be dried).
The evaporated gas contains air, and when condensed and reused, the condensation temperature is low and the heat transfer coefficient is low, and if a complicated heat transfer surface is adopted to increase this heat transfer coefficient, The equipment cost per unit heat transfer area is high, and a large heat transfer area is required, which is not economical.

乾燥操作には間接加熱による場合と直接加熱による場合とがあり、多種の乾燥機が知られている。間接加熱(伝導伝熱)乾燥機は、材料と接している伝熱手段(加熱器)に熱媒を供給するとともに、機械的撹拌や熱風による材料の流動撹拌により、伝熱面と材料の接触性を良くしながら熱を与えて乾燥を行うものである。間接加熱乾燥の駆動力は、熱媒温度と材料の温度差および伝熱係数であり、このため原則として、後述の直接加熱のように大量の加熱空気を使用しない。このために、間接加熱(伝導伝熱)乾燥機は、乾燥操作が簡単であるなどの理由により、広く使われている。  There are cases of drying operation by indirect heating and direct heating, and various types of dryers are known. Indirect heating (conduction heat transfer) dryers supply heat medium to the heat transfer means (heater) in contact with the material, and contact the heat transfer surface with the material by mechanical stirring or fluid flow stirring of the material with hot air. Drying is performed by applying heat while improving the properties. The driving force of indirect heating and drying is the difference between the temperature of the heat medium and the material and the heat transfer coefficient. Therefore, in principle, a large amount of heated air is not used as in direct heating described later. For this reason, indirect heating (conduction heat transfer) dryers are widely used for reasons such as easy drying operation.

しかし次の欠点がある。間接加熱乾燥では大量の空気を使用しないが、排気は空気と一緒に系外に取り出される。通常、排気中に20〜50%空気を含有しているので、凝縮温度が低いこと、(ガス混入のため)凝縮の伝熱係数が低いので、排気がもっている熱の再利用を図るとしても温水製造にととどまっている。製品出口付近の減率乾燥区間では循環ガスが少なくかつ材料と良く接触していないので、材料内の水分のガスへの拡散が律速である減率乾燥区間での乾燥速度は遅く、全体の乾燥速度を低下させている。間接加熱(伝導伝熱)乾燥機からの排気は固形物を含有しており、排気の湿度が高いので、原料に由来する腐食性ガスを放散することがある。  However, there are the following drawbacks. Indirect heat drying does not use a large amount of air, but the exhaust is taken out of the system together with the air. Usually, since the exhaust contains 20-50% air, the condensation temperature is low, and the heat transfer coefficient of condensation is low (because of gas mixing). Only hot water production. In the reduced rate drying section near the product outlet, there is little circulating gas and it is not in good contact with the material, so the drying rate in the reduced rate drying section where the diffusion of moisture in the material to the gas is rate limiting is slow, and the entire drying The speed is decreasing. The exhaust from the indirect heating (conducting heat transfer) dryer contains solids, and since the humidity of the exhaust is high, corrosive gas derived from the raw material may be diffused.

一方、直接加熱対流乾燥機は、昇温空気を湿潤の被乾燥物と接触させ、被乾燥物の加温と水分の蒸発と加温による水分の拡散を行うなうもので、空気入口と空気の出口の温度差と、昇温空気の循環量が乾燥効率を主に規定し、さらに、昇温空気と被乾燥物との接触を高めることも重要であり、このために機械的な撹拌や熱風による流動等により乾燥効率を高めている。  On the other hand, a direct heating convection dryer is a device in which heated air is brought into contact with a wet object to be dried, and the object to be dried is heated, the water is evaporated, and the moisture is diffused by heating. The temperature difference at the outlet and the circulation rate of the heated air mainly define the drying efficiency, and it is also important to increase the contact between the heated air and the material to be dried. Drying efficiency is increased by the flow of hot air.

最近、直接加熱乾燥法において、空気の代わりに過熱水蒸気を用いた乾燥法が利用されている(非特許文献1)。対流乾燥法では過熱水蒸気の温度を、ある逆転温度(たとえば180〜200℃)以上にすれば乾燥速度が早くなることが判明し、また内部の水分の拡散が早いので乾燥品が均一であることなどにより、その適用範囲の増加が期待されている。  Recently, in the direct heating drying method, a drying method using superheated steam instead of air is used (Non-Patent Document 1). In the convection drying method, it has been found that if the temperature of the superheated steam is set to a certain reverse temperature (for example, 180 to 200 ° C.) or higher, the drying rate is increased, and the moisture is diffused quickly, so that the dried product is uniform. The application range is expected to increase.

しかし、過熱水蒸気による乾燥法において、乾燥速度を早くするには、その効果があらわれる逆転温度(たとえば前述の180〜200℃)以上まで循環過熱水蒸気を高める必要あり、このため、循環過熱水蒸気の温度を上げるには高圧蒸気32MPa〜63MPaの蒸気が必要であり、あるいは高温ガスによる循環過熱水蒸気の昇温のため高温熱交換器等を必要とする。  However, in the drying method using superheated steam, in order to increase the drying rate, it is necessary to increase the circulating superheated steam to a temperature higher than the reversal temperature (for example, 180 to 200 ° C. described above) where the effect appears. In order to increase the temperature, high-pressure steam of 32 MPa to 63 MPa is required, or a high-temperature heat exchanger or the like is required for raising the temperature of the circulating superheated steam by the high-temperature gas.

過熱水蒸気による乾燥の実施例として、甜菜糖工場の甜菜大根の抽出粕の乾燥がある(非特許文献2,3)。この例では、2.2MPaの高圧蒸気を間接空気加熱器に加熱源に使用し、流動用の循環過熱水蒸気を昇温した後、流動層式乾燥機の下部に入れ、抽出粕を流動化させ乾燥を行わせるもので、流動層式乾燥機の操作圧力は0.2Mpaであり、そこで発生した蒸気は糖液の濃縮用多重効用缶に供給して熱利用を行っている。  As an example of drying with superheated steam, there is drying of beetroot radish extracted from a beet sugar factory (Non-patent Documents 2 and 3). In this example, 2.2 MPa high-pressure steam is used as a heating source for the indirect air heater, and the temperature of the circulating superheated steam for fluidization is raised, and then placed in the lower part of the fluidized bed dryer to fluidize the extractor. The operation pressure of the fluidized bed dryer is 0.2 Mpa, and the generated steam is supplied to a multi-effect can for concentration of sugar solution for heat utilization.

しかし、この方法は、糖液の濃縮用多重効用缶に供給することで熱利用を図ることができる特殊なケースであって、汎用的なものではない。廃熱の汎用的な利用法が求められている。
野邑:「過熱水蒸気乾燥法」;化学工学、66,409〜413 A.S.Jensen:ZUCKERIND.113(1990)827〜833 A.S.Jensen:「Steam drying of beet pulp and bagasse」International Sugar Journal 2003 Vol.105
However, this method is a special case in which heat can be utilized by supplying it to a multi-effect can for concentration of sugar solution, and is not general purpose. There is a need for a general use of waste heat.
Nobuchi: “Superheated Steam Drying Method”; Chemical Engineering, 66, 409-413 A. S. Jensen: ZUCKERIND. 113 (1990) 827-833 A. S. Jensen: “Steam drying of beet pull and bagasse”, International Sugar Journal 2003 Vol. 105

本発明の第1の課題は、間接加熱乾燥機の欠点である減率乾燥期間の乾燥速度を改良することである。第2の課題は、乾燥機内で発生する蒸気を所定の品質(良質な過熱水蒸気)に改質して、それにより凝縮温度を高くし、かつ伝熱係数をも改善して、持っている熱エネルギーを、利用しやすい電力と良質の蒸気へ転換して効果的なシステムを構築することにある。対流式乾燥機においても、過熱水蒸気のもっている熱を利用しやすい電力へ転換して効果的なシステムを構築することにある。乾燥の熱源としての蒸気ボイラからの高温蒸気を減圧過程で蒸気タービンを駆動し、併せて乾燥機内で発生する蒸気によっても蒸気タービンを駆動することで、総合的に熱を有効利用することにある。  The first problem of the present invention is to improve the drying rate in the reduced rate drying period, which is a disadvantage of the indirect heating dryer. The second problem is that the steam generated in the dryer is reformed to a predetermined quality (good quality superheated steam), thereby increasing the condensation temperature and improving the heat transfer coefficient. The aim is to build an effective system by converting energy into easy-to-use electric power and high-quality steam. Even in a convection dryer, an effective system is constructed by converting the heat of superheated steam into electric power that can be easily used. High temperature steam from the steam boiler as a heat source for drying is used to drive the steam turbine in the process of depressurization, and the steam turbine is also driven by the steam generated in the dryer. .

上記課題を解決した本発明は次記のとおりである。
<請求項1項記載の発明>
加熱媒体流路内に加熱媒体を流通させ、被乾燥物を間接加熱により乾燥させる乾燥機を備え、前記乾燥機内は実質的に密閉式の構造とし、その空間を、過熱水蒸気を循環流通させる構成とし、前記過熱水蒸気の循環路内に昇温手段を設け、循環蒸気の抽気経路内に
発電用加熱手段を設け、過熱水蒸気を駆動源とする蒸気タービン及びこれに連結された発電手段を設けた、ことを特徴とする過熱水蒸気による乾燥装置。
The present invention that has solved the above problems is as follows.
<Invention of Claim 1>
A structure in which a heating medium is circulated in the heating medium flow path to dry the material to be dried by indirect heating, the inside of the drying machine has a substantially sealed structure, and the space is circulated and circulated in the space. And a heating means for power generation in the extraction path of the circulating steam, a steam turbine using superheated steam as a drive source, and a power generation means connected thereto. A drying apparatus using superheated steam.

<請求項2項記載の発明>
蒸気発生手段を有し、この蒸気発生手段による発生蒸気を前記間接加熱の加熱媒体、昇温手段の加熱媒体及び発電用加熱手段の加熱媒体とする構成とした請求項1記載の過熱水蒸気による乾燥装置。
<Invention of Claim 2>
2. Drying with superheated steam according to claim 1, further comprising steam generating means, wherein the steam generated by the steam generating means is used as the heating medium for indirect heating, the heating medium for the temperature raising means, and the heating medium for the power generation heating means. apparatus.

<請求項3項記載の発明>
高圧蒸気発生手段を有し、この高圧蒸気発生手段からの高圧蒸気を駆動源とする高圧蒸気タービン及びこれに連結された発電手段を設け、高圧蒸気タービンでの排気を間接加熱の加熱媒体、昇温手段の加熱媒体及び発電用加熱手段の加熱媒体とする構成とした請求項1記載の過熱水蒸気による乾燥装置。
<Invention of Claim 3>
A high-pressure steam turbine having a high-pressure steam generating means and a high-pressure steam turbine driven by the high-pressure steam from the high-pressure steam generating means and a power generation means connected thereto; The drying apparatus using superheated steam according to claim 1, wherein the heating medium is a heating medium of the temperature means and a heating medium of the heating means for power generation.

