JP2005239843A - Prepreg excellent in homogeneity and surface smoothness, and its manufacturing method - Google Patents

Prepreg excellent in homogeneity and surface smoothness, and its manufacturing method Download PDF

Info

Publication number
JP2005239843A
JP2005239843A JP2004050519A JP2004050519A JP2005239843A JP 2005239843 A JP2005239843 A JP 2005239843A JP 2004050519 A JP2004050519 A JP 2004050519A JP 2004050519 A JP2004050519 A JP 2004050519A JP 2005239843 A JP2005239843 A JP 2005239843A
Authority
JP
Japan
Prior art keywords
prepreg
thermoplastic resin
fiber material
reinforcing fiber
surface smoothness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004050519A
Other languages
Japanese (ja)
Inventor
Yoshio Iizuka
佳夫 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2004050519A priority Critical patent/JP2005239843A/en
Publication of JP2005239843A publication Critical patent/JP2005239843A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg excellent in homogeneity and surface smoothness which consists of a sheet-like reinforcing fiber material and a thermoplastic resin impregnated into it. <P>SOLUTION: The manufacture of the prepreg by impregnating the sheet-like reinforcing fiber material with the thermoplastic resin comprises: dipping the fiber material into a suspension, obtained by dispersing the thermoplastic resin powder into one or more organic solvent(s) selected from alcohols, ketones and halogenated hydrocarbons or a mixed solvent of such organic solvent(s) and water, to let the resin powder adhere to this fiber material; then heating the fiber material attached with the resin powder at 170-390°C to melt the resin powder; and subsequently heating by using a pair of upper-and-lower heating/pressing rollers at a roller pressure of 3-10 km/cm and a roller temperature of (Tg+15) to (Tg+100)°C to impregnate the fiber material with the resin and to make the sheet-like reinforcing fiber material and the thermoplastic resin form a unity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、シート状の強化繊維材料とこれに含浸せしめられた熱可塑性樹脂とからなる、均一性と表面平滑性に優れたプリプレグとその製造法に関する。 The present invention relates to a prepreg comprising a sheet-like reinforcing fiber material and a thermoplastic resin impregnated therein and excellent in uniformity and surface smoothness, and a method for producing the same.

近年、炭素繊維、ガラス繊維、アラミド繊維等の強化繊維材料は、各種のマトリックス樹脂と複合化され、得られる強化繊維複合材料は種々の分野・用途に広く利用されるようになってきた。そして、高度の機械的特性や耐熱性等を要求される航空・宇宙分野や、一般産業分野では、従来、マトリックス樹脂として、不飽和ポリエステル樹脂、エポキシ樹脂、ポリイミド樹脂等の熱硬化性樹脂が使用されてきた。しかし、特に航空・宇宙分野では、これらのマトリックス樹脂は、脆く、耐衝撃性に劣るという欠点を有するため、その改善が求められてきた。また、熱硬化性樹脂の場合、これをプリプリグとしたとき、樹脂のライフ等によるプリプレグの保存管理上の問題点や、成形時間が長く生産性が低い等の問題もあった。   In recent years, reinforcing fiber materials such as carbon fibers, glass fibers, and aramid fibers have been combined with various matrix resins, and the resulting reinforcing fiber composite materials have been widely used in various fields and applications. And in the aerospace field and general industrial fields where high mechanical properties and heat resistance are required, conventionally, thermosetting resins such as unsaturated polyester resin, epoxy resin, and polyimide resin have been used as matrix resins. It has been. However, especially in the aerospace field, these matrix resins have the drawbacks of being brittle and inferior in impact resistance, and therefore, improvement has been demanded. Further, in the case of a thermosetting resin, when this is used as a prepreg, there are problems in the storage management of the prepreg due to the life of the resin, and problems such as a long molding time and low productivity.

これに対して、熱可塑性樹脂プリプレグの場合は、複合材料としたときの耐衝撃性が優れ、プリプレグの保存管理が容易で、かつ成形時間が短く、成形コスト低減の可能性もある。熱可塑性樹脂プリプレグの製造法としては、従来、例えば、フイルム状の樹脂を加熱溶融して強化繊維材料に含浸させる方法(溶融含浸法)、粉末状の樹脂を流動床法や懸濁法によって強化繊維材料に塗布・融着させる方法(パウダー法)、樹脂を溶液化し、強化繊維材料に含浸後溶媒を除去する方法(溶液含浸法)が知られている。しかしながら、溶融含浸法は、樹脂の溶融粘度が高いため繊維材料の内部にまで均一に樹脂を含浸させるのが困難であり、パウダー法では、樹脂の付着量を調整するのが難しく、溶液含浸法では、使用できる樹脂や溶媒の種類が制限されるという問題点・欠点があった。 On the other hand, in the case of a thermoplastic resin prepreg, the impact resistance when it is made into a composite material is excellent, the storage management of the prepreg is easy, the molding time is short, and the molding cost may be reduced. Conventional methods for producing a thermoplastic resin prepreg include, for example, a method in which a film-like resin is heated and melted to impregnate a reinforcing fiber material (melting impregnation method), and a powdery resin is reinforced by a fluidized bed method or a suspension method. A method of applying and fusing to a fiber material (powder method) and a method of making a resin into a solution and removing the solvent after impregnating the reinforcing fiber material (solution impregnation method) are known. However, the melt impregnation method has a high melt viscosity of the resin, so it is difficult to uniformly impregnate the resin into the inside of the fiber material. In the powder method, it is difficult to adjust the amount of the resin adhered, and the solution impregnation method However, there are problems and drawbacks in that the types of resins and solvents that can be used are limited.

従来技術を改良したプリプレグの製造方法として、熱可塑性樹脂の粉末をアルコール等の有機溶媒又は有機溶媒と水との混合溶媒に分散させてサスペンジョンとし、かかるサスペンジョンに炭素繊維のストランド又はシートを浸漬し、樹脂粉末をストランド又はシートに付着させた後加熱して、樹脂を溶融させて熱可塑性樹脂と炭素繊維のストランド又はシートを一体化させる方法が提案されている。この方法によると、樹脂が比較的均一に含浸したプリプレグ(含浸樹脂量のバラツキ値が4.2〜5.0)が得られること、更にサスペンジョンに通電処理を行う方法を組合わせると、バラツキ値が2.8〜3.8のものも得られたことが例示されている。
特公平4−12894
As a prepreg manufacturing method improved from the prior art, a thermoplastic resin powder is dispersed in an organic solvent such as alcohol or a mixed solvent of an organic solvent and water to form a suspension, and a carbon fiber strand or sheet is immersed in the suspension. A method has been proposed in which resin powder is attached to a strand or sheet and then heated to melt the resin so that the thermoplastic resin and the carbon fiber strand or sheet are integrated. According to this method, when a prepreg impregnated with resin relatively uniformly (variation value of impregnated resin amount is 4.2 to 5.0) is obtained, and furthermore, a method of performing energization treatment on the suspension is combined, a variation value is obtained. It is exemplified that 2.8 to 3.8 were also obtained.
4-12894

しかしながら、最近の特に航空・宇宙分野の材料としては、より一層均一性等に優れたプリプレグが求められるようになっており、しかもその製造法も出来るだけシンプルなものである必要がある。   However, as a recent material in the field of aerospace, in particular, a prepreg having further excellent uniformity and the like has been demanded, and its manufacturing method needs to be as simple as possible.

