JP2005239959A - Fluorescent colloidal solution, fluorescent fine particle contained therein, and fluorescence thin film - Google Patents

Fluorescent colloidal solution, fluorescent fine particle contained therein, and fluorescence thin film Download PDF

Info

Publication number
JP2005239959A
JP2005239959A JP2004054013A JP2004054013A JP2005239959A JP 2005239959 A JP2005239959 A JP 2005239959A JP 2004054013 A JP2004054013 A JP 2004054013A JP 2004054013 A JP2004054013 A JP 2004054013A JP 2005239959 A JP2005239959 A JP 2005239959A
Authority
JP
Japan
Prior art keywords
fluorescent
thin film
fine particles
colloidal solution
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004054013A
Other languages
Japanese (ja)
Inventor
Masashi Takei
正史 武居
Mikiko Nakanishi
三樹子 仲西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2004054013A priority Critical patent/JP2005239959A/en
Publication of JP2005239959A publication Critical patent/JP2005239959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescent colloidal solution which gives a great luminescence at a low exitation energy, is good in producibility, and is excellent in light transmission; a fluorescent fine particle contained in the same; and a fluorescence thin film using the same. <P>SOLUTION: The fluorescent colloidal solution comprises a fluorescent fine particle and a solvent dispersing the particle, wherein the fluorescent fine particle is a metal sulfide which is doped with an activator and has an average particle size of 1-10 nm, and the colloidal solution at a concentration of 10% gives a transmission of 50% or more for a visible ray measured by a spectrophotometer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光透過性に優れた蛍光コロイド液、それに含まれる蛍光微粒子およびそれを用いた蛍光薄膜に関するものである。   The present invention relates to a fluorescent colloid liquid excellent in light transmittance, fluorescent fine particles contained therein, and a fluorescent thin film using the same.

テレビジョン等のディスプレイにおいては、薄型化、低消費電力化および高解像度といった要求があり、プラズマディスプレイ(PDP)やエレクトロルミネッセンスディスプレイ(ELD)が注目されている。   In displays such as televisions, there are demands for thinning, low power consumption, and high resolution, and plasma displays (PDP) and electroluminescence displays (ELD) are attracting attention.

上記ディスプレイには種々の蛍光微粒子が、薄膜化されて用いられている。これらの蛍光微粒子は、焼成や粉砕により作製されるため、微粒子表面が球面体でなく凹凸面や多角面になり、粒子同志の凝集が生じやすく分散性に劣るものが多い。そのため、基材上に均一で緻密な薄膜を形成することが困難であった。   Various fluorescent fine particles are used in the display in the form of a thin film. Since these fluorescent fine particles are produced by firing or pulverization, the surface of the fine particles is not a spherical body but an uneven surface or a polygonal surface, and the particles tend to agglomerate and often have poor dispersibility. Therefore, it has been difficult to form a uniform and dense thin film on the substrate.

また、上記蛍光薄膜は、低い励起エネルギーで発光強度が大きいものが要求されており、この条件を満たすものとしてわずかに酸化亜鉛が実用化されているにすぎない。しかしこの酸化亜鉛は、数μm程度の粒径であり、今後の超高解像度化や高発光強度化には対応困難と見られている。蛍光微粒子では、粒径がミクロンオーダーより小さくなると発光強度が低下する傾向があり、粒径が数μmでは、光透過性が低く、低い励起エネルギーで発光させることが困難であった。   In addition, the fluorescent thin film is required to have low emission energy and high emission intensity, and zinc oxide is only practically used to satisfy this condition. However, this zinc oxide has a particle size of about several μm, and it is considered difficult to cope with future ultra-high resolution and high emission intensity. In the case of fluorescent fine particles, the emission intensity tends to decrease when the particle size is smaller than the micron order, and when the particle size is several μm, the light transmittance is low and it is difficult to emit light with low excitation energy.

