JP2005240068A - Agent for forming hexavalent-chromium-free coating onto plated film of zinc or zinc-nickel alloy, and forming method therefor - Google Patents

Agent for forming hexavalent-chromium-free coating onto plated film of zinc or zinc-nickel alloy, and forming method therefor Download PDF

Info

Publication number
JP2005240068A
JP2005240068A JP2004048159A JP2004048159A JP2005240068A JP 2005240068 A JP2005240068 A JP 2005240068A JP 2004048159 A JP2004048159 A JP 2004048159A JP 2004048159 A JP2004048159 A JP 2004048159A JP 2005240068 A JP2005240068 A JP 2005240068A
Authority
JP
Japan
Prior art keywords
zinc
acid
ion
chromium
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004048159A
Other languages
Japanese (ja)
Other versions
JP5061395B2 (en
Inventor
Takahiro Watanabe
貴弘 渡辺
Mitsuomi Katori
光臣 香取
Hidekazu Horie
秀和 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Hyomen Kagaku KK
Original Assignee
Nippon Hyomen Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hyomen Kagaku KK filed Critical Nippon Hyomen Kagaku KK
Priority to JP2004048159A priority Critical patent/JP5061395B2/en
Publication of JP2005240068A publication Critical patent/JP2005240068A/en
Application granted granted Critical
Publication of JP5061395B2 publication Critical patent/JP5061395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment liquid which stably forms a protective coating with uniform and adequate appearance and corrosion resistance on a zinc member, a zinc alloy member, a galvanized product or a zinc-alloy-plated product, without using hazardous hexavalent chromium, and to provide a method therefor. <P>SOLUTION: The treatment liquid for forming the hexavalent-chromium-free coating includes trivalent chromium, two or more anions selected from particular anions, three or more metallic ions selected from particular metallic ions, and one or more complexing agents selected from particular complexing agents. The method for forming the hexavalent-chromium-free coating includes contacting a substrate with the treatment liquid once or several times. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は亜鉛部材、亜鉛合金部材、亜鉛めっき品又は亜鉛合金めっき品上に六価クロムフリーの被膜を形成するための薬剤とその方法に関する。 The present invention relates to an agent and a method for forming a hexavalent chromium-free coating on a zinc member, a zinc alloy member, a galvanized product or a zinc alloy plated product.

一般的に鉄系材料・部品の防錆方法として亜鉛又は亜鉛系合金めっき(例えば亜鉛−鉄合金めっき、亜鉛−ニッケル合金めっき)は最も広く一般的に利用されている。しかし、亜鉛はさびやすい金属でありそのまま使用すると亜鉛の錆である白錆がすぐに発生してしまうため、通常はさらに保護皮膜を形成させる事が一般的である。   Generally, zinc or zinc-based alloy plating (for example, zinc-iron alloy plating, zinc-nickel alloy plating) is most widely used as a rust prevention method for iron-based materials and parts. However, since zinc is a rust-prone metal and white rust, which is the rust of zinc, is generated immediately when used as it is, it is generally common to form a protective film.

亜鉛めっき又は亜鉛系合金めっきに通常施される保護皮膜処理としてクロメート皮膜処理が一般的であり、クロメート皮膜処理はさらに電解クロメート処理、塗布型クロメート処理及び、反応型クロメート処理の3種類に分類される。クロメート処理は亜鉛に限らずアルミニウムやカドミニウム及びマグネシウム等にも施される。   The chromate film treatment is generally used as a protective film treatment usually applied to zinc plating or zinc alloy plating. The chromate film treatment is further classified into three types: electrolytic chromate treatment, coating chromate treatment, and reactive chromate treatment. The The chromate treatment is applied not only to zinc but also to aluminum, cadmium and magnesium.

クロメート皮膜処理は安価で容易に実用的な耐食性を得られるため広く利用されているが、クロメート皮膜処理はいずれも有害な六価クロムを使用するため、処理液のみならず、処理品から溶出する六価クロムが人体や環境へ悪影響があるとして近年、大きな問題となっている。   Chromate film treatment is widely used because it is inexpensive and easily obtains practical corrosion resistance. However, since all chromate film treatment uses harmful hexavalent chromium, it elutes not only from the treatment solution but also from the treated product. In recent years, hexavalent chromium has become a serious problem because it has a negative effect on the human body and environment.

六価クロムの公害上の問題解決のためこれまで種々の発明が出願されており、例えば、特開昭52−92836号公報、特開昭50−1934号公報、特開昭61−587号公報、特開2000−234177号公報、及び特開昭61−119677号公報等がある。これらの発明は六価クロムを使用していない点で注目できるが、実用上の性能は満足できる物でない。例えばJIS Z 2731に規定される塩水噴霧試験において、安定して発揮される耐食性は12〜84時間前後であり、一般に用いられている有色クロメートや黒色クロメートの1/20〜1/2以下でしかない。   Various inventions have been filed so far for solving the problem of pollution of hexavalent chromium. For example, Japanese Patent Application Laid-Open No. 52-92936, Japanese Patent Application Laid-Open No. 50-1934, and Japanese Patent Application Laid-Open No. 61-587. JP-A-2000-234177, JP-A-61-119677, and the like. Although these inventions can be noted in that no hexavalent chromium is used, practical performance is not satisfactory. For example, in the salt spray test stipulated in JIS Z 2731, the corrosion resistance that is stably exhibited is about 12 to 84 hours, which is only 1/20 to 1/2 or less of commonly used colored chromate and black chromate. Absent.

具体的な問題として、特開昭52−92836号公報はチタニウムイオンと、燐酸、フイチン酸、タンニン又は過酸化水素のいずれか1種又は2種以上とを含有する水溶液で亜鉛又は亜鉛合金を処理することを特徴とする発明を開示しているが、鋼板上の処理であり複雑で高温且つ長時間の処理の上、塗装を焼き付けても塩水噴霧での耐食性は240時間程度と耐食性が低い。   As a specific problem, Japanese Patent Application Laid-Open No. 52-92936 treats zinc or a zinc alloy with an aqueous solution containing titanium ions and one or more of phosphoric acid, phytic acid, tannin, and hydrogen peroxide. Although the invention characterized by the above is disclosed, the corrosion resistance in salt spray is as low as about 240 hours even when the coating is baked after being processed on a steel plate, complicated and at a high temperature for a long time.

特開昭50−1934号公報には鉱酸、三価クロムイオンを生成する化合物、カルボン酸、及び必要により還元剤からなることを特徴とする亜鉛又は亜鉛合金の無色光沢クロメート組成物が記載されている。この組成物により、亜鉛又は亜鉛合金上に均一な光沢クロメートのような外観を得ることは出来るが、塩水噴霧における耐食性は、白錆発生まで48時間以下という非常に低い性能であり、また、液の安定性に乏しい組成物であった。   JP-A-50-1934 discloses a colorless glossy chromate composition of zinc or a zinc alloy comprising a mineral acid, a compound that generates trivalent chromium ions, a carboxylic acid, and, if necessary, a reducing agent. ing. With this composition, it is possible to obtain a uniform gloss chromate appearance on zinc or a zinc alloy, but the corrosion resistance in salt spray is very low performance of 48 hours or less until the occurrence of white rust. The composition was poor in stability.

特開昭61−587号公報には三価のクロムイオン、ケイ酸塩、フッ化物及び酸を含有する組成物が記載されている。この組成物によって得られる被膜もまた均一な光沢クロメートのような外観であるが、耐食性は白錆発生まで24時間以下という低い性能である。   Japanese Patent Application Laid-Open No. 61-587 describes a composition containing trivalent chromium ions, silicates, fluorides and acids. The coating obtained by this composition also has a uniform glossy chromate appearance, but the corrosion resistance is a low performance of 24 hours or less until white rust occurs.

特開2000−234177号公報には三価クロム化合物と、チタン化合物、コバルト化合物、タングステン化合物及びケイ素化合物から選んだ少なくとも1種の金属化合物とを含有する水溶液からなる亜鉛または亜鉛合金用の化成処理液について記載されている。この処理液により比較的耐食性を有する化成被膜が得られることになっているが、工業的に実用化するにはばらつきが大きいこと、処理条件が比較的高温で長時間であって、乾燥温度も従来に比べ高温で長時間であることの他に、記載の処理液の安定性が悪く数日で沈殿が生じてしまうという問題を抱えている。得られる被膜は、他と同様に光沢クロメートの様な外観である。   Japanese Patent Application Laid-Open No. 2000-234177 discloses a chemical conversion treatment for zinc or a zinc alloy comprising an aqueous solution containing a trivalent chromium compound and at least one metal compound selected from a titanium compound, a cobalt compound, a tungsten compound and a silicon compound. The liquid is described. This treatment solution is expected to provide a conversion coating having a relatively high corrosion resistance, but there are large variations for practical use in industry, the treatment conditions are relatively high and long, and the drying temperature is also high. In addition to the high temperature and long time compared to the conventional method, the described treatment liquid has a problem of poor stability and precipitation in a few days. The resulting coating looks like a glossy chromate like the others.

特開昭61−119677号公報には三価クロムイオンと、水素イオンと、鉄、コバルト、ニッケル、モリブデン、マンガン、アルミニウム、ランタン、セリウム、ランタニド及びこれらの混合物から選択される追加的イオンと、硝酸イオンとを含有する酸性組成物が記載されている。更にハロゲンイオン、有機カルボン酸又はケイ酸塩を含有する組成物が記載されている。この組成物により、亜鉛上に均一な光沢クロメートのような外観を得ることは出来るが、塩水噴霧における耐食性は、十分ではなく白錆発生まで約72時間であった。また、特に有機酸を用いた組成物は液の安定性に乏しく、処理外観や液のpHが数日〜数週間で変化する問題を抱えていた。   JP-A-61-119677 discloses trivalent chromium ions, hydrogen ions, additional ions selected from iron, cobalt, nickel, molybdenum, manganese, aluminum, lanthanum, cerium, lanthanides and mixtures thereof; An acidic composition containing nitrate ions is described. In addition, compositions containing halogen ions, organic carboxylic acids or silicates are described. With this composition, it is possible to obtain a uniform gloss chromate appearance on zinc, but the corrosion resistance in salt spray is not sufficient, and it takes about 72 hours until white rust occurs. In particular, a composition using an organic acid has poor liquid stability, and has a problem that the appearance of the treatment and the pH of the liquid change in several days to several weeks.

特公昭63−15991号公報に記載の発明は成分中にフッ素を含み廃水処理など環境的に問題がある。   The invention described in Japanese Patent Publication No. 63-15991 has environmental problems such as wastewater treatment because it contains fluorine in its components.

特開2000−509434号公報も成分中に有機酸を含むため環境的に問題を抱えていた。   Japanese Patent Application Laid-Open No. 2000-509434 also has an environmental problem because the component contains an organic acid.

この他に特公平3−10714号公報や特開2000−54157号公報等もあるが、前述と同様の問題を抱えている。   In addition, Japanese Patent Publication No. 3-10714 and Japanese Patent Application Laid-Open No. 2000-54157 have the same problems as described above.

最近では特許第3332373号明細書及び特許第3332374号明細書が三価クロムとシュウ酸のモル比を限定した技術を示しているが、シュウ酸が強いキレート剤として働くため、クロム、コバルト、亜鉛、鉄又はニッケル(処理によりめっき被膜から溶解して溶け込む)と水溶性錯体を形成し、難溶性の沈殿生成を阻害するため廃水処理に支障を来すという環境上の問題の他、経時での液の安定性に乏しい、亜鉛ニッケル合金めっき上に化成しない等の問題もあり、満足できるものではなかった。   Recently, Japanese Patent No. 3332373 and Japanese Patent No. 3332374 show a technology in which the molar ratio of trivalent chromium to oxalic acid is limited. However, since oxalic acid acts as a strong chelating agent, chromium, cobalt, zinc In addition to environmental problems such as iron or nickel (dissolved and dissolved from the plating film by the treatment) and forming a water-soluble complex and hindering the formation of a poorly soluble precipitate, the wastewater treatment is hindered. There were also problems such as poor liquid stability and no formation on zinc-nickel alloy plating, which was not satisfactory.

以上のように、従来技術は総じて耐食性の不足、合金めっき(特に亜鉛ニッケル合金めっき)における未化成、不均一外観、安定性の不足、コストパフォーマンス(処理条件に対して得られる性能)の低さ、環境問題という問題を抱えていた。   As described above, the conventional techniques generally have insufficient corrosion resistance, non-formation in alloy plating (especially zinc-nickel alloy plating), non-uniform appearance, insufficient stability, and low cost performance (performance obtained under processing conditions). I had an environmental problem.