本発明は、シート状の強化繊維材料とこれに含浸せしめられた熱可塑性樹脂とからなる、ボイドが少なくかつ厚みのバラツキも少ない、均一性と表面平滑性に優れたプリプレグを提供することを目的とするものである。   An object of the present invention is to provide a prepreg composed of a sheet-like reinforcing fiber material and a thermoplastic resin impregnated therein, having less voids and less variation in thickness, and having excellent uniformity and surface smoothness. It is what.

本発明の目的は、シート状の強化繊維材料とこれに含浸せしめられた熱可塑性樹脂とからなるプリプレグであって、該プリプレグのボイド率が1%以下で、厚みのバラツキ値が5%以下であることを特徴とする均一性と表面平滑性に優れたプリプレグによって達成される。なお、ここで含浸とは、強化繊維材料に付着した樹脂粉末が、一旦融解し、繊維間又は繊維表面に樹脂が実質的に連続層として存在する状態をいう。 An object of the present invention is a prepreg comprising a sheet-like reinforcing fiber material and a thermoplastic resin impregnated therein, wherein the prepreg has a void ratio of 1% or less and a thickness variation value of 5% or less. This is achieved by a prepreg having excellent uniformity and surface smoothness. Here, the impregnation means a state in which the resin powder attached to the reinforcing fiber material is once melted, and the resin is present as a continuous layer between the fibers or on the fiber surface.

そしてかかるプリプレグは、シート状の強化繊維材料に熱可塑性樹脂を含浸させてプリプレグを製造するに当たり、熱可塑性樹脂粉末を、アルコール類、ケトン類、ハロゲン化炭素類から選ばれた1種若しくは2種以上の有機溶媒又はかかる有機溶媒と水との混合溶媒に分散させたサスペンジョンに、シート状の強化繊維材料を浸漬させて、樹脂粉末をこの強化繊維材料に付着せしめ、次いで樹脂粉末が付着した強化繊維材料を170〜390℃に加熱して樹脂粉末を溶融させ、引き続いて上下一対の加熱・加圧ローラーを用いてローラー圧力3〜10Kg/cm、ローラー温度(Tg+15)〜(Tg+100)℃で加熱して樹脂を含浸させ、シート状の強化繊維材料と熱可塑性樹脂を一体化させるという方法で得られる。 Such a prepreg is produced by impregnating a sheet-like reinforcing fiber material with a thermoplastic resin to produce a prepreg, and the thermoplastic resin powder is selected from one or two selected from alcohols, ketones and halogenated carbons. A sheet-like reinforcing fiber material is immersed in a suspension dispersed in the above organic solvent or a mixed solvent of such an organic solvent and water, and the resin powder is adhered to the reinforcing fiber material, and then the resin powder is adhered. The fiber material is heated to 170 to 390 ° C. to melt the resin powder, and subsequently heated at a roller pressure of 3 to 10 kg / cm and a roller temperature (Tg + 15) to (Tg + 100) ° C. using a pair of upper and lower heating / pressure rollers. Then, the resin is impregnated and the sheet-like reinforcing fiber material and the thermoplastic resin are integrated.

本発明によれば、強化繊維材料に熱可塑性樹脂を均一にかつ内部にまで含浸させると共に、表面を非常に平滑に仕上げることができる。そして、得られたプリプレグは、これを用いて色々な用途の強化繊維複合材料に成形でき、プリプレグの均一性が高いが故に、得られた複合材料の機械的特性や耐熱性等の物性が非常に優れたものとなる。 According to the present invention, the reinforcing fiber material can be uniformly impregnated with the thermoplastic resin to the inside, and the surface can be finished very smoothly. The obtained prepreg can be molded into a reinforced fiber composite material for various uses by using this, and the physical properties such as mechanical properties and heat resistance of the obtained composite material are extremely high because the prepreg has high uniformity. It will be excellent.

本発明は、シート状の強化繊維材料とこれに含浸せしめられた熱可塑性樹脂とからなるプリプレグであって、プリプレグのボイド率が1%以下で、厚みのバラツキ値が5%以下であることを特徴とする均一性と表面平滑性に優れたプリプレグであるが、好ましくは、プリプレグ中の熱可塑性樹脂の含有率が10〜70重量%、より好ましくは20〜50重量%のものである。 The present invention is a prepreg comprising a sheet-like reinforcing fiber material and a thermoplastic resin impregnated therein, wherein the prepreg has a void ratio of 1% or less and a thickness variation value of 5% or less. Although it is a prepreg having excellent uniformity and surface smoothness, the content of the thermoplastic resin in the prepreg is preferably 10 to 70% by weight, more preferably 20 to 50% by weight.

本発明において、シート状の強化繊維材料とは、繊維材料を一方向にシート状に引き揃えたもの、これらを例えば直交に積層したもの、繊維材料を織物や不織布等の布帛に成形したもの、編組等のストランド状のものを全て含む。強化繊維材料としては、無機繊維、有機繊維、金属繊維又はそれらの混合からなる繊維材料がある。具体的には、無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維を挙げることが出来る。有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、ポリアミド繊維、ポリエステル繊維が挙げられる。好ましいのは、炭素繊維とアラミド繊維である。 In the present invention, the sheet-like reinforcing fiber material is one in which the fiber materials are arranged in a sheet shape in one direction, these are laminated, for example, orthogonally, and the fiber material is formed into a fabric such as a woven fabric or a nonwoven fabric. Includes all strands such as braids. As the reinforcing fiber material, there are fiber materials made of inorganic fibers, organic fibers, metal fibers, or a mixture thereof. Specifically, examples of the inorganic fiber include carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, and glass fiber. Examples of organic fibers include aramid fibers, high density polyethylene fibers, polyamide fibers, and polyester fibers. Preference is given to carbon fibers and aramid fibers.