近年、Zn、SiやGeを用いるII−IV族半導体超微粒子を有機化合物で表面修飾したナノオーダの粒子径を有する粒子が、ナノクリスタルとか量子ドットと呼ばれ注目されてきている。例えば、特許文献1には、「付活剤により付活した平均粒径2〜5nmのナノクリスタル蛍光体に対し紫外線照射を施して発光体が得られる」ことが記載されている。
特開2000−104058号公報(公開日平成12年4月11日)
In recent years, particles having a nano-order particle diameter obtained by modifying the surface of II-IV semiconductor ultrafine particles using Zn, Si or Ge with an organic compound have been attracting attention as nanocrystals or quantum dots. For example, Patent Document 1 describes that “a phosphor can be obtained by irradiating a nanocrystal phosphor having an average particle diameter of 2 to 5 nm activated by an activator with ultraviolet rays”.
JP 2000-104058 A (publication date April 11, 2000)

しかし、特許文献1に記載されている蛍光体には紫外線照射に時間を要し(実施例では7時間)、生産効率が悪く、励起エネルギー源に対する耐久性が不十分という問題がある。   However, the phosphor described in Patent Document 1 requires time for ultraviolet irradiation (7 hours in the embodiment), has a problem of poor production efficiency and insufficient durability against an excitation energy source.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、今後のディスプレイの超高解像度化に対応可能な、低い励起エネルギーで発光強度が大きく、生産性が良好で、光透過性に優れた蛍光コロイド液、それに含まれる蛍光微粒子およびそれを用いた蛍光薄膜を実現することにある。   The present invention has been made in view of the above-mentioned problems, and its purpose is to cope with future ultra-high resolution displays with low excitation energy, high emission intensity, high productivity, The object is to realize a fluorescent colloid solution having excellent permeability, fluorescent fine particles contained therein, and a fluorescent thin film using the same.

本発明に係る蛍光コロイド液は、上記課題を解決するために、蛍光微粒子とそれを分散させる媒体を含む蛍光コロイド液において、蛍光微粒子が、付活剤がドープされた平均粒径1〜10nmの硫化金属であり、濃度10%のコロイド液の分光光度計による可視光の透過率が50%以上であることを特徴としている。   In order to solve the above problems, a fluorescent colloid liquid according to the present invention is a fluorescent colloid liquid containing fluorescent fine particles and a medium in which the fluorescent fine particles are dispersed. The fluorescent fine particles have an average particle diameter of 1 to 10 nm doped with an activator. It is a metal sulfide and is characterized by having a visible light transmittance of 50% or more by a spectrophotometer of a colloid liquid having a concentration of 10%.

上記の構成によれば、低い励起エネルギー(光)を損失少なく硫化金属にとどけることができ、付活剤と協働で強い発光を得ることができる。   According to said structure, low excitation energy (light) can be limited to a metal sulfide with little loss, and strong light emission can be obtained in cooperation with an activator.

また、本発明に係る蛍光コロイド液は、上記構成において、蛍光微粒子が、表面修飾されていることを特徴としている。   Further, the fluorescent colloidal liquid according to the present invention is characterized in that, in the above configuration, the fluorescent fine particles are surface-modified.

上記の構成によれば、表面修飾層を通して外部からの励起エネルギーを効率よく、蛍光微粒子に伝えることができ、しかも発光を外部に効率良く発することができる。   According to the above configuration, excitation energy from the outside can be efficiently transmitted to the fluorescent fine particles through the surface modification layer, and light emission can be efficiently emitted to the outside.

また、本発明に係る蛍光コロイド液は、上記構成において、液相で合成されたものであることを特徴としている。   In addition, the fluorescent colloidal liquid according to the present invention is characterized in that it is synthesized in the liquid phase in the above configuration.

上記の構成によれば、液相で反応させて微粒子に形成するため、粉砕面や割れ面がなく球面に近い微粒子が得られ蛍光微粒子表面での乱反射損失が少なくなる。また、規則的配列を形成しやすく、結晶が得られやすい。   According to the above configuration, since the particles are formed by reacting in the liquid phase, fine particles close to a spherical surface without a pulverized surface or a crack surface are obtained, and irregular reflection loss on the surface of the fluorescent fine particles is reduced. Moreover, it is easy to form a regular arrangement, and it is easy to obtain crystals.

また、本発明に係る蛍光コロイド液は、上記構成において、硫化金属が、硫化亜鉛(ZnS)であり、付活剤がマンガン(Mn)であることを特徴としている。   Moreover, the fluorescent colloidal liquid according to the present invention is characterized in that, in the above configuration, the metal sulfide is zinc sulfide (ZnS) and the activator is manganese (Mn).