特開昭52−92836号公報JP-A-52-92936 特開昭50−1934号公報Japanese Patent Laid-Open No. 50-1934 特開昭61−587号公報Japanese Patent Laid-Open No. 61-587 特開2000−234177号公報JP 2000-234177 A 特開昭61−119677号公報JP-A-61-119677 特公昭63−15991号公報Japanese Patent Publication No. 63-15991 特開2000−509434号公報JP 2000-509434 A 特公平3−10714号公報Japanese Patent Publication No. 3-10714 特開2000−54157号公報JP 2000-54157 A 特許第3332373号明細書Japanese Patent No. 3332373 特許第3332374号明細書Japanese Patent No. 3332374

本発明の目的は、金属、特に亜鉛、亜鉛合金、亜鉛めっき品又は亜鉛合金めっき品の表面に保護皮膜を形成させるに当たり、有害な六価クロムを使用せず、均一で良好な外観と耐食性を兼ね備えた皮膜を安定して生成させる処理液及び方法を提供することにある。特に、これまで発明されてきた代替え技術の実用化の障害となっている、優れた耐食性、意匠性、コストパフォーマンス、安定性を得ることにある。   The object of the present invention is to provide a uniform and good appearance and corrosion resistance without using harmful hexavalent chromium in forming a protective film on the surface of metal, particularly zinc, zinc alloy, galvanized product or zinc alloy plated product. An object of the present invention is to provide a treatment liquid and a method for stably producing a combined film. In particular, it is to obtain excellent corrosion resistance, design properties, cost performance, and stability, which are obstacles to the practical application of alternative technologies that have been invented so far.

従来技術における問題を解決するため、本発明者らが鋭意研究した結果、従来技術の環境的な問題の原因となっているフッ素や有機酸、キレート剤、燐の化合物を大量に使用しなくとも均一で優れた外観の被膜を得ることが可能となった。また被膜形成後、更に特定の液体組成物で処理することにより、更なる外観の向上や耐食性の向上が図れることを見出した。   As a result of intensive studies conducted by the present inventors to solve the problems in the prior art, it is possible to avoid the use of a large amount of fluorine, organic acid, chelating agent, and phosphorus compounds that cause environmental problems in the prior art. A film having a uniform and excellent appearance can be obtained. Moreover, it discovered that the further external appearance improvement and the improvement of corrosion resistance can be aimed at by processing with a specific liquid composition after film formation.

本発明は、(A)三価クロムと;(B)硫酸イオン、硝酸イオン、塩素イオン、塩素の酸素酸イオン及びホウ素の酸素酸イオンよりなる群から選ばれた2種以上のアニオンと;(C)アルカリ金属、アルカリ土類金属、チタン、ジルコニウム、バナジウム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、金、銀、銅、錫及びアルミニウムよりなる群から選ばれた3種以上の金属イオンと;(D)酒石酸、クエン酸、リンゴ酸、乳酸、琥珀酸、酪酸、グルコン酸、グルタミン酸、グリコール酸、ジグリコール酸、アスコルビン酸、アンモニア、アミン化合物及びそれらの塩よりなる群から選ばれた1種以上の錯化剤とを含有する亜鉛部材、亜鉛合金部材、亜鉛めっき品又は亜鉛合金めっき品上に六価クロムフリーの化成被膜を形成するためのpH0.5〜6の液を基本とし、更なる外観や耐食性の向上のためにケイ素化合物、更にはシュウ酸イオン及び/又はマロン酸イオンを含有するものである(以下、「第一処理液」という)。特に錯化剤としては酒石酸、クエン酸、リンゴ酸、乳酸、琥珀酸、グリコール酸、ジグリコール酸及びそれらの塩が好ましく、金属イオンはアルカリ金属、アルカリ土類金属、チタン、バナジウム、マンガン、コバルト、ニッケル及び錫からなる金属のイオンの群から3種以上選ばれることが好ましい。なお、アルカリ金属にはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びフランシウムが含まれ、アルカリ土類金属にはベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム及びラジウムが含まれるものとする。また、塩素の酸素酸イオンの例としては、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、及び過塩素酸イオンがあり、ホウ素の酸素酸イオンの例としては、硼酸イオンがある。アミン化合物の例としては、メチルアミン、エチルアミン、プロピレンアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、ポリエチレンイミンなどがある。   The present invention includes (A) trivalent chromium; (B) two or more kinds of anions selected from the group consisting of sulfate ion, nitrate ion, chlorine ion, chlorine oxyacid ion and boron oxyacid ion; C) Three or more metal ions selected from the group consisting of alkali metals, alkaline earth metals, titanium, zirconium, vanadium, molybdenum, tungsten, manganese, iron, cobalt, nickel, gold, silver, copper, tin, and aluminum And (D) selected from the group consisting of tartaric acid, citric acid, malic acid, lactic acid, succinic acid, butyric acid, gluconic acid, glutamic acid, glycolic acid, diglycolic acid, ascorbic acid, ammonia, amine compounds and salts thereof A hexavalent chromium-free chemical coating on a zinc member, zinc alloy member, galvanized product or zinc alloy plated product containing one or more complexing agents It is based on a liquid having a pH of 0.5 to 6 for forming, and further contains a silicon compound and further an oxalate ion and / or a malonate ion for further improving the appearance and corrosion resistance (hereinafter referred to as “No. One treatment solution ”). In particular, tartaric acid, citric acid, malic acid, lactic acid, succinic acid, glycolic acid, diglycolic acid and their salts are preferred as the complexing agent, and the metal ions are alkali metal, alkaline earth metal, titanium, vanadium, manganese, cobalt Preferably, at least three kinds are selected from the group of metal ions consisting of nickel and tin. The alkali metal includes lithium, sodium, potassium, rubidium, cesium, and francium, and the alkaline earth metal includes beryllium, magnesium, calcium, strontium, barium, and radium. Examples of oxyacid ions of chlorine include chlorate ions, chlorite ions, hypochlorite ions, and perchlorate ions. Examples of oxyacid ions of boron include borate ions. Examples of the amine compound include methylamine, ethylamine, propyleneamine, monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, and polyethyleneimine.

また、この第一処理液で処理する前のプレ処理液としては、三価クロム、界面活性剤、ケイ素化合物、無機酸イオン、有機酸イオン、アンモニウムイオン、アミン化合物、水酸化物、金属イオン及びそれらの塩よりなる群から選ばれた1種以上を含む処理液が好ましい。   The pre-treatment liquid before treatment with the first treatment liquid includes trivalent chromium, surfactant, silicon compound, inorganic acid ion, organic acid ion, ammonium ion, amine compound, hydroxide, metal ion and A treatment liquid containing at least one selected from the group consisting of these salts is preferred.

また、この第一処理液で処理した後に更に処理する第二処理液としては、三価クロム、界面活性剤、ケイ素化合物及びオレフィン樹脂よりなる群から選ばれた1種以上を含む第二処理液が好ましく、更に硫酸イオン、塩素イオン、硝酸イオン、塩素の酸素酸イオン、燐の酸素酸イオン及びホウ素の酸素酸イオン、ハロゲンイオンよりなる群から選ばれた1種以上のアニオン;アルカリ土類金属、チタン、ジルコニウム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、金、銀、銅、錫及びアルミニウムよりなる群から選ばれた1種以上の金属のイオン;並びにモノカルボン酸、ジカルボン酸、トリカルボン酸、ヒドロキシカルボン酸、アンモニア、アミン、アミノカルボン酸及びそれらの塩よりなる群から選ばれた1種以上のキレート剤;のいずれか一種以上を含む第二処理液がより好ましい。   Moreover, as a 2nd process liquid further processed after processing with this 1st process liquid, the 2nd process liquid containing 1 or more types selected from the group which consists of trivalent chromium, surfactant, a silicon compound, and an olefin resin. And one or more anions selected from the group consisting of sulfate ion, chlorine ion, nitrate ion, chlorine oxyacid ion, phosphorus oxyacid ion, boron oxyacid ion and halogen ion; alkaline earth metal , One or more metal ions selected from the group consisting of titanium, zirconium, molybdenum, tungsten, manganese, iron, cobalt, nickel, gold, silver, copper, tin and aluminum; and monocarboxylic acids, dicarboxylic acids, tricarboxylic acids One or more selected from the group consisting of acids, hydroxycarboxylic acids, ammonia, amines, aminocarboxylic acids and salts thereof Chelating agents; second treatment solution containing one or more kinds of more preferred.

第一処理液の具体的な濃度範囲としては、三価クロムは0.01g/L以上4.5g/L以下、好ましくは0.05g/L以上3g/L以下、特に好ましくは0.1g/L以上1g/L以下であり、アニオンの合計濃度は5g/L以上120g/L以下、好ましくは10g/L以上90g/L以下、特に好ましくは15g/L以上80g/L以下であり、金属イオンの合計濃度は0.1g/L以上85g/L以下、好ましくは1.6g/L以上70g/L以下、特に好ましくは3g/L以上60g/L以下であり、錯化剤のイオンの合計濃度は0.005g/L以上20g/L未満、好ましくは0.05g/L以上10g/L未満、特に好ましくは0.1g/L以上3g/L未満であり、ケイ素化合物の合計濃度はケイ素として0.05g/L以上10g/L以下、好ましくは0.1g/L以上5g/L以下、特に好ましくは0.2g/L以上2g/L以下である。また、錯化剤が酒石酸、クエン酸、リンゴ酸、乳酸、琥珀酸及びそれらの塩である時はそれらの錯化剤イオンの合計濃度は0.05g/L以上3g/L未満、好ましくは0.1g/L以上2.5g/L未満、特に好ましくは0.3g/L以上2g/L未満である。シュウ酸イオン及び/又はマロン酸イオンを含む場合、それらの合計濃度は0.1g/L以上40g/L以下、好ましくは0.2g/L以上30g/L以下、特に好ましくは0.5g/L以上25g/L以下である。なお、「錯化剤のイオン」とは、錯化剤が酒石酸、クエン酸、リンゴ酸、乳酸、琥珀酸、酪酸、グルコン酸、グルタミン酸、グリコール酸、ジグリコール酸、アスコルビン酸の場合はそれぞれの酸のイオンを指し、アンモニアの場合はアンモニウムイオンを指し、アミン化合物の場合はその陽イオンを指す。   As a specific concentration range of the first treatment liquid, trivalent chromium is 0.01 g / L or more and 4.5 g / L or less, preferably 0.05 g / L or more and 3 g / L or less, particularly preferably 0.1 g / L. L to 1 g / L, and the total concentration of anions is 5 g / L to 120 g / L, preferably 10 g / L to 90 g / L, particularly preferably 15 g / L to 80 g / L. Is from 0.1 g / L to 85 g / L, preferably from 1.6 g / L to 70 g / L, particularly preferably from 3 g / L to 60 g / L. Is 0.005 g / L or more and less than 20 g / L, preferably 0.05 g / L or more and less than 10 g / L, particularly preferably 0.1 g / L or more and less than 3 g / L, and the total concentration of silicon compounds is 0 as silicon. .05g / Above 10 g / L or less, preferably 0.1 g / L or more 5 g / L or less, particularly preferably not more than 0.2 g / L or more 2 g / L. When the complexing agent is tartaric acid, citric acid, malic acid, lactic acid, succinic acid and salts thereof, the total concentration of these complexing agent ions is 0.05 g / L or more and less than 3 g / L, preferably 0. .1 g / L or more and less than 2.5 g / L, particularly preferably 0.3 g / L or more and less than 2 g / L. When oxalate ions and / or malonate ions are contained, the total concentration thereof is 0.1 g / L or more and 40 g / L or less, preferably 0.2 g / L or more and 30 g / L or less, particularly preferably 0.5 g / L. It is 25 g / L or less. The "complexing agent ion" means that when the complexing agent is tartaric acid, citric acid, malic acid, lactic acid, succinic acid, butyric acid, gluconic acid, glutamic acid, glycolic acid, diglycolic acid, or ascorbic acid. It refers to an acid ion, ammonia refers to an ammonium ion, and amine compounds refer to its cation.

プレ処理液の濃度は、成分毎に異なり三価クロム、金属イオン(アルカリ金属、アルカリ土類金属、チタン、ジルコニウム、バナジウム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、金、銀、銅、錫、アルミニウムなど)、ケイ素化合物(ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウム、あるいはコロイダルシリカなど)の場合のそれぞれの濃度は0.01g/L以上2g/L以下(ケイ素化合物はケイ素として)、界面活性剤は0.05g/L以上3g/L以下、無機酸イオン(硫酸イオン、硝酸イオン、塩素イオン、ホウ酸イオンなど)、有機酸イオン(酒石酸、クエン酸、リンゴ酸、乳酸、琥珀酸、酪酸、グルコン酸、グルタミン酸、アスコルビン酸、グリコール酸、ジグリコール酸、シュウ酸、マロン酸などのカルボン酸イオン)の場合は0.5g/L以上、50g/L以下、アンモニウムイオン、アミン化合物(その陽イオンとして)、水酸化物(水酸化物イオンとして)の場合はそれぞれ0.5g/L以上150g/L以下である。   The concentration of the pretreatment liquid varies depending on the component, and trivalent chromium, metal ions (alkali metal, alkaline earth metal, titanium, zirconium, vanadium, molybdenum, tungsten, manganese, iron, cobalt, nickel, gold, silver, copper, Tin, aluminum, etc.) and silicon compounds (sodium silicate, potassium silicate, lithium silicate, colloidal silica, etc.), each concentration is 0.01 g / L or more and 2 g / L or less (silicon compound is silicon) The surfactant is 0.05 g / L or more and 3 g / L or less, inorganic acid ion (sulfate ion, nitrate ion, chlorine ion, borate ion, etc.), organic acid ion (tartaric acid, citric acid, malic acid, lactic acid, candy Acid, butyric acid, gluconic acid, glutamic acid, ascorbic acid, glycolic acid, diglycolic acid, oxalic acid, malonic acid 0.5 g / L or more and 50 g / L or less in the case of any carboxylate ion), 0.5 g / L in the case of ammonium ion, amine compound (as its cation), or hydroxide (as hydroxide ion), respectively. L to 150 g / L.

