JP2005239477A - Glass powdery material, slurry, fluorescent material device, and method for producing glass powdery material - Google Patents

Glass powdery material, slurry, fluorescent material device, and method for producing glass powdery material Download PDF

Info

Publication number
JP2005239477A
JP2005239477A JP2004051074A JP2004051074A JP2005239477A JP 2005239477 A JP2005239477 A JP 2005239477A JP 2004051074 A JP2004051074 A JP 2004051074A JP 2004051074 A JP2004051074 A JP 2004051074A JP 2005239477 A JP2005239477 A JP 2005239477A
Authority
JP
Japan
Prior art keywords
melting point
melting
substance
glass powder
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004051074A
Other languages
Japanese (ja)
Inventor
Shiro Otake
史郎 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004051074A priority Critical patent/JP2005239477A/en
Publication of JP2005239477A publication Critical patent/JP2005239477A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass powdery material which does not require consideration about dispersibility of a high melting-point substance and a low melting-point substance in the glass powdery material in the production of a slurry in which a binding agent (glass powdery material) is dispersed; and to provide a light-emitting device, and a method for producing the glass powdery material. <P>SOLUTION: The glass powdery material is constituted of at least two kinds of substances having different melting points. In glass powdery material, a low melting-point substance whose melting point is not highest covers at least one part of a high melting-point substance having a melting point higher than that of the low melting-point substance. Thereby, it is possible to improve the dispersibility of the high melting-point substance and the low melting-point substance in the glass powdery material without requiring labor and time in a dispersion process of the binding agent, and further, the binding force of a fluorescent material in a device using the fluorescent material can be easily enhanced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、蛍光ランプや自発光形ディスプレイにおける蛍光スクリーン用の蛍光体結着剤として用いるガラス粉体とその製造方法に関する。   The present invention relates to a glass powder used as a phosphor binder for a fluorescent screen in a fluorescent lamp or a self-luminous display, and a method for producing the same.

蛍光体デバイスの例として、蛍光ランプをもとに従来からの技術を説明する。蛍光ランプは、蛍光体膜を形成したガラスバルブ内での低圧水銀蒸気放電によって生じた紫外線を蛍光体膜において可視光や放射光に変換することにより光出力を放射するデバイスである。蛍光体膜の形成には、一般に蛍光体、無機材料からなる蛍光体結着剤(以下、「結着剤」と称す)、及び有機材料からなる増粘剤を、酢酸ブチルや水などの分散媒に分散させた蛍光体スラリーが用いられる。この蛍光体スラリーをガラスバルブ内面に塗布・乾燥して蛍光体スラリー成分中の分散媒を蒸発させ、さらにベーキングにより増粘剤を分解・燃焼させて除去することにより、蛍光体と結着剤とから構成した膜状の蛍光スクリーン(以下、蛍光体膜)を形成する。   As an example of the phosphor device, a conventional technique will be described based on a fluorescent lamp. A fluorescent lamp is a device that emits light output by converting ultraviolet light generated by low-pressure mercury vapor discharge in a glass bulb formed with a phosphor film into visible light or radiated light in the phosphor film. In forming a phosphor film, a phosphor, a phosphor binder made of an inorganic material (hereinafter referred to as “binder”), and a thickener made of an organic material are dispersed in butyl acetate or water. A phosphor slurry dispersed in a medium is used. The phosphor slurry is applied to the inner surface of the glass bulb and dried to evaporate the dispersion medium in the phosphor slurry components, and further, the thickener is decomposed and burned by baking to remove the phosphor and the binder. A film-like phosphor screen (hereinafter referred to as a phosphor film) is formed.

結着剤は蛍光体の粒子同士だけでなく蛍光体の粒子とガラスバルブをも結着させる役割を有している。これにより、運搬による振動など実用上不可避な物理的衝撃による膜の剥れを防止している。   The binder has a role of binding not only the phosphor particles but also the phosphor particles and the glass bulb. This prevents the film from peeling off due to physical impacts that are unavoidable in practice, such as vibrations caused by transportation.

一般に酢酸ブチルなどの有機溶剤を分散媒として用いる蛍光体スラリーでは、結着剤として、低融点物質と高融点物質との混合物、たとえば低融点物質としてホウ酸を含むガラス粉体と高融点物質としてリン酸塩粉体との混合物が用いられている(例えば、特許文献1参照)。そして、その平均粒径はそれぞれ、0.5〜5μmである。   In general, in a phosphor slurry using an organic solvent such as butyl acetate as a dispersion medium, as a binder, a mixture of a low melting point substance and a high melting point substance, for example, a glass powder containing boric acid as a low melting point substance and a high melting point substance A mixture with phosphate powder is used (see, for example, Patent Document 1). And the average particle diameter is 0.5-5 micrometers, respectively.