上記の構成によれば、この組み合わせは、低エネルギーで励起でき、発光強度が大きい、好ましい組み合わせである。この組み合わせの蛍光微粒子をZnS:Mnと表わす。   According to the above configuration, this combination is a preferable combination that can be excited with low energy and has high emission intensity. The fluorescent fine particles of this combination are represented as ZnS: Mn.

また、本発明に係る蛍光微粒子は、上記いずれかの蛍光コロイド液に含まれる微粒子を分離、乾燥したことを特徴としている。   The fluorescent fine particles according to the present invention are characterized in that the fine particles contained in any of the fluorescent colloidal liquids are separated and dried.

また、本発明に係る蛍光薄膜は、上記いずれかの蛍光コロイド液にバインダ樹脂を添加した塗工液を塗工してなる、膜厚が10〜50μmの蛍光薄膜であって、隣接蛍光微粒子が接触して充填したときの微粒子占有面積に対する薄膜の微粒子占有面積の比率である充填率が70%以上であり、薄膜に可視光を照射した時の光透過率が50%以上であることを特徴としている。   The fluorescent thin film according to the present invention is a fluorescent thin film having a film thickness of 10 to 50 μm formed by applying a coating liquid obtained by adding a binder resin to any one of the above fluorescent colloid liquids. The filling ratio, which is the ratio of the fine particle occupation area of the thin film to the fine particle occupation area when filled in contact, is 70% or more, and the light transmittance when the thin film is irradiated with visible light is 50% or more. It is said.

上記の構成によれば、液相で合成され、平均粒子径がナノオーダで粒子表面が球面に近いので、表面修飾をしているにも係わらず、密に充填しやすく、粒子表面の修飾物質および粒子間のバインダ樹脂が透明性に優れるので光透過率も良好な薄膜が得られる。従って、従来粒径が数μmオーダーのZnO:Znや市販のZnS粒子を用いた薄膜に対し、同じ透過度で比較すると、膜厚を約20%薄くできる。   According to the above configuration, since the particles are synthesized in a liquid phase, the average particle diameter is nano-order, and the particle surface is close to a spherical surface, it is easy to pack densely despite the surface modification, and the particle surface modifying substance and Since the binder resin between the particles is excellent in transparency, a thin film with good light transmittance can be obtained. Therefore, when compared with a conventional thin film using ZnO: Zn having a particle diameter of several μm or commercially available ZnS particles at the same transmittance, the film thickness can be reduced by about 20%.

本発明に係る蛍光コロイド液は、以上のように、蛍光微粒子が、付活剤がドープされた平均粒径1〜10nmの硫化金属であり、濃度10%のコロイド液の分光光度計による可視光の透過率が50%以上であるので、低い励起エネルギー(光)を損失少なく硫化金属にとどけることができ、付活剤と協働で強い発光を得ることができるという効果を奏する。   As described above, the fluorescent colloid liquid according to the present invention is a metal sulfide having an average particle diameter of 1 to 10 nm doped with an activator, and visible light by a spectrophotometer of a colloid liquid having a concentration of 10%. Therefore, low excitation energy (light) can be transferred to the metal sulfide with little loss, and strong light emission can be obtained in cooperation with the activator.

本発明の一実施形態について説明すると以下の通りである。   An embodiment of the present invention will be described as follows.

本発明に係る蛍光コロイド液は、上述したように、蛍光微粒子とそれを分散させる媒体を含む蛍光コロイド液において、蛍光微粒子が、付活剤がドープされた平均粒径1〜10nmの硫化金属であり、濃度10%のコロイド液の分光光度計による可視光の透過率が50%以上である。   As described above, the fluorescent colloid liquid according to the present invention is a fluorescent colloid liquid containing fluorescent fine particles and a medium in which the fluorescent fine particles are dispersed. The fluorescent fine particles are metal sulfide having an average particle diameter of 1 to 10 nm doped with an activator. Yes, the transmittance of visible light by a spectrophotometer of a colloidal solution having a concentration of 10% is 50% or more.