また更に処理する第二の処理液は、0.01〜5g/L好ましくは0.1〜2g/Lの三価クロム、界面活性剤、ケイ素化合物をそれぞれ含有するものである。その他の成分についても薄めで、第一処理液に使用される濃度の10%〜50%が一般的である。一方、燐の酸素酸イオンの合計濃度は0.01g/L以上30g/L以下、好ましくは0.05g/L以上20g/L以下、特に好ましくは0.1g/L以上10g/L以下である。   Further, the second treatment liquid to be further treated contains 0.01 to 5 g / L, preferably 0.1 to 2 g / L of trivalent chromium, a surfactant, and a silicon compound. Other components are also thin, and the concentration used in the first treatment liquid is generally 10% to 50%. On the other hand, the total concentration of phosphorus oxyacid ions is 0.01 g / L or more and 30 g / L or less, preferably 0.05 g / L or more and 20 g / L or less, and particularly preferably 0.1 g / L or more and 10 g / L or less. .

いずれの成分ともこれらの範囲より少ないと効果が得られなくなる。反対に過剰であると効果が頭打ちになり、経済的な損失が大きいだけでなく、場合によっては過剰な皮膜生成は耐食性の低下や外観の悪化を招くため好ましくない。
更に加えるならば、アニオンの内一種は塩素イオン又は塩素の酸素酸イオンが好ましく、これらと他のアニオンとの組み合わせの内、特に塩素イオンと硝酸イオンの組み合わせが最も好ましい。他のアニオンと塩素イオン又は塩素の酸素酸イオン(両方を含む場合は両方の合計)との重量比は1:2〜1:200、好ましくは1:5〜1:100、特に好ましくは1:10〜1:60である。
If any component is less than these ranges, the effect cannot be obtained. On the other hand, if it is excessive, the effect reaches a peak, and not only is the economic loss large, but in some cases, excessive film formation is not preferable because it causes a decrease in corrosion resistance and a deterioration in appearance.
If further added, one of the anions is preferably chlorine ion or oxyacid ion of chlorine, and among these and other anions, the combination of chlorine ion and nitrate ion is most preferable. The weight ratio of other anions to chlorine ions or chlorine oxyacid ions (the sum of both if included) is 1: 2 to 1: 200, preferably 1: 5 to 1: 100, particularly preferably 1: 10 to 1:60.

本発明の第一処理液において三価クロムの供給源として三価クロムを含む各種化合物が使用できる。具体的には、硝酸クロム、硫酸クロム、塩化クロム、燐酸クロム、酢酸クロム等の塩類の他、クロム酸や重クロム酸塩等の六価クロム化合物を還元剤により三価に還元した化合物を使用することも可能である。硝酸イオン、硫酸イオン、塩素イオン、塩素の酸素酸イオン、燐の酸素酸イオン、硼素の酸素酸イオン等のアニオン供給源も同様に、それら自体の酸及びその塩が使用できる。三価クロムなど他成分の金属塩として供給するか、それ自体の酸またはナトリウム塩或いはマグネシウム塩で供給するのが、工業的には安価で入手し易い。逆に金属イオンはこれらの塩として供給されるのが一般的である。これらアニオンの中で最も重要な組み合わせのアニオンは塩素イオンと硝酸イオンであり、耐食性の安定性などに効果がある。アルカリ金属、アルカリ土類金属、チタン、ジルコニウム、バナジウム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、金、銀、銅、錫、アルミニウム等の金属イオンの添加は耐食性の向上や外観の向上などに効果があるが、中でもアルカリ金属、アルカリ土類金属、チタン、バナジウム、マンガン、コバルト、ニッケル、錫は副作用がほとんど無く有用である。これらの供給源に特に制限はなく前述のように各種の塩が使用できる。一般的にはこれらの硝酸塩、硫酸塩、塩化塩、水酸化物又は酸素酸塩を使用する。錯化剤の酒石酸、クエン酸、リンゴ酸、乳酸、琥珀酸、酪酸、グルコン酸、グルタミン酸、グリコール酸、ジグリコール酸、アスコルビン酸、アンモニア、アミン化合物も同様にそれら或いはそれらの塩で供給するのが一般的である。錯化剤の内、酒石酸、クエン酸、リンゴ酸、乳酸、琥珀酸、グリコール酸、ジグリコール酸は廃水処理への影響が無視できる特に低い濃度で効果を発揮するため、錯化剤として優れている。シュウ酸やマロン酸もそれ自体又は塩で供給される。ケイ素化合物としてはケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウム、又は粒径200nm以下のコロイダルシリカ、より好ましくは100nm以下のコロイダルシリカが好ましい。   In the first treatment liquid of the present invention, various compounds containing trivalent chromium can be used as a source of trivalent chromium. Specifically, in addition to salts such as chromium nitrate, chromium sulfate, chromium chloride, chromium phosphate, chromium acetate, etc., compounds obtained by reducing hexavalent chromium compounds such as chromic acid and dichromate to trivalent with a reducing agent are used. It is also possible to do. Anion sources such as nitrate ion, sulfate ion, chlorine ion, chlorine oxyacid ion, phosphorus oxyacid ion, boron oxyacid ion can also use their own acids and salts thereof. Supplying it as a metal salt of other components such as trivalent chromium or supplying it with its own acid, sodium salt or magnesium salt is industrially inexpensive and easily available. Conversely, metal ions are generally supplied as these salts. Among these anions, the most important anion is chloride ion and nitrate ion, which is effective in the stability of corrosion resistance. Addition of metal ions such as alkali metal, alkaline earth metal, titanium, zirconium, vanadium, molybdenum, tungsten, manganese, iron, cobalt, nickel, gold, silver, copper, tin, and aluminum improves corrosion resistance and appearance. Among them, alkali metals, alkaline earth metals, titanium, vanadium, manganese, cobalt, nickel, and tin are useful with almost no side effects. These sources are not particularly limited, and various salts can be used as described above. In general, these nitrates, sulfates, chlorides, hydroxides or oxyacid salts are used. The complexing agents tartaric acid, citric acid, malic acid, lactic acid, succinic acid, butyric acid, gluconic acid, glutamic acid, glycolic acid, diglycolic acid, ascorbic acid, ammonia, and amine compounds are also supplied in the form of these or their salts. Is common. Among the complexing agents, tartaric acid, citric acid, malic acid, lactic acid, succinic acid, glycolic acid, and diglycolic acid are effective as complexing agents because they are effective at particularly low concentrations where the impact on wastewater treatment can be ignored. Yes. Oxalic acid and malonic acid are also supplied by themselves or as a salt. As the silicon compound, sodium silicate, potassium silicate, lithium silicate, or colloidal silica having a particle size of 200 nm or less, and more preferably 100 nm or less is preferable.

第二の処理剤についても第一処理液と同様の供給源が使用できる。その他、界面活性剤については、市販の種々の界面活性剤を適量使用すればよく、界面活性剤種や濃度により摩擦係数の微妙な調整に使用することが出来る。界面活性剤は、各種の界面活性剤が使用可能であるが、特にカチオン系界面活性剤が好ましく、更には脂肪族アミン塩、第4級アンモニウム塩、EO付加型第4級アンモニウム塩が好ましい。具体的には、ファーミン、コータミン、サニゾール(以上商品名、花王(株))、デュオミン、アーマック、アーカード、エソカード(以上商品名、ライオン(株))、カチオン(商品名、日本油脂(株))、アデカミン(商品名、旭電化(株))等がある。オレフィン樹脂については、フローセン(商品名、住友精化(株))、PES(商品名、日本ユニカー(株))、ケミパール(商品名;三井化学(株))、サンファイン(商品名;旭化成(株))等がある。さらに、硫酸イオン、塩素イオン、塩素の酸素酸イオン、硝酸イオン、ホウ素の酸素酸イオン、燐の酸素酸イオン及びハロゲンイオンよりなる群から選ばれた1種以上のアニオン;アルカリ土類金属、チタン、ジルコニウム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、金、銀、銅、錫及びアルミニウムよりなる群から選ばれた1種以上の金属のイオン;並びに、モノカルボン酸、ジカルボン酸、トリカルボン酸、ヒドロキシカルボン酸、アンモニア、アミン、アミノカルボン酸及びそれらの塩よりなる群から選ばれた1種以上のキレート剤;から選択して1種又は複数を供給しても良いが、複数供給する場合は塩類を用いると同時に供給することが可能である。   The same supply source as the first treatment liquid can be used for the second treatment agent. In addition, as for the surfactant, an appropriate amount of various commercially available surfactants may be used, and it can be used for fine adjustment of the friction coefficient depending on the surfactant type and concentration. As the surfactant, various surfactants can be used, and cationic surfactants are particularly preferable, and aliphatic amine salts, quaternary ammonium salts, and EO-added quaternary ammonium salts are more preferable. Specifically, Farmin, Cotamine, Sanisole (above trade name, Kao Corporation), Duomin, Armac, Arcard, Esocard (above trade name, Lion Corporation), Cation (trade name, Nippon Oil & Fats Co., Ltd.) And Adecamin (trade name, Asahi Denka Co., Ltd.). For olefin resins, Frocene (trade name, Sumitomo Seika Co., Ltd.), PES (trade name, Nippon Unicar Co., Ltd.), Chemipearl (trade name; Mitsui Chemicals, Inc.), Sun Fine (trade name; Asahi Kasei) Co.)). In addition, one or more anions selected from the group consisting of sulfate ion, chlorine ion, chlorine oxyacid ion, nitrate ion, boron oxyacid ion, phosphorus oxyacid ion and halogen ion; alkaline earth metal, titanium , One or more metal ions selected from the group consisting of zirconium, molybdenum, tungsten, manganese, iron, cobalt, nickel, gold, silver, copper, tin and aluminum; and monocarboxylic acids, dicarboxylic acids, tricarboxylic acids One or more chelating agents selected from the group consisting of carboxylic acid, hydroxycarboxylic acid, ammonia, amine, aminocarboxylic acid and their salts; Can be supplied simultaneously with the use of salts.

プレ処理液についても、上記と同様の考え方で供給源を選択できる。   For the pretreatment liquid, the supply source can be selected in the same way as described above.

またこれらの被膜に市販のオーバーコート剤を施すことも可能である。オーバーコート剤に特に限定はなくアクリル樹脂、エポキシ樹脂、オレフィン樹脂、フェノール樹脂、アルキド樹脂、メラミン樹脂などの樹脂類やケイ酸塩などを成分とするオーバーコート剤がある。具体的には、コスマーコート(商品名、関西ペイント(株))、トライナーTR−170(商品名、日本表面化学(株))、フィニガード(商品名、Coventya社)などが使用できる。   It is also possible to apply a commercially available overcoat agent to these films. There is no particular limitation on the overcoat agent, and there are overcoat agents containing resins such as acrylic resins, epoxy resins, olefin resins, phenol resins, alkyd resins, melamine resins, and silicates as components. Specifically, Cosmar Coat (trade name, Kansai Paint Co., Ltd.), Triner TR-170 (trade name, Nippon Surface Chemistry Co., Ltd.), Finigard (trade name, Coventya) and the like can be used.

これらの処理液を用いて亜鉛系の基体を処理する方法としては、基体を処理液に一回又は複数回接触させる方法があるが、接触させる方法としては浸漬する方法が好ましい。亜鉛めっきの場合、その種類はシアン浴、酸性浴、ジンケート浴があり、亜鉛−合金めっきでも酸性浴とジンケート浴とがある。いずれの浴でもめっき処理可能であるが、好ましくはジンケート浴、特に好ましくは均一電着性が優れたタイプのジンケート浴が好ましい(例えば、ハイパージンケート(商品名):日本表面化学(株))。亜鉛めっきへの効果もさることながら、本発明の適用は亜鉛合金めっきにおいて非常に明確に発揮される。特に亜鉛ニッケル合金めっきへ適用時の効果は注目すべきである。亜鉛ニッケル合金めっきは通常4〜16%程度のニッケル共析率を有するが、その中でもニッケル共析率が4〜12%、更に限定するのであれば5〜10%の亜鉛ニッケル合金めっきへの適用は効果的であり、8%未満、特には7%未満のニッケル共析率の低い亜鉛ニッケル合金めっきへの適用は他に類を見ないほど顕著である。   As a method of treating a zinc-based substrate using these treatment liquids, there is a method of bringing the substrate into contact with the treatment liquid once or a plurality of times. In the case of zinc plating, there are a cyan bath, an acid bath, and a zincate bath, and there are an acid bath and a zincate bath in zinc-alloy plating. Any of the baths can be used for plating, but a zincate bath, particularly preferably a zincate bath of a type excellent in throwing power is preferable (for example, Hyper Zincate (trade name): Nippon Surface Chemical Co., Ltd.). Apart from the effect on zinc plating, the application of the present invention is very clearly demonstrated in zinc alloy plating. In particular, the effect when applied to zinc-nickel alloy plating should be noted. Zinc-nickel alloy plating usually has a nickel eutectoid rate of about 4 to 16%. Among them, the nickel eutectoid rate is 4 to 12%, and if further limited, it is applied to zinc-nickel alloy plating of 5 to 10%. Is effective, and its application to zinc-nickel alloy plating with a low nickel eutectoid rate of less than 8%, particularly less than 7%, is unparalleled.