<請求項4項記載の発明>
加熱媒体流路内に加熱媒体を流通させ、被乾燥物を間接加熱により乾燥させる乾燥機を備え、前記乾燥機内は実質的に密閉式の構造とし、その空間を、過熱水蒸気を循環流通させる構成とし、前記過熱水蒸気の循環路内に昇温手段を設け、循環気の一部を熱源とする熱利用設備に供給するようにした、ことを特徴とする過熱水蒸気による乾燥装置。
<Invention of Claim 4>
A structure in which a heating medium is circulated in the heating medium flow path to dry the material to be dried by indirect heating, the inside of the drying machine has a substantially sealed structure, and the space is circulated and circulated in the space. and then, the heating device provided in the circulation path of the superheated steam, a part of the circulating steam was then supplied to the heat utilization equipment for a heat source, it drying apparatus with superheated steam, characterized in.

<請求項5項記載の発明>
乾燥機が、筒体内部にほぼ水平の軸心周りに回転する撹拌軸を有し、筒体の長手方向一方側から被乾燥物を受け入れ、前記撹拌軸の回転過程で乾燥操作がなされ、乾燥物が他方側から排出される構造のもので、過熱水蒸気は前記筒体の他方側から前記一方側に流通するように構成されている請求項1〜4のいずれか1項に記載の過熱水蒸気による乾燥装置。
<Invention of Claim 5>
The dryer has a stirring shaft that rotates about a substantially horizontal axis inside the cylinder, receives the material to be dried from one side in the longitudinal direction of the cylinder, and a drying operation is performed during the rotation of the stirring shaft. The superheated steam according to any one of claims 1 to 4, wherein the superheated steam is configured to be discharged from the other side, and the superheated steam is circulated from the other side of the cylindrical body to the one side. By drying equipment.

<請求項6記載の発明>
乾燥機内を実質的に密閉式の構造とし、過熱水蒸気を被乾燥物と直接接触させ、接触後の過熱水蒸気を循環流通させる構成とし、前記過熱水蒸気の循環路内に昇温手段を設け、循環蒸気の抽気経路内に発電用加熱手段を設け、過熱水蒸気を駆動源とする蒸気タービン及びこれに連結された発電手段を設けた、ことを特徴とする過熱水蒸気による乾燥装置。
<Invention of Claim 6>
The inside of the dryer has a substantially sealed structure, the superheated steam is brought into direct contact with the material to be dried, and the superheated steam after contact is circulated and circulated. A drying apparatus using superheated steam, characterized in that a heating means for power generation is provided in a steam extraction path, a steam turbine using superheated steam as a drive source, and a power generation means connected to the steam turbine.

<請求項7項記載の発明>
乾燥機内を実質的に密閉式の構造とし、過熱水蒸気を被乾燥物と直接接触させ、接触後の過熱水蒸気を循環流通させる構成とし、前記過熱水蒸気の循環路内に昇温手段を設け、循環蒸気の乾式脱塵後の抽気経路内に過熱手段を設け、前記過熱水蒸気の昇温手段と抽気蒸気の過熱手段用の高温ガス発生手段を設け、過熱水蒸気を駆動源とする蒸気タービン及びこれに連結過熱水蒸気を駆動源とする蒸気タービン及びこれに連結された発電手段を設けた、ことを特徴とする過熱水蒸気による乾燥装置。
<Invention of Claim 7>
The inside of the dryer has a substantially sealed structure, the superheated steam is brought into direct contact with the material to be dried, and the superheated steam after contact is circulated and circulated. A superheater is provided in an extraction path after dry dedusting of steam, a high temperature gas generation means for the superheated steam temperature rising means and a superheated steam superheater is provided, and a steam turbine using superheated steam as a drive source, and A drying apparatus using superheated steam, comprising: a steam turbine using connected superheated steam as a drive source; and a power generation means connected to the steam turbine.

<請求項8項記載の発明>
高圧蒸気発生手段を有し、この高圧蒸気発生手段からの高圧蒸気を駆動源とする高圧蒸気タービン及びこれに連結された発電手段を設け、高圧蒸気タービンでの排気を昇温手段の加熱媒体、昇温手段の加熱媒体及び発電用加熱手段の加熱媒体とする構成とした請求項7記載の過熱水蒸気による乾燥装置。
<Invention of Claim 8>
A high-pressure steam generator having a high-pressure steam generating means connected to the high-pressure steam turbine using the high-pressure steam from the high-pressure steam generating means and a power generation means connected thereto; The drying apparatus using superheated steam according to claim 7, wherein the heating medium is a heating medium for the temperature raising means and a heating medium for the heating means for power generation.

<請求項9項記載の発明>
乾燥品の一部または全量を蒸気発生手段又は高圧蒸気発生手段における燃料源とした請求項1〜8のいずれか1項に記載の過熱水蒸気による乾燥装置。
<Invention of Claim 9>
The drying apparatus using superheated steam according to any one of claims 1 to 8, wherein a part or all of the dried product is used as a fuel source in the steam generating means or the high-pressure steam generating means.

<請求項10項記載の発明>
乾燥機の前に、ろ過対象スラリーのろ過操作を行う加圧ろ過機又は真空ろ過機を設け、循環する過熱水蒸気の一部を供給して前記対象物と接触させ、前記対象物の乾燥を促進させ、固形分を前記被乾燥物とする請求項1〜9のいずれか1項に記載の過熱水蒸気による乾燥装置。
<Invention of Claim 10>
Before the dryer, a pressure filter or vacuum filter that performs filtration of the slurry to be filtered is provided, and a part of the circulating superheated steam is supplied and brought into contact with the object to promote drying of the object. The drying apparatus using superheated steam according to any one of claims 1 to 9, wherein a solid content is the material to be dried.

<請求項11項記載の発明>
過熱水蒸気は、ろ材上のスラリーに向かって吹き込むように構成した請求項10記載の過熱水蒸気による乾燥装置。
<Invention of Claim 11>
The apparatus for drying with superheated steam according to claim 10, wherein the superheated steam is blown toward the slurry on the filter medium.

<請求項12項記載の発明>
乾燥機が加熱器内蔵型流動乾燥機である請求項10または11記載の過熱水蒸気による乾燥装置。
<Invention of Claim 12>
The drying apparatus using superheated steam according to claim 10 or 11, wherein the dryer is a fluidized dryer with a built-in heater.

(間接加熱型乾燥機(伝導伝熱乾燥機))について)
本発明の間接加熱型乾燥機(伝導伝熱乾燥機)は、被乾燥物に(湿潤物質)に伝熱面を介して加熱用熱媒の熱を被乾燥物に与えるもので、次記の公知の乾燥機を使用でき、伝熱面と被乾燥物の接触法により伝熱速度の向上を図るものを工業的に使用するのが望ましい。1)溝型乾燥機:筒体内に回転軸に伝熱盤(内部に熱媒の流通する)を取り付け固形物との機械撹拌により接触をさせるもの。2)多管式回転乾燥機:回転する筒体内に熱媒の加熱管群を設け固形物の転動や回転落下により接触させるもの。3)加熱器内蔵型流動乾燥機:流動用媒体による流動層内に伝熱盤(内部に熱媒の流通する)を挿入して流動による伝熱板との差速により接触をさせるもの。4)加熱器内蔵型高速流動乾燥機:多管式加熱管の管外に熱媒を通し管内に固形物の存在する流動用媒体を通し伝熱面との高速接触をさせるもの。
(About indirect heating dryers (conduction heat transfer dryers))
The indirect heating type dryer (conducting heat transfer dryer) of the present invention gives heat to the object to be dried through the heat transfer surface to the object to be dried (wet material). A known dryer can be used, and it is desirable to industrially use a heat transfer surface and an object to be dried to improve the heat transfer rate. 1) Grooving type dryer: A heat transfer board (with a heat medium circulating inside) is attached to a rotating shaft inside a cylinder and brought into contact with a solid by mechanical stirring. 2) Multi-tube rotary dryer: A heating medium heating tube group provided in a rotating cylinder and brought into contact by rolling or rotating and dropping solid materials. 3) Fluidized dryer with built-in heater: A device in which a heat transfer plate (a heat medium is circulated) is inserted into a fluidized bed of a flow medium, and brought into contact with the heat transfer plate due to flow. 4) Heater built-in type high-speed fluidized dryer: A heating medium is passed through the outside of a multi-tubular heating tube, and a fluidizing medium is present in the tube to bring it into high-speed contact with the heat transfer surface.

本発明によれば、間接加熱乾燥機を使用する場合、減率乾燥期間の乾燥速度を改良することができる。乾燥機内で発生する蒸気を所定の品質(良質な過熱水蒸気)に改質して、それにより凝縮温度を高くし、かつ伝熱係数をも改善して、持っている熱エネルギーを、利用しやすい電力へと良質の蒸気に転換して効果的なシステムを構築することができる。対流式乾燥機においても、過熱水蒸気のもっている熱を利用しやすい電力へ転換して効果的なシステムを構築することができる。乾燥の熱源としての蒸気ボイラからの高温蒸気を減圧過程で蒸気タービンを駆動し、併せて乾燥機内で発生する蒸気によっても蒸気タービンを駆動することで、総合的に熱を有効利用することができるなどの利点がもたらされる。また乾燥品を高圧ボイラつきの焼却炉に供給することでエネルギー自給型のバイオマス発電が可能である。  According to the present invention, when using an indirect heating dryer, the drying rate during the reduced rate drying period can be improved. The steam generated in the dryer is reformed to a predetermined quality (high-quality superheated steam), thereby increasing the condensation temperature and improving the heat transfer coefficient, making it easy to use the heat energy that it has An effective system can be constructed by converting into high-quality steam for electric power. Even in a convection dryer, an effective system can be constructed by converting the heat of superheated steam into electric power that can be easily used. High-temperature steam from the steam boiler as a heat source for drying is driven by a steam turbine in the depressurization process, and the steam turbine is also driven by steam generated in the dryer, so that heat can be used effectively comprehensively. And so on. In addition, by supplying the dried product to an incinerator with a high-pressure boiler, energy self-sustained biomass power generation is possible.