付活剤とは、発光微粒子にドープして励起された発光微粒子のエネルギーを享受し低下させる落差により発光するために用いられるもので、マンガン(Mn)、銅(Cu.)、アルミニウム(Al)、テルビウム(Tb)、ツリウム(Tm)等の金属原子や塩素(Cl)、フッ素(F)等のハロゲンが挙げられる。Mn、Cu、Agの場合は酢酸塩として、Al、Tb、Tmの場合は硝酸塩として、またハロゲンの場合は、CuCl、AgCl、NaF等の金属塩の形で反応系に導入される。   The activator is used to emit light by a drop that enjoys and reduces the energy of the luminescent fine particles excited by being doped into the luminescent fine particles. Manganese (Mn), copper (Cu.), Aluminum (Al) , Metal atoms such as terbium (Tb) and thulium (Tm), and halogens such as chlorine (Cl) and fluorine (F). In the case of Mn, Cu, or Ag, it is introduced into the reaction system as an acetate salt, in the case of Al, Tb, or Tm, as a nitrate salt, and in the case of halogen, it is introduced into the reaction system in the form of a metal salt such as CuCl, AgCl, or NaF.

ドープとは、蛍光微粒子にアロイ状に分散含有している状態を示す。   Doping refers to a state in which the fluorescent fine particles are dispersed and contained in an alloy form.

発光微粒子は、励起されると固有の発色発光を程する性質を有し、青緑系発光の硫化亜鉛(ZnS)が代表的であり、硫化カドミウム(CdS)、セレン化亜鉛(ZnSe)や赤色発光系のユウピロムを含むイットリウム系酸化物(Y2O3S:Eu2+やY2O3:Eu)が挙げられる。これら微粒子は、酢酸金属塩や硝酸金属塩の溶液又は分散液にし、付活剤金属の酢酸塩や硝酸塩の溶液又は分散液と反応させ、それに硫黄含有化合物の溶液又は分散液を添加して反応させ、ほぼ球体の微粒子で得られる。 Luminescent fine particles have the property of producing unique color emission when excited, and are typically blue-green luminescent zinc sulfide (ZnS), such as cadmium sulfide (CdS), zinc selenide (ZnSe) and red. Examples thereof include yttrium-based oxides (Y 2 O 3 S: Eu 2+ and Y 2 O 3: Eu) containing a light-emitting system. These fine particles are converted into a solution or dispersion of an acetate metal salt or nitrate metal salt, reacted with an activator metal acetate or nitrate solution or dispersion, and added with a solution or dispersion of a sulfur-containing compound to react. To obtain almost spherical fine particles.

また、本発明に係る蛍光コロイド液は、上記構成において、蛍光微粒子が、表面修飾されているようにすることが、分散安定性に優れ、好ましい。   In the fluorescent colloid liquid according to the present invention, in the above configuration, it is preferable that the fluorescent fine particles are surface-modified because of excellent dispersion stability.

表面修飾とは、微粒子の表面に物理的または化学的に結合して被覆している状態を示し、修飾物質としては、無機または有機化合物および重合体を含むものがある。本願では、特に透明性に優れ、蛍光微粒子との結合が良好な点で、ポリリン酸ナトリウム等のポリリン酸塩やメタクリル酸等の有機酸が好ましく用いられる。表面修飾層を有する粒子の外径は、コアとなる蛍光微粒子の外径に対し、1.2〜5.0倍の範囲が、励起エネルギー(光)および発光の透過の点で好ましく、特に1.5〜3倍の範囲が好ましい。   The surface modification refers to a state where the surface of the fine particles is physically or chemically bonded and coated, and examples of the modifying substance include inorganic or organic compounds and polymers. In the present application, a polyphosphate such as sodium polyphosphate or an organic acid such as methacrylic acid is preferably used because it is particularly excellent in transparency and has a good bond with the fluorescent fine particles. The outer diameter of the particles having the surface modification layer is preferably 1.2 to 5.0 times the outer diameter of the core fluorescent fine particles in terms of excitation energy (light) and transmission of light emission. The range of 5 to 3 times is preferable.

また、本発明に係る蛍光コロイド液は、上記構成において、液相で合成されたものであることが、光学特性に優れた粒子形状が得られやすく、好ましい。   In addition, it is preferable that the fluorescent colloidal liquid according to the present invention is synthesized in a liquid phase in the above configuration, because it is easy to obtain a particle shape having excellent optical characteristics.

また、本発明に係る蛍光コロイド液は、上記構成において、硫化金属が、硫化亜鉛(ZnS)であり、付活剤がマンガン(Mn)であるようにすることが、低い励起エネルギーで強い発光が得られやすく、好ましい。   In the fluorescent colloidal liquid according to the present invention, in the above structure, the metal sulfide is zinc sulfide (ZnS) and the activator is manganese (Mn). It is easy to obtain and preferable.