本発明の亜鉛部材、亜鉛合金部材、亜鉛めっき品又は亜鉛合金めっき品への適用は必要により被処理基体を三価クロム、界面活性剤、ケイ素化合物、無機酸、有機酸、アンモニア、アミン化合物、水酸化物、金属イオンよりなる群の1種又はそれ以上を含むプレ処理液へ接触した後に第一処理液に接触させて行う。適当なプレ処理の条件は、液温度は5〜60℃、好ましくは、20〜40℃であり、浸漬時間は1〜90秒、好ましくは10〜45秒である。第一処理液の条件は、液温度は10〜70℃、好ましくは15〜60℃、特に好ましくは20〜50℃であり、浸漬時間は10〜120秒、好ましくは15〜90秒、更に好ましくは20〜60秒であり、pHは0.5〜6好ましくは1.0〜4.5、更に好ましくは2〜4である。第二の処理液の条件は、液温度は5〜50℃、好ましくは10〜40℃、更に好ましくは15〜35℃であり、浸漬時間は1〜60秒、好ましくは5〜45秒、更に好ましくは10〜35秒である。pHは三価クロムの場合は1〜6好ましくは2〜5であるが、界面活性剤やケイ素化合物はその種類によって適切なpHが酸性、中性、アルカリ性のいずれもあり得る。またこれらの被膜にオーバーコートを施す場合も上記と同様に基体を処理液に一回又は複数回接触させる方法、好ましくは浸漬させる方法を採用するが、それぞれのオーバーコート剤の適切な条件で行う必要がある。また、何れの工程においても適度な液の攪拌や処理物の揺動を行うことが好ましい。   Application to the zinc member, zinc alloy member, zinc-plated product or zinc alloy-plated product of the present invention is performed by subjecting the substrate to be treated to trivalent chromium, a surfactant, a silicon compound, an inorganic acid, an organic acid, ammonia, an amine compound, After contacting with the pre-processing liquid containing 1 type or more of the group which consists of a hydroxide and a metal ion, it is made to contact with a 1st processing liquid. Appropriate pretreatment conditions include a liquid temperature of 5 to 60 ° C., preferably 20 to 40 ° C., and an immersion time of 1 to 90 seconds, preferably 10 to 45 seconds. The conditions of the first treatment liquid are a liquid temperature of 10 to 70 ° C., preferably 15 to 60 ° C., particularly preferably 20 to 50 ° C., and an immersion time of 10 to 120 seconds, preferably 15 to 90 seconds, and more preferably. Is 20 to 60 seconds, and the pH is 0.5 to 6, preferably 1.0 to 4.5, and more preferably 2 to 4. The conditions of the second treatment liquid are such that the liquid temperature is 5 to 50 ° C., preferably 10 to 40 ° C., more preferably 15 to 35 ° C., and the immersion time is 1 to 60 seconds, preferably 5 to 45 seconds. Preferably, it is 10 to 35 seconds. In the case of trivalent chromium, the pH is 1 to 6, preferably 2 to 5. However, the surfactant and the silicon compound may have any of acidic, neutral and alkaline pH depending on the type. Further, when overcoating these coatings, a method of bringing the substrate into contact with the treatment liquid once or a plurality of times, preferably a method of immersing, is adopted in the same manner as described above, but under the appropriate conditions of each overcoat agent. There is a need. In any step, it is preferable to perform proper liquid agitation and rocking of the processed material.

本発明は亜鉛系部材に六価クロムフリーの被膜を形成させるものであり、特に亜鉛ニッケル合金めっきにおいて顕著な効果を現す。本発明により、これまでの技術では得られなかった均一で意匠性に富んだ外観と六価クロムを用いても得られなかった優れた耐食性を有する被膜を環境への負担を抑えて得ることが可能になった。   The present invention forms a hexavalent chromium-free film on a zinc-based member and exhibits a remarkable effect particularly in zinc-nickel alloy plating. According to the present invention, it is possible to obtain a coating having an excellent corrosion resistance that could not be obtained even when hexavalent chromium was used and a uniform and rich appearance that could not be obtained by conventional techniques while reducing the burden on the environment. It became possible.

即ち、本発明は複数の特定アニオンの組み合わせと、複数の特定金属イオンの組み合わせと、特定の錯化剤とを組み合わせることにより、従来技術では成し得なかった、環境への負担を抑えつつ、低温短時間処理が可能なため生産性を低下させず、意匠性に富んだ外観及び現行の六価クロムを用いた被膜よりも優れた耐食性を有する被膜を提供することが可能になった。   That is, the present invention combines a combination of a plurality of specific anions, a combination of a plurality of specific metal ions, and a specific complexing agent, while suppressing the burden on the environment that could not be achieved by the conventional technology, Since a low-temperature and short-time treatment is possible, it has become possible to provide a coating having an appearance that is rich in design, and a corrosion resistance superior to that of a coating using current hexavalent chromium.

具体的には、三価クロムが低濃度であるため、廃水処理時に生成するスラッジ量が少なくなるほか、液の組み出しによる損失を抑えることが出来る。またフッ素や硼素、燐酸などが必須成分でないため、該当する排出規制項目を減らせることが出来る。また、有機酸を含有するが、単に量が少ないためか、錯化効果が弱いためか不明であるが、凝集阻害などが起きにくい為、実際の廃水処理が容易であり、実質上、廃水処理場の問題が無く、これらを含有する従来技術に比べ処理コストを低減できる、などの多くの利点を有する。また、経時での安定性に優れ、1ヶ月放置後もpHの変動や外観の変化は見られず、当初の性能である六価クロムを用いた被膜処理と同等以上の性能を維持するため、液更新の手間が省け、更に液の長寿命化によるランニングコストの低減を図ることができる非常に耐久性に富んだ実用的な処理液を提供することができる。更には、従来の六価クロム被膜では得られなかった高い耐熱耐食性を得ることが出来る。   Specifically, since trivalent chromium has a low concentration, the amount of sludge generated during wastewater treatment is reduced, and loss due to liquid assembly can be suppressed. Further, since fluorine, boron, phosphoric acid and the like are not essential components, the corresponding emission control items can be reduced. In addition, it contains an organic acid, but it is unclear whether the amount is simply small or the complexing effect is weak. However, it is difficult to cause coagulation inhibition, so actual wastewater treatment is easy and practically wastewater treatment. There are many advantages such as no problem in the field and reduction of processing costs compared to the prior art containing them. In addition, it is excellent in stability over time, and there is no change in pH or change in appearance even after standing for 1 month, in order to maintain the performance equivalent to or higher than the coating treatment using hexavalent chromium which is the initial performance, It is possible to provide an extremely durable and practical treatment liquid that can save the trouble of renewing the liquid and can reduce the running cost by extending the life of the liquid. Furthermore, it is possible to obtain high heat and corrosion resistance that could not be obtained with conventional hexavalent chromium coatings.

これまで六価クロムの有害性が話されて久しいが、なかなか切り替えが進まなかった。本発明により、従来あった多くの問題点が解消されたため、今後は幅広い分野で利用され、六価クロムからの切り替えが進むものと考えられる。   Up until now, the harmful effects of hexavalent chromium have been talked about, but it has been difficult to switch. Since many of the conventional problems have been solved by the present invention, it will be used in a wide range of fields in the future, and switching from hexavalent chromium will proceed.

以下、効果が顕著な亜鉛ニッケル合金めっきを主体とした実施例により本発明を説明する。試験は試験片を脱脂、酸浸漬などの適当な前処理を行い、亜鉛めっき(ハイパージンケート)、亜鉛合金めっき(ストロンジンク;日本表面化学(株))、亜鉛ニッケル合金めっき(ストロンNiジンク;日本表面化学(株))のいずれかを施した後、本発明による処理を行った。めっきの膜厚は、いずれのめっきも8−10μmとした。耐食性の評価はJIS Z 2731に従う塩水噴霧試験を行った。   In the following, the present invention will be described with reference to examples mainly composed of zinc-nickel alloy plating with remarkable effects. In the test, the test piece is subjected to appropriate pretreatment such as degreasing and acid dipping, zinc plating (hyper zincate), zinc alloy plating (Stron Zinc; Nippon Surface Chemical Co., Ltd.), zinc nickel alloy plating (Stron Ni Zinc; Japan) After applying any of Surface Chemistry Co., Ltd., the treatment according to the present invention was performed. The thickness of the plating was 8-10 μm for any plating. The corrosion resistance was evaluated by a salt spray test according to JIS Z2731.

実施例1
亜鉛めっき品を硝酸4ml/L、塩酸0.2ml/Lの室温の水溶液に15秒浸漬し水洗した後、硫酸クロム3g/L、硝酸クロム3g/L、硝酸ナトリウム15g/L、硝酸コバルト3g/L、バナジン酸アンモニウム2g/L、塩化ニッケル1g/L、クエン酸8g/Lを含む処理液に浸漬し処理を行った。液温度は35℃、浸漬時間は45秒、pHは2.1の条件で緩い攪拌下で行った。軽く水洗した後、60〜80℃で5分間乾燥を行った。艶のある薄い干渉色の良好な外観の被膜を得た。
Example 1
The galvanized product is immersed in a room temperature aqueous solution of nitric acid 4 ml / L and hydrochloric acid 0.2 ml / L for 15 seconds and washed with water, then chromium sulfate 3 g / L, chromium nitrate 3 g / L, sodium nitrate 15 g / L, cobalt nitrate 3 g / L The treatment was performed by immersing in a treatment solution containing L, ammonium vanadate 2 g / L, nickel chloride 1 g / L, and citric acid 8 g / L. The liquid temperature was 35 ° C., the immersion time was 45 seconds, and the pH was 2.1 under mild stirring. After lightly washing with water, drying was performed at 60 to 80 ° C. for 5 minutes. A glossy, thin interference color coating with good appearance was obtained.

実施例2
亜鉛ニッケル合金めっき品(ニッケル共析率5%)を、塩化クロム0.5g/L、硝酸クロム0.5g/L、硝酸カリウム2g/L、塩化ナトリウム40g/L、塩化コバルト4g/L、バナジン酸アンモニウム0.5g/L、クエン酸0.5g/L、琥珀酸1g/L、ケイ酸カリウム8g/Lを含む処理液に浸漬し処理を行った。液温度は35℃、浸漬時間は35秒、pHは2.8の条件で緩い攪拌下で行った。軽く水洗した後、90〜100℃で5分間乾燥を行った。艶のある薄い干渉色の良好な外観の被膜を得た。
Example 2
Zinc-nickel alloy plated product (nickel eutectoid rate 5%), chromium chloride 0.5g / L, chromium nitrate 0.5g / L, potassium nitrate 2g / L, sodium chloride 40g / L, cobalt chloride 4g / L, vanadic acid The treatment was performed by dipping in a treatment solution containing 0.5 g / L of ammonium, 0.5 g / L of citric acid, 1 g / L of oxalic acid, and 8 g / L of potassium silicate. The liquid temperature was 35 ° C., the immersion time was 35 seconds, and the pH was 2.8. After lightly washing with water, drying was performed at 90 to 100 ° C. for 5 minutes. A glossy, thin interference color coating with good appearance was obtained.

実施例3
亜鉛ニッケル合金めっき品(ニッケル共析率6.5%)を、塩化クロム0.5g/L、硝酸クロム1g/L、硝酸カリウム2g/L、塩化ナトリウム45g/L、塩化コバルト3g/L、バナジン酸アンモニウム0.5g/L、クエン酸0.5g/L、琥珀酸1g/L、ケイ酸カリウム8g/Lを含む処理液に浸漬し処理を行った。液温度は30℃、浸漬時間は30秒、pHは2.8の条件で緩い攪拌下で行った。軽く水洗した後、70〜90℃で5分間乾燥を行った。艶のある薄い干渉色の良好な外観の被膜を得た。
Example 3
Zinc nickel alloy plating product (nickel eutectoid rate 6.5%), chromium chloride 0.5g / L, chromium nitrate 1g / L, potassium nitrate 2g / L, sodium chloride 45g / L, cobalt chloride 3g / L, vanadic acid The treatment was performed by dipping in a treatment solution containing 0.5 g / L of ammonium, 0.5 g / L of citric acid, 1 g / L of oxalic acid, and 8 g / L of potassium silicate. The liquid temperature was 30 ° C., the immersion time was 30 seconds, and the pH was 2.8. After lightly washing with water, drying was performed at 70 to 90 ° C. for 5 minutes. A glossy, thin interference color coating with good appearance was obtained.

実施例4
亜鉛ニッケル合金めっき品(ニッケル共析率7.8%)を、塩化クロム1g/L、硝酸クロム1g/L、硝酸マグネシウム3g/L、硝酸0.5g/L、塩化ナトリウム35g/L、塩化コバルト2g/L、塩化ニッケル3g/L、クエン酸0.5g/L、琥珀酸1g/L、ケイ酸ナトリウム10g/Lを含む処理液に浸漬し処理を行った。液温度は40℃、浸漬時間は30秒、pHは2.9の条件で緩い攪拌下で行った。軽く水洗した後、70〜90℃で5分間乾燥を行った。艶のある薄い干渉色の良好な外観の被膜を得た。
Example 4
Zinc nickel alloy plated product (nickel eutectoid rate 7.8%), chromium chloride 1g / L, chromium nitrate 1g / L, magnesium nitrate 3g / L, nitric acid 0.5g / L, sodium chloride 35g / L, cobalt chloride The treatment was performed by immersion in a treatment solution containing 2 g / L, nickel chloride 3 g / L, citric acid 0.5 g / L, oxalic acid 1 g / L, and sodium silicate 10 g / L. The liquid temperature was 40 ° C., the immersion time was 30 seconds, and the pH was 2.9, under mild stirring. After lightly washing with water, drying was performed at 70 to 90 ° C. for 5 minutes. A glossy, thin interference color coating with good appearance was obtained.