本発明において用いられる熱可塑性樹脂は、特に制限されないが、融点又はガラス転移温度が、150℃以上の結晶性又は非晶性の熱可塑性樹脂が好ましい。好ましい樹脂の具体例は、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミド、ポリアミドイミドである。これらの樹脂は、2種以上併用しても良い。   The thermoplastic resin used in the present invention is not particularly limited, but a crystalline or amorphous thermoplastic resin having a melting point or glass transition temperature of 150 ° C. or higher is preferable. Specific examples of preferred resins are polypropylene, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aromatic polyamide, aromatic polyester, aromatic polycarbonate, polyetherimide, polyarylene oxide, thermoplastic polyimide, polyamideimide It is. Two or more of these resins may be used in combination.

本発明において樹脂粉末は、強化繊維材料への良好な付着(繊維間あるいは繊維表面に樹脂粉末が保持された状態)を考慮すると、樹脂粉末の粒子径は50μm以下で、取扱性の点からは1μmを下回らないのが良く、平均粒子径が5〜20μmの範囲のものが好ましい。 In the present invention, the resin powder has a particle diameter of 50 μm or less in consideration of good adhesion to the reinforcing fiber material (a state in which the resin powder is held between fibers or on the fiber surface). It is preferable that the average particle diameter is not less than 1 μm and the average particle diameter is 5 to 20 μm.

また、本発明において用いる熱可塑性樹脂粉末が、レーザー回折散乱法により測定した粒度分布が下記(1)と(2)と(3)の条件を満足する熱可塑性樹脂粉末である場合には、サスペンジョン浴の安定性に優れ、得られるプリプレグの均一性もより一層優れているので好ましい。
(1)4μm≦10%での粒径
(2)8μm≦50%での粒径≦15μm
(3)90%での粒径≦20μm
(但し、粒径とは、レーザー回折散乱法により粒度分布を測定した場合において、累積グラフにおける各体積%での粒径を意味する。)
ここで、粒度分布とは、マイクロトラック FRA(日機装社製)を用いて、レーザー回折散乱法により測定したもので、得られた粒度分布の累積グラフにおける10%、50%、90%の各体積%での粒径(μm)を求めて粒度分布としたものである。
In the case where the thermoplastic resin powder used in the present invention is a thermoplastic resin powder whose particle size distribution measured by a laser diffraction scattering method satisfies the following conditions (1), (2) and (3), This is preferable because the bath stability is excellent and the uniformity of the prepreg obtained is further excellent.
(1) Particle size at 4 μm ≦ 10% (2) Particle size at 8 μm ≦ 50% ≦ 15 μm
(3) Particle size at 90% ≦ 20 μm
(However, the particle size means the particle size at each volume% in the cumulative graph when the particle size distribution is measured by the laser diffraction scattering method.)
Here, the particle size distribution is measured by a laser diffraction scattering method using Microtrac FRA (manufactured by Nikkiso Co., Ltd.), and each volume of 10%, 50% and 90% in the cumulative graph of the obtained particle size distribution % Particle size (μm) is obtained to obtain a particle size distribution.

本発明の均一性に優れたプリプレグは以下に述べる方法によって製造され。即ち、シート状の強化繊維材料に熱可塑性樹脂を含浸させてプリプレグを製造するに当たり、熱可塑性樹脂粉末を、アルコール類、ケトン類、ハロゲン化炭素類から選ばれた1種若しくは2種以上の有機溶媒又はかかる有機溶媒と水との混合溶媒に分散させたサスペンジョンに、シート状の強化繊維材料を浸漬させて、樹脂粉末をこの強化繊維材料に付着せしめ、次いで樹脂粉末が付着した強化繊維材料を170〜390℃に加熱して樹脂粉末を溶融させ、引き続いて上下一対の加熱・加圧ローラーを用いてローラー圧力3〜10Kg/cm(計算線圧)、ローラー温度(Tg+15)〜(Tg+100)℃に加熱して樹脂を含浸させ、シート状の強化繊維材料と熱可塑性樹脂を一体化させてプリプレグが製造される。 The prepreg excellent in uniformity of the present invention is produced by the method described below. That is, in the production of a prepreg by impregnating a sheet-like reinforcing fiber material with a thermoplastic resin, the thermoplastic resin powder is made of one or more organic compounds selected from alcohols, ketones and halogenated carbons. A sheet-like reinforcing fiber material is immersed in a suspension dispersed in a solvent or a mixed solvent of such an organic solvent and water so that the resin powder adheres to the reinforcing fiber material, and then the reinforcing fiber material to which the resin powder adheres is obtained. Heat to 170 to 390 ° C. to melt the resin powder, and then using a pair of upper and lower heating / pressure rollers, roller pressure 3 to 10 kg / cm (calculated linear pressure), roller temperature (Tg + 15) to (Tg + 100) ° C. Is heated to impregnate the resin, and the sheet-like reinforcing fiber material and the thermoplastic resin are integrated to produce a prepreg.

本発明の製造法の一例を、図1を参照しながら説明する。図1において、シート状の強化繊維材料1を、熱可塑性樹脂粉末を分散媒に分散させたサスペンジョン浴2にガイドローラー3を介して導入する。強化繊維材料1がサスペンジョン浴2を通過する間に、樹脂粉末は強化繊維材料1に付着せしめられる。次いで、サスペンジョン浴2から取出された強化繊維材料1は、乾燥機4に導入され分散媒を除去することによって乾燥される。次いで、強化繊維材料1は加熱ゾーン5で樹脂を溶融する程度に加熱され、引き続き、上下一対の加熱・加圧ローラー6に導かれ、ローラー圧力3〜10Kg/cm(計算線圧)、ローラー温度(Tg+15)〜(Tg+100)℃で加熱加圧される。かかる操作で強化繊維材料1に付着した樹脂粉末は溶融し、繊維材料表面及び繊維間に含浸せしめられる。次いで強化繊維材料は引取りローラー7を経て巻取りローラー8に巻き取られる。 An example of the production method of the present invention will be described with reference to FIG. In FIG. 1, a sheet-like reinforcing fiber material 1 is introduced through a guide roller 3 into a suspension bath 2 in which a thermoplastic resin powder is dispersed in a dispersion medium. The resin powder adheres to the reinforcing fiber material 1 while the reinforcing fiber material 1 passes through the suspension bath 2. Next, the reinforcing fiber material 1 taken out from the suspension bath 2 is introduced into a dryer 4 and dried by removing the dispersion medium. Subsequently, the reinforcing fiber material 1 is heated to such an extent that the resin is melted in the heating zone 5 and is subsequently guided to a pair of upper and lower heating / pressure rollers 6, roller pressure 3 to 10 kg / cm (calculated linear pressure), roller temperature. Heating and pressing are performed at (Tg + 15) to (Tg + 100) ° C. The resin powder adhering to the reinforcing fiber material 1 by such operation is melted and impregnated between the fiber material surface and the fibers. Next, the reinforcing fiber material is wound around the take-up roller 8 via the take-up roller 7.