また、本発明に係る蛍光微粒子は、上記いずれかの蛍光コロイド液に含まれる微粒子を分離、乾燥させて得ることができ、コロイド液以外への用途展開が可能となる。   Moreover, the fluorescent fine particles according to the present invention can be obtained by separating and drying the fine particles contained in any of the fluorescent colloidal liquids described above, and can be used for applications other than colloidal liquids.

また、本発明に係る蛍光薄膜は、上記いずれかの蛍光コロイド液にバインダ樹脂を添加した塗工液を塗工してなる、膜厚が10〜50μmの蛍光薄膜であって、隣接蛍光微粒子が接触して充填したときの微粒子占有面積に対する薄膜の微粒子占有面積の比率である充填率が70%以上であり、薄膜に可視光を照射した時の光透過率が50%以上であるようにすることができる。   The fluorescent thin film according to the present invention is a fluorescent thin film having a film thickness of 10 to 50 μm formed by applying a coating liquid obtained by adding a binder resin to any one of the above fluorescent colloid liquids. The filling rate, which is the ratio of the fine particle occupation area of the thin film to the fine particle occupation area when filled in contact, is 70% or more, and the light transmittance when the thin film is irradiated with visible light is 50% or more. be able to.

表1中、Aとして示すように、表面修飾剤としてのポリリン酸ナトリウム10gを超純水50gに溶解した液に、0.1モル濃度の酢酸マンガン四水和物(和光純薬社製、純度:99.9%)溶液20mlと1モル濃度の酢酸亜鉛二水和物(和光純薬社製、純度:99.9%)溶液20mlとを加え、マグネチックスタラーで約10分撹拌し溶解した。完全溶解を目視確認し、1モル濃度の硫化ナトリウム九水和物(Aldrich社製)20mlを撹拌しながら一気に添加し10分間そのまま反応させた。反応生成物を遠心分離機にかけて分離・洗浄した後、イオン交換水に再分散し、濃度10%の本発明の蛍光コロイド液(濃度10重量%)を得た。また、上記分離・洗浄後、溶媒をエタノールに置換し、真空乾燥して本発明の蛍光微粒子を得た。   In Table 1, as shown as A, in a solution obtained by dissolving 10 g of sodium polyphosphate as a surface modifier in 50 g of ultrapure water, 0.1 molar manganese acetate tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd., purity : 99.9%) 20 ml of a solution and 20 ml of a 1 molar zinc acetate dihydrate (Wako Pure Chemical Industries, Ltd., purity: 99.9%) solution were added and dissolved by stirring for about 10 minutes with a magnetic stirrer. . The complete dissolution was visually confirmed, and 20 ml of 1 molar sodium sulfide nonahydrate (manufactured by Aldrich) was added all at once with stirring and allowed to react for 10 minutes. The reaction product was separated and washed with a centrifuge, and then redispersed in ion-exchanged water to obtain a fluorescent colloid solution of the present invention having a concentration of 10% (concentration of 10% by weight). Further, after the separation and washing, the solvent was replaced with ethanol, and vacuum drying was performed to obtain the fluorescent fine particles of the present invention.

得られたコロイド液をX線回折装置(理学電子社製RINT2500)にかけ、シェラー式で換算した平均粒径を求めた。   The obtained colloidal solution was applied to an X-ray diffractometer (RINT 2500 manufactured by Rigaku Denshi Co., Ltd.), and the average particle size converted by the Scherrer equation was determined.

また、得られた蛍光コロイド液を、分光光度計(日立製作所製U−3500)にかけ、可視域である波長500nmの光を当てたときの透過率を測定した。結果を表1に示す。   Further, the obtained fluorescent colloid liquid was applied to a spectrophotometer (U-3500, manufactured by Hitachi, Ltd.), and the transmittance was measured when light having a wavelength of 500 nm, which is a visible range, was applied. The results are shown in Table 1.