以下に本発明を実施するための最良の形態を例示しながら本発明をさらに説明する。
<第1の実施の形態:間接加熱>
図1の第1の実施の形態は、乾燥機が、筒体内部にほぼ水平の軸心周りに回転する撹拌軸を有し、筒体の長手方向一方側から被乾燥物を受け入れ、前記撹拌軸の回転過程で乾燥操作がなされ、乾燥物が他方側から排出される構造のもので、過熱水蒸気は前記筒体の他方側から前記一方側に流通するように構成されているである。
具体的には、溝形の間接加熱(伝導受熱)型乾燥機10を有し、筒体11内に、多数の加熱盤11aを取り付けたほぼ水平の軸芯周りに回転する回転軸11bを備え、その蒸気入口11cとドレン出口11dとの間に加熱蒸気通路を形成してある。被乾燥物D0は、材料供給ロータリバルブ11iを介して装入口11eから筒体11内の一方側から装入され、乾燥物D1は、他方側の出口11fから乾燥品出口ロータリバルブ11jを介して排出される。
また、筒体11上部に、循環ガス入口11g及び循環ガス出口11hを形成し、被乾燥物の流れに対し循環ガスを向流に接触するようにしてある。
さらに、乾燥機10内を実質的に密閉式の構造とする。具体的には、回転軸11bと筒体11との間のシール、被乾燥物D0及び乾燥物D1のシールのために、材料供給ロータリバルブ11i及び乾燥品出口ロータリバルブ11jを設けるなどの対策を講じ、筒体11内をたとえば水中0.5〜1.0KPaの加圧とする。こうすることで、排気される循環の蒸気ガス(循環過熱水蒸気)中の空気量は0.05〜0.01%に抑えることができ、蒸気の品質と熱特性の向上が可能である。
循環ガス出口11hからの過熱水蒸気の排気は、ブロワ21により洗浄器20に送られ、洗浄器20において循環ポンプ22によりアルカリ液の散布が行われ、湿式除塵後に昇温器23で昇温され、過熱水蒸気になり、循環ガス入口11gに戻される過熱水蒸気の循環路が形成されている。その循環路から発電用蒸気がE1から抽気される。
The present invention will be further described below with reference to the best mode for carrying out the present invention.
<First embodiment: Indirect heating>
In the first embodiment of FIG. 1, the dryer has an agitation shaft that rotates about a substantially horizontal axis inside the cylinder, receives the material to be dried from one side in the longitudinal direction of the cylinder, and A drying operation is performed in the process of rotating the shaft, and the dried product is discharged from the other side. The superheated steam flows from the other side of the cylindrical body to the one side.
Specifically, it has a groove-shaped indirect heating (conduction heat receiving) type dryer 10, and a rotating shaft 11 b that rotates around a substantially horizontal shaft core with a large number of heating plates 11 a mounted in a cylinder 11. A heating steam passage is formed between the steam inlet 11c and the drain outlet 11d. The material to be dried D0 is charged from one side in the cylinder 11 through the material inlet rotary valve 11i and from the inlet 11e, and the dried material D1 is discharged from the outlet 11f on the other side through the dry product outlet rotary valve 11j. Discharged.
Further, a circulating gas inlet 11g and a circulating gas outlet 11h are formed at the upper part of the cylindrical body 11, and the circulating gas is brought into contact with the flow of the material to be dried in countercurrent.
Further, the inside of the dryer 10 has a substantially sealed structure. Specifically, measures such as providing a material supply rotary valve 11i and a dry product outlet rotary valve 11j for sealing between the rotating shaft 11b and the cylinder 11, and sealing the material to be dried D0 and the dry material D1. The inside of the cylinder 11 is set to a pressure of 0.5 to 1.0 KPa in water, for example. By doing so, the amount of air in the exhausted circulating steam gas (circulated superheated steam) can be suppressed to 0.05 to 0.01%, and the quality and thermal characteristics of the steam can be improved.
Exhaust of superheated steam from the circulation gas outlet 11h is sent to the cleaning device 20 by the blower 21, sprayed with an alkaline liquid by the circulation pump 22 in the cleaning device 20, and heated by the heating device 23 after wet dust removal, A superheated steam circulation path is formed which becomes superheated steam and is returned to the circulating gas inlet 11g. Steam for power generation is extracted from E1 from the circulation path.

乾燥機10の排気には、被乾燥物D0由来の固形物を含む。したがって、乾式脱塵器、たとえばサイクロンやバグフィルタで捕集することができる。しかし、通常は、被乾燥物D0中に腐食性の揮発性の物質を含むことが多いために、後工程で蒸気タービンを使う場合には、腐食の原因となる腐食性物質の除去とダスト除去を行う必要がある。そこで、実施の形態のように、必要により充填物や棚段等を内部に設け、上昇する過熱水蒸気とアルカリ(たとえば苛性ソーダ)液と接触させ、湿式除塵を行い、アルカリ洗浄等により揮発性物質(SO等)をも除去するのが望ましい。湿式除塵における洗浄温度は、循環過熱水蒸気中の非凝縮性ガスが少ないので、たとえば99℃を容易に保つことができる。洗浄温度に伴う温度低下は、必要な昇温器23での加熱温度が100〜120℃と低いので、大きな熱損失にならない。また乾燥機内の乾燥物D1出口近傍の減率乾燥区間の積極的な減少のために、循環蒸気を昇温器23で過熱する必要があるが、その必要温度も約120℃であればよいために、大きな熱損失にならない。The exhaust of the dryer 10 includes solid matter derived from the material to be dried D0. Therefore, it can be collected by a dry dust remover, for example, a cyclone or a bag filter. However, normally, the to-be-dried material D0 often contains a corrosive volatile substance. Therefore, when a steam turbine is used in the subsequent process, the removal of the corrosive substance causing the corrosion and the removal of the dust are performed. Need to do. Therefore, as in the embodiment, if necessary, a filler, a shelf or the like is provided inside, brought into contact with rising superheated steam and alkali (for example, caustic soda) liquid, wet dust is removed, and volatile substances ( It is also desirable to remove SO 2 etc. Since the cleaning temperature in wet dust removal is low in non-condensable gas in the circulating superheated steam, for example, 99 ° C. can be easily maintained. The temperature drop due to the cleaning temperature does not cause a large heat loss because the heating temperature in the required heater 23 is as low as 100 to 120 ° C. Further, in order to actively reduce the rate-of-decreasing drying section near the outlet of the dried product D1 in the dryer, it is necessary to superheat the circulating steam with the heater 23, but the required temperature may be about 120 ° C. In addition, there is no significant heat loss.

乾燥機10の加熱及び循環蒸気用の昇温器23での加熱用に、加熱手段としてのたとえば中圧ボイラ30が設けられている。中圧ボイラ30で発生する加熱蒸気の一部は、経路31を介して、蒸気入口11cから回転軸11b及び加熱盤11a内に流通された後、ドレン出口11dから排出される。回転軸11b及び加熱盤11aの加熱により、被乾燥物D0は加温され、その蒸発水分は循環過熱水蒸気中に拡散し、循環ガス出口11hから排出される。  For example, an intermediate pressure boiler 30 as a heating means is provided for heating the dryer 10 and heating with the temperature raising device 23 for circulating steam. A part of the heating steam generated in the intermediate pressure boiler 30 is circulated from the steam inlet 11c into the rotary shaft 11b and the heating panel 11a via the path 31, and then discharged from the drain outlet 11d. The object to be dried D0 is heated by the heating of the rotating shaft 11b and the heating platen 11a, and the evaporated water diffuses into the circulating superheated steam and is discharged from the circulating gas outlet 11h.

中圧ボイラ30で発生する加熱蒸気の残部は、経路32Aを介して昇温器23に導かれ、洗浄器20からの循環蒸気を加熱し、過熱水蒸気とした後、また、経路32Bを介して次述する精密濾過器41でろ過し(除塵し)た後の蒸気を発電に十分な程度に温度を高めるための発電用加熱器24に導かれた後、各昇温及び発電用加熱後の凝縮水は、経路33を通して吸水ポンプ34により中圧ボイラ30に返送される。ここで、昇温器23での加熱源として、他の外部熱源を使用することもできる。  The remaining portion of the heating steam generated in the intermediate pressure boiler 30 is led to the temperature raising device 23 via the path 32A, and the circulating steam from the cleaning device 20 is heated to form superheated steam, and also via the path 32B. After the vapor filtered (dust-removed) by the microfilter 41 described below is introduced to the power generation heater 24 for raising the temperature to a level sufficient for power generation, each steam is heated and heated after power generation. The condensed water is returned to the intermediate pressure boiler 30 by the water absorption pump 34 through the path 33. Here, another external heat source can also be used as a heating source in the heater 23.

一方、洗浄器20からの清浄蒸気の一部は、たとえば孔径0.5〜1μの特殊ろ材を有する精密濾過器41でろ過して、微粒子(たとえば3μ平均径の)固形物を除き、前記発電用加熱器24を通して気を発電に十分な程度に温度を高めた後、凝縮器44とつながっている発電機42つき低圧の蒸気タービン43に導き、ほぼ大気圧の蒸気は蒸気タービン43内で、真空ポンプ45により真空が保たれている凝縮器44の圧力まで膨張しタービンを回転させ、発電するようになっている。ここで得られたドレンは系外に取り出される。  On the other hand, a part of the clean steam from the cleaning device 20 is filtered, for example, by a microfilter 41 having a special filter medium having a pore diameter of 0.5 to 1 μm to remove fine particles (for example, 3 μm average diameter) solids, and the power generation After raising the temperature to a level sufficient for power generation through the heating heater 24, the air is led to a low-pressure steam turbine 43 with a generator 42 connected to a condenser 44. The vacuum pump 45 expands to the pressure of the condenser 44 in which a vacuum is maintained, rotates the turbine, and generates electricity. The drain obtained here is taken out of the system.