実用化されている低融点物質の例として挙げたホウ酸を含むガラス粉体の基本組成は、ホウ酸と酸化バリウムと酸化カルシウムとから構成し(以下、この結着剤を「CBB」と称する)、その融点は850度である。蛍光ランプ製造における熱工程では、増粘剤である有機高分子物質(例えば、ニトロセルロースやエチルセルロース)を燃焼させ、あるいはガラスバルブを軟化させることもあるため、その温度は場合によっては1000度近くにまで達することがある。この熱工程において、CBBは溶融して蛍光体粒子表面に付着・展開し、常温に冷却した際には固化して蛍光体粒子間を接合することにより蛍光体膜の構造を維持する働きをする。   The basic composition of the glass powder containing boric acid cited as an example of a low melting point material in practical use is composed of boric acid, barium oxide, and calcium oxide (hereinafter, this binder is referred to as “CBB”). ), Its melting point is 850 degrees. In the heat process in fluorescent lamp manufacturing, organic polymer substances (such as nitrocellulose and ethylcellulose) that are thickeners may be burned or glass bulbs may be softened, so the temperature may be close to 1000 degrees in some cases. May reach up to. In this thermal process, CBB melts and adheres to and spreads on the surface of the phosphor particles, and when cooled to room temperature, it solidifies and joins the phosphor particles to maintain the structure of the phosphor film. .

一方、高融点物質の例として挙げたリン酸塩、たとえばピロリン酸カルシウム(以下、「P」と称する)の融点は1200度であり、蛍光ランプ製造における熱工程においてもリン酸塩粒子は溶融せず、形状は維持される。このリン酸塩粒子が蛍光体粒子間に存在する場合は、ファン・デル・ワールス力の作用によって、ホウ酸を含むガラスだけが蛍光体粒子間に展開した場合よりも蛍光体の膜構造をより強固とでき、これにより運搬等の衝撃などによる蛍光膜の剥れなどを防止している。
特開昭52−89282号公報
On the other hand, phosphates exemplified as examples of high melting point materials, for example, calcium pyrophosphate (hereinafter referred to as “P”), have a melting point of 1200 degrees, and the phosphate particles do not melt even in the heat process in the manufacture of fluorescent lamps. The shape is maintained. When the phosphate particles are present between the phosphor particles, the effect of van der Waals forces will cause the phosphor film structure to be more than when only glass containing boric acid is spread between the phosphor particles. This makes it possible to prevent the fluorescent film from peeling off due to impacts such as transportation.
JP 52-89282 A

低融点物質CBBと高融点物質Pとの混合物を蛍光ランプにおける結着剤として用いる際、CBBとPとの混合における分散性の向上が課題であった。   When a mixture of a low melting point substance CBB and a high melting point substance P is used as a binder in a fluorescent lamp, improvement of dispersibility in the mixing of CBB and P has been a problem.

すなわち、CBBPとPとが十分に分散していないと、蛍光膜中にPが局所的に多く存在する個所とそうでない個所とが生じる。Pが存在しない個所では蛍光体粒子はCBBのみによって結着し、前述のとおり膜構造が強固ではなく、また蛍光体粒子が凝集しやすいため蛍光体膜の発光効率が悪化する。逆にPが相対的に多すぎる個所もまた、蛍光体粒子間を接合するCBBが少ないことから膜構造が強固でなくなり、かつ非発光物質であるPが多く存在するため光取り出し効率が悪い。したがって、蛍光膜を実用的な強度でかつ発光効率の良いものにするためには、CBBで代表される低融点物質とPで代表される高融点物質との割合は、蛍光膜構造のなかでムラなく所定の範囲内にある必要がある。   That is, if CBBP and P are not sufficiently dispersed, there are places where P is locally present in the fluorescent film and places where it is not. In places where P is not present, the phosphor particles are bound only by CBB, and as described above, the film structure is not strong, and the phosphor particles tend to aggregate, so the luminous efficiency of the phosphor film deteriorates. On the other hand, where P is too much, the film structure is not strong because there are few CBBs joining the phosphor particles, and light extraction efficiency is poor because there is a large amount of non-light emitting substance P. Therefore, in order to make the fluorescent film have practical intensity and good luminous efficiency, the ratio of the low melting point material represented by CBB and the high melting point material represented by P is within the phosphor film structure. It must be within a predetermined range without unevenness.

以上のことから、蛍光膜内におけるCBBで代表される低融点物質とPで代表される高融点物質のムラをなくすため、蛍光体膜を形成する以前の蛍光体スラリー中におけるCBBとPとの分散性を向上させる工夫がなされている。たとえば、蛍光体スラリーを調合する際に、材料である分散媒、蛍光体、増粘剤、結着剤(CBB及びP)とをそれぞれ秤量して、一緒にボールミルをかけることにより、蛍光体だけでなく、スラリー中におけるCBBとPとの分散性を向上させることができる。ボールミルをかける時間が長いほど、分散性は向上する。しかしながら、ボールミルをかける時間とともに蛍光体の結晶がボールの衝突による機械的衝撃によって破壊するため、発光効率の低下を招くという課題がある。   From the above, in order to eliminate unevenness between the low melting point material represented by CBB and the high melting point material represented by P in the phosphor film, the CBB and P in the phosphor slurry before the phosphor film is formed are eliminated. A device to improve dispersibility is made. For example, when preparing a phosphor slurry, each of the dispersion medium, the phosphor, the thickener, and the binder (CBB and P), which are materials, is weighed and ball milled together to obtain only the phosphor. In addition, the dispersibility of CBB and P in the slurry can be improved. The longer the ball milling time, the better the dispersibility. However, there is a problem in that the luminous efficiency is lowered because the phosphor crystal is broken by mechanical impact due to the collision of the ball with the time of applying the ball mill.