本発明において用いられる熱可塑性樹脂を分散させるための分散媒は、アルコール類、ケトン類、ハロゲン化炭素類から選ばれた1種若しくは2種以上の有機溶媒又はかかる有機溶媒と水との混合溶媒である。アルコール類としては、メタノール、エタノール、イソプロピルアルコール、メチルセルソルブ等が、ケトン類としては、アセトン、メチルエチルケトン等が、ハロゲン化炭化水素類としては、塩化メチレン、ジクロロエタン等が挙げられる。中でも好ましいのは、エタノール、イソプロピルアルコール、アセトンあるいはそれらと水との混合溶媒である。かかる分散媒は、シート状の強化繊維材料を浸漬させたとき繊維材料を適度に開繊させるという作用もあるので、サスペンジョン中の樹脂粉末が繊維材料に均一に付着するのに効果的である。 The dispersion medium for dispersing the thermoplastic resin used in the present invention is one or more organic solvents selected from alcohols, ketones and halogenated carbons, or a mixed solvent of such an organic solvent and water. It is. Examples of alcohols include methanol, ethanol, isopropyl alcohol, and methyl cellosolve. Examples of ketones include acetone and methyl ethyl ketone. Examples of halogenated hydrocarbons include methylene chloride and dichloroethane. Of these, ethanol, isopropyl alcohol, acetone or a mixed solvent thereof with water is preferable. Such a dispersion medium also has an effect of appropriately opening the fiber material when the sheet-like reinforcing fiber material is immersed, so that it is effective for the resin powder in the suspension to uniformly adhere to the fiber material.

熱可塑性樹脂とそれを分散させるための分散媒(溶媒)との組合わせは、樹脂が溶媒に溶解するものであってはならず、樹脂が溶媒に膨潤するかあるいは溶解しないものである必要がある。 The combination of the thermoplastic resin and the dispersion medium (solvent) for dispersing the thermoplastic resin must not dissolve in the solvent, and the resin must swell or not dissolve in the solvent. is there.

サスペンジョン中の熱可塑性樹脂の濃度((熱可塑性樹脂重量/分散媒重量+熱可塑性樹脂重量)×100)は、1〜50重量%、好ましくは1〜30重量%、さらに好ましくは5〜15重量%である。 The concentration of the thermoplastic resin in the suspension ((thermoplastic resin weight / dispersion medium weight + thermoplastic resin weight) × 100) is 1 to 50% by weight, preferably 1 to 30% by weight, more preferably 5 to 15% by weight. %.

シート状の強化繊維材料を浸漬させるときのサスペンジョンの温度は、樹脂の分散状態が良好に保たれる限り特に制限はなく、また、用いられる熱可塑性樹脂や分散媒の種類、濃度によって異なるが、通常は5〜50℃、好ましくは5〜30℃、さらに好ましくは15〜30℃である。浸漬時間は、熱可塑性樹脂の付着量にも依存するが、通常は5〜180秒間で十分である。 The temperature of the suspension when immersing the sheet-like reinforcing fiber material is not particularly limited as long as the dispersion state of the resin is kept good, and varies depending on the type and concentration of the thermoplastic resin and dispersion medium used. Usually, it is 5-50 degreeC, Preferably it is 5-30 degreeC, More preferably, it is 15-30 degreeC. The immersion time depends on the amount of the thermoplastic resin attached, but usually 5 to 180 seconds is sufficient.

前記の様な条件の下で、シート状の強化繊維材料には10〜70重量%(繊維材料と熱可塑性樹脂の合計量に対して)の熱可塑性樹脂粉末が付着するが、プリプレグの製造上は20〜50重量%程度が適当である。 Under the above-mentioned conditions, 10 to 70% by weight (based on the total amount of the fiber material and the thermoplastic resin) of thermoplastic resin powder adheres to the sheet-like reinforcing fiber material. Is suitably about 20 to 50% by weight.

本発明においては、樹脂粉末の付着の均一性をより上げるために、シート状の強化繊維材料の浸漬時に、繊維材料とサスペンジョン浴との間で直流電流による通電処理を行っても良い。例えば、繊維材料が接触する浴外の電極ローラーを陽極とし、サスペンジョン浴中に陰極を設け、浴中にある繊維材料の単位表面積当たり、電流密度が0.001〜5A/mとなるように通電すれば良い。 In the present invention, in order to further improve the uniformity of the adhesion of the resin powder, an energization process using a direct current may be performed between the fiber material and the suspension bath when the sheet-like reinforcing fiber material is immersed. For example, an electrode roller outside the bath in contact with the fiber material is used as the anode, a cathode is provided in the suspension bath, and the current density is 0.001 to 5 A / m 2 per unit surface area of the fiber material in the bath. Energize.

前記の様にして得られた熱可塑性樹脂粉末を付着せしめられたシート状の強化繊維材料は、通常、熱可塑性樹脂が分解又は反応しない温度下で乾燥される。一般的には、80〜200℃で1〜20分間乾燥される。 The sheet-like reinforcing fiber material to which the thermoplastic resin powder obtained as described above is adhered is usually dried at a temperature at which the thermoplastic resin does not decompose or react. Generally, it is dried at 80 to 200 ° C. for 1 to 20 minutes.

次いで、乾燥された強化繊維材料は加熱ゾーン4で樹脂が溶融する程度に加熱される。加熱は、170〜390℃に加熱されたローラー間、又はスリット間を通すか、あるいはかかる温度の雰囲気中を通すことによって行うことができる。かかる処理によって付着した樹脂が溶融する。 Next, the dried reinforcing fiber material is heated in the heating zone 4 to such an extent that the resin melts. Heating can be performed by passing between rollers heated to 170 to 390 ° C. or between slits, or passing through an atmosphere of such a temperature. The resin adhered by such treatment is melted.