上記の操作において、本発明者は、乾燥機10出口近傍の減率乾燥区間の短縮のために、循環過熱水蒸気の供給温度を115℃〜125℃とし、乾燥終期に昇温された循環過熱水蒸気と被乾燥物とを向流的に接触させれば、減率乾燥区間が著しく減少することを実験的に知見している。この温度目安は、最終製品温度より20℃以上、または伝熱手段の蒸気温度より20〜30℃低い温度でよい。間接加熱型乾燥機では直接加熱の乾燥機と違い、温度の逆転がないので入口温度を高める必要はない。また乾燥機入口での最低循環量が蒸発蒸気の約半分程度であれば、安定した乾燥操作と蒸発分の過熱蒸気の抜き出し運転が可能であることが判明した。動力として熱回収するに際しては、精密濾過器41に供給しダストを更に除き蒸気タービンに供給し、その排気を凝縮器に入れ非凝縮性ガスを真空ポンプで抜き出す。大気圧下の飽和蒸気をそのままタービンに供給すれば出口湿り度は15%以上になり、タービンの羽根車の磨耗許容値を超えるのに対し、1気圧の過熱度40〜60℃の蒸気にすれば、湿り度を10%以下にできるので、安定運転が可能である。  In the above operation, the present inventors set the circulating superheated steam supply temperature at 115 ° C. to 125 ° C. and shortened the circulation superheated steam heated at the end of drying in order to shorten the decreasing rate drying section near the outlet of the dryer 10. It has been empirically found that the reduction rate drying section is significantly reduced if the product and the material to be dried are contacted countercurrently. This temperature guide may be 20 ° C. or more lower than the final product temperature, or 20 to 30 ° C. lower than the vapor temperature of the heat transfer means. Unlike the direct heating dryer, the indirect heating dryer does not have a temperature reversal, so there is no need to increase the inlet temperature. It was also found that if the minimum circulation rate at the dryer inlet is about half of the evaporated vapor, a stable drying operation and an operation for extracting the superheated vapor from the evaporated component are possible. When recovering heat as motive power, it is supplied to the microfilter 41, further removes dust, and supplied to the steam turbine. The exhaust gas is put into a condenser and non-condensable gas is extracted by a vacuum pump. If saturated steam at atmospheric pressure is supplied to the turbine as it is, the wetness at the outlet will be 15% or more, exceeding the allowable wear value of the impeller of the turbine. In this case, since the wetness can be reduced to 10% or less, stable operation is possible.

<第2の実施の形態:間接加熱>
図2は、第2の実施の形態を示したもので、高圧蒸気発生手段、たとえば高圧ボイラ50を設け、この高圧ボイラ50からの高圧蒸気を駆動源とする高圧蒸気タービン63及びこれに連結された発電機62を設け、高圧蒸気タービン63での排気を、間接加熱の加熱媒体、昇温器23(昇温手段)並びに発電用加熱器24の加熱媒体とする構成としたものである。
<Second Embodiment: Indirect Heating>
FIG. 2 shows a second embodiment, in which high-pressure steam generating means, for example, a high-pressure boiler 50 is provided, and a high-pressure steam turbine 63 that uses high-pressure steam from the high-pressure boiler 50 as a drive source, and is connected thereto. The generator 62 is provided, and the exhaust gas from the high-pressure steam turbine 63 is used as a heating medium for indirect heating, a heating device 23 (heating device), and a heating medium for the generator heater 24.

操作例を説明すると、高圧ボイラ50にて、高圧の蒸気を発生させ、たとえば3.2MPa350℃の過熱水蒸気を得て、高圧蒸気タービン63に送り、排気圧力をたとえば0.4〜0.8MPaとして発電をした上で、間接加熱型乾燥機10に供給して乾燥の熱源とするものである。通常(過熱水蒸気をしない)の間接加熱型乾燥機においても、一般的に0.3〜0.6barの飽和蒸気を供給している実情を踏まえれば判るように、実用上十分に成り立つシステムとなる。この例では、一段目は高圧による高圧蒸気タービン63及び発電機62による発電、二段目は間接加熱(伝導受熱)型乾燥機10による乾燥、三段目は低圧の蒸気タービン43及び発電機42による低圧発電のシステムとなる。  An example of operation will be described. High-pressure boiler 50 generates high-pressure steam, obtains superheated steam of, for example, 3.2 MPa 350 ° C., sends it to high-pressure steam turbine 63, and sets the exhaust pressure to, for example, 0.4 to 0.8 MPa. After generating electricity, it is supplied to the indirect heating type dryer 10 as a heat source for drying. Even in an indirect heating type dryer that does not use superheated steam, it is a system that is practically sufficient as can be understood from the fact that 0.3 to 0.6 bar saturated steam is generally supplied. . In this example, the first stage is power generation by the high-pressure steam turbine 63 and the generator 62 at high pressure, the second stage is drying by the indirect heating (conduction heat receiving) type dryer 10, and the third stage is the low-pressure steam turbine 43 and generator 42. It becomes a low-pressure power generation system.

<第3の実施の形態:間接加熱>
図3は、第3の実施の形態を示したもので、循環する過熱水蒸気の一部を熱利用設備400に熱源として供給するようにしたものである。この場合、循環する過熱水蒸気の一部を熱利用設備400に供給する際に、前記各実施の形態と同様に発電機42つき低圧の蒸気タービン43にも並列に供給することもできる。
一般的な間接加熱型乾燥機の場合と異なり、過熱水蒸気乾燥による排気ガス中には空気の含有量が少なく、良質の蒸気を得ることができるので、低圧発電のみならず、熱利用設備400の具体例としてプロセスの加熱源として利用するものである。たとえば、プロセスの中の溶液の加温、反応また吸収ヒートポンプの駆動熱源としても利用できる。
さらなる具体例として、コーンファイバーの乾燥工程の近くに設けたコーン・スチープリカーの蒸発工程があり、その蒸発缶の加熱蒸気に利用できる。第2の実施の形態で示すように、高圧ボイラ50を使用して発生蒸気を高圧とすれば三段階のカスケードで発電と乾燥と蒸発の三操作ができ、また低圧蒸気を利用すれば二段の熱利用になる。
過熱水蒸気乾燥による乾燥機で発生した蒸気中には非凝縮性のガスの混入量が少ない。実験結果によると、非凝縮性のガスの混入量は蒸発蒸気の0.01〜0.1vol%程度である。この蒸気は、伝熱特性が高いので発電はもちろんプロセスの蒸発缶や再沸器、反応器、蒸煮等の加熱源として利用できるのである。
<Third embodiment: Indirect heating>
FIG. 3 shows a third embodiment in which a part of the circulating superheated steam is supplied to the heat utilization facility 400 as a heat source. In this case, when a part of the circulating superheated steam is supplied to the heat utilization facility 400, it can also be supplied in parallel to the low-pressure steam turbine 43 with the generator 42 as in the above-described embodiments.
Unlike the case of a general indirect heating type dryer, since the exhaust gas by superheated steam drying has a low air content and high quality steam can be obtained, not only low-pressure power generation but also the heat utilization equipment 400 As a specific example, it is used as a process heat source. For example, it can be used as a driving heat source for heating, reaction, or absorption heat pump of a solution in the process.
As a further specific example, there is an evaporation process of corn steep liquor provided near the drying process of corn fiber, which can be used for the heating steam of the evaporator. As shown in the second embodiment, if the high-pressure boiler 50 is used to generate high-pressure steam, three operations of power generation, drying and evaporation can be performed in a three-stage cascade, and if low-pressure steam is used, two-stage operation is possible. Of heat.
The amount of non-condensable gas mixed in the steam generated in the dryer by superheated steam drying is small. According to the experimental results, the amount of non-condensable gas mixed is about 0.01 to 0.1 vol% of the evaporated vapor. Since this steam has high heat transfer characteristics, it can be used not only for power generation but also as a heating source for process evaporators, reboilers, reactors, steaming and the like.

<第4の実施の形態:直接加熱>
図4は、直接加熱による第4の実施の形態を示したもので、直接加熱乾燥機10A内を実質的に密閉式の構造とし、過熱水蒸気を被乾燥物と直接接触させ、接触後の過熱水蒸気を循環流通させる構成とし、その過熱水蒸気の循環路内に昇温手段23を設け、過熱水蒸気の一部を除塵後に発電用加熱器24を通して過熱水蒸気を駆動源とする低圧の蒸気タービン43及びこれに連結された発電手段42を設けたものである。そして、昇温器23及び発電用加熱器24の加熱源として、高温燃焼炉70の高温排ガスを利用するものである。
この場合、除塵手段としては、図示のサイクロン20Aやバグフィルタなどの乾式除塵器を使用できる。除塵ダストは、被乾燥物D0の供給経路に戻すこともできる。
高温ガスを利用するため原料の焦げ付きと発火が問題になるが、過熱水蒸気では不活性ガスであるのでその危険性は少ない。また過熱水蒸気乾燥でも材料とガスとの流れを並流とする運転を行うことで乾燥中の材料温度を低くすることもできる。
<Fourth embodiment: direct heating>
FIG. 4 shows a fourth embodiment by direct heating. The direct heating dryer 10A has a substantially hermetically sealed structure, and superheated steam is brought into direct contact with the material to be dried. It is configured to circulate and circulate steam, and a temperature raising means 23 is provided in the superheated steam circulation path, and after removing a part of the superheated steam, the low-pressure steam turbine 43 using the superheated steam as a drive source through the generator heater 24 and The power generation means 42 connected to this is provided. The high-temperature exhaust gas from the high-temperature combustion furnace 70 is used as a heating source for the temperature riser 23 and the power generation heater 24.
In this case, a dry dust remover such as the illustrated cyclone 20A or bag filter can be used as the dust removing means. The dust removal dust can be returned to the supply path of the material to be dried D0.
Since hot gas is used, burning of the raw material and ignition become a problem. However, since superheated steam is an inert gas, its risk is low. Further, even in superheated steam drying, the temperature of the material during drying can be lowered by performing an operation in which the flow of the material and the gas is parallel.

<第5の実施の形態:直接加熱>
図5は、直接加熱による第5の実施の形態を示したもので、直接加熱乾燥機10A内を実質的に密閉式の構造とし、過熱水蒸気を被乾燥物と直接接触させ、接触後の過熱水蒸気を循環流通させる構成とし、その過熱水蒸気の循環路内に昇温手段23を設け、過熱水蒸気の一部を除塵後に発電用加熱器24を通して過熱水蒸気を駆動源とする低圧の蒸気タービン43及びこれに連結された発電手段42を設けたものである。そして、高圧蒸気発生手段、たとえば高圧ボイラ50を設け、この高圧ボイラ50からの高圧蒸気を駆動源とする高圧蒸気タービン63及びこれに連結された発電機62を設け、高圧蒸気タービン63での排気を昇温器23(昇温手段)及び発電用加熱器24の加熱媒体とする構成としたものである。図示において、材料供給ロータリバルブ11i及び乾燥品出口ロータリバルブ11jを省略してある。
<Fifth embodiment: direct heating>
FIG. 5 shows a fifth embodiment by direct heating. The direct heating dryer 10A has a substantially hermetically sealed structure, and superheated steam is brought into direct contact with the material to be dried. It is configured to circulate and circulate steam, and a temperature raising means 23 is provided in the superheated steam circulation path, and after removing a part of the superheated steam, the low-pressure steam turbine 43 using the superheated steam as a drive source through the generator heater 24 and The power generation means 42 connected to this is provided. Then, a high-pressure steam generating means, for example, a high-pressure boiler 50 is provided, a high-pressure steam turbine 63 using the high-pressure steam from the high-pressure boiler 50 as a drive source, and a generator 62 connected thereto are provided, and exhaust gas from the high-pressure steam turbine 63 is provided. Is used as a heating medium for the temperature raising device 23 (temperature raising means) and the power generation heater 24. In the drawing, the material supply rotary valve 11i and the dried product outlet rotary valve 11j are omitted.