前記課題を回避するため、分散媒、結着剤(CBB及びP)、および必要に応じて少量の増粘剤のみからなる結着剤スラリーをあらかじめ調合する方法がとられる。蛍光体スラリー調合の際は、分散媒、蛍光体、増粘剤、および結着剤スラリーを混合するため、混合時の物理的衝撃による蛍光体の劣化は軽減できる。しかしながら、分散性の良い蛍光体スラリーとするには、結着剤スラリーにおけるCBBとPとの分散性を向上させておく必要がある。   In order to avoid the above-mentioned problem, a method is adopted in which a binder slurry comprising only a dispersion medium, binders (CBB and P), and, if necessary, a small amount of a thickener is prepared in advance. When preparing the phosphor slurry, the dispersion medium, the phosphor, the thickener, and the binder slurry are mixed, so that deterioration of the phosphor due to physical impact during mixing can be reduced. However, in order to obtain a phosphor slurry with good dispersibility, it is necessary to improve the dispersibility of CBB and P in the binder slurry.

結着剤スラリー調合の製造フローを図3に示す。高融点物質と低融点物質とを別々に粉砕して平均粒径0.5〜5μmの粒子を得る。その後、それぞれの粉体を混合する。得られた粉体に分散媒と増粘剤とを加えて分散させる。以上の工程により結着剤スラリーを調合する。   The production flow of binder slurry preparation is shown in FIG. The high melting point material and the low melting point material are separately pulverized to obtain particles having an average particle size of 0.5 to 5 μm. Then, each powder is mixed. A dispersion medium and a thickener are added to the obtained powder and dispersed. The binder slurry is prepared by the above process.

分散工程において、分散性を向上させるため長時間ボールミルをかけるか、もしくは高速ミキサーをかけている。長時間のボールミルがけは前後の処理に手間がかかる作業であり、その工数によるコストアップが課題であった。また高速ミキサーでは、高分子物質である増粘剤の分子鎖が断裂しやすく、結着剤スラリーの粘度が低下して結着剤の沈降速度の増加を招き、粘度が時間的に不安定になりやすいという課題があった。   In the dispersion step, a ball mill is applied for a long time or a high speed mixer is applied to improve dispersibility. Long-time ball milling is a work that requires time and effort for the front and rear processing, and cost increase due to the man-hours has been a problem. In high-speed mixers, the molecular chain of the thickener, which is a high-molecular substance, is easily broken, causing the viscosity of the binder slurry to decrease, leading to an increase in the settling speed of the binder, and making the viscosity unstable over time. There was a problem that it was easy to become.

本発明は、上記課題を鑑みてなされたものであり、その目的とするところは、結着剤(ガラス粉体)を分散させるスラリーの製造において、ガラス粉体中の高融点物質と低融点物質との分散性を考慮する必要の無い、ガラス粉体、発光デバイス、及びガラス粉体の製造方法を提供することにある。   The present invention has been made in view of the above problems, and the object of the present invention is to produce a high-melting substance and a low-melting substance in a glass powder in the production of a slurry in which a binder (glass powder) is dispersed. It is an object of the present invention to provide a glass powder, a light-emitting device, and a method for producing a glass powder that do not require consideration of dispersibility.

上記課題を解決するため、本願発明のガラス粉体は、融点が異なる2種以上の物質で構成されるガラス粉体であって、前記物質の中で融点が最も高くない低融点物質が、当該低融点物体よりも融点が高い高融点物質の少なくとも一部を覆う。   In order to solve the above problems, the glass powder of the present invention is a glass powder composed of two or more substances having different melting points, and the low melting point substance having the highest melting point among the substances is Cover at least a portion of the high melting point material having a higher melting point than the low melting point object.

好適な実施形態として、前記高融点物質がリン酸塩であり、前記低融点物質がホウ酸を含むガラスである。   In a preferred embodiment, the high melting point material is phosphate, and the low melting point material is glass containing boric acid.

本発明のスラリーは、上記ガラス粉体と、前記ガラス粉体を分散させた分散媒とを含む。   The slurry of the present invention contains the glass powder and a dispersion medium in which the glass powder is dispersed.