本発明においては、次いで強化繊維材料を、上下一対の加熱ローラーを用いてローラー圧力3〜10Kg/cm(計算線圧)、好ましくは5〜10Kg/cmで、ローラー温度(Tg+15)〜(Tg+100)℃、好ましくは(Tg+20)〜(Tg+80)℃で加熱して樹脂を含浸させ、シート状の強化繊維材料と熱可塑性樹脂を一体化させてプリプレグが製造される。かかる処理によってプリプレグの均一化と表面の平滑化が図られる。 In the present invention, the reinforcing fiber material is then subjected to a roller pressure of 3 to 10 kg / cm (calculated linear pressure) using a pair of upper and lower heating rollers, preferably 5 to 10 kg / cm, and a roller temperature (Tg + 15) to (Tg + 100). A prepreg is manufactured by heating at ℃, preferably (Tg + 20) to (Tg + 80) ℃, impregnating the resin, and integrating the sheet-like reinforcing fiber material and the thermoplastic resin. By this treatment, the prepreg is made uniform and the surface is smoothed.

本発明において、シート状の強化繊維材料と熱可塑性樹脂の接着力をより高めるためには、シート状の強化繊維材料に繊維の集束剤、油剤、糊剤等が付着している場合には、事前にこれらを除去しておく方が望ましい。また、必要な場合には、事前に繊維材料の開繊処理や、電解や薬品による表面処理を行っておいても良い。 In the present invention, in order to further increase the adhesive force between the sheet-like reinforcing fiber material and the thermoplastic resin, when a fiber sizing agent, oil agent, glue, etc. are attached to the sheet-like reinforcing fiber material, It is desirable to remove these in advance. If necessary, the fiber material may be opened in advance, or may be subjected to surface treatment with electrolysis or chemicals.

以下、具体的な実施例により本発明を説明する。各実施例及び比較例において、得られたプリプレグの均一性の評価は、(1)シート状の強化繊維材料への樹脂の含浸性の良否を示すボイド率、(2)プリプレグの厚みのバラツキから評価した。(1)のボイド率は硫酸分解法により測定した。(2)の厚みのバラツキは、シート状の強化繊維材料の幅方向に(200mm〜300mmの幅)20mm間隔で10点測定し、その平均値からの偏差値(%)で示した。また、プリプレグの表面の平滑性は、顕微鏡による断面観察で相対的に評価し、十分に平滑(◎)、かなり平滑(○)、平滑性に劣る(×)で示した。 Hereinafter, the present invention will be described with reference to specific examples. In each of the examples and comparative examples, the uniformity of the obtained prepreg was evaluated based on (1) a void ratio indicating the quality of resin impregnation into a sheet-like reinforcing fiber material, and (2) variation in prepreg thickness. evaluated. The void ratio of (1) was measured by a sulfuric acid decomposition method. The thickness variation of (2) was measured at 10 points at intervals of 20 mm in the width direction of the sheet-like reinforcing fiber material (width of 200 mm to 300 mm) and indicated by a deviation value (%) from the average value. Further, the smoothness of the surface of the prepreg was relatively evaluated by cross-sectional observation with a microscope, and indicated as sufficiently smooth ()), considerably smooth (◯), and inferior in smoothness (×).

ポリイミド樹脂(三井化学製PIXA−M)粉末(粒度分布、10%:8μm、50%:12μm、90%:17μm)をアセトンに分散させ、7%濃度のサスペンジョンを調整した。サスペンジョン浴に炭素繊維A(東邦テナックス社製IM600、単繊維直径5.0μm、12,000本)を平行に80本引き揃え、CF目付を145g/mに調整したものを30〜60秒間浸漬し、樹脂の付着量が35±3wt%になるように調整した。引き続いて、150℃で1〜5分間乾燥させ、表面温度が380〜390℃のローラーに通し樹脂を溶融する程度に加熱した。次いで、表面温度が250℃の上下一対のローラー間を5kgf/cmの圧力で通し、樹脂を炭素繊維材料に十分に含浸させることにより、一体化した強化炭素繊維のプリプレグを得た。得られたプリプレグの厚みと厚みのバラツキ、ボイド率及び表面平滑性は表1に示した通りであった。 Polyimide resin (PIXA-M manufactured by Mitsui Chemicals) powder (particle size distribution, 10%: 8 μm, 50%: 12 μm, 90%: 17 μm) was dispersed in acetone to prepare a 7% concentration suspension. In a suspension bath, carbon fiber A (IM600 manufactured by Toho Tenax Co., Ltd., single fiber diameter: 5.0μm, 12,000 fibers) is aligned in parallel with 80 fibers adjusted to a CF basis weight of 145g / m 2 for 30 to 60 seconds. The adhesion amount of was adjusted to 35 ± 3 wt%. Subsequently, it was dried at 150 ° C. for 1 to 5 minutes and passed through a roller having a surface temperature of 380 to 390 ° C. to such an extent that the resin was melted. Next, an integrated reinforced carbon fiber prepreg was obtained by passing the resin between a pair of upper and lower rollers having a surface temperature of 250 ° C. at a pressure of 5 kgf / cm and sufficiently impregnating the carbon fiber material with the resin. Table 1 shows the thickness and thickness variation, void ratio, and surface smoothness of the obtained prepreg.

炭素繊維Aを60本平行に引き揃え、CF目付を133g/mに調整したものを用い、樹脂の付着量が40±3wt%になるように調整した以外は実施例1の場合と同じようにしてプリプレグを得た。得られたプリプレグの厚みと厚みのバラツキ、ボイド率及び表面平滑性は表1に示した通りであった。 The same as in Example 1 except that 60 carbon fibers A were aligned in parallel and the CF basis weight was adjusted to 133 g / m 2 and the amount of resin adhered was adjusted to 40 ± 3 wt%. A prepreg was obtained. Table 1 shows the thickness and thickness variation, void ratio, and surface smoothness of the obtained prepreg.

実施例1においてローラー間の圧力を7kgf/cm、ローラー温度を260℃と変更して実験を繰り返しプリプレグを得た。得られたプリプレグの厚みと厚みのバラツキ、ボイド率及び表面平滑性は表1に示した通りであった。   In Example 1, the pressure between the rollers was changed to 7 kgf / cm and the roller temperature was changed to 260 ° C., and the experiment was repeated to obtain a prepreg. Table 1 shows the thickness and thickness variation, void ratio, and surface smoothness of the obtained prepreg.

比較例1Comparative Example 1

ローラー間の圧力を5kgf/cm、ローラー温度を240℃とする以外は実施例1と同じ条件でプリプレグを得た。実施例1のポリイミド樹脂のTgは235℃なので、この比較例では、ローラー温度が本発明の要件(Tg+15℃以上)を満足していない。得られたプリプレグの厚みと厚みのバラツキ、ボイド率及び表面平滑性は表1に示した通りであった。 A prepreg was obtained under the same conditions as in Example 1 except that the pressure between the rollers was 5 kgf / cm and the roller temperature was 240 ° C. Since Tg of the polyimide resin of Example 1 is 235 ° C., in this comparative example, the roller temperature does not satisfy the requirement of the present invention (Tg + 15 ° C. or more). Table 1 shows the thickness and thickness variation, void ratio, and surface smoothness of the obtained prepreg.