実施例5
亜鉛ニッケル合金めっき品(ニッケル共析率9%)を、塩化クロム1g/L、硝酸クロム1g/L、硝酸カリウム3g/L、硝酸0.5g/L、塩酸3g/L、塩化コバルト2g/L、塩化ニッケル3g/L、クエン酸0.5g/L、琥珀酸1g/L、コロイダルシリカ4g/Lを含む処理液に浸漬し処理を行った。液温度は40℃、浸漬時間は30秒、pHは2.9の条件で緩い攪拌下で行った。軽く水洗した後、70〜90℃で5分間乾燥を行った。艶のある薄い干渉色の良好な外観の被膜を得た。
Example 5
Zinc-nickel alloy plated product (nickel eutectoid rate 9%), chromium chloride 1g / L, chromium nitrate 1g / L, potassium nitrate 3g / L, nitric acid 0.5g / L, hydrochloric acid 3g / L, cobalt chloride 2g / L, The treatment was performed by immersion in a treatment solution containing 3 g / L of nickel chloride, 0.5 g / L of citric acid, 1 g / L of oxalic acid, and 4 g / L of colloidal silica. The liquid temperature was 40 ° C., the immersion time was 30 seconds, and the pH was 2.9, under mild stirring. After lightly washing with water, drying was performed at 70 to 90 ° C. for 5 minutes. A glossy, thin interference color coating with good appearance was obtained.

実施例6
亜鉛ニッケル合金めっき品(ニッケル共析率11%)を水酸化ナトリウム5g/L、ケイ酸ソーダ0.01g/Lの室温の水溶液に10秒浸漬し水洗した後、塩化クロム2g/L、硝酸マグネシウム10g/L、塩化ナトリウム50g/L、塩化コバルト2g/L、硝酸ニッケル3g/L、クエン酸1g/L、琥珀酸1g/L、コロイダルシリカ8g/Lを含む処理液に浸漬し処理を行った。液温度は35℃、浸漬時間は50秒、pHは2.7の条件で緩い攪拌下で行った。軽く水洗した後、70〜90℃で5分間乾燥を行った。艶のある薄い干渉色の良好な外観の被膜を得た。
Example 6
A zinc-nickel alloy plated product (nickel eutectoid rate of 11%) is immersed in a room temperature aqueous solution of sodium hydroxide 5 g / L and sodium silicate 0.01 g / L for 10 seconds, washed with water, then chromium chloride 2 g / L, magnesium nitrate 10 g / L, sodium chloride 50 g / L, cobalt chloride 2 g / L, nickel nitrate 3 g / L, citric acid 1 g / L, oxalic acid 1 g / L, colloidal silica 8 g / L . The liquid temperature was 35 ° C., the immersion time was 50 seconds, and the pH was 2.7. After lightly washing with water, drying was performed at 70 to 90 ° C. for 5 minutes. A glossy, thin interference color coating with good appearance was obtained.

実施例7
亜鉛ニッケル合金めっき品(ニッケル共析率14%)を、硝酸クロム1.5g/L、硝酸カリウム2g/L、塩化ナトリウム45g/L、硝酸コバルト3g/L、バナジン酸アンモニウム0.5g/L、琥珀酸0.5g/L、ケイ酸カリウム8g/Lを含む処理液に浸漬し処理を行った。液温度は30℃、浸漬時間は30秒、pHは2.8の条件で緩い攪拌下で行った。軽く水洗した後、70〜90℃で5分間乾燥を行った。艶のある薄い干渉色の良好な外観の被膜を得た。
Example 7
Zinc-nickel alloy plated product (nickel eutectoid rate: 14%), chromium nitrate 1.5 g / L, potassium nitrate 2 g / L, sodium chloride 45 g / L, cobalt nitrate 3 g / L, ammonium vanadate 0.5 g / L, 琥珀The treatment was performed by immersion in a treatment solution containing 0.5 g / L of acid and 8 g / L of potassium silicate. The liquid temperature was 30 ° C., the immersion time was 30 seconds, and the pH was 2.8. After lightly washing with water, drying was performed at 70 to 90 ° C. for 5 minutes. A glossy, thin interference color coating with good appearance was obtained.

実施例8〜11
実施例1、3、5、7の処理を行って水洗した後、乾燥せずに更に三価クロムを0.5g/L含むpH3.8の水溶液に20秒浸漬してからそれぞれの乾燥を行ない、順番に実施例8、9、10、11とした。
実施例1、3、5、7と同様に艶がある均一な外観が得られた。
Examples 8-11
After performing the treatments of Examples 1, 3, 5, and 7 and washing with water, the samples were further immersed in an aqueous solution of pH 3.8 containing 0.5 g / L of trivalent chromium without drying, and then dried. In this order, Examples 8, 9, 10, and 11 were used.
A glossy and uniform appearance was obtained as in Examples 1, 3, 5, and 7.

実施例12〜14
実施例2、4、6の処理を行って水洗した後、乾燥せずに更にコロイダルシリカを2g/L含むpH9の水溶液に20秒浸漬してからそれぞれの乾燥を行ない順番に実施例12、13、14とした。
実施例2、4、6と同様に艶がある均一な外観が得られた。
Examples 12-14
After carrying out the treatment of Examples 2, 4, and 6 and washing with water, the samples were further immersed in a pH 9 aqueous solution containing 2 g / L of colloidal silica for 20 seconds without drying, and then each of the samples was dried in order. , 14.
Similar to Examples 2, 4, and 6, a glossy and uniform appearance was obtained.

実施例15〜18
実施例1、3、5、7の処理を行って水洗した後、乾燥せずに更にケイ酸カリウム2g/L、硝酸クロムを1.5g/L、硝酸コバルト1g/Lを含むpH3.9の水溶液に20秒浸漬してからそれぞれの乾燥を行ない、順番に実施例15、16、17、18とした。 実施例1、3、5、7と同様に艶がある均一な外観が得られた。
Examples 15-18
After performing the treatment of Examples 1, 3, 5, and 7 and washing with water, without drying, the solution was further adjusted to pH 3.9 containing 2 g / L of potassium silicate, 1.5 g / L of chromium nitrate, and 1 g / L of cobalt nitrate. Each sample was dipped in an aqueous solution for 20 seconds and then dried, and Examples 15, 16, 17, and 18 were sequentially formed. A glossy and uniform appearance was obtained as in Examples 1, 3, 5, and 7.

実施例19〜24
実施例2、4、6、9、13、18の試験片を更にコスマーNC(商品名)に23℃、20秒浸漬後、乾燥してそれぞれ実施例19、20、21、22、23、24とした。非常に艶のある均一な外観が得られた。
Examples 19-24
The test pieces of Examples 2, 4, 6, 9, 13, and 18 were further immersed in Cosmer NC (trade name) at 23 ° C. for 20 seconds and then dried, and Examples 19, 20, 21, 22, 23, and 24 were respectively obtained. It was. A very glossy and uniform appearance was obtained.

実施例25
亜鉛鉄合金めっき品を硝酸4ml/Lの室温の水溶液に20秒浸漬した後、硫酸クロム3g/L、硝酸クロム4g/L、硝酸マグネシウム20g/L、塩化ナトリウム1g/L、硝酸コバルト6g/L、硝酸ニッケル3g/L、クエン酸5g/L、マロン酸1.5g/L、コロイダルシリカ8g/Lを含む処理液に浸漬し処理を行った。液温度は45℃、浸漬時間は50秒、pHは2.2の条件で緩い攪拌下で行った。軽く水洗した後、70〜90℃で5分間乾燥を行った。艶のある薄い干渉色の良好な外観の被膜を得た。
Example 25
After immersing the zinc-iron alloy plated product in a room temperature aqueous solution of nitric acid 4 ml / L for 20 seconds, chromium sulfate 3 g / L, chromium nitrate 4 g / L, magnesium nitrate 20 g / L, sodium chloride 1 g / L, cobalt nitrate 6 g / L It was immersed in a treatment solution containing 3 g / L nickel nitrate, 5 g / L citric acid, 1.5 g / L malonic acid, and 8 g / L colloidal silica. The liquid temperature was 45 ° C., the immersion time was 50 seconds, and the pH was 2.2 under mild stirring. After lightly washing with water, drying was performed at 70 to 90 ° C. for 5 minutes. A glossy, thin interference color coating with good appearance was obtained.

比較例1
市販の亜鉛めっき用有色クロメート剤(ローメイト62(商品名);5ml/L;六価クロム約1g/L含有;日本表面化学(株))で亜鉛めっきを処理した。液温度は25℃、処理時間は20秒の条件で緩い攪拌下で行った。軽く水洗した後、80〜100℃で10分間乾燥を行った。艶のある強い干渉色の被膜が得られた。
Comparative Example 1
Zinc plating was treated with a commercially available colored chromating agent for zinc plating (Rohmate 62 (trade name); 5 ml / L; containing about 1 g / L of hexavalent chromium; Nippon Surface Chemical Co., Ltd.). The liquid temperature was 25 ° C., and the treatment time was 20 seconds under mild stirring. After lightly washing with water, drying was performed at 80 to 100 ° C. for 10 minutes. A glossy and strong interference color coating was obtained.

比較例2
市販の亜鉛−鉄合金めっき用有色クロメート剤(FC−950(商品名);30ml/L;六価クロム約1g/L含有;日本表面化学(株))で亜鉛−鉄合金めっきを処理した。液温度は25℃、処理時間は20秒の条件で緩い攪拌下で行った。軽く水洗した後、80〜100℃で10分間乾燥を行った。艶のある強い干渉色の被膜が得られた。
Comparative Example 2
Zinc-iron alloy plating was treated with a commercially available colored chromate agent for zinc-iron alloy plating (FC-950 (trade name); 30 ml / L; containing about 1 g / L of hexavalent chromium; Nippon Surface Chemical Co., Ltd.). The liquid temperature was 25 ° C., and the treatment time was 20 seconds under mild stirring. After lightly washing with water, drying was performed at 80 to 100 ° C. for 10 minutes. A glossy and strong interference color coating was obtained.

比較例3
市販の亜鉛−ニッケル合金めっき用有色クロメート剤(ZNC−980A(商品名);35ml/L;六価クロム約2g/L含有;日本表面化学(株))で亜鉛−ニッケル合金めっき(ニッケル共析率6%)を処理した。液温度は30℃、処理時間は40秒の条件で緩い攪拌下で行った。軽く水洗した後、80〜100℃で10分間乾燥を行った。艶のある強い干渉色の被膜が得られた。
Comparative Example 3
Zinc-nickel alloy plating (nickel eutectoid) with commercially available colored chromate agent for zinc-nickel alloy plating (ZNC-980A (trade name); 35 ml / L; containing about 2 g / L of hexavalent chromium; Nippon Surface Chemical Co., Ltd.) Rate 6%). The liquid temperature was 30 ° C., and the treatment time was 40 seconds under mild stirring. After lightly washing with water, drying was performed at 80 to 100 ° C. for 10 minutes. A glossy and strong interference color coating was obtained.

比較例4、5、6
塩化クロム6水和物50g/L、硝酸コバルト3g/L、硝酸ナトリウム100g/L、マロン酸31.2g/Lを含む処理液で亜鉛めっき(比較例4)、亜鉛−ニッケル合金めっき(ニッケル共析率6%:比較例5)を処理した。液温度は30℃、浸漬時間は40秒、pHは2.2の条件で緩い攪拌下で行った。軽く水洗した後、80〜100℃で10分間乾燥を行った。
比較例4は弱い干渉色の被膜を得たが、比較例5は被膜化成しなかった。液温度を60℃、処理時間を60秒に変更したが、亜鉛−ニッケル合金めっきには化成しなかった(比較例6)。
Comparative Examples 4, 5, 6
Zinc plating (Comparative Example 4), zinc-nickel alloy plating (nickel co-treatment) containing chromium chloride hexahydrate 50 g / L, cobalt nitrate 3 g / L, sodium nitrate 100 g / L, malonic acid 31.2 g / L Analysis rate: 6%: Comparative example 5) was processed. The liquid temperature was 30 ° C., the immersion time was 40 seconds, and the pH was 2.2 under mild stirring. After lightly washing with water, drying was performed at 80 to 100 ° C. for 10 minutes.
In Comparative Example 4, a film having a weak interference color was obtained, but in Comparative Example 5, no film was formed. Although the liquid temperature was changed to 60 ° C. and the treatment time was changed to 60 seconds, the formation of zinc-nickel alloy plating was not performed (Comparative Example 6).