<第6の実施の形態:間接加熱>
図6は、間接加熱のほか直接加熱の場合にも使用できる形態を示したものである。すなわち、水分の多い農産物,林産廃棄物産業廃棄物、各種汚泥、木材等より電力を発生させる場合、予備乾燥をして熱効率の向上を図っている。従来の一般では、予備乾燥した際に発生した水蒸気は大気に放散されている。このエネルギーの有効利用が望まれている。
このために、高含水率(水分75%以上)の被乾燥物(たとえばバイオマス原料)を密閉式の乾燥機10に供給し、たとえば図2の第2の実施の形態と同様に乾燥し、乾燥後の得られた水分10〜25%の乾燥品を、経路11kを通して、高圧ボイラ50に供給し,高圧蒸気を発生させ発電を行うようにすることで、乾燥品のもっているエネルギーをさらに有効に利用できるものとなる。
<Sixth embodiment: Indirect heating>
FIG. 6 shows a form that can be used for direct heating as well as indirect heating. That is, when power is generated from agricultural products with high moisture content, forest waste industrial waste, various sludges, wood, etc., preliminary drying is performed to improve thermal efficiency. In general, water vapor generated during preliminary drying is diffused to the atmosphere. Effective utilization of this energy is desired.
For this purpose, an object to be dried (for example, biomass raw material) having a high water content (water content of 75% or more) is supplied to the hermetic dryer 10 and dried, for example, in the same manner as in the second embodiment of FIG. The obtained dried product having a moisture content of 10 to 25% is supplied to the high-pressure boiler 50 through the path 11k to generate high-pressure steam to generate power, thereby further improving the energy of the dried product. It will be available.

<第7の実施の形態:加圧ろ過機>
連続ろ過操作において、ボイラで発生させた3〜6bar程度の飽和蒸気をスラリー面に吹き付けて、ケーキの液分を蒸気の凝縮したドレンにより置換し、(結晶分を含むスラリーなどの場合における)純度の向上と、脱水性を高める技術は知られている。しかし、飽和蒸気を使用するのにボイラの設置が必要となるなどコストの面でほとんど使用されていない。
これに対し、以下の実施の形態は、飽和蒸気も換えて過熱水蒸気を使用することで、洗浄・脱水効率をより高め、純度の向上も図ることができ、しかも後続の乾燥機の負担を軽減することで、全体として乾燥効率に優れたシステムとするものである。
図7〜図9は、連続回転円筒型加圧ろ過機100と組み合わせた第7の実施の形態を示したもので、ろ過機100は、耐圧ケーシング101内に回転ドラム102を有している。回転ドラム102は円周方向に仕切り板102cにより分割されており、濾布支持材102a上に濾布102bが設けられている。仕切られた各室にはろ液排出管102dが接続され、他方は回転切り替え弁102eに接続され、その外側の固定弁102fとの弁操作により、ろ過、洗浄、脱水及び排出操作が行われる。104はブロアーである。
ろ過対象スラリーSは、加圧ポンプ103により送り込まれ、回転ドラム102上にピックアップされ、脱水ろ過操作が行われ、ケーキが生成した段階で、濾布の裏側からガスの吹き返しによりケーキの剥離が行われ、剥離したケーキは、材料供給ロータリバルブ11iを介して装入口11eからスクリュウコンベア内に投入され、間接加熱型乾燥機10内に装入される。
ろ液は、分離槽105に導かれ、分離されたろ液は系外に排出され、分離された蒸気は冷却水により余剰蒸気を凝縮させた後に、洗浄器20に導く。
洗浄器20を通った後の過熱水蒸気の一部は、送風機107により前述の態様と同様に過熱水蒸気の循環系とし、他の一部は、圧縮機106により、加熱蒸気による加熱器108により加熱した上で、回転ドラム102上のスラリー又はケーキ層に向かって吹き込む。
上記の回転円筒型加圧ろ過機として公知の他の機構によるものでもよい。
一般的に乾燥機で発生した低圧蒸気を、被乾燥物の処理に使用して熱効率を高めることは困難を伴うが、本態様によれば、過熱水蒸気をろ過ケーキを通過させることで、効率的な置換洗浄、これに伴う被乾燥物の温度上昇、付着水分の低下、乾燥機への被乾燥物の温度上昇に伴い、乾燥機の負荷は著しく低減する。
ちなみに、テレフタル酸の乾燥の場合を例に採れば、通常の真空ろ過では12%水分のものが、本態様によれば、水分8%で温度が98℃の被乾燥物となり、乾燥機の必要面積は約35%減となる。間接加熱乾燥機では物理的な水分除去に頼っていたものを、本態様の過熱水蒸気脱水では伝熱面を必要としないので、間接加熱乾燥機の伝熱面積を大幅に減少できるわけである。そして、加圧ろ過機からの被乾燥物は水分率が低くかつ温度が約100℃であるので、間接加熱乾燥機内に供給されると、直ちに乾燥が進行し、乾燥効率が高いものとなる。
<Seventh Embodiment: Pressure Filter>
In continuous filtration operation, saturated steam of about 3 to 6 bar generated in a boiler is sprayed on the slurry surface, and the liquid content of the cake is replaced with drain condensed steam, and the purity (in the case of slurry containing crystal content) Techniques for improving the dehydration and dehydrating properties are known. However, in order to use saturated steam, it is rarely used in terms of cost, for example, it is necessary to install a boiler.
On the other hand, in the following embodiment, superheated steam is used instead of saturated steam, so that cleaning and dewatering efficiency can be further improved and purity can be improved, and the burden on the subsequent dryer is reduced. By doing so, the system is excellent in drying efficiency as a whole.
7 to 9 show a seventh embodiment in combination with a continuous rotary cylindrical pressure filter 100, and the filter 100 has a rotary drum 102 in a pressure-resistant casing 101. The rotating drum 102 is divided by a partition plate 102c in the circumferential direction, and a filter cloth 102b is provided on the filter cloth support member 102a. A filtrate discharge pipe 102d is connected to each partitioned chamber, the other is connected to a rotation switching valve 102e, and filtration, washing, dehydration and discharge operations are performed by valve operation with the outer fixed valve 102f. 104 is a blower.
The slurry S to be filtered is fed by the pressure pump 103, picked up on the rotating drum 102, dehydrated and filtered, and when the cake is formed, the cake is peeled off by blowing back the gas from the back side of the filter cloth. The peeled cake is introduced into the screw conveyor from the inlet 11e via the material supply rotary valve 11i, and then charged into the indirect heating type dryer 10.
The filtrate is guided to the separation tank 105, the separated filtrate is discharged out of the system, and the separated steam is led to the washer 20 after condensing excess steam with cooling water.
A part of the superheated steam after passing through the cleaning device 20 is made into a superheated steam circulation system by the blower 107 in the same manner as described above, and the other part is heated by the heater 106 by the heated steam by the compressor 106. Then, it blows toward the slurry or cake layer on the rotating drum 102.
Another mechanism known as the above rotary cylindrical pressure filter may be used.
In general, it is difficult to increase the thermal efficiency by using low-pressure steam generated in a dryer to process the material to be dried. According to this aspect, it is efficient by passing superheated steam through the filter cake. The load on the dryer is remarkably reduced as the temperature of the material to be dried increases, the adhesion moisture decreases, and the temperature of the material to be dried increases.
By the way, if the case of drying terephthalic acid is taken as an example, in the normal vacuum filtration, the one with 12% moisture becomes the material to be dried with 8% moisture and the temperature of 98 ° C. The area is reduced by about 35%. Since the heat transfer surface is not required in the superheated steam dehydration of the present embodiment, the heat transfer area of the indirect heat dryer can be greatly reduced because the indirect heating dryer relies on physical water removal. And since the to-be-dried material from a pressure filter has a low moisture content and temperature is about 100 degreeC, when it supplies in an indirect heating dryer, drying will progress immediately and it will become a thing with high drying efficiency.

<第8の実施の形態:真空ろ過機>
図10及び図11は、連続回転円筒型真空ろ過機100Aと組み合わせた第8の実施の形態を示したもので、真空ろ過機100Aは真空ポンプ110によりケーシング101内の真空化が図られるものである。111はろ液ポンプである。また、過熱水蒸気は、吹き込みボックス109を介して、ケーキ生成面に対して吹き込まれる。他の構成は図示の構成から判明するので説明を省略する。
過熱水蒸気を、吹き込みボックス109などの円周方向に長い円弧に沿って吹き込むと、図11に概念的に示すように、過熱水蒸気の凝縮に伴い予熱を図る区間と、ケーキ中の水分を除去する脱液区間と、乾燥と温度上昇が支配する乾燥区間とに概念的に分けることができる。
<Eighth embodiment: vacuum filter>
10 and 11 show an eighth embodiment in combination with a continuous rotary cylindrical vacuum filter 100A. The vacuum filter 100A is designed to evacuate the casing 101 by a vacuum pump 110. FIG. is there. 111 is a filtrate pump. Further, the superheated steam is blown into the cake generation surface via the blow box 109. Since the other configuration is found from the configuration shown in the drawing, the description is omitted.
When superheated steam is blown along a circular arc that is long in the circumferential direction, such as the blowing box 109, as shown conceptually in FIG. 11, the section that preheats as the superheated steam condenses and the moisture in the cake are removed. It can be conceptually divided into a drainage section and a drying section where the drying and temperature rise dominate.