得られた蛍光コロイド液(濃度10重量%)0.66gに、バインダ樹脂としてポリビニルアルコール水溶液(和光純薬社製:濃度5重量%)0.6gを加え、ペースト状の塗布液を作製し、アセトン洗浄したガラス面上にシリコン枠で作製した1cm角のスペースに注入塗布し、自然乾燥させて薄膜を形成した。   To 0.66 g of the obtained fluorescent colloid liquid (concentration 10 wt%), 0.6 g of polyvinyl alcohol aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd .: concentration 5 wt%) is added as a binder resin to prepare a paste-like coating liquid, A thin film was formed by injecting and coating into a 1 cm square space made of a silicon frame on a glass surface cleaned with acetone and naturally drying.

得られた薄膜の厚みをダイアルゲージで測定し、蛍光微粒子の充填率を走査電子顕微鏡(SEM)による画像より、光透過率を分光光度計にかけ可視域の波長500nmを照射して測定し、発光強度を蛍光リン光測定装置(パーキンエルマー社LS−55)により測定した。   The thickness of the obtained thin film is measured with a dial gauge, and the filling rate of the fluorescent fine particles is measured by irradiating a wavelength of 500 nm in the visible region with a spectrophotometer on the basis of an image obtained by a scanning electron microscope (SEM). The intensity was measured with a fluorescent phosphorescence measuring device (Perkin Elmer LS-55).

表1中、Bとして示すように、ポリリン酸ナトリウム20gを超純水50gに溶解した液を用いた以外、実施例1と同様にして本発明の蛍光コロイド液、蛍光微粒子および蛍光薄膜を得、平均粒径、コロイド液および薄膜の可視光透過率、薄膜厚さ、発光強度を測定した。   As shown in Table 1, as B, except that a solution obtained by dissolving 20 g of sodium polyphosphate in 50 g of ultrapure water was used, the fluorescent colloid liquid, fluorescent fine particles and fluorescent thin film of the present invention were obtained in the same manner as in Example 1, The average particle diameter, the visible light transmittance of the colloidal solution and the thin film, the thin film thickness, and the emission intensity were measured.

表1中、Cとして示すように、ポリリン酸ナトリウム2gを超純水50gに溶解した液を用いた以外、実施例1と同様にして本発明の蛍光コロイド手夜、蛍光微粒子および蛍光薄膜を得、平均粒径、コロイド液および薄膜の可視光透過率、薄膜厚さ、発光強度を測定した。   As shown in Table 1, as shown as C, except for using a solution obtained by dissolving 2 g of sodium polyphosphate in 50 g of ultrapure water, the fluorescent colloidal night, fluorescent fine particles and fluorescent thin film of the present invention were obtained in the same manner as in Example 1. The average particle diameter, the visible light transmittance of the colloidal liquid and the thin film, the thin film thickness, and the emission intensity were measured.

〔比較例1〕
表1中、Dとして示すように、表面修飾剤としてのポリリン酸ナトリウム30gを超純水60gに溶解した液に、0.1モル濃度の酢酸マンガン四水和物(和光純薬社製、純度:99.9%)溶液15mlと1モル濃度の酢酸亜鉛二水和物(和光純薬社製、純度:99.9%)溶液15mlとを加え、マグネチックスタラーで約10分撹拌し溶解した。完全溶解を目視確認し、1モル濃度の硫化ナトリウム九水和物(Aldrich社製)15mlを加えた以外、実施例1と同様にして蛍光コロイド液、蛍光微粒子および蛍光薄膜を得、平均粒径、コロイド液および薄膜の可視光透過率、薄膜厚さ、発光強度を測定した。
[Comparative Example 1]
In Table 1, as indicated by D, 0.1 mol of manganese acetate tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd., purity) was obtained by dissolving 30 g of sodium polyphosphate as a surface modifier in 60 g of ultrapure water. : 99.9%) solution 15 ml and 1 molar zinc acetate dihydrate (Wako Pure Chemical Industries, Ltd., purity: 99.9%) solution 15 ml were added and dissolved with stirring for about 10 minutes with a magnetic stirrer. . The complete dissolution was visually confirmed, and a fluorescent colloid solution, fluorescent fine particles and fluorescent thin film were obtained in the same manner as in Example 1 except that 15 ml of 1 molar sodium sulfide nonahydrate (Aldrich) was added. The visible light transmittance, thin film thickness, and emission intensity of the colloidal solution and the thin film were measured.