本願発明の蛍光体デバイスは、上記ガラス粉体と、前記ガラス粉体を分散させた蛍光体を含む蛍光体膜とを備える。   The phosphor device of the present invention includes the glass powder and a phosphor film containing a phosphor in which the glass powder is dispersed.

本願発明のガラス粉体の製造方法は、融点が異なる2種以上の物質で構成されるガラス粉体の製造方法であって、前記物質の中で融点が最も高くない低融点物質を準備する工程と、前記低融点物体よりも融点が高い高融点物質を準備する工程と、前記低融点物質と前記高融点物質とを混合して混合物質を得て、当該混合物質を前記低融点物質の融点以上前記高融点物質の融点未満の温度で加熱する溶融工程と、前記溶融工程の後に、前記混合物質を固化させて粉砕する工程と、を含む。   The method for producing a glass powder of the present invention is a method for producing a glass powder composed of two or more substances having different melting points, and a step of preparing a low-melting substance having the highest melting point among the substances Preparing a high melting point material having a melting point higher than that of the low melting point object, mixing the low melting point material and the high melting point material to obtain a mixed material, and mixing the mixed material with the melting point of the low melting point material The method includes a melting step of heating at a temperature lower than the melting point of the high melting point material, and a step of solidifying and pulverizing the mixed material after the melting step.

好適なガラス粉体の製造方法の実施形態として、前記溶融工程の温度が、前記高融点物質のガラス転移温度以上である。   As an embodiment of a preferred method for producing glass powder, the temperature of the melting step is equal to or higher than the glass transition temperature of the refractory material.

好適なガラス粉体の製造方法の実施形態として、前記高融点物質がリン酸塩であり、前記低融点物質がホウ酸を含むガラスである。   As an embodiment of a preferred method for producing glass powder, the high melting point substance is a phosphate, and the low melting point substance is glass containing boric acid.

以上のように、発明のガラス粉体は、融点が異なる2種以上の物質で構成され、前記物質の中で融点が最も高くない低融点物質が、当該低融点物体よりも融点が高い高融点物質の少なくとも一部を覆うことにより、結着剤の分散工程において手間を掛けることなく、ガラス粉体中の高融点物質と低融点物質との分散性を良くすることができ、蛍光体を使用したデバイスの蛍光体の結着力を容易に向上できる。   As described above, the glass powder of the invention is composed of two or more kinds of substances having different melting points, and the low melting point substance having the highest melting point among the substances has a higher melting point than the low melting point object. By covering at least a part of the substance, the dispersibility of the high melting point substance and the low melting point substance in the glass powder can be improved without taking time in the step of dispersing the binder, and a phosphor is used. It is possible to easily improve the binding strength of the phosphor of the device.

以下、本発明の実施形態を、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
本発明のガラス粉体(以下、「結着剤」とも言う)における一つの粒子の構造についての模式図を図1に示す。図1において、Lはガラス粉体の物質の中で最も融点が高くない低融点物質(融点TL)であり、不定形である。Hは低融点物質よりも融点が高い高融点物質(融点TH)である。ここで「高融点物質」と「低融点物質」とは、ガラス粉体であるガラス粉体が2種以上の物質から形成されており、その物質の融点に差(高い融点と低い融点)があることを示すために用いている文言である。本実施形態では、2種の物質を使用しているので、融点が低い方が低融点物質であり、融点が高い方が高融点物質である。
(Embodiment 1)
FIG. 1 shows a schematic diagram of the structure of one particle in the glass powder of the present invention (hereinafter also referred to as “binder”). In FIG. 1, L is a low melting point material (melting point TL) having the highest melting point among the glass powder materials, and is indefinite. H is a high melting point material (melting point TH) having a higher melting point than the low melting point material. Here, “high melting point substance” and “low melting point substance” are glass powders that are formed from two or more kinds of substances, and there is a difference between the melting points of the substances (high melting point and low melting point). It is a wording used to show that there is. In this embodiment, since two types of substances are used, the lower melting point is a low melting point substance, and the higher melting point is a high melting point substance.

また、低融点物質は、高融点物質の表面を覆っている。しかし、本願の目的が低融点物質と高融点物質との分散を良くするためであるので、高融点物質の表面を全て覆う必要はなく、少なくとも高融点物質の表面の一部を低融点物質が覆う、すなわち、低融点物質と高融点物質とが物理的あるいは化学的に接触あるいは一体として存在して製造工程において容易に離散しない構成となっていれば良い。   The low melting point material covers the surface of the high melting point material. However, since the purpose of the present application is to improve the dispersion of the low melting point substance and the high melting point substance, it is not necessary to cover the entire surface of the high melting point substance. It is sufficient that the low melting point substance and the high melting point substance are physically or chemically in contact with each other or integrally formed so that they are not easily separated in the manufacturing process.

図1に示す本発明のガラス粉体は図2に示すフローで作成した。   The glass powder of the present invention shown in FIG. 1 was prepared by the flow shown in FIG.