熱可塑性樹脂としてPPS(ポリフェニレンサルファイド、大日本インキ製)の粉末(平均粒子径:10μm)を用い、これをアセトンに分散させ、7%濃度のサスペンジョンを調整した。サスペンジョン浴に、実施例2の炭素繊維Aと同じシート状の強化繊維材料を30〜60秒間浸漬し、樹脂の付着量が40±3wt%になるように調整した。引き続いて、150℃で1〜5分間乾燥させ、表面温度が300〜320℃のローラーに通し樹脂を溶融する程度に加熱した。 次いで、表面温度が130℃の上下一対のローラー間を5kgf/cmの圧力で通し、樹脂を炭素繊維材料に完全に含浸させることにより、一体化した強化炭素繊維のプリプレグを得た。得られたプリプレグの厚みと厚みのバラツキ、ボイド率及び表面平滑性は表1に示した通りであった。   PPS (polyphenylene sulfide, manufactured by Dainippon Ink) powder (average particle size: 10 μm) was used as the thermoplastic resin, and this was dispersed in acetone to prepare a 7% concentration suspension. In the suspension bath, the same sheet-like reinforcing fiber material as that of the carbon fiber A of Example 2 was immersed for 30 to 60 seconds, and the amount of resin adhered was adjusted to 40 ± 3 wt%. Subsequently, the film was dried at 150 ° C. for 1 to 5 minutes and passed through a roller having a surface temperature of 300 to 320 ° C. to the extent that the resin was melted. Next, an integrated reinforced carbon fiber prepreg was obtained by passing between a pair of upper and lower rollers with a surface temperature of 130 ° C. at a pressure of 5 kgf / cm and completely impregnating the carbon fiber material with the resin. Table 1 shows the thickness and thickness variation, void ratio, and surface smoothness of the obtained prepreg.

比較例2Comparative Example 2

ローラー間の圧力とローラー温度を表1に示した様に変更する以外は、実施例4と同じ様にプリプレグを製造した。得られたプリプレグの厚みと厚みのバラツキ、ボイド率及び表面平滑性は表1に示した通りであった。   A prepreg was produced in the same manner as in Example 4 except that the pressure between the rollers and the roller temperature were changed as shown in Table 1. Table 1 shows the thickness and thickness variation, void ratio, and surface smoothness of the obtained prepreg.

ポリプロピレン樹脂(出光石化製)粉末(平均粒子径13μm)をアセトンに分散させ、7%濃度のサスペンジョンを調整した。サスペンジョン浴に炭素繊維B(東邦テナックス社製UT500、単繊維直径6.9μm、12,000本)を平行に30本引き揃え、CF目付を133g/mに調整したものを30〜60秒間浸漬し、樹脂の付着量が33±3wt%になるように調整した。引続いて、150℃で1〜5分間乾燥させ、表面温度が170℃のローラーに通し、樹脂を溶融する程度に加熱した。次いで、表面温度が80℃の上下一対のローラー間を3kgf/cmの圧力で通し、樹脂を炭素繊維材料に十分に含浸させることにより、一体化した強化炭素繊維のプリプレグを得た。得られたプリプレグの厚みと厚みのバラツキ、ボイド率及び表面平滑性は表1に示した通りであった。 Polypropylene resin (manufactured by Idemitsu Petrochemical) powder (average particle size 13 μm) was dispersed in acetone to prepare a 7% concentration suspension. In a suspension bath, carbon fiber B (UT500 manufactured by Toho Tenax Co., Ltd., single fiber diameter: 6.9μm, 12,000) was aligned in parallel, and the CF basis weight adjusted to 133g / m 2 was immersed for 30 to 60 seconds, and resin was added. The adhering amount was adjusted to 33 ± 3 wt%. Subsequently, it was dried at 150 ° C. for 1 to 5 minutes, passed through a roller having a surface temperature of 170 ° C., and heated to such an extent that the resin was melted. Next, an integrated reinforced carbon fiber prepreg was obtained by passing between a pair of upper and lower rollers having a surface temperature of 80 ° C. at a pressure of 3 kgf / cm and sufficiently impregnating the carbon fiber material with the resin. Table 1 shows the thickness and thickness variation, void ratio, and surface smoothness of the obtained prepreg.

比較例3Comparative Example 3

ローラー間の圧力とローラー温度を表1に示した様に変更する以外は、実施例5と同じ様にプリプレグを製造した。得られたプリプレグの厚みと厚みのバラツキ、ボイド率及び表面平滑性は表1に示した通りであった。   A prepreg was produced in the same manner as in Example 5 except that the pressure between the rollers and the roller temperature were changed as shown in Table 1. Table 1 shows the thickness and thickness variation, void ratio, and surface smoothness of the obtained prepreg.

表1の結果から、ローラー間の圧力及び温度が本発明の範囲内にある場合に限って、ボイド率と厚みのバラツキとも十分に満足すべきものが得られていることがわかる。 From the results shown in Table 1, it can be seen that only when the pressure and temperature between the rollers are within the range of the present invention, the satisfactory void ratio and thickness variation are obtained.

本発明の均一性と表面平滑性に優れたプリプレグは、目的に応じて、積層し、再度加熱、加圧して実質的に均一構造の複合材料に成形することが出来る。得られた複合材料は、優れた耐衝撃性等の機械的性質や優れた耐熱性等を有するので、航空・宇宙分野や一般産業分野に広く使用される。   The prepreg excellent in uniformity and surface smoothness according to the present invention can be laminated, heated and pressurized again according to the purpose, and formed into a composite material having a substantially uniform structure. Since the obtained composite material has excellent mechanical properties such as impact resistance and excellent heat resistance, it is widely used in aerospace and general industrial fields.

本発明のプリプレグの製造工程の一例を示す概略図である。It is the schematic which shows an example of the manufacturing process of the prepreg of this invention.