〔比較例2〕
表1中、Eとして示すように、ポリリン酸ナトリウム1.5gを超純水50gに溶解した液を用いた以外、実施例1と同様にして本発明の蛍光コロイド液、蛍光微粒子および蛍光薄膜を得、平均粒径、コロイド液および薄膜の可視光透過率、薄膜厚さ、発光強度を測定した。
[Comparative Example 2]
As shown in Table 1, E is the same as in Example 1 except that a solution obtained by dissolving 1.5 g of sodium polyphosphate in 50 g of ultrapure water was used. The average particle diameter, the colloidal liquid and the visible light transmittance of the thin film, the thin film thickness, and the emission intensity were measured.

〔比較例3〕
表1中、Fとして示すように、平均粒子径4.4μmの市販のZnS:Mn微粒子0.06gを超純水0.6gに添加し、5重量%のポリビニルアルコール溶液0.6gを加え、マグネチックスタラーで賛辞分散させた以外、実施例1と同様にして薄膜を得、膜厚、膜の可視光透過率および発光強度を測定した。
[Comparative Example 3]
In Table 1, as shown as F, 0.06 g of commercially available ZnS: Mn fine particles having an average particle diameter of 4.4 μm was added to 0.6 g of ultrapure water, and 0.6 g of 5 wt% polyvinyl alcohol solution was added. A thin film was obtained in the same manner as in Example 1 except that the compliment was dispersed using a magnetic stirrer, and the film thickness, the visible light transmittance and the emission intensity of the film were measured.

Figure 2005239959
Figure 2005239959

本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.

光透過性に優れた蛍光コロイド液、それに含まれる蛍光微粒子およびそれを用いた蛍光薄膜を実現でき、それによって、プラズマディスプレイやエレクトロルミネッセンスディスプレイ等のディスプレイのような用途にも適用できる。   A fluorescent colloid liquid excellent in light transmittance, fluorescent fine particles contained therein, and a fluorescent thin film using the same can be realized, and accordingly, it can be applied to uses such as displays such as plasma displays and electroluminescence displays.

Claims (6)

蛍光微粒子とそれを分散させる媒体を含む蛍光コロイド液において、蛍光微粒子が、付活剤がドープされた平均粒径1〜10nmの硫化金属であり、濃度10%のコロイド液の分光光度計による可視光の透過率が50%以上であることを特徴とする蛍光コロイド液。   In a fluorescent colloid liquid containing fluorescent fine particles and a medium in which the fine particles are dispersed, the fluorescent fine particles are metal sulfide having an average particle diameter of 1 to 10 nm doped with an activator, and a colloid liquid having a concentration of 10% is visible by a spectrophotometer. A fluorescent colloidal solution having a light transmittance of 50% or more. 蛍光微粒子が、表面修飾されていることを特徴とする請求項1の蛍光コロイド液。   2. The fluorescent colloidal liquid according to claim 1, wherein the fluorescent fine particles are surface-modified. 液相で合成されたものであることを特徴とする請求項1および2の蛍光コロイド液。   3. The fluorescent colloidal liquid according to claim 1 or 2, which is synthesized in a liquid phase. 硫化金属が、硫化亜鉛(ZnS)であり、付活剤がマンガン(Mn)であることを特徴とする請求項1ないし3のいずれかに記載の蛍光コロイド液。   The fluorescent colloidal solution according to any one of claims 1 to 3, wherein the metal sulfide is zinc sulfide (ZnS) and the activator is manganese (Mn). 請求項1ないし4のいずれかに記載の蛍光コロイド液に含まれる微粒子を分離、乾燥したことを特徴とする蛍光微粒子。   5. A fluorescent fine particle obtained by separating and drying the fine particles contained in the fluorescent colloidal solution according to claim 1. 請求項1ないし4のいずれかに記載の蛍光コロイド液にバインダ樹脂を添加した塗工液を塗工してなる、膜厚が10〜50μmの蛍光薄膜であって、隣接蛍光微粒子が接触して充填したときの微粒子占有面積に対する薄膜の微粒子占有面積の比率である充填率が70%以上であり、薄膜に可視光を照射した時の光透過率が50%以上であることを特徴とする蛍光薄膜。   A fluorescent thin film having a thickness of 10 to 50 µm, which is obtained by coating a fluorescent colloid liquid according to any one of claims 1 to 4 with a binder resin added thereto, and adjacent fluorescent fine particles are in contact with each other. Fluorescence characterized in that the filling ratio, which is the ratio of the fine particle occupation area of the thin film to the fine particle occupation area when filled, is 70% or more, and the light transmittance when the thin film is irradiated with visible light is 50% or more. Thin film.
JP2004054013A 2004-02-27 2004-02-27 Fluorescent colloidal solution, fluorescent fine particle contained therein, and fluorescence thin film Pending JP2005239959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004054013A JP2005239959A (en) 2004-02-27 2004-02-27 Fluorescent colloidal solution, fluorescent fine particle contained therein, and fluorescence thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004054013A JP2005239959A (en) 2004-02-27 2004-02-27 Fluorescent colloidal solution, fluorescent fine particle contained therein, and fluorescence thin film