比較例7、8、9
三価クロム2g/L、硝酸イオン0.4g/L、燐酸イオン12g/L、硫酸イオン2g/L、マロン酸12g/L、コバルト1g/L、ニッケル0.5g/L、ケイ素1g/Lを含む処理液で亜鉛めっき(比較例7)、亜鉛−ニッケル合金めっき(ニッケル共析率6%:比較例8)を処理した。液温度は30℃、浸漬時間は60秒、pHは2.6の条件で緩い攪拌下で行った。軽く水洗した後、80〜100℃で10分間乾燥を行った。比較例7は良好とは言えない弱い干渉を呈する黒っぽい被膜を得た。また、比較例8は被膜化成しなかったが、液温度を60℃、処理時間を60秒に変更したら、良好とは言えない艶のない紫色のような弱い干渉を呈する黒っぽい被膜を得た(比較例9)。
Comparative Examples 7, 8, 9
Trivalent chromium 2g / L, nitrate ion 0.4g / L, phosphate ion 12g / L, sulfate ion 2g / L, malonic acid 12g / L, cobalt 1g / L, nickel 0.5g / L, silicon 1g / L Zinc plating (Comparative Example 7) and zinc-nickel alloy plating (Nickel eutectoid rate of 6%: Comparative Example 8) were treated with the treatment solution contained. The liquid temperature was 30 ° C., the immersion time was 60 seconds, and the pH was 2.6 under mild stirring. After lightly washing with water, drying was performed at 80 to 100 ° C. for 10 minutes. In Comparative Example 7, a blackish film exhibiting weak interference that was not good was obtained. Further, in Comparative Example 8, no film was formed, but when the liquid temperature was changed to 60 ° C. and the treatment time was changed to 60 seconds, a blackish film exhibiting weak interference such as a matte purple color which was not good was obtained ( Comparative Example 9).

比較例10、11
三価クロム4.5g/L、硝酸イオン0.6g/L、燐酸イオン12g/L、硫酸イオン10g/L、シュウ酸15g/L、琥珀酸10g/L、コバルト1g/L、ニッケル0.3g/L、ケイ素1g/Lを含む処理液で、亜鉛−ニッケル合金めっき(ニッケル共析率6%)を処理した。液温度は35℃、浸漬時間は60秒、pHは2.6の条件で緩い攪拌下で行った。軽く水洗した後、80〜100℃で10分間乾燥を行った。被膜化成しなかった(比較例10)。液温度を60℃、処理時間を60秒に変更したら、良好とは言えない艶のない紫色のような弱い干渉を呈する黒っぽい被膜を得た(比較例11)。
Comparative Examples 10 and 11
Trivalent chromium 4.5g / L, nitrate ion 0.6g / L, phosphate ion 12g / L, sulfate ion 10g / L, oxalic acid 15g / L, oxalic acid 10g / L, cobalt 1g / L, nickel 0.3g / L, zinc-nickel alloy plating (nickel eutectoid rate of 6%) was treated with a treatment solution containing 1 g / L of silicon. The liquid temperature was 35 ° C., the immersion time was 60 seconds, and the pH was 2.6 under mild stirring. After lightly washing with water, drying was performed at 80 to 100 ° C. for 10 minutes. No film was formed (Comparative Example 10). When the liquid temperature was changed to 60 ° C. and the treatment time was changed to 60 seconds, a blackish film exhibiting weak interference such as matte purple, which was not good, was obtained (Comparative Example 11).

比較例12、13、14
三価クロム1g/L、硝酸イオン5g/L、シュウ酸3g/L、コバルト0.2g/L、ケイ素2g/Lを含む処理液で、亜鉛めっき(比較例12)、亜鉛−ニッケル合金めっき(ニッケル共析率6%:比較例13)を処理した。液温度は30℃、浸漬時間は60秒、pHは2.0の条件で緩い攪拌下で行った。軽く水洗した後、80〜100℃で10分間乾燥を行った。比較例12は弱い干渉を呈する被膜を得た。比較例13は被膜化成しなかったが、液温度を60℃、処理時間を60秒に変更したら、良好とは言えない艶のない紫色のような弱い干渉を呈する黒っぽい被膜を得た(比較例14)。
Comparative Examples 12, 13, 14
A treatment solution containing trivalent chromium 1 g / L, nitrate ions 5 g / L, oxalic acid 3 g / L, cobalt 0.2 g / L, silicon 2 g / L, zinc plating (Comparative Example 12), zinc-nickel alloy plating ( Nickel eutectoid rate 6%: Comparative Example 13) was processed. The liquid temperature was 30 ° C., the dipping time was 60 seconds, and the pH was 2.0 under mild stirring. After lightly washing with water, drying was performed at 80 to 100 ° C. for 10 minutes. In Comparative Example 12, a film exhibiting weak interference was obtained. In Comparative Example 13, the film was not formed, but when the liquid temperature was changed to 60 ° C. and the treatment time was changed to 60 seconds, a blackish film exhibiting weak interference such as a matte purple color which was not good was obtained (Comparative Example). 14).

比較例15、16、17
硝酸クロム15g/L、硝酸ナトリウム10g/L、シュウ酸2水塩10g/Lを含む処理液で、亜鉛めっき(比較例15)、亜鉛−ニッケル合金めっき(ニッケル共析率6%:比較例16)を処理した。液温度は30℃、浸漬時間は40秒、pHは2.0の条件で緩い攪拌下で行った。軽く水洗した後、80〜100℃で10分間乾燥を行った。比較例15は薄い青色の被膜を得た。比較例16は被膜化成しなかった。液温度を60℃、処理時間を60秒に変更したが、亜鉛−ニッケル合金めっきには化成しなかった(比較例17)。
Comparative Examples 15, 16, and 17
A treatment solution containing chromium nitrate 15 g / L, sodium nitrate 10 g / L, and oxalic acid dihydrate 10 g / L, zinc plating (Comparative Example 15), zinc-nickel alloy plating (nickel eutectoid rate 6%: Comparative Example 16) ) Was processed. The liquid temperature was 30 ° C., the immersion time was 40 seconds, and the pH was 2.0, with gentle stirring. After lightly washing with water, drying was performed at 80 to 100 ° C. for 10 minutes. In Comparative Example 15, a light blue film was obtained. In Comparative Example 16, no film was formed. Although the liquid temperature was changed to 60 ° C. and the treatment time was changed to 60 seconds, the formation of zinc-nickel alloy plating was not performed (Comparative Example 17).

比較例18、19、20
硝酸クロム9水和物45g/L、62.5%硫酸2g/L、硫酸チタン1g/L、シリカゾル50g/Lを含む処理液で、亜鉛めっき(比較例18)、亜鉛−ニッケル合金めっき(ニッケル共析率6%:比較例19)を処理した。液温度は40℃、浸漬時間は60秒、pHは2.0の条件で緩い攪拌下で行った。軽く水洗した後、80〜100℃で10分間乾燥を行った。比較例18は光沢のない弱い干渉色の被膜を得た。比較例19は被膜化成しなかった。液温度を60℃、処理時間を60秒に変更したが、亜鉛−ニッケル合金めっきには化成しなかった(比較例20)。
Comparative Examples 18, 19, and 20
A treatment solution containing chromium nitrate nonahydrate 45 g / L, 62.5% sulfuric acid 2 g / L, titanium sulfate 1 g / L, silica sol 50 g / L, zinc plating (Comparative Example 18), zinc-nickel alloy plating (nickel) The eutectoid rate was 6%: Comparative Example 19) was processed. The liquid temperature was 40 ° C., the dipping time was 60 seconds, and the pH was 2.0 under mild stirring. After lightly washing with water, drying was performed at 80 to 100 ° C. for 10 minutes. In Comparative Example 18, a thin coating film having a weak interference color was obtained. In Comparative Example 19, no film was formed. Although the liquid temperature was changed to 60 ° C. and the treatment time was changed to 60 seconds, the formation of zinc-nickel alloy plating was not performed (Comparative Example 20).

比較例21、22、23
塩化クロム(CrCl3)8g/L、ケイ酸ナトリウム(Na2SiO3)10g/L、フッ化水素アンモニウム(NH4HF2)5g/L、硝酸(HNO3)5g/L、硫酸(H2SO4)5g/Lを含む処理液で、亜鉛めっき(比較例21)、亜鉛−ニッケル合金めっき(ニッケル共析率6%:比較例22)を処理した。液温度は25℃、浸漬時間は15秒、pHは1.8の条件で緩い攪拌下で行った。軽く水洗した後、80〜100℃で10分間乾燥を行った。比較例21は薄い青色の被膜を得た。比較例22は被膜化成しなかったが、液温度を60℃、処理時間を60秒に変更したところ、良好とは言えない艶のない紫色のような弱い干渉を呈する黒っぽい被膜を得た(比較例23)。
Comparative Examples 21, 22, and 23
Chromium chloride (CrCl 3 ) 8 g / L, Sodium silicate (Na 2 SiO 3 ) 10 g / L, Ammonium hydrogen fluoride (NH 4 HF 2 ) 5 g / L, Nitric acid (HNO 3 ) 5 g / L, Sulfuric acid (H 2 Zinc plating (Comparative Example 21) and zinc-nickel alloy plating (Nickel eutectoid rate 6%: Comparative Example 22) were treated with a treatment solution containing 5 g / L of SO 4 . The liquid temperature was 25 ° C., the immersion time was 15 seconds, and the pH was 1.8 under mild stirring. After lightly washing with water, drying was performed at 80 to 100 ° C. for 10 minutes. In Comparative Example 21, a light blue film was obtained. In Comparative Example 22, the film was not formed, but when the liquid temperature was changed to 60 ° C. and the treatment time was changed to 60 seconds, a blackish film exhibiting weak interference such as a matte purple color which was not good was obtained (Comparison) Example 23).

比較例24
三価クロム4.5g/L、硝酸イオン0.4g/L、燐酸イオン15g/L、硫酸イオン2g/L、シュウ酸15g/L、アジピン酸20g/L、コバルト1g/L、ケイ素1g/Lを含む処理液で、亜鉛−鉄合金めっきを処理した。液温度は40℃、浸漬時間は60秒、pHは2.5の条件で緩い攪拌下で行った。軽く水洗した後、80〜100℃で10分間乾燥を行った。良好とは言えない艶のない弱い干渉を呈する黒っぽい被膜を得た。
Comparative Example 24
Trivalent chromium 4.5 g / L, nitrate ion 0.4 g / L, phosphate ion 15 g / L, sulfate ion 2 g / L, oxalic acid 15 g / L, adipic acid 20 g / L, cobalt 1 g / L, silicon 1 g / L The zinc-iron alloy plating was treated with a treatment solution containing The liquid temperature was 40 ° C., the immersion time was 60 seconds, and the pH was 2.5 under mild stirring. After lightly washing with water, drying was performed at 80 to 100 ° C. for 10 minutes. A blackish film was obtained which had a dull, weak interference which was not good.

比較例25
三価クロム4.5g/L、硝酸イオン0.2g/L、燐酸イオン12g/L、硫酸イオン15g/L、シュウ酸15g/L、ニッケル0.1g/L、コバルト1g/L、ケイ素1g/Lを含む処理液で、亜鉛−鉄合金めっきを処理した。液温度は50℃、浸漬時間は60秒、pHは2.3の条件で緩い攪拌下で行った。軽く水洗した後、80〜100℃で10分間乾燥を行った。良好とは言えない艶のない弱い干渉を呈する黒っぽい被膜を得た。
Comparative Example 25
Trivalent chromium 4.5 g / L, nitrate ion 0.2 g / L, phosphate ion 12 g / L, sulfate ion 15 g / L, oxalic acid 15 g / L, nickel 0.1 g / L, cobalt 1 g / L, silicon 1 g / L Zinc-iron alloy plating was treated with a treatment solution containing L. The liquid temperature was 50 ° C., the immersion time was 60 seconds, and the pH was 2.3 under mild stirring. After lightly washing with water, drying was performed at 80 to 100 ° C. for 10 minutes. A blackish film was obtained which had a dull, weak interference which was not good.

比較例の中で亜鉛ニッケル合金めっきに被膜化成したのは、比較例3、9、11、14と23だけであった。   In Comparative Examples, only Comparative Examples 3, 9, 11, 14, and 23 were formed into zinc-nickel alloy plating.

[外観以外の評価]
比較例5、6、8、10、13、16、17、19、20、22は被膜化成が認められなかったので、以下の評価は行わなかった。
[Evaluation other than appearance]
In Comparative Examples 5, 6, 8, 10, 13, 16, 17, 19, 20, and 22, no film formation was observed, so the following evaluation was not performed.

[一般耐食性(塩水噴霧試験)]
実施例1、3、5、7、9、11、12、14、16、18、20、22、24、25及び被膜化成した比較例の試験片の耐食性を塩水噴霧試験により評価した。
[General corrosion resistance (salt spray test)]
The corrosion resistance of the test pieces of Examples 1, 3, 5, 7, 9, 11, 12, 14, 16, 18, 20, 22, 24, 25 and the comparative sample formed as a film was evaluated by a salt spray test.

実施例の全ての試験片において試験片面積に対して白錆が5%以上発生するのに240時間以上を要した。特に実施例7、14、18は500時間以上、実施例20、22、24は700時間以上を要した。   It took 240 hours or more for all the test pieces of the examples to generate 5% or more of white rust with respect to the test piece area. In particular, Examples 7, 14, and 18 required 500 hours or more, and Examples 20, 22, and 24 required 700 hours or more.