符号の説明Explanation of symbols

1 強化繊維材料
2 サスペンジョン浴
3 ガイドローラー
4 乾燥機
5 加熱ゾーン
6 一対の加熱・加圧ローラー
7 引取りローラー
8 巻取りローラー

Figure 2005239843
DESCRIPTION OF SYMBOLS 1 Reinforcing fiber material 2 Suspension bath 3 Guide roller 4 Dryer 5 Heating zone 6 A pair of heating and pressure rollers 7 Take-up roller 8 Take-up roller
Figure 2005239843

Claims (8)

シート状の強化繊維材料とこれに含浸せしめられた熱可塑性樹脂とからなるプリプレグであって、プリプレグのボイド率が1%以下で、厚みのバラツキ値が5%以下であることを特徴とする均一性と表面平滑性に優れたプリプレグ。 A prepreg comprising a sheet-like reinforcing fiber material and a thermoplastic resin impregnated therein, wherein the prepreg has a void ratio of 1% or less and a thickness variation value of 5% or less. Prepreg with excellent properties and surface smoothness. プリプレグ中の熱可塑性樹脂の含有率が、10〜70重量%であることを特徴とする請求項1に記載の均一性と表面平滑性に優れたプリプレグ。 The prepreg excellent in uniformity and surface smoothness according to claim 1, wherein the content of the thermoplastic resin in the prepreg is 10 to 70% by weight. 熱可塑性樹脂の融点又はガラス転移温度が、150℃以上の結晶性又は非晶性の熱可塑性樹脂であることを特徴とする請求項1又は2のいずれかに記載の均一性と表面平滑性に優れたプリプレグ。 3. The uniformity and surface smoothness according to claim 1, wherein the thermoplastic resin is a crystalline or amorphous thermoplastic resin having a melting point or glass transition temperature of 150 ° C. or higher. Excellent prepreg. 熱可塑性樹脂が、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミド、ポリアミドイミドなる群から選ばれた1種若しくは2種以上の樹脂であることを特徴とする請求項1〜3のいずれかに記載の均一性と表面平滑性に優れたプリプレグ。 The group in which the thermoplastic resin is polypropylene, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aromatic polyamide, aromatic polyester, aromatic polycarbonate, polyetherimide, polyarylene oxide, thermoplastic polyimide, polyamideimide The prepreg excellent in uniformity and surface smoothness according to any one of claims 1 to 3, wherein the prepreg is one or more resins selected from the group consisting of: シート状の強化繊維材料に熱可塑性樹脂を含浸させてプリプレグを製造するに当たり、熱可塑性樹脂粉末を、アルコール類、ケトン類、ハロゲン化炭素類から選ばれた1種若しくは2種以上の有機溶媒又はかかる有機溶媒と水との混合溶媒に分散させたサスペンジョンに、シート状の強化繊維材料を浸漬させて、樹脂粉末をこの強化繊維材料に付着せしめ、次いで樹脂粉末が付着した強化繊維材料を170〜390℃に加熱して樹脂粉末を溶融させ、引き続いて上下一対の加熱・加圧ローラーを用いてローラー圧力3〜10Kg/cm、ローラー温度(Tg+15)〜(Tg+100)℃で加熱・加圧して樹脂を含浸させ、シート状の強化繊維材料と熱可塑性樹脂を一体化させることを特徴とする均一性と表面平滑性に優れたプリプレグの製造法。 In the production of a prepreg by impregnating a sheet-like reinforcing fiber material with a thermoplastic resin, the thermoplastic resin powder is made of one or more organic solvents selected from alcohols, ketones and halogenated carbons, or A sheet-like reinforcing fiber material is immersed in a suspension dispersed in a mixed solvent of such an organic solvent and water, and the resin powder is adhered to the reinforcing fiber material, and then the reinforcing fiber material to which the resin powder is adhered is 170 to Resin is heated to 390 ° C to melt the resin powder, and then heated and pressurized at a roller pressure of 3 to 10 kg / cm and a roller temperature (Tg + 15) to (Tg + 100) ° C using a pair of upper and lower heating / pressure rollers. A method for producing a prepreg excellent in uniformity and surface smoothness, characterized in that a sheet-like reinforcing fiber material and a thermoplastic resin are integrated. 熱可塑性樹脂粉末の平均粒子径が、5〜20μmであることを特徴とする請求項5記載の均一性と表面平滑性に優れたプリプレグの製造法。 6. The method for producing a prepreg excellent in uniformity and surface smoothness according to claim 5, wherein the thermoplastic resin powder has an average particle size of 5 to 20 [mu] m. 熱可塑性樹脂粉末が、レーザー回折散乱法により測定した粒度分布が下記(1)と(2)と(3)の条件を満足する熱可塑性樹脂粉末であることを特徴とする請求項5又は6のいずれかに記載の均一性と表面平滑性に優れたプリプレグの製造法。
(1)4μm≦10%での粒径
(2)8μm≦50%での粒径≦15μm
(3)90%での粒径≦20μm
(但し、粒径とは、レーザー回折散乱法により粒度分布を測定した場合において、累積グラフにおける各体積%での粒径を意味する。)
The thermoplastic resin powder according to claim 5 or 6, wherein the thermoplastic resin powder has a particle size distribution measured by a laser diffraction scattering method and satisfies the following conditions (1), (2), and (3): The manufacturing method of the prepreg excellent in the uniformity and surface smoothness in any one.
(1) Particle size at 4 μm ≦ 10% (2) Particle size at 8 μm ≦ 50% ≦ 15 μm
(3) Particle size at 90% ≦ 20 μm
(However, the particle size means the particle size at each volume% in the cumulative graph when the particle size distribution is measured by the laser diffraction scattering method.)
サスペンジョン中の熱可塑性樹脂の濃度が、1〜50重量%である請求項5〜7のいずれかに記載の均一性と表面平滑性に優れたプリプレグの製造法。




























The method for producing a prepreg excellent in uniformity and surface smoothness according to any one of claims 5 to 7, wherein the concentration of the thermoplastic resin in the suspension is 1 to 50% by weight.




