<第9の実施の形態:真空ろ過機と加熱器内蔵型流動乾燥機との組合せ>
図12は、連続回転円筒型真空ろ過機100Aと加熱器内蔵型流動乾燥機10Bとを組み合わせた第9の実施の形態を示したもので、真空ろ過機100Aからの被乾燥物D0は、流動乾燥機10B内に装入される。流動乾燥機10B内には、上下の管板間に多数の垂直の加熱管が固定されて加熱器が内臓状態で設けられ、加熱器上部からたとえば中圧ボイラからの加熱蒸気により、流動品の乾燥が行われる。排気はサイクロン20Aに導かれ、乾燥物と過熱水蒸気とに分離され、乾燥物はロータリバルブ11jを通してスクリュウコンベアに導き循環流動層を構成するために導かれ、残部は乾燥物D1として取り出す。
サイクロン20Aからの排気の一部は、昇温器23を通して過熱水蒸気として流動乾燥機10Bの下部に循環される。
<Ninth Embodiment: Combination of Vacuum Filter and Heater Built-in Fluid Dryer>
FIG. 12 shows a ninth embodiment in which a continuous rotary cylindrical vacuum filter 100A and a heater built-in type fluid dryer 10B are combined, and an object to be dried D0 from the vacuum filter 100A is fluidized. The battery is charged into the dryer 10B. In the fluid dryer 10B, a large number of vertical heating tubes are fixed between upper and lower tube plates, and a heater is provided in a built-in state. From the upper part of the heater, for example, by heating steam from an intermediate pressure boiler, Drying is performed. The exhaust gas is guided to the cyclone 20A and separated into a dried product and superheated steam, and the dried product is guided to the screw conveyor through the rotary valve 11j to form a circulating fluidized bed, and the remainder is taken out as a dried product D1.
A part of the exhaust gas from the cyclone 20A is circulated to the lower part of the fluid dryer 10B as superheated steam through the temperature riser 23.

(その他)
上記の実施の形態において、間接加熱乾燥機の熱源として蒸気を使用したが、有機熱媒なども加熱媒体として利用できる。また、図4の実施の形態のように、昇温器の加熱源として蒸気のほか他の加熱源を利用できる。また、間接加熱乾燥機として、加熱管型内蔵の回転乾燥機(スチームチューブドライヤー)など使用できる。
また、ろ過機として水平ベルトフィルターを使用し、その上面に対し吹き込みボックス109を介して過熱水蒸気を吹き込む態様を採ることができる。
さらに、上記の各実施の形態は適宜組み合わせて装置を構成できる。
(Other)
In the above embodiment, steam is used as the heat source of the indirect heating dryer, but an organic heating medium or the like can also be used as the heating medium. Further, as in the embodiment of FIG. 4, other heating sources besides steam can be used as the heating source of the temperature raising device. Further, as the indirect heating dryer, a rotary dryer (steam tube dryer) with a built-in heating tube type can be used.
Moreover, a horizontal belt filter can be used as a filter, and a mode in which superheated steam is blown into the upper surface via a blowing box 109 can be employed.
Furthermore, the above embodiments can be combined as appropriate to constitute an apparatus.

スチームチューブドライヤーによる実験例を示す。
直径450mm、全長3000mm、直径40mm×長さ3000mmの12本の加熱管を備え、伝熱面積4.5m、回転数12rpmの密閉型スチームチューブドライヤー多管式回転式乾燥機を用い、過熱蒸気循環ブロワ;30m/hr、蒸気洗浄器;直径200mmm高さ1000mmm、循環過熱水蒸気の0.8kW電熱ヒータ、抽気凝縮器0.45mより構成される乾燥装置により、蒸気圧力0.45Mpaの飽和蒸気で、コーンスターチ工場のコーンファイバー水分48.3%を密閉式ロータリバルブにより36.0kg/hrで供給し、水分4%に乾燥して取り出した。乾燥機出口過熱蒸気温度100℃〜103℃,洗浄器出口温度98〜99.5℃、乾燥機入り口の循環過熱水蒸気の温度120℃で運転した。この昇温に蒸気を約0.5kWを使用した。乾燥機への使用蒸気量は24.9kg/hr、この全蒸気量は16.5kg/hrであり乾燥速度は3.67kg/mhであった。
従来型の通気方式で同じ加熱蒸気圧力で出口水分を4%に抑えた場合、最大供給量は33.2kg/hr、使用蒸気量22.6kg/hrであり乾燥速度は3.38kg/mhrであり、前記の過熱水蒸気乾燥が約10%能力が高い。間接加熱には従来指摘された高温循環蒸気は必要でないこと、間接加熱乾燥機の減率乾燥区間の乾燥速度の低下は過熱水蒸気乾燥で防止でき乾燥速度を増加できることが判明した。
An experimental example using a steam tube dryer is shown.
Superheated steam using a closed steam tube dryer multi-tube rotary dryer with a diameter of 450 mm, a total length of 3000 mm, a diameter of 40 mm, and a length of 40 mm × length of 3000 mm, a heat transfer area of 4.5 m 2 , and a rotational speed of 12 rpm. Circulating blower; 30 m 3 / hr, steam cleaner; diameter 200 m, height 1000 mm, circulating superheated steam 0.8 kW electric heater, extraction condenser 0.45 m 2 , saturation of steam pressure 0.45 Mpa The steam supplied corn fiber moisture of 48.3% at a corn starch factory at 36.0 kg / hr by a sealed rotary valve, dried to 4% moisture and taken out. Operation was performed at a dryer outlet superheated steam temperature of 100 ° C. to 103 ° C., a washer outlet temperature of 98 to 99.5 ° C., and a circulating superheated steam temperature of 120 ° C. at the dryer inlet. About 0.5 kW of steam was used for this temperature increase. The amount of steam used for the dryer was 24.9 kg / hr, the total amount of steam was 16.5 kg / hr, and the drying rate was 3.67 kg / m 2 h.
When the outlet moisture is suppressed to 4% with the same heating steam pressure in the conventional aeration method, the maximum supply amount is 33.2 kg / hr, the used steam amount is 22.6 kg / hr, and the drying rate is 3.38 kg / m 2. hr, and the above-mentioned superheated steam drying has a high capacity of about 10%. It was found that indirect heating does not require the high-temperature circulating steam that has been pointed out in the past, and that the decrease in the drying rate in the rate-decreasing drying section of the indirect heating dryer can be prevented by superheated steam drying and the drying rate can be increased.

図2の形態により、スチームチューブドライヤーによる実施例を示す。
コーンスターチ工場で副産するコーンファイバー、原料21.4t/hr、水分48%を18%にする乾燥工程において、高圧ボイラで3.2Mpa、過熱度320℃の過熱蒸気を11.2t/hrを受けいれて、高圧蒸気タービンで0.6MPaに減圧して813kWの発電を行い、排蒸気9.78ton/hrを、直径3400mm全長26m、加熱面積1423mのスチームチューブドライヤーの乾燥に用い、過熱循環蒸気を製品出口側より供給し温度130℃で原料と向流接触させた。蒸発量7830kg/hrで水分18%の製品を得た。 乾燥機からの排気は出口温度を105℃にし、循環過熱水蒸気は循環ブロワ470m/minにより、直径3400mm高さ4500mmの目皿5段の洗浄塔を経て、一部は循環過熱蒸気の昇温器140mで130℃にして乾燥機に循環され、また循環経路より発電用蒸気を7280kg/hrを抽気し、ついで、150m表面ろ過材を用いた濾過機に入れ入口ダスト濃度20mg/mを1mg/mとして更に発電用加熱器180mに送り、160℃として低圧蒸気タービンに供給し、凝縮器において圧力0.015Mpaとして480kWの電力を得た。真空ポンプは15m/minで30kwの電動機を使用した。なお全発電量は1397kW(発電端)であり、過熱水蒸気乾燥装置での発電量が480kWは経済的なことが分った。
An embodiment using a steam tube dryer is shown in the form of FIG.
In the drying process to make corn fiber by-product at corn starch factory, raw material 21.4t / hr, moisture 48% 18%, high pressure boiler accepts 11.2t / hr of superheated steam with 3.2Mpa, superheat degree 320 ℃ Then, the pressure was reduced to 0.6 MPa with a high-pressure steam turbine to generate 813 kW, exhaust steam 9.78 ton / hr was used to dry a steam tube dryer with a diameter of 3400 mm and a total length of 26 m and a heating area of 1423 m 2 , and superheated circulating steam was used. It was supplied from the product outlet side and brought into countercurrent contact with the raw material at a temperature of 130 ° C. A product with an evaporation amount of 7830 kg / hr and a moisture content of 18% was obtained. The exhaust from the dryer is set at an outlet temperature of 105 ° C., and the circulating superheated steam is heated by a circulating blower of 470 m 3 / min through a washing tower with a diameter of 3400 mm and a height of 4500 mm, and a part of the circulating superheated steam is heated. It is circulated to a dryer at 130 ° C. in a vessel 140 m 2 , and 7280 kg / hr of steam for power generation is extracted from the circulation path, and then put into a filter using a 150 m 2 surface filter material, and the inlet dust concentration is 20 mg / m 3. Was further fed to a power generator heater 180 m 2 at 1 mg / m 3 , supplied to a low-pressure steam turbine at 160 ° C., and a power of 480 kW was obtained at a pressure of 0.015 Mpa in the condenser. The vacuum pump used a 30 kw electric motor at 15 m 3 / min. It was found that the total power generation amount was 1397 kW (power generation end), and that the power generation amount in the superheated steam dryer was 480 kW.

図4の形態により直接接触型乾燥機を使用した例を説明する。
甜菜大根3100トン/日の処理の工場で発生する172トン/日、水分70〜71%の抽出粕を、図4の対流式乾燥機により水蒸気過熱乾燥方式により処理した。なお、設備として、図4のサイクロン20Aの後段にバグフィルタを備え、精密濾過機41としてHEPAフィルタを使用したものである。
乾燥機としては、直径3200mm全長24mの回転数8rpm、駆動動力22kWで内部に階段式接触羽根を具備した回転乾燥機を用い、水分12%の乾燥品を得た。乾燥機入り口の循環過熱蒸気は56800kg/hr、入り口温度750℃、出口温度は140℃であり、低圧サイクロンで除塵し、得られた370kg/hrのダストは原料に返し、脱塵された循環蒸気はブロワにより動力回収用を除き、2500m2の昇温器に供給し、A重油1170kg/hrを燃焼させている熱風発生炉からの850℃熱風と熱交換し750℃の出口温度にして乾燥機に送り乾燥サイクルを完成させた。
一方、蒸発水分相当の過熱蒸気15.9トン/hrを抽気し、表面ろ過材1200mの装着されたバグフィルタを通過し、更に仕上げ濾過器(HEPAフィルタ)を通し、発電用加熱器300mで160℃として、蒸気タービンに、入口圧力0.11MPa温度160℃で供給し、凝縮温度50℃、凝縮圧力0.011MPaで1020kW(発電端)の電力を得た。ビート粕トン当たりの燃料消費は163kg/ton乾物であり、これは熱風のリサイクルに比較して約10%多いが、従来は廃棄されていた未利用エネルギーから蒸気ボイラなしに1020kWの発電を行うことができた。
An example in which a direct contact dryer is used will be described with reference to the embodiment of FIG.
172 tons / day and 70 to 71% moisture extracted from a sugar beet radish 3100 tons / day processing plant were treated by a steam-superheated drying method using the convection dryer shown in FIG. In addition, as equipment, a bag filter is provided in the rear stage of the cyclone 20A in FIG. 4, and a HEPA filter is used as the precision filter 41.
As a dryer, a rotary dryer having a diameter of 3200 mm and a total length of 24 m, a rotational speed of 8 rpm, a driving power of 22 kW and a stepped contact blade inside was used, and a dried product having a moisture content of 12% was obtained. Circulating superheated steam at the entrance of the dryer is 56,800 kg / hr, inlet temperature is 750 ° C., outlet temperature is 140 ° C., dust is removed by a low-pressure cyclone, and the obtained 370 kg / hr of dust is returned to the raw material, and the decirculated circulating steam Except for power recovery by a blower, it is supplied to a 2500m2 temperature riser and heat-exchanged with 850 ° C hot air from a hot air generator that burns 1170kg / hr of A heavy oil to a 750 ° C outlet temperature to the dryer. A feed drying cycle was completed.
On the other hand, 15.9 tons / hr of superheated steam corresponding to the evaporated moisture is extracted, passed through a bag filter equipped with a surface filter medium of 1200 m 2 , further passed through a finishing filter (HEPA filter), and a generator heater 300 m 2. The steam was supplied to the steam turbine at an inlet pressure of 0.11 MPa and a temperature of 160 ° C., and a power of 1020 kW (power generation end) was obtained at a condensation temperature of 50 ° C. and a condensation pressure of 0.011 MPa. Fuel consumption per ton of beet is 163 kg / ton dry matter, which is about 10% more than hot air recycling, but it will generate 1020 kW without steam boiler from unused energy that was previously discarded. I was able to.