比較例の内、5%以上の白錆発生に240時間以上を要したのは、比較例1、2、3、4、12であった。それ以外は、比較例9、11、14、23、24、25は72時間、比較例7と15は96時間、比較例18は144時間であった。六価クロムを用いていない従来技術の内、5%以上白錆発生に300時間以上を要するものはなかった。また、六価クロムを用いる技術まで含めても白錆発生5%以上に500時間以上を要する技術は無かった。   Among Comparative Examples, Comparative Examples 1, 2, 3, 4, and 12 required 240 hours or more to generate 5% or more of white rust. Otherwise, Comparative Examples 9, 11, 14, 23, 24, and 25 were 72 hours, Comparative Examples 7 and 15 were 96 hours, and Comparative Example 18 was 144 hours. None of the prior arts that did not use hexavalent chromium required over 300 hours to generate white rust of 5% or more. Moreover, even if the technology using hexavalent chromium was included, there was no technology that required 500 hours or more to generate 5% or more of white rust.

[加熱耐食性]
一般耐食性と同じく実施例1、3、5、7、9、11、12、14、16、18、20、22、24、25及び一般耐食性試験で240時間以上を要した比較例1、2、3、4、12と比較例18の試験片を200℃、2時間加熱後、塩水噴霧試験を行い加熱耐食性試験とした。実施例の全ての試験片において白錆が5%以上発生するのに120時間以上を要した。特に実施例3、5、7、9、11、12、14、16、18、20、22、24は、加熱による明確な性能低下を認めなかった。
[Heat corrosion resistance]
As in general corrosion resistance, Examples 1, 3, 5, 7, 9, 11, 12, 14, 16, 18, 20, 22, 24, 25 and Comparative Examples 1 and 2, which required 240 hours or more in the general corrosion resistance test, The test pieces of 3, 4, 12 and Comparative Example 18 were heated at 200 ° C. for 2 hours, and then subjected to a salt spray test to obtain a heat corrosion resistance test. It took 120 hours or more for white rust to occur 5% or more in all the test pieces of the examples. In particular, in Examples 3, 5, 7, 9, 11, 12, 14, 16, 18, 20, 22, and 24, no clear performance degradation due to heating was observed.

比較例の内に白錆発生5%に120時間以上を要する試験片は比較例3、4、12であった。六価クロムを用いた比較例1及び2は、無加熱に比べ約1/5〜1/10の時間へ低下した。比較例18も48時間へ低下した。   Among the comparative examples, the test specimens that required 120 hours or more to generate 5% of white rust were Comparative Examples 3, 4, and 12. In Comparative Examples 1 and 2 using hexavalent chromium, the time was reduced to about 1/5 to 1/10 as compared with that without heating. Comparative Example 18 also decreased to 48 hours.

[安定性]
実施例2、4、6の処理剤、実施例8〜11、12〜14、15〜18の第二処理液と比較例の処理液を室温で一ヶ月間放置した。期間中のpH、液外観、及び期間終了後に前述の実施例と同じめっき種の試験片で、処理外観を評価した。必要により耐食性も確認した。
[Stability]
The treatment agents of Examples 2, 4, and 6, the second treatment liquids of Examples 8 to 11, 12 to 14, and 15 to 18 and the treatment liquids of Comparative Examples were allowed to stand at room temperature for one month. The treatment appearance was evaluated with a test piece of the same plating type as the above-described example after the period, pH, liquid appearance, and after the period. Corrosion resistance was also confirmed if necessary.

全ての実施例は、期間中にpHの変化及び液外観の変化を認めなかった。また、期間終了後の処理試験でも、放置前と同様に良好な外観であり、良好な安定性を示した。   All examples showed no change in pH or change in liquid appearance during the period. Further, in the treatment test after the end of the period, the appearance was as good as before leaving, and the stability was good.

比較例の内、pH、液外観及び期間終了後の処理試験で問題を認めなかったのは比較例1〜3と21、23であった。比較例4、7、9、11、12、14、15、24、25は数日以内にpHが大幅に低下し、沈殿が発生した上、一部の処理外観はムラや薄い外観になり、耐食性も5%以上の白錆発生まで48時間未満であった。比較例18はpH変化は認めなかったが、翌日に沈殿が発生した。処理外観は艶が無く、耐食性も5%以上の白錆発生まで48時間未満であった。六価クロムを用いない従来技術で安定性に問題がないのは、耐食性が低い(白錆5%以上発生まで72時間以下)比較例21と23だけであった。   Among the comparative examples, it was Comparative Examples 1 to 3, 21 and 23 that did not show any problems in the treatment test after the pH, liquid appearance, and period. In Comparative Examples 4, 7, 9, 11, 12, 14, 15, 24, and 25, the pH dropped significantly within a few days, precipitation occurred, and some of the processing appearances became uneven and thin, Corrosion resistance was less than 48 hours until white rust generation of 5% or more occurred. In Comparative Example 18, no pH change was observed, but precipitation occurred on the next day. The treated appearance was dull and the corrosion resistance was less than 48 hours until white rust generation of 5% or more occurred. It was only Comparative Examples 21 and 23 that the corrosion resistance is low (the white rust is not less than 72 hours until the occurrence of 5% or more of the white rust) in the conventional technology that does not use hexavalent chromium.

[廃水処理性]
実施例2、4、6の処理剤、実施例8〜11、12〜14、15〜18の第二処理液と全ての比較例について廃水処理性を評価した。処理液は使用により亜鉛が溶け込んでくるため、擬似的なランニング液として、それぞれの処理液に亜鉛粉末を10g/L溶かした液の廃水処理性を評価した。
評価の手順を以下に示す。
1.評価対象液を10ml採取し、水で100倍に希釈して1Lとする。
2.上記の液を3つ作る。
3.3つの液をそれぞれpH9、10、11に水酸化ナトリウムで調整する。
4.適量の高分子凝集剤を添加し、よく攪拌する。
5.15分間静置後、上澄み液を原子吸光分析器で分析し、亜鉛とクロムの濃度を測定する。
6.尚、比較例1〜3は六価クロムを含むため、事前に重亜硫酸ナトリウムにより六価クロムを三価クロムに還元した後、上記操作を行った。
[Wastewater treatment]
The wastewater treatability was evaluated for the treatment agents of Examples 2, 4, and 6, the second treatment liquids of Examples 8 to 11, 12 to 14, and 15 to 18 and all comparative examples. Since the treatment solution was dissolved in zinc by use, the wastewater treatment property of each solution obtained by dissolving 10 g / L of zinc powder was evaluated as a pseudo running solution.
The evaluation procedure is shown below.
1. Collect 10 ml of the evaluation target liquid and dilute it 100 times with water to make 1 L.
2. Make three of the above solutions.
3. Adjust the three liquids to pH 9, 10 and 11 respectively with sodium hydroxide.
4). Add an appropriate amount of polymer flocculant and stir well.
5. After standing for 15 minutes, the supernatant is analyzed with an atomic absorption spectrometer to measure the concentration of zinc and chromium.
6). Since Comparative Examples 1 to 3 contain hexavalent chromium, the above operation was performed after reducing hexavalent chromium to trivalent chromium with sodium bisulfite in advance.

全ての実施例は、水質汚濁防止法第3条による排出基準(亜鉛5mg/L、全クロム2mg/L)をクリアした。   All the examples cleared the emission standards (zinc 5 mg / L, total chromium 2 mg / L) according to Article 3 of the Water Pollution Control Law.

比較例の内、基準をクリアしたのは、比較例1〜3、18、21、23であった。残りの比較例4〜17、24、25は基準の5〜15倍の値を示した。また、比較例21と23は基準をクリアしたが、成分中に含まれるフッ素により、pH調整に用いるガラス電極を侵すという問題を抱えるため、六価クロムを用いない従来技術の内、廃水処理に問題を認めなかったのは比較例18だけであった。   Among Comparative Examples, Comparative Examples 1 to 3, 18, 21, and 23 cleared the standard. The remaining Comparative Examples 4-17, 24, and 25 showed values 5 to 15 times the reference. Moreover, although the comparative examples 21 and 23 cleared the reference | standard, since it has the problem of eroding the glass electrode used for pH adjustment with the fluorine contained in a component, among the prior art which does not use hexavalent chromium, it is a wastewater treatment. Only Comparative Example 18 did not recognize the problem.

Claims (16)

(A)三価クロムと;(B)硫酸イオン、硝酸イオン、塩素イオン、塩素の酸素酸イオン及びホウ素の酸素酸イオンよりなる群から選ばれた2種以上のアニオンと;(C)アルカリ金属、アルカリ土類金属、チタン、ジルコニウム、バナジウム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、金、銀、銅、錫及びアルミニウムよりなる群から選ばれた3種以上の金属イオンと;(D)酒石酸、クエン酸、リンゴ酸、乳酸、琥珀酸、酪酸、グルコン酸、グルタミン酸、グリコール酸、ジグリコール酸、アスコルビン酸、アンモニア、アミン化合物及びそれらの塩よりなる群から選ばれた1種以上の錯化剤とを含有する亜鉛部材、亜鉛合金部材、亜鉛めっき品又は亜鉛合金めっき品上に六価クロムフリーの化成被膜を形成するためのpH0.5〜6の処理液。   (A) trivalent chromium; (B) two or more kinds of anions selected from the group consisting of sulfate ion, nitrate ion, chlorine ion, chlorine oxyacid ion and boron oxyacid ion; and (C) alkali metal Three or more metal ions selected from the group consisting of alkaline earth metals, titanium, zirconium, vanadium, molybdenum, tungsten, manganese, iron, cobalt, nickel, gold, silver, copper, tin and aluminum; ) One or more selected from the group consisting of tartaric acid, citric acid, malic acid, lactic acid, succinic acid, butyric acid, gluconic acid, glutamic acid, glycolic acid, diglycolic acid, ascorbic acid, ammonia, amine compounds and salts thereof Forming a hexavalent chromium-free chemical conversion film on a zinc member, zinc alloy member, zinc-plated product or zinc alloy-plated product containing a complexing agent Processing solution of pH0.5~6 of the eye. 更にケイ素化合物、シュウ酸イオン、マロン酸イオンのいずれか1種以上を含有する請求項1記載の処理液。   Furthermore, the processing liquid of Claim 1 which contains any 1 or more types of a silicon compound, an oxalate ion, and a malonate ion. アニオンとして塩素イオン又は塩素の酸素酸イオン又はそれらの両方を含み、他のアニオンと塩素イオン又は塩素の酸素酸イオン(両方を含む場合は両方の合計)との重量比が1:2〜1:200である請求項1又は2のいずれかに記載の処理液。   The anion contains chlorine ions or chlorine oxyacid ions or both, and the weight ratio of the other anions to chlorine ions or chlorine oxyacid ions (the sum of both if both are included) is from 1: 2 to 1: The treatment liquid according to claim 1, which is 200. 三価クロムが0.01g/L以上4.5g/L以下、及び/又はアニオンの合計濃度が5g/L以上120g/L以下、及び/又は金属イオンの合計濃度が0.1g/L以上85g/L以下、及び/又は錯化剤のイオンの合計濃度が0.005g/L以上20g/L未満である請求項1、2又は3のいずれか一項に記載の処理液。   Trivalent chromium is 0.01 g / L or more and 4.5 g / L or less, and / or the total concentration of anions is 5 g / L or more and 120 g / L or less, and / or the total concentration of metal ions is 0.1 g / L or more and 85 g. The processing liquid according to claim 1, wherein the total concentration of ions of / L or less and / or the complexing agent is 0.005 g / L or more and less than 20 g / L. 合計濃度がケイ素として0.05g/L以上10g/L以下のケイ素化合物、合計濃度が0.1g/L以上40g/L以下のシュウ酸イオン及び/又はマロン酸イオンのいずれか1種以上を含有する請求項1〜4のいずれか一項に記載の処理液。   Contains a silicon compound having a total concentration of 0.05 g / L to 10 g / L as silicon, and one or more oxalate ions and / or malonate ions having a total concentration of 0.1 g / L to 40 g / L The processing liquid according to any one of claims 1 to 4. 錯化剤が酒石酸、クエン酸、リンゴ酸、乳酸、琥珀酸、グリコール酸、ジグリコール酸及びそれらの塩よりなる群〜選ばれた1種以上であり、錯化剤のイオンの合計濃度が0.05g/L以上3g/L未満である請求項1〜4のいずれか一項に記載の処理液。   The complexing agent is at least one selected from the group consisting of tartaric acid, citric acid, malic acid, lactic acid, succinic acid, glycolic acid, diglycolic acid and salts thereof, and the total concentration of ions of the complexing agent is 0 The treatment liquid according to any one of claims 1 to 4, which is 0.05 g / L or more and less than 3 g / L. 金属イオンがアルカリ金属、アルカリ土類金属、チタン、バナジウム、マンガン、コバルト、ニッケル、錫よりなる群から選ばれた3種以上である請求項1〜6のいずれか一項に記載の処理液。   The treatment liquid according to any one of claims 1 to 6, wherein the metal ions are at least three selected from the group consisting of alkali metals, alkaline earth metals, titanium, vanadium, manganese, cobalt, nickel, and tin. 請求項1〜7のいずれか一項に記載された処理液にて処理する前に処理するための薬剤で、三価クロム、界面活性剤、ケイ素化合物、無機酸イオン、有機酸イオン、アンモニウムイオン、アミン化合物、水酸化物及び金属イオンよりなる群から選ばれた一種以上を含むプレ処理液。   It is a chemical | medical agent for processing before processing with the processing liquid as described in any one of Claims 1-7, Trivalent chromium, surfactant, silicon compound, inorganic acid ion, organic acid ion, ammonium ion A pretreatment liquid comprising at least one selected from the group consisting of amine compounds, hydroxides and metal ions. 請求項1〜7のいずれか一項に記載された処理液にて処理した後、更に処理するための薬剤で、三価クロム、界面活性剤、ケイ素化合物、オレフィン樹脂よりなる群から選ばれた一種以上を含む第二処理液。   A chemical for further treatment after treatment with the treatment liquid according to any one of claims 1 to 7, selected from the group consisting of trivalent chromium, a surfactant, a silicon compound, and an olefin resin. Second treatment liquid containing one or more types. 更に硫酸イオン、塩素イオン、硝酸イオン、塩素の酸素酸イオン、燐の酸素酸イオン及び硼素の酸素酸イオンよりなる群から選ばれた1種以上のアニオン;アルカリ土類金属、チタン、ジルコニウム、バナジウム、モリブデン、タングステン、マンガン、鉄、コバルト、ニッケル、金、銀、銅、錫及びアルミニウムよりなる群から選ばれた1種以上の金属イオン;並びにモノカルボン酸、ジカルボン酸、トリカルボン酸、ヒドロキシカルボン酸、アンモニア、アミン、アミノカルボン酸及びそれらの塩よりなる群から選ばれた1種以上のキレート剤;のいずれか1種以上を含むことを特徴とする請求項9に記載の第二処理液。   Further, one or more anions selected from the group consisting of sulfate ion, chlorine ion, nitrate ion, chlorine oxyacid ion, phosphorus oxyacid ion and boron oxyacid ion; alkaline earth metal, titanium, zirconium, vanadium One or more metal ions selected from the group consisting of molybdenum, tungsten, manganese, iron, cobalt, nickel, gold, silver, copper, tin and aluminum; and monocarboxylic acids, dicarboxylic acids, tricarboxylic acids, hydroxycarboxylic acids The second treatment liquid according to claim 9, comprising one or more chelating agents selected from the group consisting of ammonia, amines, aminocarboxylic acids, and salts thereof. 対象基材がニッケル共析率4〜12%の亜鉛ニッケル合金めっきである請求項1〜10のいずれか一項に記載の処理液。   The treatment liquid according to any one of claims 1 to 10, wherein the target substrate is zinc-nickel alloy plating having a nickel eutectoid rate of 4 to 12%. 亜鉛部材、亜鉛合金部材、亜鉛めっき品又は亜鉛合金めっき品を請求項1〜7のいずれか一項に記載の処理溶液に一回又は複数回接触させることを特徴とする六価クロムフリー被膜の形成方法。   A hexavalent chromium-free coating film characterized by bringing a zinc member, a zinc alloy member, a zinc-plated product, or a zinc alloy-plated product into contact with the treatment solution according to any one of claims 1 to 7 once or a plurality of times. Forming method. 亜鉛部材、亜鉛合金部材、亜鉛めっき品又は亜鉛合金めっき品を請求項8に記載のプレ処理液に一回又は複数回接触させた後、請求項1〜7のいずれか一項に記載の処理溶液に接触させることを特徴とする六価クロムフリー被膜の形成方法。   After making a zinc member, a zinc alloy member, a zinc plating product, or a zinc alloy plating product contact the pre-processing liquid of Claim 8 once or several times, the process as described in any one of Claims 1-7. A method for forming a hexavalent chromium-free coating, characterized by contacting with a solution. 請求項12又は13のいずれかに記載の方法で六価クロムフリー被膜を形成させた後、更に請求項9又は10に記載の第二処理剤溶液に一回又は複数回接触させることを特徴とする六価クロムフリー被膜の形成方法。   After the hexavalent chromium-free film is formed by the method according to claim 12 or 13, the film is further brought into contact with the second treating agent solution according to claim 9 or 10 once or a plurality of times. A method for forming a hexavalent chromium-free coating. 請求項12、13又は14のいずれか一項に記載の方法で形成した六価クロムフリー被膜上に更にオーバーコートを施す処理方法。   The processing method which further overcoats on the hexavalent chromium free film formed by the method as described in any one of Claim 12, 13, or 14. 請求項12〜15のいずれか一項に記載の方法で六価クロムフリー被膜を形成させた亜鉛部材、亜鉛合金部材、亜鉛めっき品又は亜鉛合金めっき品。   A zinc member, a zinc alloy member, a zinc-plated product, or a zinc alloy-plated product having a hexavalent chromium-free film formed by the method according to any one of claims 12 to 15.
JP2004048159A 2004-02-24 2004-02-24 Hexavalent chromium-free film-forming agent and method for zinc or zinc-nickel alloy plating Expired - Fee Related JP5061395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048159A JP5061395B2 (en) 2004-02-24 2004-02-24 Hexavalent chromium-free film-forming agent and method for zinc or zinc-nickel alloy plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048159A JP5061395B2 (en) 2004-02-24 2004-02-24 Hexavalent chromium-free film-forming agent and method for zinc or zinc-nickel alloy plating