JP2004050519A 2004-02-25 2004-02-25 Prepreg excellent in homogeneity and surface smoothness, and its manufacturing method Pending JP2005239843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004050519A JP2005239843A (en) 2004-02-25 2004-02-25 Prepreg excellent in homogeneity and surface smoothness, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004050519A JP2005239843A (en) 2004-02-25 2004-02-25 Prepreg excellent in homogeneity and surface smoothness, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005239843A true JP2005239843A (en) 2005-09-08

Family

ID=35021913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050519A Pending JP2005239843A (en) 2004-02-25 2004-02-25 Prepreg excellent in homogeneity and surface smoothness, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005239843A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044165A (en) * 2006-08-11 2008-02-28 Toho Tenax Co Ltd Method for producing prepreg excellent in uniformity
JP2008044999A (en) * 2006-08-11 2008-02-28 Toho Tenax Co Ltd Process for producing prepreg excellent in uniformity
US8043669B2 (en) 2006-11-09 2011-10-25 Teijin Chemicals Ltd. Composite material and process for the production thereof
CN102312404A (en) * 2010-07-06 2012-01-11 上海杰事杰新材料(集团)股份有限公司 Application of thermoplastic resin composite materials in preparing road reinforcing plate
JP2014111696A (en) * 2012-12-05 2014-06-19 Hitachi Chemical Co Ltd Thermosetting resin composition, prepreg using the same, laminate, and multilayer printed wiring board
WO2015156564A1 (en) * 2014-04-08 2015-10-15 코오롱인더스트리(주) Method for preparing thermoplastic prepreg and thermoplastic prepreg prepared thereby
CN105131520A (en) * 2015-09-18 2015-12-09 中国兵器工业集团第五三研究所 Glass fiber reinforced PEEK (polyether-ether-ketone) unidirectional tape and preparation method thereof
WO2017004112A1 (en) * 2015-06-30 2017-01-05 Sabic Global Technologies B.V. Methods of manufacture of prepregs and composites from polyimide particles, and articles prepared therefrom
JP2017132220A (en) * 2016-01-29 2017-08-03 岡本株式会社 Method for manufacturing carbon fiber-reinforced plastic and carbon fiber-reinforced plastic
WO2019146485A1 (en) 2018-01-26 2019-08-01 東レ株式会社 Reinforcing fiber bundle base material, production method therefor, fiber reinforced thermoplastic resin material using same, and production method therefor
WO2022181804A1 (en) 2021-02-25 2022-09-01 三菱ケミカル株式会社 Prepreg and production method therefor, and molded object

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044165A (en) * 2006-08-11 2008-02-28 Toho Tenax Co Ltd Method for producing prepreg excellent in uniformity
JP2008044999A (en) * 2006-08-11 2008-02-28 Toho Tenax Co Ltd Process for producing prepreg excellent in uniformity
US8043669B2 (en) 2006-11-09 2011-10-25 Teijin Chemicals Ltd. Composite material and process for the production thereof
JP5371437B2 (en) * 2006-11-09 2013-12-18 帝人株式会社 Composite material and manufacturing method thereof
EP2080781A4 (en) * 2006-11-09 2014-06-11 Teijin Chemicals Ltd Composite material and process for producing the same
CN102312404A (en) * 2010-07-06 2012-01-11 上海杰事杰新材料(集团)股份有限公司 Application of thermoplastic resin composite materials in preparing road reinforcing plate
CN102312404B (en) * 2010-07-06 2013-06-12 上海杰事杰新材料(集团)股份有限公司 Application of thermoplastic resin composite materials in preparing road reinforcing plate
JP2014111696A (en) * 2012-12-05 2014-06-19 Hitachi Chemical Co Ltd Thermosetting resin composition, prepreg using the same, laminate, and multilayer printed wiring board
WO2015156564A1 (en) * 2014-04-08 2015-10-15 코오롱인더스트리(주) Method for preparing thermoplastic prepreg and thermoplastic prepreg prepared thereby
US10189217B2 (en) 2014-04-08 2019-01-29 Kolon Industries, Inc. Method for preparing thermoplastic prepreg and thermoplastic prepreg prepared thereby
WO2017004112A1 (en) * 2015-06-30 2017-01-05 Sabic Global Technologies B.V. Methods of manufacture of prepregs and composites from polyimide particles, and articles prepared therefrom
CN105131520A (en) * 2015-09-18 2015-12-09 中国兵器工业集团第五三研究所 Glass fiber reinforced PEEK (polyether-ether-ketone) unidirectional tape and preparation method thereof
CN105131520B (en) * 2015-09-18 2017-05-31 中国兵器工业集团第五三研究所 Glass fiber reinforcement PEEK one-way tapes and preparation method thereof
JP2017132220A (en) * 2016-01-29 2017-08-03 岡本株式会社 Method for manufacturing carbon fiber-reinforced plastic and carbon fiber-reinforced plastic
WO2019146485A1 (en) 2018-01-26 2019-08-01 東レ株式会社 Reinforcing fiber bundle base material, production method therefor, fiber reinforced thermoplastic resin material using same, and production method therefor
KR20200110738A (en) 2018-01-26 2020-09-25 도레이 카부시키가이샤 Reinforcing fiber bundle substrate and method for manufacturing same, and fiber-reinforced thermoplastic resin material using same and method for manufacturing same
WO2022181804A1 (en) 2021-02-25 2022-09-01 三菱ケミカル株式会社 Prepreg and production method therefor, and molded object

Similar Documents

Publication Publication Date Title
EP2990185B1 (en) Composite material including unidirectional continuous fibers and thermoplastic resin
Zhang et al. Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: a review
US4897286A (en) Method for producing carbon fiber reinforced thermoplastic resin product
US5409757A (en) Flexible multiply towpreg tape from powder fusion coated towpreg
JP4938281B2 (en) Polymer bonded fiber agglomerates
US10370506B2 (en) Carbon fiber thermoplastic resin prepreg, carbon fiber composite material and producing method
JP5614187B2 (en) Manufacturing method of composite reinforcing fiber bundle and molding material using the same
JP5494375B2 (en) Manufacturing method of composite reinforcing fiber bundle and molding material using the same
JP2008044999A (en) Process for producing prepreg excellent in uniformity
JP2005239843A (en) Prepreg excellent in homogeneity and surface smoothness, and its manufacturing method
US20170335083A1 (en) Low density microspheres
JP4832208B2 (en) Manufacturing method of prepreg with excellent uniformity
WO2017078167A1 (en) Thermoplastic composite material and molded body
KR20140085713A (en) Method of Preparing Continuous Carbon Fiber-reinforced Thermoplastic Prepreg
JP5939050B2 (en) Method for producing fiber-reinforced thermoplastic resin molded body and fiber-reinforced thermoplastic resin molded body
JP2013173811A (en) Resin composition, molding material and method for producing the same
KR101461754B1 (en) Method for preparing reinforced thermoplastic resin film and reinforced thermoplastic resin film prepared using the same
JPH0412894B2 (en)
JP2010037667A (en) Method for producing carbon fiber web and carbon fiber web
JPWO2019017057A1 (en) Unidirectionally oriented tape-like prepreg and molded product
JP2005238596A (en) Prepreg excellent in uniformity and its manufacturing method
CN116769297A (en) Fiber prepreg and preparation method and application thereof
JP2009091377A (en) Apparatus for producing prepreg
JP2005255927A (en) Thermoplastic resin prepreg and its manufacturing process
CN116790055A (en) Prepreg containing thermoplastic resin and thermosetting resin and preparation method thereof