本実施形態では、低融点物質Lとして組成式0.7BaO・0.3CaO・1.6Bであるガラスのカレットを原料とした(以下、この組成式の低融点物質を「CBB」と称す)。CBBの融点TLは850度である。また、高融点物質H(融点TH)として分子式Caで表されるピロリン酸カルシウムを粉砕した。粉砕工程によりピロリン酸カルシウムの平均粒径を0.5μmとした(以下、ピロリン酸カルシウムを「P」と称す)。Pの融点は1200度である。 In the present embodiment, the low melting point material L is a glass cullet having the composition formula 0.7BaO · 0.3CaO · 1.6B 2 O 3 (hereinafter, the low melting point material of this composition formula is referred to as “CBB”). Called). The melting point TL of CBB is 850 degrees. Further, calcium pyrophosphate represented by the molecular formula Ca 2 P 2 O 7 was pulverized as the high melting point substance H (melting point TH). The average particle diameter of calcium pyrophosphate was set to 0.5 μm by the pulverization step (hereinafter, calcium pyrophosphate is referred to as “P”). The melting point of P is 1200 degrees.

これらの原料を低融点物質L:高融点物質H=6:4に秤量し、乳鉢で混合した後、白金坩堝に入れて、850度以上1200度未満の温度,たとえば本実施形態では1000度で加熱溶融した(溶融工程)。この加熱温度は、CBBが十分に溶融してPが溶融しない温度である。すなわち、低融点物質Lが十分に溶融しかつ高融点物質Hが溶融しない温度(TL以上かつTH未満を満たす温度)である。溶け残りのないことを確認し、確実に混合するため溶融状態で坩堝内を白金棒で数回攪拌した後、坩堝の内容物をツインローラーで急冷して固化させ、薄い板状とした。板状となった混合物を自動乳鉢及びボールミルで粉砕して平均粒径1μmのガラス粉体とした(粉砕工程)。その後ガラス粉体を分散媒、増粘剤を加えてガラス粉体を分散させる(分散工程)。   These raw materials are weighed into low melting point substance L: high melting point substance H = 6: 4, mixed in a mortar, and then put in a platinum crucible at a temperature of 850 ° C. or more and less than 1200 ° C., for example, 1000 ° C. in this embodiment. It was heated and melted (melting process). This heating temperature is a temperature at which CBB is sufficiently melted and P is not melted. That is, it is a temperature at which the low melting point material L is sufficiently melted and the high melting point material H is not melted (a temperature satisfying TL or more and less than TH). After confirming that there was no undissolved residue and in order to ensure mixing, the inside of the crucible was stirred with a platinum rod several times in a molten state, and then the contents of the crucible were quenched and solidified by a twin roller to form a thin plate. The plate-like mixture was pulverized with an automatic mortar and ball mill to obtain glass powder having an average particle diameter of 1 μm (pulverization step). Thereafter, the glass powder is dispersed by adding a dispersion medium and a thickener (dispersing step).

なお、CBBの原料としてガラスカレットを用いた例で説明したが、ガラス原料である炭酸バリウム、炭酸カルシウム、及びホウ酸の混合物、もしくは沈殿法で作成した前駆体を1300度の高温で加熱してCBBの溶融状態とした後、Pが溶融しない温度である1000度に下げてからPを投入してもよい。   In addition, although demonstrated with the example which used the glass cullet as a raw material of CBB, the precursor created by the mixture of the barium carbonate, calcium carbonate, and boric acid which are glass raw materials, or the precipitation method was heated at 1300 degreeC high temperature. After making the molten state of CBB, P may be charged after the temperature is lowered to 1000 degrees which is a temperature at which P does not melt.

また、低融点物質(本実施形態ではCBB)と高融点物質(本実施形態ではP)とを混合する温度に関して、高融点物質のガラス転移温度(TG)以下の温度であれば高融点物質は材料の形状が保たれる。しかしながら、このガラス粉体は異種の物質で構成するため、固化・粉砕後のガラス粉体粒子は、その材料の選び方の組合せによっては、スラリー調合の振動や衝撃などにより、それぞれ元の物質単体と比べて容易に割れやすくなる。加熱温度が高融点物質のガラス転移温度TGよりも高い温度であれば、高融点物質が粘弾性を持ち始め、このため混合中に高融点物質の表面の一部が低融点物質と融合し、高融点物質の概形状は塊状のまま維持されつつ、低融点物質と確実に結合した状態になる。このためガラス粉体粒子は、高融点物質のガラス転移温度以下で混合した場合よりも、振動や衝撃に対して割れが少なくなる。このため、結着剤スラリー及び蛍光体スラリーにした際の粒子の品質が安定する効果を有する。   In addition, regarding the temperature at which the low melting point material (CBB in the present embodiment) and the high melting point material (P in the present embodiment) are mixed, the high melting point material is not higher than the glass transition temperature (TG) of the high melting point material. The shape of the material is maintained. However, since this glass powder is composed of different substances, the glass powder particles after solidification and pulverization may differ from the original substance itself due to vibration and impact of slurry preparation, depending on the combination of how to select the materials. It is easier to break than it is. If the heating temperature is higher than the glass transition temperature TG of the high-melting substance, the high-melting substance starts to have viscoelasticity, so that part of the surface of the high-melting substance fuses with the low-melting substance during mixing, The general shape of the high-melting-point material is maintained in a lump shape, and is surely bonded to the low-melting-point material. For this reason, the glass powder particles are less susceptible to vibration and impact than when mixed at a temperature lower than the glass transition temperature of the high melting point material. For this reason, it has the effect that the quality of the particle | grains at the time of setting it as a binder slurry and fluorescent substance slurry is stabilized.