産業上の利用の可能性Industrial applicability

とうもろこしの湿式処理工程からの副産物のファイバー、甜菜糖工場の糖分抽出後の大根裁断片、穀物原料のエタノール醗酵からの蒸留残渣、焼酎醸造のもろみ粕、バイオマス発電原料としての廃材、パルプスラッジ、下水汚泥等が対象になる。いずれも水分は50〜80%であり発生蒸気の有効利用と乾燥品のエネルギー化を行うことで未利用のバイオマスの電量力転換が可能となる。化学産業では石膏の焼成工程あるはテレフタル酸の乾燥工程にも適用可能である。いずれも熱利用する処理工程と発電装置との合理的な組み合わせにより複合的な効果があがる。  By-product fiber from wet processing process of corn, radish fragment after sugar extraction at sugar beet sugar factory, distillation residue from ethanol fermentation of grain raw material, mash from shochu brewing, waste material as raw material for biomass power generation, pulp sludge, sewage This applies to sludge. In any case, the water content is 50 to 80%, and it is possible to convert the power of unused biomass by effectively using the generated steam and energizing the dried product. In the chemical industry, it can be applied to the baking process of gypsum or the drying process of terephthalic acid. In any case, a combined effect can be achieved by a rational combination of a heat-utilizing treatment process and a power generation device.

本発明の第1の実施の形態を示した説明図である。It is explanatory drawing which showed the 1st Embodiment of this invention. 本発明の第2の実施の形態を示した説明図である。It is explanatory drawing which showed the 2nd Embodiment of this invention. 本発明の第3の実施の形態を示した説明図である。It is explanatory drawing which showed the 3rd Embodiment of this invention. 本発明の第4の実施の形態を示した説明図である。It is explanatory drawing which showed the 4th Embodiment of this invention. 本発明の第5の実施の形態を示した説明図である。It is explanatory drawing which showed the 5th Embodiment of this invention. 本発明の第6の実施の形態を示した説明図である。It is explanatory drawing which showed the 6th Embodiment of this invention. 本発明の第7の実施の形態を示した説明図である。It is explanatory drawing which showed the 7th Embodiment of this invention. その概要的横断面図である。It is the general | schematic cross-sectional view. その概要的縦断面図である。It is the outline longitudinal cross-sectional view. 本発明の第8の実施の形態を示した説明図である。It is explanatory drawing which showed the 8th Embodiment of this invention. 過熱水蒸気による乾燥原理の概念的な説明図である。It is a conceptual explanatory view of the principle of drying with superheated steam. 本発明の第9の実施の形態を示した説明図である。It is explanatory drawing which showed the 9th Embodiment of this invention.

符号の説明Explanation of symbols

10…間接加熱(伝導受熱)型乾燥機、10A…直接加熱型(対流式)乾燥機、10B…加熱器内蔵型流動乾燥機、11…筒体、20…洗浄器、20A…乾式除塵器(サイクロン)、23…昇温器、24…発電用加熱器、30…中圧ボイラ、41…精密濾過器、42…発電機、43…低圧蒸気タービン、45…真空ポンプ、50…高圧ボイラ、62…発電機、63…高圧蒸気タービン、70…高温燃焼炉、100…連続回転円筒型加圧ろ過機、100A…連続回転円筒型真空ろ過機。  DESCRIPTION OF SYMBOLS 10 ... Indirect heating (conduction heat receiving) type dryer, 10A ... Direct heating type (convection type) dryer, 10B ... Built-in heater type fluid dryer, 11 ... Cylindrical body, 20 ... Washing machine, 20A ... Dry-type dust remover ( Cyclone), 23 ... Temperature raising device, 24 ... Heating heater, 30 ... Medium pressure boiler, 41 ... Precision filter, 42 ... Generator, 43 ... Low pressure steam turbine, 45 ... Vacuum pump, 50 ... High pressure boiler, 62 DESCRIPTION OF SYMBOLS ... Generator, 63 ... High pressure steam turbine, 70 ... High temperature combustion furnace, 100 ... Continuously rotating cylindrical pressure filter, 100A ... Continuously rotating cylindrical vacuum filter.

Claims (12)

加熱媒体流路内に加熱媒体を流通させ、被乾燥物を間接加熱により乾燥させる乾燥機を備え、前記乾燥機内は実質的に密閉式の構造とし、その空間を、過熱水蒸気を循環流通させる構成とし、前記過熱水蒸気の循環路内に昇温手段を設け、循環蒸気の抽気経路内に発電用加熱手段を設け、過熱水蒸気を駆動源とする蒸気タービン及びこれに連結された発電手段を設けた、ことを特徴とする過熱水蒸気による乾燥装置。  A configuration in which a heating medium is circulated in the heating medium flow path and a drying object is dried by indirect heating, and the inside of the drying machine has a substantially sealed structure, and the space is configured to circulate and circulate superheated steam. A heating means is provided in the circulation path of the superheated steam, a heating means for power generation is provided in the extraction path of the circulating steam, and a steam turbine using the superheated steam as a drive source and a power generation means connected thereto are provided. A drying apparatus using superheated steam. 蒸気発生手段を有し、この蒸気発生手段による発生蒸気を前記間接加熱の加熱媒体、昇温手段の加熱媒体及び発電用加熱手段の加熱媒体とする構成とした請求項1記載の過熱水蒸気による乾燥装置。  2. Drying with superheated steam according to claim 1, comprising steam generating means, wherein the steam generated by the steam generating means is used as the heating medium for the indirect heating, the heating medium for the temperature raising means, and the heating medium for the power generation heating means. apparatus. 高圧蒸気発生手段を有し、この高圧蒸気発生手段からの高圧蒸気を駆動源とする高圧蒸気タービン及びこれに連結された発電手段を設け、高圧蒸気タービンでの排気を間接加熱の加熱媒体、昇温手段の加熱媒体及び発電用加熱手段の加熱媒体とする構成とした請求項1記載の過熱水蒸気による乾燥装置。  A high-pressure steam turbine having a high-pressure steam generating means and a high-pressure steam turbine driven by the high-pressure steam from the high-pressure steam generating means and a power generation means connected thereto; The drying apparatus using superheated steam according to claim 1, wherein the heating medium is a heating medium of the temperature means and a heating medium of the heating means for power generation. 加熱媒体流路内に加熱媒体を流通させ、被乾燥物を間接加熱により乾燥させる乾燥機を備え、前記乾燥機内は実質的に密閉式の構造とし、その空間を、過熱水蒸気を循環流通させる構成とし、前記過熱水蒸気の循環路内に昇温手段を設け、循環気の一部を熱源とする熱利用設備に供給するようにした、ことを特徴とする過熱水蒸気による乾燥装置。A structure in which a heating medium is circulated in the heating medium flow path to dry the material to be dried by indirect heating, the inside of the drying machine has a substantially sealed structure, and the space is circulated and circulated in the space. and then, the heating device provided in the circulation path of the superheated steam, a part of the circulating steam was then supplied to the heat utilization equipment for a heat source, it drying apparatus with superheated steam, characterized in. 乾燥機が、筒体内部にほぼ水平の軸心周りに回転する撹拌軸を有し、筒体の長手方向一方側から被乾燥物を受け入れ、前記撹拌軸の回転過程で乾燥操作がなされ、乾燥物が他方側から排出される構造のもので、過熱水蒸気は前記筒体の他方側から前記一方側に流通するように構成されている請求項1〜4のいずれか1項に記載の過熱水蒸気による乾燥装置。  The dryer has a stirring shaft that rotates about a substantially horizontal axis inside the cylinder, receives the material to be dried from one side in the longitudinal direction of the cylinder, and a drying operation is performed during the rotation of the stirring shaft. The superheated steam according to any one of claims 1 to 4, wherein the superheated steam is configured to be discharged from the other side, and the superheated steam is circulated from the other side of the cylindrical body to the one side. By drying equipment. 乾燥機内を実質的に密閉式の構造とし、過熱水蒸気を被乾燥物と直接接触させ、接触後の過熱水蒸気を循環流通させる構成とし、前記過熱水蒸気の循環路内に昇温手段を設け、循環蒸気の抽気経路内に発電用加熱手段を設け、過熱水蒸気を駆動源とする蒸気タービン及びこれに連結された発電手段を設けた、ことを特徴とする過熱水蒸気による乾燥装置。  The inside of the dryer has a substantially sealed structure, the superheated steam is brought into direct contact with the material to be dried, and the superheated steam after contact is circulated and circulated. A drying apparatus using superheated steam, characterized in that a heating means for power generation is provided in a steam extraction path, a steam turbine using superheated steam as a drive source, and a power generation means connected to the steam turbine. 乾燥機内を実質的に密閉式の構造とし、過熱水蒸気を被乾燥物と直接接触させ、接触後の過熱水蒸気を循環流通させる構成とし、前記過熱水蒸気の循環路内に昇温手段を設け、循環蒸気の乾式脱塵後の抽気経路内に過熱手段を設け、前記過熱水蒸気の昇温手段と抽気蒸気の過熱手段用の高温ガス発生手段を設け、過熱水蒸気を駆動源とする蒸気タービン及びこれに連結過熱水蒸気を駆動源とする蒸気タービン及びこれに連結された発電手段を設けた、ことを特徴とする過熱水蒸気による乾燥装置。  The inside of the dryer has a substantially sealed structure, the superheated steam is brought into direct contact with the material to be dried, and the superheated steam after contact is circulated and circulated. A superheater is provided in a bleed passage after dry dedusting of steam, a high temperature gas generating means for heating the superheated steam and a superheater of the bleed steam is provided, a steam turbine using superheated steam as a drive source, and A drying apparatus using superheated steam, comprising: a steam turbine using connected superheated steam as a drive source; and a power generation means connected to the steam turbine. 高圧蒸気発生手段を有し、この高圧蒸気発生手段からの高圧蒸気を駆動源とする高圧蒸気タービン及びこれに連結された発電手段を設け、高圧蒸気タービンでの排気を昇温手段の加熱媒体、昇温手段の加熱媒体及び発電用加熱手段の加熱媒体とする構成とした請求項7記載の過熱水蒸気による乾燥装置。  A high-pressure steam generator having a high-pressure steam generating means connected to the high-pressure steam turbine using the high-pressure steam from the high-pressure steam generating means and a power generation means connected thereto; The drying apparatus using superheated steam according to claim 7, wherein the heating medium is a heating medium for the temperature raising means and a heating medium for the heating means for power generation. 乾燥品の一部または全量を蒸気発生手段又は高圧蒸気発生手段における燃料源とした請求項1〜8のいずれか1項に記載の過熱水蒸気による乾燥装置。  The drying apparatus using superheated steam according to any one of claims 1 to 8, wherein a part or all of the dried product is used as a fuel source in the steam generating means or the high-pressure steam generating means. 乾燥機の前に、ろ過対象スラリーのろ過操作を行う加圧ろ過機又は真空ろ過機を設け、循環する過熱水蒸気の一部を供給して前記対象物と接触させ、前記対象物の乾燥を促進させ、固形分を前記被乾燥物とする請求項1〜9のいずれか1項に記載の過熱水蒸気による乾燥装置。  Before the dryer, a pressure filter or vacuum filter that performs filtration of the slurry to be filtered is provided, and a part of the circulating superheated steam is supplied and brought into contact with the object to promote drying of the object. The drying apparatus using superheated steam according to any one of claims 1 to 9, wherein a solid content is the material to be dried. 過熱水蒸気は、ろ材上のスラリーに向かって吹き込むように構成した請求項10記載の過熱水蒸気による乾燥装置。  The apparatus for drying with superheated steam according to claim 10, wherein the superheated steam is blown toward the slurry on the filter medium. 乾燥機が加熱器内蔵型流動乾燥機である請求項10または11記載の過熱水蒸気による乾燥装置。  The drying apparatus using superheated steam according to claim 10 or 11, wherein the dryer is a fluidized dryer with a built-in heater.
JP2005041261A 2004-01-26 2005-01-21 Drying apparatus with superheated steam Pending JP2005241239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041261A JP2005241239A (en) 2004-01-26 2005-01-21 Drying apparatus with superheated steam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004047084 2004-01-26
JP2005041261A JP2005241239A (en) 2004-01-26 2005-01-21 Drying apparatus with superheated steam

Publications (1)

Publication Number Publication Date
JP2005241239A true JP2005241239A (en) 2005-09-08

Family

ID=35023145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041261A Pending JP2005241239A (en) 2004-01-26 2005-01-21 Drying apparatus with superheated steam

Country Status (1)

Country Link
JP (1) JP2005241239A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009040919A1 (en) * 2007-09-27 2009-04-02 Hitachi, Ltd. Sludge drying apparatus
JP2009154100A (en) * 2007-12-27 2009-07-16 Taiheiyo Cement Corp System and method for drying water-containing organic waste
WO2010137591A1 (en) * 2009-05-28 2010-12-02 三菱重工業株式会社 Drying unit and method for drying solid fuel containing water
JP2011214809A (en) * 2010-04-02 2011-10-27 Mitsubishi Heavy Ind Ltd Low-grade coal drying system
KR101095819B1 (en) 2011-09-27 2011-12-21 허남주 Drying sludge apparatus using heat storage type airheater for solar
JP2012154605A (en) * 2011-01-28 2012-08-16 Mitsubishi Heavy Ind Ltd Hydrous solid fuel drying device
WO2013011542A1 (en) * 2011-07-15 2013-01-24 三菱重工業株式会社 Fluidized bed drying facility
JP2013043178A (en) * 2011-08-26 2013-03-04 Mitsubishi Materials Techno Corp System and method for treating hydrous material to be treated
JP5906348B1 (en) * 2015-08-24 2016-04-20 春男 上原 Semi-carbide manufacturing apparatus and power generation system
KR20160112974A (en) 2015-03-20 2016-09-28 신토고교 가부시키가이샤 Heating and kneading device using water vapor as heat source
WO2021090898A1 (en) * 2019-11-08 2021-05-14 日本甜菜製糖株式会社 Method for producing water-soluble polysaccharides
RU2757401C1 (en) * 2021-03-01 2021-10-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный аграрный университет имени В.Я. Горина" Sprouted grain dryer
CN114183739A (en) * 2021-11-25 2022-03-15 浙江态能动力技术有限公司 Cascaded steam generation device based on ultra-high temperature heat pump
EP4001814A1 (en) * 2020-11-12 2022-05-25 Tadeusz Max Wiecek Dryer for drying dry matter, in particular textiles

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009040919A1 (en) * 2007-09-27 2009-04-02 Hitachi, Ltd. Sludge drying apparatus
JP2009154100A (en) * 2007-12-27 2009-07-16 Taiheiyo Cement Corp System and method for drying water-containing organic waste
US9518736B2 (en) 2009-05-28 2016-12-13 Mitsubishi Heavy Industries, Ltd. Water-containing solid fuel drying apparatus and drying method
WO2010137591A1 (en) * 2009-05-28 2010-12-02 三菱重工業株式会社 Drying unit and method for drying solid fuel containing water
JP2010276259A (en) * 2009-05-28 2010-12-09 Mitsubishi Heavy Ind Ltd Drying device and drying method for water-containing solid fuel
JP2011214809A (en) * 2010-04-02 2011-10-27 Mitsubishi Heavy Ind Ltd Low-grade coal drying system
JP2012154605A (en) * 2011-01-28 2012-08-16 Mitsubishi Heavy Ind Ltd Hydrous solid fuel drying device
WO2013011542A1 (en) * 2011-07-15 2013-01-24 三菱重工業株式会社 Fluidized bed drying facility
AU2011373344B2 (en) * 2011-07-15 2015-06-11 Mitsubishi Heavy Industries, Ltd. Fluidized bed drying facility
JP2013043178A (en) * 2011-08-26 2013-03-04 Mitsubishi Materials Techno Corp System and method for treating hydrous material to be treated
CN102964049A (en) * 2011-08-26 2013-03-13 三菱综合材料管理(上海)有限公司 Treatment system of water-containing to-be-treated substances and treatment method of water-containing to-be-treated substances
CN102964049B (en) * 2011-08-26 2015-04-22 三菱综合材料管理(上海)有限公司 Treatment system of water-containing to-be-treated substances and treatment method of water-containing to-be-treated substances
KR101095819B1 (en) 2011-09-27 2011-12-21 허남주 Drying sludge apparatus using heat storage type airheater for solar
KR20160112974A (en) 2015-03-20 2016-09-28 신토고교 가부시키가이샤 Heating and kneading device using water vapor as heat source
JP5906348B1 (en) * 2015-08-24 2016-04-20 春男 上原 Semi-carbide manufacturing apparatus and power generation system
JP2017043657A (en) * 2015-08-24 2017-03-02 春男 上原 Semicarbide producing apparatus, and power generation system
WO2021090898A1 (en) * 2019-11-08 2021-05-14 日本甜菜製糖株式会社 Method for producing water-soluble polysaccharides
JP7425083B2 (en) 2019-11-08 2024-01-30 日本甜菜製糖株式会社 Method for producing water-soluble polysaccharides
EP4001814A1 (en) * 2020-11-12 2022-05-25 Tadeusz Max Wiecek Dryer for drying dry matter, in particular textiles
DE102020129945B4 (en) 2020-11-12 2023-12-07 Natalie Gesch Dryer for drying dry goods, especially textiles
RU2757401C1 (en) * 2021-03-01 2021-10-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный аграрный университет имени В.Я. Горина" Sprouted grain dryer
CN114183739A (en) * 2021-11-25 2022-03-15 浙江态能动力技术有限公司 Cascaded steam generation device based on ultra-high temperature heat pump
CN114183739B (en) * 2021-11-25 2023-02-07 浙江态能动力技术有限公司 Cascaded steam generation device based on ultra-high temperature heat pump

Similar Documents

Publication Publication Date Title
JP2005241239A (en) Drying apparatus with superheated steam
US4017421A (en) Wet combustion process
CN110004021B (en) Rotary type white spirit continuous distillation method and system
SE534546C2 (en) Process and system for generating steam in a boiling plant at a chemical pulp mill
CN210030630U (en) Rotary distiller and rotary white spirit continuous distillation system
JP2010065104A (en) Drying-carbonizing apparatus for organic raw material
WO2010139103A1 (en) Multi-effect brown coal predrying system using superheated steam and process thereof
SE534699C2 (en) Heat recovery from boiling liquor in a boiling plant at a chemical pulp mill
JP4466996B2 (en) Sludge incineration equipment and sludge incineration method
WO2013144438A1 (en) Flue gas heat recovery method and system
CN205373351U (en) Thermal balance disc drying -machine
JP2011182685A (en) Apparatus and method for producing ethanol
US3425477A (en) Method for heat recovery in evaporating and burning spent liquor
JP6633138B2 (en) Hydrothermal treatment apparatus, biomass fuel production plant, hydrothermal treatment method, and biomass fuel production method
US2258401A (en) Treatment of waste liquids from pulp production and the like
JP2009220048A (en) Drying system and drying method for water-containing organic sludge
US4878441A (en) Apparatus and process for generating steam from wet fuel
CN113856429B (en) Magnesium desulfurization device and method based on resource utilization
US2676883A (en) Waste sulfite liquor recovery
JP2011218334A (en) System for treating food-industry wastewater
JP2010255557A (en) Power generation method using exhaust gas from conductive heat transfer dryer and drying facility having power generation function
CN110836596B (en) Method for utilizing waste heat in tube bundle drying process and application thereof
KR200166104Y1 (en) Apparatus for proceeding garbage
US2801206A (en) Process of recovering alcohol from waste sulphite liquor
JP2867240B2 (en) Method and apparatus for producing zeolite