Publications (1)

Publication Number Publication Date
JP2005239959A true JP2005239959A (en) 2005-09-08

Family

ID=35022019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004054013A Pending JP2005239959A (en) 2004-02-27 2004-02-27 Fluorescent colloidal solution, fluorescent fine particle contained therein, and fluorescence thin film

Country Status (1)

Country Link
JP (1) JP2005239959A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102394A1 (en) * 2006-03-09 2007-09-13 Konica Minolta Medical & Graphic, Inc. Nano-phosphor and nano-phosphor composite
JP2010155729A (en) * 2008-12-26 2010-07-15 Sumitomo Osaka Cement Co Ltd Transparent ceramic formed body
KR101350257B1 (en) 2012-08-28 2014-01-16 연세대학교 산학협력단 Preparing method for fluorescence film, fluorescence film thereby, and display device containing the film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102394A1 (en) * 2006-03-09 2007-09-13 Konica Minolta Medical & Graphic, Inc. Nano-phosphor and nano-phosphor composite
JP2010155729A (en) * 2008-12-26 2010-07-15 Sumitomo Osaka Cement Co Ltd Transparent ceramic formed body
KR101350257B1 (en) 2012-08-28 2014-01-16 연세대학교 산학협력단 Preparing method for fluorescence film, fluorescence film thereby, and display device containing the film

Similar Documents

Publication Publication Date Title
WO2004007636A1 (en) Composite nanoparticle and process for producing the same
Zhang et al. Synthesis and characterization of monodisperse doped ZnS nanospheres with enhanced thermal stability
JP5568181B2 (en) Halosilicate luminescent material, its production method and its application
Shao et al. Highly efficient and stable blue-emitting CsPbBr3@ SiO2 nanospheres through low temperature synthesis for nanoprinting and WLED
US20060222757A1 (en) Method for making phosphors
JP5371011B2 (en) Novel nanoparticle emitter
JP5252621B2 (en) Flexible fluorescent film based on clay
CN102471681B (en) Co-doped silicooxynitrides
JP2008063446A (en) Coated phosphor, method for producing the same and light-emitting device comprising the coated phosphor
JP2009173882A (en) Core-shell type quantum dot fluorescent fine particle
JP4534042B2 (en) Phosphor nanoparticles and method for producing the same
JP2005139389A (en) Semiconductor of ultrafine particle
JP5009792B2 (en) Fine particles and red fluorescence conversion medium using the same
Gugula et al. Facile surface engineering of CuInS 2/ZnS quantum dots for LED down-converters
JP2007246873A (en) Phosphor thin film and method for producing the same, fluorescent laminate, and light emitting device
Rafiaei et al. Synthesis and luminescence properties of transparent YVO4: Eu3+ phosphors
Ferhi et al. Hydrothermal synthesis and luminescence properties of nanospherical SiO2@ LaPO4: Eu3+ (5%) composite
JP2011089137A (en) Composite particle
JP3988309B2 (en) Phosphor and method for producing the same
JPH11166180A (en) Phosphor and production thereof
JP4270500B2 (en) Method for producing nanocrystal phosphor
JP2008037961A (en) Sheet-like fluorescent particle and method for producing the same
JP2005239959A (en) Fluorescent colloidal solution, fluorescent fine particle contained therein, and fluorescence thin film
Zhang et al. Preparation of CsPb (Cl/Br) 3/TiO2: Eu3+ composites for white light emitting diodes
Li et al. Stable and water-soluble CdTe@ SiO2 composite nanospheres: Preparation, characterization and application in LED