本実施形態によるガラス粉体を偏光顕微鏡で観察し、低融点物質Lと高融点物質Hとが偏光方向によって異なった色で表され、構成する粒子には低融点物質Lが不定形に存在し、かつ高融点物質Hが塊状のまま離散的に配置されていることを確認した。このため、本実施形態によるガラス粉体を結着剤として蛍光ランプの蛍光体膜の形成に用いると、蛍光体の周りに分散した結着剤であるCBBが増粘剤を焼き飛ばす熱工程において溶融して蛍光体粒子表面に付着する一方で、Pは溶融せず塊状のまま分散性を保ちつつ蛍光体粒子間に配置できる。したがって、本実施形態の結着剤(ガラス粉体)を蛍光体用の結着剤として調合した結着剤スラリー(分散媒で本実施形態のガラス粉末を分散させたもの)は図2に示すとおり、低融点物質Lの粉砕工程が不要であるばかりでなく、CBBとPとが一体となって形成されているので、分散工程での混合も長時間ボールミルや高速ミキサーなど手間のかかる工程は必ずしも必要でない。すなわち、従来からの結着剤を用いた蛍光体スラリーと比べて、同等以上の蛍光体結着力及び発光効率の蛍光膜を有する蛍光膜を形成することができ、かつ調合工程が簡素化できる。   The glass powder according to the present embodiment is observed with a polarizing microscope, and the low melting point substance L and the high melting point substance H are expressed in different colors depending on the polarization direction, and the low melting point substance L exists in an irregular shape in the constituent particles. In addition, it was confirmed that the high melting point substance H was discretely arranged in the form of a lump. For this reason, when the glass powder according to the present embodiment is used as a binder for forming a phosphor film of a fluorescent lamp, the CBB, which is a binder dispersed around the phosphor, is used in a thermal process in which the thickener is burned off. While melting and adhering to the surface of the phosphor particles, P is not melted and can be disposed between the phosphor particles while maintaining dispersibility while remaining in a lump shape. Accordingly, FIG. 2 shows a binder slurry prepared by dispersing the binder (glass powder) of the present embodiment as a binder for a phosphor (the glass powder of the present embodiment is dispersed in a dispersion medium). As mentioned above, not only the pulverization process of the low melting point substance L is unnecessary, but also CBB and P are integrally formed, so that the mixing process in the dispersion process is a time-consuming process such as a ball mill or a high-speed mixer. It is not always necessary. That is, as compared with a conventional phosphor slurry using a binder, it is possible to form a phosphor film having a phosphor film having a phosphor binding power and luminous efficiency equal to or higher than that, and to simplify the blending process.

本発明におけるガラス粉体の応用を蛍光ランプの蛍光体結着剤として説明したが、蛍光膜の強度が必要な蛍光膜、たとえば加工上、複雑な工程が必要な自発光形ディスプレイの蛍光膜など、蛍光体膜を備えた蛍光体デバイスにも適用できる。   Although the application of the glass powder in the present invention has been described as a phosphor binder for a fluorescent lamp, a fluorescent film that requires strength of the fluorescent film, such as a fluorescent film for a self-luminous display that requires complicated processes in processing, etc. The present invention can also be applied to a phosphor device provided with a phosphor film.

(実施の形態2)
本実施形態におけるガラス粉体では、低融点物質Lが1種類(CBB)、高融点物質Hが1種類(P)の例で説明したが、いずれも複数種類であってもよい。たとえば、低融点物質がL1(融点TL1)、L2(融点TL2)であり、高融点物質がH1(融点TH1、ガラス転移温度TG1)、H2(融点TH2、ガラス転移温度TG2)である場合、加熱温度Tを(TL1とTL2のうち高いほうの温度)≦T<(TH1とTH2のうち低いほうの温度)を満たす温度Tに設定することにより、塊状の高融点物質H1及びH2は離散的に配置され、かつ不定形の低融点物質L1及びL2で構成したガラス粉体が得られる。さらに振動や衝撃に対して割れの少ない安定したガラス粉体粒子を得るには、加熱温度Tは(TG1とTG2のうち高いほうの温度)≦Tを満たすよう、加熱温度Tもしくは高融点物質H1及びH2を選定する。
(Embodiment 2)
In the glass powder in the present embodiment, the low melting point material L is described as one type (CBB) and the high melting point material H is described as one type (P). For example, when the low melting point material is L1 (melting point TL1), L2 (melting point TL2) and the high melting point material is H1 (melting point TH1, glass transition temperature TG1), H2 (melting point TH2, glass transition temperature TG2), heating is performed. By setting the temperature T to a temperature T that satisfies (the higher temperature of TL1 and TL2) ≦ T <(the lower temperature of TH1 and TH2), the massive refractory materials H1 and H2 are discretely separated. A glass powder composed of the low-melting substances L1 and L2 which are arranged and irregular in shape is obtained. Furthermore, in order to obtain stable glass powder particles with less cracking against vibration and impact, the heating temperature T or the high melting point material H1 is set so that the heating temperature T satisfies (the higher temperature of TG1 and TG2) ≦ T. And H2.

本発明におけるガラス粉体の製造方法の特徴は、高融点物質Hと低融点物質Lそれぞれの融点の中間温度で加熱して混合することにある。実施例で説明したように高融点物質Hと低融点物質Lとを坩堝に入れて加熱するかわりに、たとえば金米糖の製法のように高融点物質Hの粒子に対して溶解した低融点物質Lを注ぎながら攪拌することにより、高融点物質Hの粒子の周囲を低融点物質Lが包み込むように付着させる製法でもよい。また、高融点物質Hの表面に低融点物質Lもしくはその前駆体を付着させ、加熱して低融点物質Lを溶融もしくは前駆体を分解することにより高融点物質Hの表面に低融点物質Lを形成してもよい。ただし、これらの製法において、低融点物質Lを高融点物質Hと混合後に固化するために加熱する温度がTL以上TH未満であることは実施例と同じである。   The feature of the method for producing glass powder in the present invention is that it is heated and mixed at an intermediate temperature between the melting points of the high melting point substance H and the low melting point substance L. Instead of heating the high melting point substance H and the low melting point substance L in the crucible as described in the examples, the low melting point substance L dissolved in the particles of the high melting point substance H, for example, as in the method for producing gold rice sugar, It may be a manufacturing method in which the low melting point substance L is attached so as to wrap around the particles of the high melting point substance H by stirring while pouring. Further, the low melting point substance L or a precursor thereof is attached to the surface of the high melting point substance H, and the low melting point substance L is applied to the surface of the high melting point substance H by heating to melt the low melting point substance L or decompose the precursor. It may be formed. However, in these production methods, the temperature at which the low melting point material L is heated to solidify after mixing with the high melting point material H is equal to or higher than TL and lower than TH, as in the example.

本発明のガラス粉体は、結着剤の分散工程において手間を掛けることなく、ガラス粉体中の高融点物質と低融点物質との分散性を良くすることができ、蛍光体を使用したデバイスの蛍光体の結着力を容易に向上でき、蛍光ランプをはじめとする蛍光体デバイスの結着剤として有用である。   The glass powder of the present invention can improve the dispersibility of the high-melting-point substance and the low-melting-point substance in the glass powder without taking time in the binder dispersion step, and uses a phosphor. Therefore, it is possible to easily improve the binding force of the phosphor, and it is useful as a binder for phosphor devices such as fluorescent lamps.

本発明によるガラス粉体粒子の構成図Configuration diagram of glass powder particles according to the present invention 本発明の結着剤スラリー調合工程のフローチャートFlowchart of binder slurry preparation process of the present invention 従来技術の結着剤スラリー調合工程のフローチャートFlowchart of prior art binder slurry preparation process

Claims (7)

融点が異なる2種以上の物質で構成されるガラス粉体であって、
前記物質の中で融点が最も高くない低融点物質が、当該低融点物体よりも融点が高い高融点物質の少なくとも一部を覆う、ガラス粉体。
A glass powder composed of two or more substances having different melting points,
A glass powder in which a low-melting-point substance having the highest melting point among the substances covers at least a part of a high-melting-point substance having a higher melting point than that of the low-melting-point object.
前記高融点物質がリン酸塩であり、前記低融点物質がホウ酸を含むガラスである、請求項1に記載のガラス粉体。 The glass powder according to claim 1, wherein the high melting point material is a phosphate and the low melting point material is glass containing boric acid. 請求項1または2に記載のガラス粉体と、
前記ガラス粉体を分散させる分散媒とを含む、スラリー。
The glass powder according to claim 1 or 2,
A slurry containing a dispersion medium for dispersing the glass powder.
請求項1または2に記載のガラス粉体と、
前記ガラス粉体を分散させた蛍光体を含む蛍光体膜とを備える、蛍光体デバイス。
The glass powder according to claim 1 or 2,
A phosphor device comprising a phosphor film containing a phosphor in which the glass powder is dispersed.
融点が異なる2種以上の物質で構成されるガラス粉体の製造方法であって、
前記物質の中で融点が最も高くない低融点物質を準備する工程と、
前記低融点物体よりも融点が高い高融点物質を準備する工程と、
前記低融点物質と前記高融点物質とを混合して混合物質を得て、当該混合物質を前記低融点物質の融点以上前記高融点物質の融点未満の温度で加熱する溶融工程と、
前記溶融工程の後に、前記混合物質を固化させて粉砕する工程と、
を含む、ガラス粉体の製造方法。
A method for producing glass powder composed of two or more substances having different melting points,
Preparing a low melting point material having the lowest melting point among the materials,
Preparing a high melting point material having a higher melting point than the low melting point object;
A melting step of mixing the low-melting substance and the high-melting substance to obtain a mixed substance, and heating the mixed substance at a temperature not lower than the melting point of the low-melting substance and not lower than the melting point of the high-melting substance;
A step of solidifying and crushing the mixed material after the melting step;
A method for producing glass powder, comprising:
前記溶融工程の温度が、前記高融点物質のガラス転移温度以上である、請求項5記載のガラス粉体の製造方法。 The manufacturing method of the glass powder of Claim 5 whose temperature of the said fusion | melting process is more than the glass transition temperature of the said high melting-point substance. 前記高融点物質がリン酸塩であり、前記低融点物質がホウ酸を含むガラスである、請求項5または6に記載のガラス粉体の製造方法。 The method for producing glass powder according to claim 5 or 6, wherein the high-melting-point substance is phosphate and the low-melting-point substance is glass containing boric acid.
JP2004051074A 2004-02-26 2004-02-26 Glass powdery material, slurry, fluorescent material device, and method for producing glass powdery material Pending JP2005239477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051074A JP2005239477A (en) 2004-02-26 2004-02-26 Glass powdery material, slurry, fluorescent material device, and method for producing glass powdery material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004051074A JP2005239477A (en) 2004-02-26 2004-02-26 Glass powdery material, slurry, fluorescent material device, and method for producing glass powdery material

Publications (1)

Publication Number Publication Date
JP2005239477A true JP2005239477A (en) 2005-09-08

Family

ID=35021610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051074A Pending JP2005239477A (en) 2004-02-26 2004-02-26 Glass powdery material, slurry, fluorescent material device, and method for producing glass powdery material

Country Status (1)

Country Link
JP (1) JP2005239477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768112A (en) * 2020-12-29 2021-05-07 深圳市沁园春科技有限公司 Electronic slurry and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768112A (en) * 2020-12-29 2021-05-07 深圳市沁园春科技有限公司 Electronic slurry and preparation method thereof

Similar Documents

Publication Publication Date Title
Liao et al. A hierarchical structure perovskite quantum dots film for laser‐driven projection display
US9062251B2 (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
KR102595535B1 (en) Spherical crystalline silica particles and method for producing the same
Yue et al. β‐SiAlON: Eu2+ phosphor‐in‐glass film: an efficient laser‐driven color converter for high‐brightness wide‐color‐gamut projection displays
Peng et al. Preparation and luminescent performances of thermally stable red-emitting phosphor-in-glass for high-power lighting
EP3444858A1 (en) Wavelength conversion member
JP6142869B2 (en) Granulated body and method for producing the same
US20110042617A1 (en) Transparent phosphor and process for producing the transparent phosphor
CN102434853A (en) Optical wavelength conversion piece, preparation method thereof and light source using optical wavelength conversion piece
DE102012210195A1 (en) Device for providing electromagnetic radiation
JP2011197648A (en) Light reflective substrate and light emitting device using the same
CN108603113B (en) Phosphor and method for producing same, phosphor-containing member, and light-emitting device or projector
He et al. Ligand assisted swelling–deswelling microencapsulation (LASDM) for stable, color tunable perovskite–polymer composites
WO2019177112A1 (en) Powder and mixed powder
Wang et al. Composition optimization of multifunctional CsPb (Br/I) 3 perovskite nanocrystals glasses with high photoluminescence quantum yield
Si et al. Engineering the crystallization behavior of CsPbBr3 quantum dots in borosilicate glass through modulating the glass network modifiers for wide-color-gamut displays
US7378038B2 (en) Process for producing phosphors
Si et al. A stable and efficient red‐emitting color converter based on K2SiF6: Mn4+ phosphor‐in‐glass film for next‐generation laser‐excited lighting and display
CN103319095B (en) Low temperature glass fluorophor and preparation method thereof
JP2005239477A (en) Glass powdery material, slurry, fluorescent material device, and method for producing glass powdery material
CN106892558B (en) A kind of novel high-strength method for glass preparation
CN102892724B (en) Fire-resistant filler, sealing material using same, and method for producing fire-resistant filler
WO2011060597A1 (en) Plasma display panel and dielectric paste thereof
CN110461788B (en) Glass frit, glass frit manufacturing method and aluminum paste
JP2000087025A (en) Phosphor layer, phosphor paste, and production of phosphor paste