Publications (2)

Publication Number Publication Date
JP2005240068A true JP2005240068A (en) 2005-09-08
JP5061395B2 JP5061395B2 (en) 2012-10-31

Family

ID=35022109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048159A Expired - Fee Related JP5061395B2 (en) 2004-02-24 2004-02-24 Hexavalent chromium-free film-forming agent and method for zinc or zinc-nickel alloy plating

Country Status (1)

Country Link
JP (1) JP5061395B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100196A (en) * 2005-10-07 2007-04-19 Sanoh Industrial Co Ltd Hexavalent chromium-free rust preventive film structure
JP2007321234A (en) * 2006-06-05 2007-12-13 Nippon Hyomen Kagaku Kk Trivalent chromium chemical conversion coating film tratment agent, trivalent chromium chemical conversion coating film tratment method, and trivalent chromium chemical conversion coating film trated product
JP4436885B1 (en) * 2009-04-09 2010-03-24 株式会社ムラタ Chemical conversion treatment liquid and chemical film forming method
US8097306B2 (en) 2006-09-07 2012-01-17 Nippon Steel Corporation Aqueous treating solution for Sn-based plated steel sheet excellent in corrosion resistance and paint adhesion, and production method of surface-treated steel sheet
JP2013147703A (en) * 2012-01-19 2013-08-01 Nippon Hyomen Kagaku Kk HIGH pH TRIVALENT CHROMIUM COLORED CHEMICAL CONVERSION COATING FILM TREATMENT LIQUID AND TREATMENT METHOD
EP2735626A2 (en) * 2007-08-03 2014-05-28 Dipsol Chemicals Co., Ltd. Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment
JPWO2012137677A1 (en) * 2011-04-01 2014-07-28 ユケン工業株式会社 Composition for chemical conversion treatment and method for producing member comprising chemical conversion film formed by the composition
EP3045563A1 (en) 2015-01-16 2016-07-20 Nihon Hyomen Kagaku Kabushiki Kaisha Treatment liquid for trivalent chromium conversion coating and method of treatment of metal substrate
JP7385275B2 (en) 2020-10-02 2023-11-22 日本表面化学株式会社 Cobalt-free chemical conversion coating treatment solution and chemical conversion coating treatment method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166074A (en) * 2001-11-30 2003-06-13 Dipsol Chem Co Ltd Treatment solution for forming hexavalent chromium- free rust preventive coating on plated film with zinc and zinc alloy, hexavalent chromium-free rust preventive coating and method for forming the same
JP2003313675A (en) * 2002-04-24 2003-11-06 Nippon Hyomen Kagaku Kk Agent for forming rust preventive film on metal, and forming method
JP2004010937A (en) * 2002-06-05 2004-01-15 Nippon Hyomen Kagaku Kk Colored rust-preventive film forming agent and method for forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166074A (en) * 2001-11-30 2003-06-13 Dipsol Chem Co Ltd Treatment solution for forming hexavalent chromium- free rust preventive coating on plated film with zinc and zinc alloy, hexavalent chromium-free rust preventive coating and method for forming the same
JP2003313675A (en) * 2002-04-24 2003-11-06 Nippon Hyomen Kagaku Kk Agent for forming rust preventive film on metal, and forming method
JP2004010937A (en) * 2002-06-05 2004-01-15 Nippon Hyomen Kagaku Kk Colored rust-preventive film forming agent and method for forming the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100196A (en) * 2005-10-07 2007-04-19 Sanoh Industrial Co Ltd Hexavalent chromium-free rust preventive film structure
JP2007321234A (en) * 2006-06-05 2007-12-13 Nippon Hyomen Kagaku Kk Trivalent chromium chemical conversion coating film tratment agent, trivalent chromium chemical conversion coating film tratment method, and trivalent chromium chemical conversion coating film trated product
US8097306B2 (en) 2006-09-07 2012-01-17 Nippon Steel Corporation Aqueous treating solution for Sn-based plated steel sheet excellent in corrosion resistance and paint adhesion, and production method of surface-treated steel sheet
EP2735626A2 (en) * 2007-08-03 2014-05-28 Dipsol Chemicals Co., Ltd. Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment
US11643732B2 (en) 2007-08-03 2023-05-09 Dipsol Chemicals Co., Ltd. Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment
EP2735626A3 (en) * 2007-08-03 2014-10-22 Dipsol Chemicals Co., Ltd. Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment
JP2010242198A (en) * 2009-04-09 2010-10-28 Murata:Kk Chemical conversion liquid and method for forming chemical conversion coating film
JP4436885B1 (en) * 2009-04-09 2010-03-24 株式会社ムラタ Chemical conversion treatment liquid and chemical film forming method
JPWO2012137677A1 (en) * 2011-04-01 2014-07-28 ユケン工業株式会社 Composition for chemical conversion treatment and method for producing member comprising chemical conversion film formed by the composition
JP2013147703A (en) * 2012-01-19 2013-08-01 Nippon Hyomen Kagaku Kk HIGH pH TRIVALENT CHROMIUM COLORED CHEMICAL CONVERSION COATING FILM TREATMENT LIQUID AND TREATMENT METHOD
EP3045563A1 (en) 2015-01-16 2016-07-20 Nihon Hyomen Kagaku Kabushiki Kaisha Treatment liquid for trivalent chromium conversion coating and method of treatment of metal substrate
US10260151B2 (en) 2015-01-16 2019-04-16 Nippon Hyomen Kagaku Kabushiki Kaisha Treatment liquid for trivalent chromium conversion coating and treatment method of metal substrate
JP7385275B2 (en) 2020-10-02 2023-11-22 日本表面化学株式会社 Cobalt-free chemical conversion coating treatment solution and chemical conversion coating treatment method using the same

Also Published As

Publication number Publication date
JP5061395B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
CA2465701C (en) Post-treatment for metal coated substrates
JP5198727B2 (en) Treatment solution for forming black hexavalent chromium-free conversion coating on zinc or zinc alloy
JP5007469B2 (en) Green trivalent chromium conversion coating
JP4738747B2 (en) Black film agent and black film forming method
RU2698874C1 (en) Liquid with trivalent chromium for chemical conversion treatment of a base from zinc or zinc alloy and a chemical conversion treatment method using
JP2016132785A (en) Trivalent chromium chemical conversion coating treatment solution and method for treating metal base material
JPH11335865A (en) Processing agent for forming protective coating film on metal and its formation
JP5061395B2 (en) Hexavalent chromium-free film-forming agent and method for zinc or zinc-nickel alloy plating
JP5549837B2 (en) Rust treatment solution for rust prevention of chromium plating film and rust prevention treatment method
WO2013183644A1 (en) Trivalent chromium-conversion processing solution containing aluminum-modified colloidal silica
RU2676364C1 (en) Chemical conversion liquid on basis of trivalent chrome for zinc substrates, or zinc alloy, and also chemical conversion coating film
JP5336742B2 (en) Chemical conversion treatment method for forming a trivalent chromium chemical conversion coating having good heat and corrosion resistance on zinc or zinc alloy plating
JP4384471B2 (en) Method of forming hexavalent chromium-free corrosion-resistant film on zinc-nickel alloy plating
JP5593532B2 (en) Chemical conversion aqueous solution for forming a chromium-free conversion coating on zinc or zinc alloy plating and a chromium-free conversion coating obtained therefrom
JP2006022364A (en) Treatment agent for forming protective film on metal, and forming method
JP5648245B2 (en) Method for forming chromium-free metal protective film and treatment agent for forming chromium-free metal protective film
JP4436885B1 (en) Chemical conversion treatment liquid and chemical film forming method
WO2019131766A1 (en) Metal surface treatment agent, metal material having surface treatment film, and method for manufacturing same
JP2007169772A (en) Coloring treatment method for hot dip galvanizing surface
JP2009270137A (en) Aqueous conversion treatment solution for forming chromium-free chemical conversion coating on plated film of zinc or zinc alloy, and chromium-free chemical conversion coating obtained from the same
JP6028165B2 (en) High pH trivalent chromium colored conversion coating solution and processing method
JP2017226925A (en) Trivalent chromium chemical conversion treatment liquid containing aluminum modified colloidal silica
JP2013001959A (en) Treatment liquid of non-chromium black chemical film for zinc-iron alloy plating film, and treatment method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110304

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110318

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120720

R150 Certificate of patent or registration of utility model

Ref document number: 5061395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees