JP2005239454A - Hydrogen storage material - Google Patents

Hydrogen storage material Download PDF

Info

Publication number
JP2005239454A
JP2005239454A JP2004048477A JP2004048477A JP2005239454A JP 2005239454 A JP2005239454 A JP 2005239454A JP 2004048477 A JP2004048477 A JP 2004048477A JP 2004048477 A JP2004048477 A JP 2004048477A JP 2005239454 A JP2005239454 A JP 2005239454A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
storage material
heat
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004048477A
Other languages
Japanese (ja)
Inventor
Nobuko Oba
伸子 大庭
Masakazu Aoki
正和 青木
Tatsuo Noritake
達夫 則竹
Shinichi Towata
真一 砥綿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2004048477A priority Critical patent/JP2005239454A/en
Publication of JP2005239454A publication Critical patent/JP2005239454A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight and low cost hydrogen storage material acting at a relatively low temperature and useful for an energy conversion material or the like. <P>SOLUTION: The hydrogen storage material has a compound phase having a Ca<SB>3</SB>Si<SB>3</SB>H<SB>4</SB>type crystalline structure as a main phase. A hydrogen storage apparatus is constituted by housing the hydrogen storage material in a vessel. A negative electrode material for nickel-hydride cell is constituted by containing the hydrogen storage material. Further, a heat storage apparatus, a chemical heat pump, a metal hydride sensor and a light transmittance-variable element are constituted by using the hydrogen storage material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、可逆的に水素を吸蔵、放出することのできる水素貯蔵材料に関する。   The present invention relates to a hydrogen storage material capable of reversibly storing and releasing hydrogen.

近年、二酸化炭素の排出による地球の温暖化等の環境問題や、石油資源の枯渇等のエネルギー問題から、クリーンな代替エネルギーとして水素エネルギーが注目されている。水素エネルギーの実用化にむけて、水素を安全に貯蔵・輸送する技術や、水素のエネルギー変換技術の開発が重要となる。水素を可逆的に吸蔵・放出できる水素吸蔵合金は、水素の貯蔵・輸送媒体として、また、水素のエネルギー変換材料として期待され、種々の合金の開発が進んでいる。
大角泰章著,「新版 水素吸蔵合金−その物性と応用−」, 株式会社アグネ技術センター,1999年2月5日,p.1〜18
In recent years, hydrogen energy has attracted attention as a clean alternative energy due to environmental problems such as global warming caused by carbon dioxide emissions and energy problems such as exhaustion of petroleum resources. For the practical application of hydrogen energy, it will be important to develop technology for safely storing and transporting hydrogen, and hydrogen energy conversion technology. A hydrogen storage alloy capable of reversibly storing and releasing hydrogen is expected as a hydrogen storage and transport medium and as an energy conversion material for hydrogen, and various alloys have been developed.
Osamu Yasuaki, “New edition of hydrogen storage alloy-its physical properties and applications-”, Agne Technology Center Co., Ltd., February 5, 1999, p. 1-18

例えば、実用的な水素吸蔵合金として、LaNi5、TiFe等が知られている。しかしながら、LaNi5、TiFeは、La、Ni、Tiといった希少な金属を含んでいるため、その資源の確保が困難であり、コストも高い。加えて、合金自体が重いため、水素化物の単位重量当たりの水素含有量は2wt%以下にとどまる。また、LaNi5系合金、TiFe系合金等の水素化物は、ニッケル−水素化物電池の負極材料として用いられる。しかしながら、これらの合金の理論電気容量は、300〜400mAh/g程度である。このため、負極材料のさらなる高容量化が望まれる。 For example, LaNi 5 , TiFe and the like are known as practical hydrogen storage alloys. However, since LaNi 5 and TiFe contain rare metals such as La, Ni, and Ti, it is difficult to secure their resources and the cost is high. In addition, since the alloy itself is heavy, the hydrogen content per unit weight of the hydride remains below 2 wt%. Further, hydrides such as LaNi 5 alloy and TiFe alloy are used as negative electrode materials for nickel-hydride batteries. However, the theoretical electric capacity of these alloys is about 300 to 400 mAh / g. For this reason, further increase in capacity of the negative electrode material is desired.

一方、水素含有量により電気伝導率や光透過率が変化する材料として、マグネシウム水素化物(MgH2)や、イットリウム水素化物(YHx)が知られている。しかしながら、これらの材料の水素吸蔵・放出温度(作動温度)は、300℃以上と高温である。このため、使用条件が限られるだけでなく、水素含有量を変化させるのも容易ではない。 On the other hand, magnesium hydride (MgH 2 ) and yttrium hydride (YH x ) are known as materials whose electrical conductivity and light transmittance change depending on the hydrogen content. However, the hydrogen storage / release temperature (operating temperature) of these materials is as high as 300 ° C. or higher. For this reason, not only the use conditions are limited, but it is not easy to change the hydrogen content.

本発明はこのような実状に鑑みてなされたものであり、軽量かつ安価で、比較的低温下で作動でき、エネルギー変換材料等として有用な水素貯蔵材料を提供することを課題とする。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a hydrogen storage material that is lightweight and inexpensive, can be operated at a relatively low temperature, and is useful as an energy conversion material or the like.

(1)本発明の水素貯蔵材料は、Ca3Si34型結晶構造を有する化合物相を主相とすることを特徴とする。ここで、「主相」とは、水素貯蔵材料に含まれる化合物相のうち、30%以上の体積割合で存在する相、もしくは、体積割合が他の化合物相と比較して大きい相を意味する。Ca3Si34型結晶構造を有する化合物相は、Ca、Si、Hのみから構成される態様の他、Ca、Siの一部が他の元素で置換される場合等、Ca、Si、H以外の他の元素を含んで構成される態様であってもよい。また、本発明の水素貯蔵材料は、上記主相以外に製造上不可避の不純物からなる相を含んでいてもよい。例えば、水素貯蔵材料をCa、Si、Hのみから製造する場合には、不純物として、Ca、Si、CaO、SiO2、CaH2、SiH4の他、Ca2Si、Ca5Si3、CaSi、Ca3Si4、Ca14Si19、CaSi2等のCa−Siで構成される二元合金等が挙げられる。 (1) The hydrogen storage material of the present invention is characterized in that the main phase is a compound phase having a Ca 3 Si 3 H 4 type crystal structure. Here, the “main phase” means a phase present in a volume ratio of 30% or more among the compound phases contained in the hydrogen storage material or a phase having a larger volume ratio than other compound phases. . The compound phase having the Ca 3 Si 3 H 4 type crystal structure is composed of only Ca, Si, and H, as well as when Ca, Si are partially substituted with other elements, etc. The aspect comprised including other elements other than H may be sufficient. Moreover, the hydrogen storage material of this invention may contain the phase which consists of impurities unavoidable on manufacture other than the said main phase. For example, when the hydrogen storage material is produced only from Ca, Si, and H, as impurities, Ca, Si, CaO, SiO 2 , CaH 2 , SiH 4 , Ca 2 Si, Ca 5 Si 3 , CaSi, Examples include binary alloys composed of Ca—Si such as Ca 3 Si 4 , Ca 14 Si 19 , and CaSi 2 .

本発明の水素貯蔵材料は、Ca、Siを基本元素として構成される。CaおよびSiは、資源が豊富で安価な元素である。また、CaおよびSiは比較的軽量である。したがって、Ca、Siを基本構成元素とする本発明の水素貯蔵材料は、軽量かつ安価な材料となる。また、単位重量当たりの水素含有量は大きい。さらに、本発明の水素貯蔵材料は、好適な組成では、200℃以下の比較的低温下で水素を放出することができる。このため、実用性が高い。   The hydrogen storage material of the present invention is composed of Ca and Si as basic elements. Ca and Si are resource-rich and inexpensive elements. Ca and Si are relatively light. Therefore, the hydrogen storage material of the present invention having Ca and Si as basic constituent elements is a lightweight and inexpensive material. Moreover, the hydrogen content per unit weight is large. Furthermore, the hydrogen storage material of the present invention can release hydrogen at a relatively low temperature of 200 ° C. or less in a preferred composition. For this reason, it is highly practical.

本発明の水素貯蔵材料は、加熱されることにより水素を放出する。その後、水素との反応により再び水素化物となる。この水素化反応は発熱反応となる。図1に、本発明の水素貯蔵材料の一例であるCa3Si34のエネルギー変換サイクルを示す。図1に示すように、本発明の水素貯蔵材料の可逆的な水素放出、吸蔵反応により、化学エネルギー(水素)、熱エネルギー(反応熱)、機械エネルギー(圧力)、電気エネルギー(電力)の相互変換を行わせることができる。このように、本発明の水素貯蔵材料は、水素貯蔵・輸送媒体としてのみならず、エネルギー変換材料として有用である。 The hydrogen storage material of the present invention releases hydrogen when heated. Thereafter, it becomes hydride again by reaction with hydrogen. This hydrogenation reaction becomes an exothermic reaction. Figure 1 shows an energy conversion cycle of Ca 3 Si 3 H 4 which is an example of a hydrogen storage material of the present invention. As shown in FIG. 1, the reversible hydrogen release and occlusion reaction of the hydrogen storage material of the present invention allows mutual interaction between chemical energy (hydrogen), thermal energy (reaction heat), mechanical energy (pressure), and electrical energy (electric power). Conversion can be performed. Thus, the hydrogen storage material of the present invention is useful not only as a hydrogen storage / transport medium but also as an energy conversion material.

(2)本発明の水素貯蔵装置は、容器と、該容器に収容された水素貯蔵材料とを備え、水素貯蔵材料は、Ca3Si34型結晶構造を有する化合物相を主相とすることを特徴とする。本発明の水素貯蔵装置は、上述した本発明の水素貯蔵材料を備える。よって、軽量、安価で、単位重量当たりの水素貯蔵量の大きな装置となる。これより、本発明の水素貯蔵装置は、水素の輸送用として、また、自動車に搭載される燃料電池の燃料タンク等として好適である。また、水素貯蔵材料の好適な組成では、200℃以下の比較的低温下で水素が放出される。このため、簡便かつ低コストに水素を取り出すことができ、実用性が高い。 (2) The hydrogen storage device of the present invention includes a container and a hydrogen storage material accommodated in the container, and the hydrogen storage material has a compound phase having a Ca 3 Si 3 H 4 type crystal structure as a main phase. It is characterized by that. The hydrogen storage device of the present invention includes the above-described hydrogen storage material of the present invention. Therefore, the device is light and inexpensive and has a large hydrogen storage amount per unit weight. Thus, the hydrogen storage device of the present invention is suitable for transporting hydrogen and as a fuel tank of a fuel cell mounted on an automobile. Further, in a suitable composition of the hydrogen storage material, hydrogen is released at a relatively low temperature of 200 ° C. or lower. For this reason, hydrogen can be taken out simply and at low cost, and is highly practical.

(3)本発明のニッケル−水素化物電池用負極材料は、上記本発明の水素貯蔵材料を含むことを特徴とする。本発明の水素貯蔵材料は、貴金属を含まないため安価であり、人体および環境に対して無害である。また、後に詳しく説明するが、本発明の水素貯蔵材料の理論電気容量は大きい。したがって、本発明の水素貯蔵材料を含む負極材料は、安価かつ安全で、大きな理論電気容量を持つ。これより、本発明の負極材料を用いれば、高容量に加え、電池使用後の回収、リサイクルが容易で、環境への影響が少ないニッケル−水素化物電池を構成することができる。   (3) The negative electrode material for nickel-hydride batteries of the present invention is characterized by including the hydrogen storage material of the present invention. The hydrogen storage material of the present invention is inexpensive because it contains no precious metal, and is harmless to the human body and the environment. As will be described in detail later, the theoretical electric capacity of the hydrogen storage material of the present invention is large. Therefore, the negative electrode material containing the hydrogen storage material of the present invention is inexpensive and safe and has a large theoretical electric capacity. Thus, by using the negative electrode material of the present invention, it is possible to constitute a nickel-hydride battery that has a high capacity, is easy to collect and recycle after use, and has little environmental impact.

(4)本発明の蓄熱装置は、熱源と、上記本発明の水素貯蔵材料を持ち、該熱源からの加熱により水素を放出する蓄熱部と、該蓄熱部に連結され、該蓄熱部から放出された水素を貯溜する蓄水素部と、を備えることを特徴とする。上述したように、本発明の水素貯蔵材料は、加熱により水素を放出し、水素の吸蔵時に熱を放出する。したがって、太陽熱、地熱、風力、工場廃熱等の熱源により、本発明の水素貯蔵材料を加熱すると、水素が放出される。放出された水素を蓄えれば、熱が水素という化学エネルギーとして蓄えられたことになる。そして、熱の必要時には、例えば、水素を放出した状態の上記水素貯蔵材料に水素を反応させる。こうすることで、発生した反応熱を熱エネルギーとして取り出すことができる。本発明の蓄熱装置は、上記本発明の水素貯蔵材料を用いるため安価であり、比較的低温の熱であっても蓄えることができる。このように、本発明の蓄熱装置によれば、熱エネルギーを有効に回収・利用することができる。   (4) The heat storage device of the present invention includes a heat source, the hydrogen storage material of the present invention, and a heat storage unit that releases hydrogen by heating from the heat source, and is connected to the heat storage unit and is discharged from the heat storage unit. And a hydrogen storage part for storing hydrogen. As described above, the hydrogen storage material of the present invention releases hydrogen by heating and releases heat when storing hydrogen. Therefore, when the hydrogen storage material of the present invention is heated by a heat source such as solar heat, geothermal power, wind power, and factory waste heat, hydrogen is released. If the released hydrogen is stored, heat is stored as chemical energy called hydrogen. When heat is required, for example, hydrogen is reacted with the hydrogen storage material in a state in which hydrogen is released. By doing so, the generated reaction heat can be taken out as thermal energy. The heat storage device of the present invention is inexpensive because the hydrogen storage material of the present invention is used, and can store even relatively low-temperature heat. Thus, according to the heat storage device of the present invention, it is possible to effectively recover and use thermal energy.

(5)本発明のケミカルヒートポンプは、上記本発明の水素貯蔵材料を持つ第一容器と、水素を吸蔵、放出することができ、その平衡水素圧が該水素貯蔵材料と異なる第二材料を持ち、該第一容器に連結された第二容器と、を備え、該水素貯蔵材料および該第二材料の各々における水素の吸蔵、放出反応により、該第一容器と該第二容器との間で水素を移動させ熱の授受を行うことを特徴とする。   (5) The chemical heat pump of the present invention has a first container having the hydrogen storage material of the present invention and a second material that can occlude and release hydrogen and whose equilibrium hydrogen pressure is different from that of the hydrogen storage material. A second container connected to the first container, and between the first container and the second container by a hydrogen storage and release reaction in each of the hydrogen storage material and the second material. It is characterized by transferring hydrogen by transferring hydrogen.

一般に、ケミカルヒートポンプは、水素を吸蔵、放出することのできる二種類の材料を用いる。本発明のケミカルヒートポンプでは、第一材料として本発明の水素貯蔵材料を用い、第二材料として、本発明の水素貯蔵材料と平衡水素圧の異なる材料を用いる。これら第一材料、第二材料は、それぞれ第一容器、第二容器に収容され、両容器間は水素が移動できるよう連結される。ここで、第二材料として、本発明の水素貯蔵材料よりも平衡水素圧の低い材料を組み合わせた場合には、昇温型ヒートポンプとなる。反対に、第二材料として、平衡水素圧の高い材料を組み合わせた場合には、冷却型ヒートポンプとなる。例えば、前者の場合、第一容器の本発明の水素貯蔵材料を、比較的低温の工場廃熱等で加熱して水素を放出させる。放出された水素は、第二容器へ移動し、第二材料に吸蔵される。この水素吸蔵に伴う発熱により、高温の熱を得る。   In general, a chemical heat pump uses two types of materials that can occlude and release hydrogen. In the chemical heat pump of the present invention, the hydrogen storage material of the present invention is used as the first material, and a material having an equilibrium hydrogen pressure different from that of the hydrogen storage material of the present invention is used as the second material. These first material and second material are accommodated in a first container and a second container, respectively, and the two containers are connected so that hydrogen can move. Here, when a material having a lower equilibrium hydrogen pressure than the hydrogen storage material of the present invention is combined as the second material, a temperature rising type heat pump is obtained. On the other hand, when a material having a high equilibrium hydrogen pressure is combined as the second material, a cooling heat pump is obtained. For example, in the former case, the hydrogen storage material of the present invention in the first container is heated with relatively low-temperature factory waste heat or the like to release hydrogen. The released hydrogen moves to the second container and is stored in the second material. High temperature heat is obtained by the heat generated by this hydrogen storage.

本発明のケミカルヒートポンプは、上記本発明の水素貯蔵材料を用いるため安価であり、比較的低温の熱で作動する。よって、本発明のケミカルヒートポンプは、太陽熱や工場廃熱等の回収、昇温の他、冷暖房システム等に好適である。   The chemical heat pump of the present invention is inexpensive because it uses the hydrogen storage material of the present invention, and operates with relatively low-temperature heat. Therefore, the chemical heat pump of the present invention is suitable for a cooling / heating system and the like in addition to recovery of solar heat, factory waste heat, etc., and temperature rise.

(6)本発明の金属水素化物センサは、上記本発明の水素貯蔵材料を持つ感温部と、該感温部に連結され、該感温部の昇温により放出された水素ガス圧を検出する水素ガス圧検出部と、を備えることを特徴とする。感温部が昇温されると、本発明の水素貯蔵材料から水素が放出される。放出された水素は水素ガス検出部に移動して、水素ガス検出部の水素ガス圧が上昇する。この上昇した圧力により所定の駆動手段を作動させる。このように、本発明の金属水素化物センサでは、熱エネルギーが機械エネルギー(圧力)に変換される。本発明の金属水素化物センサは、上記本発明の水素貯蔵材料を用いるため安価であり、比較的低温の熱で作動する。   (6) A metal hydride sensor of the present invention detects a temperature sensing part having the hydrogen storage material of the present invention and a hydrogen gas pressure connected to the temperature sensing part and released by the temperature rise of the temperature sensing part. A hydrogen gas pressure detecting unit. When the temperature sensitive part is heated, hydrogen is released from the hydrogen storage material of the present invention. The released hydrogen moves to the hydrogen gas detector, and the hydrogen gas pressure in the hydrogen gas detector increases. A predetermined driving means is operated by the increased pressure. Thus, in the metal hydride sensor of the present invention, thermal energy is converted into mechanical energy (pressure). The metal hydride sensor of the present invention is inexpensive because it uses the hydrogen storage material of the present invention, and operates with relatively low temperature heat.

(7)本発明の光透過率可変素子は、基材と、該基材の表面に形成され、上記本発明の水素貯蔵材料を含む対水素反応膜と、からなることを特徴とする。後述するように、本発明の水素貯蔵材料は、水素含有量により光透過率が変化する。また、好適な組成では、200℃以下の比較的低温下で水素を放出することができる。したがって、本発明の光透過率可変素子は、比較的低温下で光透過率が変化するため、実用的である。   (7) The light transmittance variable element of the present invention is characterized by comprising a base material and a counter hydrogen reaction film formed on the surface of the base material and containing the hydrogen storage material of the present invention. As will be described later, the light transmittance of the hydrogen storage material of the present invention varies depending on the hydrogen content. Further, with a suitable composition, hydrogen can be released at a relatively low temperature of 200 ° C. or lower. Therefore, the light transmittance variable element of the present invention is practical because the light transmittance changes at a relatively low temperature.

本発明の水素貯蔵材料は、軽量かつ安価である。また、単位重量当たりの水素含有量が大きく、比較的低温下で水素を放出することができる。このため、水素の貯蔵・輸送媒体や、エネルギー変換材料等として有用である。   The hydrogen storage material of the present invention is lightweight and inexpensive. Further, the hydrogen content per unit weight is large, and hydrogen can be released at a relatively low temperature. Therefore, it is useful as a hydrogen storage / transport medium, energy conversion material, and the like.

以下、本発明の水素貯蔵材料、水素貯蔵装置、ニッケル−水素化物電池用負極材料、蓄熱装置、ケミカルヒートポンプ、金属水素化物センサ、光透過率可変素子について順に説明する。   Hereinafter, the hydrogen storage material, the hydrogen storage device, the negative electrode material for nickel-hydride battery, the heat storage device, the chemical heat pump, the metal hydride sensor, and the light transmittance variable element of the present invention will be described in order.

〈水素貯蔵材料〉
本発明の水素貯蔵材料は、Ca3Si34型結晶構造を有する化合物相を主相とする。Ca3Si34型結晶構造を有する化合物としては、例えば、Ca3Si3x(0.6≦x≦4.5)、Ca3(Si0.8Ge0.23x(0.6≦x≦4.5)、Ca3(Si0.5Ge0.53x(0.6≦x≦4.5)、Ca3(Si0.8Ag0.23x(0.6≦x≦4.5)等が挙げられる。本発明の水素貯蔵材料の製造方法は、特に限定されるものではない。例えば、CrB型結晶構造を有するCaSiを主相とする材料を水素化して製造することができる。一例として、そのようにして製造されたCa3Si34の粉末X線回折プロファイルを図2に示す。また、図2のデータをリートベルト解析して得られた結晶学的パラメータを下記表1に示す。すなわち、図2に示す粉末X線回折プロファイル、および表1に示す結晶学的パラメータをもつ化合物相を主相とする材料は、本発明の水素貯蔵材料となる。
<Hydrogen storage material>
The hydrogen storage material of the present invention has a compound phase having a Ca 3 Si 3 H 4 type crystal structure as a main phase. Examples of the compound having a Ca 3 Si 3 H 4 type crystal structure include Ca 3 Si 3 H x (0.6 ≦ x ≦ 4.5), Ca 3 (Si 0.8 Ge 0.2 ) 3 H x (0.6 ≦ x ≦ 4.5), Ca 3 (Si 0.5 Ge 0.5 ) 3 H x (0.6 ≦ x ≦ 4.5), Ca 3 (Si 0.8 Ag 0.2 ) 3 H x (0.6 ≦ x ≦ 4) .5) and the like. The method for producing the hydrogen storage material of the present invention is not particularly limited. For example, it can be produced by hydrogenating a material mainly composed of CaSi having a CrB type crystal structure. As an example, the powder X-ray diffraction profile of the Ca 3 Si 3 H 4 produced as such is shown in FIG. Table 1 below shows the crystallographic parameters obtained by Rietveld analysis of the data in FIG. That is, the material having the main phase of the compound X-ray diffraction profile shown in FIG. 2 and the crystallographic parameters shown in Table 1 is the hydrogen storage material of the present invention.

Figure 2005239454
本発明の水素貯蔵材料の電気的特性は、エネルギーバンド構造から知ることができる。そこで、本発明の水素貯蔵材料である上記Ca3Si34のエネルギーバンド構造を、一般化された密度勾配近似を用いた第一原理計算により求めた。図3に、Ca3Si34のエネルギーバンド構造および状態密度分布を示す。図3に示すように、Ca3Si34は、直接遷移型のエネルギーバンド構造をもち、そのバンドギャップの値は、約0.25eVであった。なお、第一原理計算により見積もられるバンドギャップの値は、実際より小さい値となることが知られている。このため、実際のバンドギャップの値は、より大きな値となると推定される。また、上記第一原理計算から、Ca3Si34は、水素含有量を減少させるとバンドギャップが消滅し、金属状態となることがわかった。通常、バンドギャップが大きいほど、電気抵抗は大きくなり、電気伝導率は小さくなる。この知見に基づいて、Ca3Si34の電気抵抗値を測定したところ、水素含有量が大きくなるほど電気抵抗値は大きくなった。これより、水素含有量を調整すれば、本発明の水素貯蔵材料の電気伝導率を調整することができることがわかる。なお、本発明の水素貯蔵材料は、好適な組成では、200℃以下で水素を放出することができる。つまり、200℃以下で水素の含有量を調整することができる。このため、本発明の水素貯蔵材料は、比較的低温下で作動可能な電気抵抗可変型電気伝導体として好適である。
Figure 2005239454
The electrical characteristics of the hydrogen storage material of the present invention can be known from the energy band structure. Therefore, the energy band structure of the Ca 3 Si 3 H 4 , which is the hydrogen storage material of the present invention, was determined by first-principles calculation using a generalized density gradient approximation. FIG. 3 shows the energy band structure and state density distribution of Ca 3 Si 3 H 4 . As shown in FIG. 3, Ca 3 Si 3 H 4 had a direct transition type energy band structure, and the value of the band gap was about 0.25 eV. It is known that the band gap value estimated by the first principle calculation is smaller than the actual value. For this reason, the actual band gap value is estimated to be a larger value. Further, from the above first principle calculation, it was found that Ca 3 Si 3 H 4 disappears when the hydrogen content is reduced, and the band gap disappears and becomes a metal state. Usually, the larger the band gap, the greater the electrical resistance and the lower the electrical conductivity. Based on this knowledge, when the electrical resistance value of Ca 3 Si 3 H 4 was measured, the electrical resistance value increased as the hydrogen content increased. From this, it can be seen that the electric conductivity of the hydrogen storage material of the present invention can be adjusted by adjusting the hydrogen content. In addition, the hydrogen storage material of this invention can discharge | release hydrogen at 200 degrees C or less in a suitable composition. That is, the hydrogen content can be adjusted at 200 ° C. or lower. For this reason, the hydrogen storage material of this invention is suitable as an electrical resistance variable type electric conductor which can operate | move under comparatively low temperature.

また、電気伝導率と同様、光の透過率もバンドギャップと関係がある。よって、水素含有量を調整すれば、本発明の水素貯蔵材料の光透過率を調整することができる。このため、本発明の水素貯蔵材料は、比較的低温下で作動可能な光透過率可変素子として好適である。本発明の水素貯蔵材料を用いた光透過率可変素子については、後で詳しく説明する。   Similarly to the electrical conductivity, the light transmittance is also related to the band gap. Therefore, if the hydrogen content is adjusted, the light transmittance of the hydrogen storage material of the present invention can be adjusted. Therefore, the hydrogen storage material of the present invention is suitable as a light transmittance variable element that can operate at a relatively low temperature. The light transmittance variable element using the hydrogen storage material of the present invention will be described in detail later.

一般に、金属の熱伝導率は温度に比例し、絶縁体および半導体の熱伝導率は温度の三乗に比例して大きくなる。上述したように、本発明の水素貯蔵材料は、水素含有量により金属状態と半導体状態との両方の状態をとり得る。このため、水素含有量を調整することにより、所望の熱伝導率を容易に得ることができる。よって、本発明の水素貯蔵材料によれば、用途に応じた熱伝導率をもつ熱伝導体を容易に実現できる。   In general, the thermal conductivity of metals is proportional to temperature, and the thermal conductivity of insulators and semiconductors increases in proportion to the cube of temperature. As described above, the hydrogen storage material of the present invention can take both a metal state and a semiconductor state depending on the hydrogen content. For this reason, desired heat conductivity can be easily obtained by adjusting hydrogen content. Therefore, according to the hydrogen storage material of the present invention, it is possible to easily realize a heat conductor having a thermal conductivity corresponding to the application.

固体中で熱ネルギーと電気エネルギーとが相互に変換される現象は、熱電効果と呼ばれる。一般に、熱電変換効率の指標には、性能指数ZT(ZT=TS2/ρκ、T:絶対温度、S:ゼーベック係数、ρ=電気抵抗値、κ:熱伝導率)が用いられる。優れた熱電材料の条件として、ゼーベック係数が大きく、電気抵抗値および熱伝導率が小さいことが要求される。上記Ca3Si34について、ゼーベック係数、電気抵抗値、熱伝導率を測定し、性能指数ZTを算出したところ、Ca3Si34は、優れた熱電特性を持つことが確認された。また、本発明の水素貯蔵材料では、水素含有量を調整することにより、電気抵抗値および熱伝導率を調整することが可能である。これより、本発明の水素貯蔵材料は、所望の熱電特性を持つ熱電材料として好適である。 The phenomenon in which thermal energy and electrical energy are mutually converted in a solid is called a thermoelectric effect. Generally, a performance index ZT (ZT = TS 2 / ρκ, T: absolute temperature, S: Seebeck coefficient, ρ = electric resistance value, κ: thermal conductivity) is used as an index of thermoelectric conversion efficiency. As a condition of an excellent thermoelectric material, it is required that the Seebeck coefficient is large and the electric resistance value and the thermal conductivity are small. For the Ca 3 Si 3 H 4 , the Seebeck coefficient, electrical resistance, and thermal conductivity were measured, and the figure of merit ZT was calculated. As a result, it was confirmed that Ca 3 Si 3 H 4 has excellent thermoelectric properties. . Moreover, in the hydrogen storage material of this invention, it is possible to adjust an electrical resistance value and heat conductivity by adjusting hydrogen content. Thus, the hydrogen storage material of the present invention is suitable as a thermoelectric material having desired thermoelectric characteristics.

水素含有量により、電気伝導率、光透過率、熱伝導率が変化する性質を利用して、例えば、本発明の水素貯蔵材料から、水素ガスを検出する水素ガス検出素子等を構成することができる。水素ガス検出素子は、例えば、基材の表面に、本発明の水素貯蔵材料からなる薄膜を形成して作製することができる。また、本発明の水素貯蔵材料は、軽量かつ安価であり、単位重量当たりの水素含有量が大きく、好適な組成では200℃以下の比較的低温下で水素を放出することができる。これらの利点を生かし、本発明の水素貯蔵材料は、以下に述べる種々の装置に用いることができる。   Utilizing the property that the electrical conductivity, light transmittance, and thermal conductivity change depending on the hydrogen content, for example, a hydrogen gas detection element that detects hydrogen gas can be configured from the hydrogen storage material of the present invention. it can. The hydrogen gas detection element can be produced, for example, by forming a thin film made of the hydrogen storage material of the present invention on the surface of a substrate. The hydrogen storage material of the present invention is lightweight and inexpensive, has a large hydrogen content per unit weight, and can release hydrogen at a relatively low temperature of 200 ° C. or less with a suitable composition. Taking advantage of these advantages, the hydrogen storage material of the present invention can be used in various apparatuses described below.

〈水素貯蔵装置〉
本発明の水素貯蔵装置は、容器と、該容器に収容された水素貯蔵材料とを備え、水素貯蔵材料は、Ca3Si34型結晶構造を有する化合物相を主相とする。容器は、高圧等の条件で使用できるものであれば、特に限定されるものではない。通常用いられる耐圧容器等を使用すればよい。そして、容器に上記水素貯蔵材料を充填し、温度、圧力を所定の条件に調整することにより水素を放出、吸蔵させればよい。
<Hydrogen storage device>
The hydrogen storage device of the present invention includes a container and a hydrogen storage material accommodated in the container, and the hydrogen storage material has a compound phase having a Ca 3 Si 3 H 4 type crystal structure as a main phase. The container is not particularly limited as long as it can be used under conditions such as high pressure. A normally used pressure vessel may be used. And what is necessary is just to discharge | release and occlude hydrogen by filling the said hydrogen storage material in a container and adjusting temperature and pressure to predetermined conditions.

〈ニッケル−水素化物電池用負極材料〉
本発明のニッケル−水素化物電池用負極材料は、上記本発明の水素貯蔵材料を含む。本発明の水素貯蔵材料の一例として、Ca3Si34について説明する。Ca3Si34には、Ca原子3個、Si原子3個に対して、H原子が4個含まれている。よって、Ca3Si34の理論電気容量ΔQは、次式(i)より524.25mAh/gと計算される。式(i)中、Fはファラデー定数、MavはCa3Si34の水素が抜けた状態の平均原子量である。
ΔQ=ΔX[H/M]×1000×F/3600/Mav
=(4/(3+3))×1000×96485/3600/34.082・・(i)
このように、本発明の水素貯蔵材料の理論電気容量は大きい。このため、同材料を含む本発明の負極材料の理論電気容量は大きくなる。
<Negative electrode material for nickel-hydride batteries>
The negative electrode material for nickel-hydride batteries of the present invention includes the hydrogen storage material of the present invention. As an example of the hydrogen storage material of the present invention, Ca 3 Si 3 H 4 will be described. Ca 3 Si 3 H 4 contains four H atoms for three Ca atoms and three Si atoms. Therefore, the theoretical electric capacity ΔQ of Ca 3 Si 3 H 4 is calculated as 524.25 mAh / g from the following equation (i). In formula (i), F is a Faraday constant, and M av is an average atomic weight of Ca 3 Si 3 H 4 in a state where hydrogen is lost.
ΔQ = ΔX [H / M] × 1000 × F / 3600 / M av
= (4 / (3 + 3)) × 1000 × 96485/3600 / 34.0082 (i)
Thus, the theoretical electric capacity of the hydrogen storage material of the present invention is large. For this reason, the theoretical electric capacity of the negative electrode material of the present invention containing the same material is increased.

本発明の負極材料から、既に公知の方法に従って、ニッケル−水素化物電池の負極を形成すればよい。例えば、まず、本発明の負極材料を、平均粒子径20〜60μm程度の粉末状とする。次いで、この負極材料粉末と、ニッケル、カーボン等の導電材と、ポリテトラフルオロエチレン(PTFE)、ポリエチレン等の結着剤とを混合し、集電体となる多孔質ニッケル板等に圧着する。そして、形成された負極と、水酸化ニッケルを正極活物質とする正極と、正極と負極との間に挟装されるセパレータとを電解液とともに電池ケースに密閉し、ニッケル−水素化物電池とすればよい。   What is necessary is just to form the negative electrode of a nickel-hydride battery from the negative electrode material of this invention according to the already well-known method. For example, first, the negative electrode material of the present invention is powdered with an average particle size of about 20 to 60 μm. Next, this negative electrode material powder, a conductive material such as nickel or carbon, and a binder such as polytetrafluoroethylene (PTFE) or polyethylene are mixed and pressure-bonded to a porous nickel plate or the like serving as a current collector. Then, the formed negative electrode, a positive electrode using nickel hydroxide as a positive electrode active material, and a separator sandwiched between the positive electrode and the negative electrode are sealed in a battery case together with an electrolytic solution, so that a nickel-hydride battery is obtained. That's fine.

〈蓄熱装置〉
以下、本発明の蓄熱装置の一実施形態を説明する。図4に、本実施形態の蓄熱装置のモデル図を示す。図4に示すように、蓄熱装置1は、熱源2と蓄熱容器3と水素タンク4とを備える。熱源2には、太陽熱、高温空気熱(風力)、地熱等の自然エネルギーや、工場から排出される廃熱が利用される。蓄熱容器3には、上記本発明の水素貯蔵材料であるCa3Si34が収容される。蓄熱容器3は、熱源2により加熱される。蓄熱容器3は、本発明の蓄熱装置を構成する蓄熱部に含まれる。水素タンク4は、蓄熱容器3に配管で連結される。水素タンク4は、本発明の蓄熱装置を構成する蓄水素部に含まれる。
<Heat storage device>
Hereinafter, an embodiment of the heat storage device of the present invention will be described. In FIG. 4, the model figure of the thermal storage apparatus of this embodiment is shown. As shown in FIG. 4, the heat storage device 1 includes a heat source 2, a heat storage container 3, and a hydrogen tank 4. As the heat source 2, natural energy such as solar heat, high-temperature air heat (wind power), geothermal heat, or waste heat discharged from a factory is used. The heat storage container 3 accommodates Ca 3 Si 3 H 4 which is the hydrogen storage material of the present invention. The heat storage container 3 is heated by the heat source 2. The heat storage container 3 is included in the heat storage part which comprises the heat storage apparatus of this invention. The hydrogen tank 4 is connected to the heat storage container 3 by piping. The hydrogen tank 4 is included in the hydrogen storage part which comprises the heat storage apparatus of this invention.

まず、熱を蓄える場合には、所定の熱を利用した熱源2により蓄熱容器3を加熱する。すると、蓄熱容器3内のCa3Si34から水素が放出される。放出された水素は、配管を通って水素タンク4へ移動し、水素タンク4内に蓄えられる。つまり、熱は水素という化学エネルギーとして蓄えられる。一方、蓄えた熱を利用する場合には、水素タンク4から蓄熱容器3へ水素を供給する。この際、供給する水素の圧力は、蓄熱容器3内の温度におけるCa3Si34の平衡水素圧よりも高くする。すると、蓄熱容器3では、水素を放出した状態のCaSiが水素を吸蔵して発熱する。この反応熱を熱エネルギーとして利用する。このように、蓄熱装置1によれば、熱エネルギーを有効に回収・利用することができる。 First, when storing heat, the heat storage container 3 is heated by the heat source 2 using predetermined heat. Then, hydrogen is released from Ca 3 Si 3 H 4 in the heat storage container 3. The released hydrogen moves through the piping to the hydrogen tank 4 and is stored in the hydrogen tank 4. In other words, heat is stored as chemical energy called hydrogen. On the other hand, when using the stored heat, hydrogen is supplied from the hydrogen tank 4 to the heat storage container 3. At this time, the pressure of the supplied hydrogen is set higher than the equilibrium hydrogen pressure of Ca 3 Si 3 H 4 at the temperature in the heat storage container 3. Then, in the heat storage container 3, CaSi in a state where hydrogen is released absorbs the hydrogen and generates heat. This reaction heat is used as heat energy. Thus, according to the heat storage device 1, it is possible to effectively recover and use thermal energy.

本発明の蓄熱装置は、上記実施形態に限定されるものではない。例えば、上記実施形態において、水素タンクを、水素を吸蔵する材料を収容した蓄水素容器に変更してもよい。この形態では、蓄熱容器から放出された水素は、蓄水素容器内の材料に吸蔵される。よって、熱を利用したい場合には、蓄水素容器を加熱して同容器内の材料から水素を放出させ、その水素を蓄熱容器に供給すればよい。   The heat storage device of the present invention is not limited to the above embodiment. For example, in the said embodiment, you may change a hydrogen tank into the hydrogen storage container which accommodated the material which occludes hydrogen. In this embodiment, hydrogen released from the heat storage container is occluded by the material in the hydrogen storage container. Therefore, when it is desired to use heat, the hydrogen storage container is heated to release hydrogen from the material in the container, and the hydrogen is supplied to the heat storage container.

また、上記実施形態において、水素タンクを、水素を吸蔵する材料を収容した受熱容器に変更することで、熱の輸送を行うことができる。この形態では、まず、蓄熱容器を加熱して、蓄熱容器内のCa3Si34から水素を放出させる。次いで、放出した水素を配管を通して輸送先にある受熱容器へ移動させる。受熱容器では、収容された材料が水素を吸蔵して熱を発生する。ここで、受熱容器に収容する材料は、蓄熱容器内の本発明の水素貯蔵材料から放出される水素圧力で、水素を吸蔵できる材料であればよい。そして、輸送先で利用したい熱エネルギーに見合う反応熱を有する材料を適宜選択すればよい。上記実施形態において、蓄熱容器に供給した熱量とほぼ同等の熱量を輸送先で得たい場合には、受熱容器に収容する材料を、例えば、CrB型結晶構造を有するCaSiとするとよい。 Moreover, in the said embodiment, heat transport can be performed by changing a hydrogen tank into the heat receiving container which accommodated the material which occludes hydrogen. In this embodiment, first, the heat storage container is heated to release hydrogen from Ca 3 Si 3 H 4 in the heat storage container. Next, the released hydrogen is moved through a pipe to a heat receiving container at a transport destination. In the heat receiving container, the accommodated material absorbs hydrogen and generates heat. Here, the material stored in the heat receiving container may be any material that can occlude hydrogen at the hydrogen pressure released from the hydrogen storage material of the present invention in the heat storage container. And the material which has the reaction heat corresponding to the heat energy to utilize at a transport destination should just be selected suitably. In the above embodiment, when it is desired to obtain a heat quantity substantially equal to the heat quantity supplied to the heat storage container at the transportation destination, the material accommodated in the heat receiving container may be, for example, CaSi having a CrB type crystal structure.

〈ケミカルヒートポンプ〉
以下、本発明のケミカルヒートポンプの一実施形態を説明する。ここでは、本発明のケミカルヒートポンプを冷却型ヒートポンプとして用いた場合について説明する。図5に、本実施形態のケミカルヒートポンプを用いた冷却サイクルのモデル図を示す。図5中、(a)は再生過程を、(b)は冷却過程をそれぞれ示す。図5に示すように、ケミカルヒートポンプ5は、第一容器6と第二容器7とを備える。
<Chemical heat pump>
Hereinafter, an embodiment of the chemical heat pump of the present invention will be described. Here, the case where the chemical heat pump of the present invention is used as a cooling heat pump will be described. In FIG. 5, the model figure of the cooling cycle using the chemical heat pump of this embodiment is shown. In FIG. 5, (a) shows the regeneration process, and (b) shows the cooling process. As shown in FIG. 5, the chemical heat pump 5 includes a first container 6 and a second container 7.

第一容器6には、上記本発明の水素貯蔵材料であるCa3Si34が収容される。第一容器6は、熱源8により加熱される。第二容器7は、第一容器6に配管で連結される。第二容器7には、第二材料としてLaNi5が収容される。ここで、LaNi5の平衡水素圧は、Ca3Si34より高い。 The first container 6 contains Ca 3 Si 3 H 4 which is the hydrogen storage material of the present invention. The first container 6 is heated by the heat source 8. The second container 7 is connected to the first container 6 by piping. The second container 7 contains LaNi 5 as the second material. Here, the equilibrium hydrogen pressure of LaNi 5 is higher than that of Ca 3 Si 3 H 4 .

まず、第一容器6と第二容器7とを同じ温度(外気温)とする。そして、(a)再生過程にて、熱源8により第一容器6を加熱する。すると、第一容器6内の温度、圧力は上昇し、Ca3Si34から水素が放出される。放出された水素は、配管を通って第二容器7へ移動する。第二容器7に供給された水素は、LaNi5に吸蔵される。LaNi5は水素化されLaNi5x(6≦x≦7)となる。この際、発生する反応熱は外部に放出される。次に、(b)冷却過程にて、第一容器6の加熱を停止する。すると、第一容器6の温度は低下し、第二容器7と同じ温度となる。よって、水素は平衡水素圧の低い第一容器6へ戻る。また、水素の放出が止まり、水素が第二容器7に供給されなくなるため、第二容器7の圧力は低下する。その結果、第二容器7のLaNi5x(6≦x≦7)は、外部から熱を奪って水素を放出する。この吸熱反応により、冷却効果が得られる。一方、第二容器7から放出された水素は、配管を通って第一容器6へ移動する。第一容器6に供給された水素は、水素を放出した状態のCaSiに吸蔵される。この際、発生する反応熱は外部に放出される。このように、本発明のケミカルヒートポンプを冷却型ヒートポンプとして用いれば、室内等の冷房を連続的に行うことができる。 First, let the 1st container 6 and the 2nd container 7 be the same temperature (outside temperature). Then, (a) the first container 6 is heated by the heat source 8 in the regeneration process. Then, the temperature and pressure in the first container 6 rise, and hydrogen is released from Ca 3 Si 3 H 4 . The released hydrogen moves to the second container 7 through the pipe. The hydrogen supplied to the second container 7 is occluded in LaNi 5 . LaNi 5 is hydrogenated to LaNi 5 H x (6 ≦ x ≦ 7). At this time, the reaction heat generated is released to the outside. Next, (b) the heating of the first container 6 is stopped in the cooling process. Then, the temperature of the first container 6 decreases and becomes the same temperature as the second container 7. Therefore, hydrogen returns to the first container 6 having a low equilibrium hydrogen pressure. Moreover, since the release of hydrogen stops and hydrogen is no longer supplied to the second container 7, the pressure in the second container 7 decreases. As a result, LaNi 5 H x (6 ≦ x ≦ 7) in the second container 7 takes heat from the outside and releases hydrogen. This endothermic reaction provides a cooling effect. On the other hand, the hydrogen released from the second container 7 moves to the first container 6 through the pipe. The hydrogen supplied to the first container 6 is occluded in CaSi in a state where hydrogen is released. At this time, the reaction heat generated is released to the outside. Thus, if the chemical heat pump of the present invention is used as a cooling heat pump, it is possible to continuously cool indoors.

本発明のケミカルヒートポンプは、上記実施形態に限定されるものではない。例えば、第二材料として、本発明の水素貯蔵材料よりも平衡水素圧の低い材料を用いてもよい。例えば、ZrNi等が挙げられる。この場合、本発明のケミカルヒートポンプは、昇温型ヒートポンプとなる。すなわち、第一容器を比較的低温の熱源で加熱して、本発明の水素貯蔵材料から水素を放出させる。放出された水素は、第二容器へ移動し、第二材料に吸蔵される。この水素吸蔵に伴う発熱により、高温の熱を得る。このように、本発明のケミカルヒートポンプを昇温型ヒートポンプとして用いれば、低温の熱から高温の熱を取り出すことができる。   The chemical heat pump of the present invention is not limited to the above embodiment. For example, a material having a lower equilibrium hydrogen pressure than the hydrogen storage material of the present invention may be used as the second material. For example, ZrNi etc. are mentioned. In this case, the chemical heat pump of the present invention is a temperature rising type heat pump. That is, the first container is heated with a relatively low temperature heat source to release hydrogen from the hydrogen storage material of the present invention. The released hydrogen moves to the second container and is stored in the second material. High temperature heat is obtained by the heat generated by this hydrogen storage. Thus, if the chemical heat pump of this invention is used as a temperature rising type heat pump, high temperature heat can be taken out from low temperature heat.

〈金属水素化物センサ〉
以下、本発明の金属水素化物センサの一実施形態を説明する。図6に、本実施形態の金属水素化物センサの作動原理を示す。図6に示すように、金属水素化物センサ9は、感温部10と水素ガス圧検出部11とを備える。感温部10には、上記本発明の水素貯蔵材料であるCa3Si34が収容される。水素ガス圧検出部11は、シリンダ110とピストン111とを備える。シリンダ110は、感温部10に配管で連結される。配管にはフィルタ12が配置される。
<Metal hydride sensor>
Hereinafter, an embodiment of the metal hydride sensor of the present invention will be described. FIG. 6 shows the operating principle of the metal hydride sensor of this embodiment. As shown in FIG. 6, the metal hydride sensor 9 includes a temperature sensing unit 10 and a hydrogen gas pressure detection unit 11. The temperature sensing unit 10 contains Ca 3 Si 3 H 4 which is the hydrogen storage material of the present invention. The hydrogen gas pressure detection unit 11 includes a cylinder 110 and a piston 111. The cylinder 110 is connected to the temperature sensing unit 10 by piping. A filter 12 is disposed in the piping.

感温部10の温度が上昇すると、Ca3Si34から水素が放出される。放出された水素は配管を通ってシリンダ110に移動する。その結果、シリンダ110内の水素ガス圧が上昇し、ピストン111が図中右側に移動する。このピストン111の駆動により、所定の仕事が行われる。 When the temperature of the temperature sensing unit 10 rises, hydrogen is released from Ca 3 Si 3 H 4 . The released hydrogen moves to the cylinder 110 through the pipe. As a result, the hydrogen gas pressure in the cylinder 110 increases, and the piston 111 moves to the right side in the figure. Predetermined work is performed by driving the piston 111.

〈光透過率可変素子〉
本発明の光透過率可変素子は、基材と、該基材の表面に形成され、上記本発明の水素貯蔵材料を含む対水素反応膜と、からなる。基材は、その表面に対水素反応膜を形成することができ、本素子自体の形状および光透過性を維持できるものであれば、特に限定されるものではない。例えば、シリカガラス、フッ素樹脂等の材料を用いることができる。
<Light transmittance variable element>
The light transmittance variable element of the present invention is composed of a base material and a counter hydrogen reaction film formed on the surface of the base material and containing the hydrogen storage material of the present invention. The substrate is not particularly limited as long as it can form a hydrogen reaction film on the surface and can maintain the shape and light transmittance of the element itself. For example, materials such as silica glass and fluororesin can be used.

基材の表面に形成される対水素反応膜は、上記本発明の水素貯蔵材料を含む。対水素反応膜は、本発明の水素貯蔵材料の他に、例えば高水素解離能材料を含んでいてもよい。ここで、高水素解離能材料とは、水素解離能が高い材料、すなわち、主に水素を解離する触媒機能を果たす材料を意味する。高水素解離能材料のなかでも、水素透過性の高いものが好適である。水素透過性が高いと、解離した水素原子が拡散し易い。このような高水素解離能材料としては、例えば、パラジウム、パラジウム合金、ニッケル、ニッケル合金等が挙げられる。これらの一種、あるいは二種以上を使用すればよい。対水素反応膜に高水素解離能材料を含有させることで、本発明の水素貯蔵材料の水素含有量を、より速やかに変化させることができる。対水素反応膜における高水素解離能材料の含有形態は、特に限定されるものではない。例えば、本発明の水素貯蔵材料と高水素解離能材料とを混合して対水素反応膜を形成してもよく、また、本発明の水素貯蔵材料からなる薄膜と高水素解離能材料からなる薄膜とを積層させて対水素反応膜を形成してもよい。   The hydrogen reaction film formed on the surface of the substrate contains the hydrogen storage material of the present invention. The hydrogen reaction membrane may contain, for example, a high hydrogen dissociation material in addition to the hydrogen storage material of the present invention. Here, the high hydrogen dissociation ability material means a material having a high hydrogen dissociation ability, that is, a material mainly performing a catalytic function of dissociating hydrogen. Among materials having high hydrogen dissociation ability, those having high hydrogen permeability are preferable. When hydrogen permeability is high, dissociated hydrogen atoms are likely to diffuse. Examples of such a high hydrogen dissociation material include palladium, palladium alloy, nickel, nickel alloy and the like. One kind or two or more kinds of these may be used. By containing a high hydrogen dissociation ability material in the hydrogen reaction membrane, the hydrogen content of the hydrogen storage material of the present invention can be changed more rapidly. The content of the high hydrogen dissociation-capable material in the hydrogen reaction membrane is not particularly limited. For example, the hydrogen storage material of the present invention and the high hydrogen dissociation material may be mixed to form a hydrogen reaction membrane, and the thin film made of the hydrogen storage material of the present invention and the thin film made of the high hydrogen dissociation material May be stacked to form a hydrogen reaction film.

本発明の光透過率可変素子の製造方法は、特に限定されるものではなく、通常行われる薄膜の形成方法に従えばよい。例えば、対水素反応膜をスパッタ法、フラッシュ蒸発法等により形成すればよい。以下、本発明の光透過率可変素子の一例として、基材表面にパラジウム膜/Ca3Si34膜/パラジウム膜の三層が積層された光透過率可変素子の製造方法の一例を説明する。 The manufacturing method of the light transmittance variable element of the present invention is not particularly limited, and may be performed in accordance with a generally performed thin film forming method. For example, the hydrogen reaction film may be formed by sputtering, flash evaporation, or the like. Hereinafter, as an example of the light transmittance variable element of the present invention, an example of a method for manufacturing a light transmittance variable element in which three layers of palladium film / Ca 3 Si 3 H 4 film / palladium film are laminated on the substrate surface will be described. To do.

まず、厚さ約0.3mmの透明なシリカガラス板の表面に、アルゴン雰囲気下でRFマグネトロンスパッタ法により、厚さ約20nmのパラジウム膜を成膜する。次いで、成膜したパラジウム膜の表面に、厚さ約50nmのCaSi膜を、上記同様の方法で成膜する。さらに、成膜したCaSi膜の表面に、厚さ約20nmのパラジウム膜を、上記同様の方法で成膜する。このようにして得られた薄膜積層体を、水素雰囲気に晒し、CaSi膜を水素化してCa3Si34膜とする。 First, a palladium film having a thickness of about 20 nm is formed on the surface of a transparent silica glass plate having a thickness of about 0.3 mm by an RF magnetron sputtering method in an argon atmosphere. Next, a CaSi film having a thickness of about 50 nm is formed on the surface of the formed palladium film by the same method as described above. Further, a palladium film having a thickness of about 20 nm is formed on the surface of the formed CaSi film by the same method as described above. The thin film laminate thus obtained is exposed to a hydrogen atmosphere, and the CaSi film is hydrogenated to form a Ca 3 Si 3 H 4 film.

〈その他〉
上述したように、本発明の水素貯蔵材料によれば、熱エネルギーを圧力という機械エネルギーに変換することができる。この熱⇔機械エネルギー変換機能により、本発明の水素貯蔵材料を用いて、ケミカルコンプレッサ、ケミカルエンジン、金属水素化物アクチュエータ等を構成することができる。
<Others>
As described above, according to the hydrogen storage material of the present invention, heat energy can be converted into mechanical energy called pressure. With this hot metal energy conversion function, a chemical compressor, a chemical engine, a metal hydride actuator, or the like can be configured using the hydrogen storage material of the present invention.

上記実施形態に基づいて、本発明の水素貯蔵材料を四種類製造した。以下、順に説明する。   Based on the above embodiment, four types of hydrogen storage materials of the present invention were produced. Hereinafter, it demonstrates in order.

(1)Ca3Si3x(0.6≦x≦4.5)の製造
Ca粒(純度99.5%)と、Si粉末(純度99.999%)とを混合し、アルゴンガス雰囲気にて高周波溶解した。さらに、アルゴンガス雰囲気にて950℃、30時間の熱処理を施した後、水冷し、Ca0.5Si0.5のインゴットを得た。得られたインゴットを、アルゴンガスで満たされたグローブボックス内で粉砕し粉末状にした。この粉末を、温度100℃、水素圧力9MPaの条件下で水素化し、Ca3Si3x(0.6≦x≦4.5)を得た。得られたCa3Si3x(0.6≦x≦4.5)について、CuΚα線を用いた粉末法によるX線回折測定を行った。X線回折プロファイルから、Ca3Si3x(0.6≦x≦4.5)は、ほぼ単相からなり、Ca3Si34型結晶構造を有することが確認された。
(1) Production of Ca 3 Si 3 H x (0.6 ≦ x ≦ 4.5) Ca particles (purity 99.5%) and Si powder (purity 99.999%) are mixed, and an argon gas atmosphere The solution was melted at high frequency. Further, heat treatment was performed at 950 ° C. for 30 hours in an argon gas atmosphere, followed by water cooling to obtain a Ca 0.5 Si 0.5 ingot. The obtained ingot was pulverized into a powder form in a glove box filled with argon gas. This powder was hydrogenated under conditions of a temperature of 100 ° C. and a hydrogen pressure of 9 MPa to obtain Ca 3 Si 3 H x (0.6 ≦ x ≦ 4.5). The obtained Ca 3 Si 3 H x (0.6 ≦ x ≦ 4.5) was subjected to X-ray diffraction measurement by a powder method using CuΚα rays. From the X-ray diffraction profile, it was confirmed that Ca 3 Si 3 H x (0.6 ≦ x ≦ 4.5) is substantially composed of a single phase and has a Ca 3 Si 3 H 4 type crystal structure.

(2)Ca3(Si0.8Ge0.23x(0.6≦x≦4.5)の製造
Ca粒(純度99.5%)と、Si粉末(純度99.999%)と、Ge粉末(純度99.9%)とを混合し、アルゴンガス雰囲気にて高周波溶解した。さらに、アルゴンガス雰囲気にて950℃、30時間の熱処理を施した後、水冷し、Ca0.5(Si0.8Ge0.20.5のインゴットを得た。得られたインゴットを、アルゴンガスで満たされたグローブボックス内で粉砕し粉末状にした。この粉末を、温度100℃、水素圧力9MPaの条件下で水素化し、Ca3(Si0.8Ge0.23x(0.6≦x≦4.5)を得た。得られたCa3(Si0.8Ge0.23x(0.6≦x≦4.5)について、上記同様にX線回折測定を行った。X線回折プロファイルから、Ca3(Si0.8Ge0.23x(0.6≦x≦4.5)は、ほぼ単相からなり、Ca3Si34型結晶構造を有することが確認された。
(2) Production of Ca 3 (Si 0.8 Ge 0.2 ) 3 H x (0.6 ≦ x ≦ 4.5) Ca grains (purity 99.5%), Si powder (purity 99.999%), Ge The powder (purity 99.9%) was mixed and high-frequency dissolved in an argon gas atmosphere. Furthermore, heat treatment was performed at 950 ° C. for 30 hours in an argon gas atmosphere, followed by water cooling to obtain an ingot of Ca 0.5 (Si 0.8 Ge 0.2 ) 0.5 . The obtained ingot was pulverized into a powder form in a glove box filled with argon gas. This powder was hydrogenated under conditions of a temperature of 100 ° C. and a hydrogen pressure of 9 MPa to obtain Ca 3 (Si 0.8 Ge 0.2 ) 3 H x (0.6 ≦ x ≦ 4.5). X-ray diffraction measurement was performed on the obtained Ca 3 (Si 0.8 Ge 0.2 ) 3 H x (0.6 ≦ x ≦ 4.5) in the same manner as described above. From the X-ray diffraction profile, it is confirmed that Ca 3 (Si 0.8 Ge 0.2 ) 3 H x (0.6 ≦ x ≦ 4.5) is substantially composed of a single phase and has a Ca 3 Si 3 H 4 type crystal structure. It was done.

(3)Ca3(Si0.5Ge0.53x(0.6≦x≦4.5)の製造
Ca粒(純度99.5%)と、Si粉末(純度99.999%)と、Ge粉末(純度99.9%)とを混合し、アルゴンガス雰囲気にて高周波溶解した。さらに、アルゴンガス雰囲気にて950℃、30時間の熱処理を施した後、水冷し、Ca0.5(Si0.5Ge0.50.5のインゴットを得た。得られたインゴットを、アルゴンガスで満たされたグローブボックス内で粉砕し粉末状にした。この粉末を、温度100℃、水素圧力9.5MPaの条件下で水素化し、Ca3(Si0.5Ge0.53x(0.6≦x≦4.5)を得た。得られたCa3(Si0.5Ge0.53x(0.6≦x≦4.5)について、上記同様にX線回折測定を行った。X線回折プロファイルから、Ca3(Si0.5Ge0.53x(0.6≦x≦4.5)は、ほぼ単相からなり、Ca3Si34型結晶構造を有することが確認された。
(3) Production of Ca 3 (Si 0.5 Ge 0.5 ) 3 H x (0.6 ≦ x ≦ 4.5) Ca grains (purity 99.5%), Si powder (purity 99.999%), Ge The powder (purity 99.9%) was mixed and high-frequency dissolved in an argon gas atmosphere. Further, heat treatment was performed at 950 ° C. for 30 hours in an argon gas atmosphere, followed by water cooling to obtain a Ca 0.5 (Si 0.5 Ge 0.5 ) 0.5 ingot. The obtained ingot was pulverized into a powder form in a glove box filled with argon gas. This powder was hydrogenated under the conditions of a temperature of 100 ° C. and a hydrogen pressure of 9.5 MPa to obtain Ca 3 (Si 0.5 Ge 0.5 ) 3 H x (0.6 ≦ x ≦ 4.5). X-ray diffraction measurement was performed on the obtained Ca 3 (Si 0.5 Ge 0.5 ) 3 H x (0.6 ≦ x ≦ 4.5) in the same manner as described above. From the X-ray diffraction profile, it is confirmed that Ca 3 (Si 0.5 Ge 0.5 ) 3 H x (0.6 ≦ x ≦ 4.5) is substantially composed of a single phase and has a Ca 3 Si 3 H 4 type crystal structure. It was done.

(4)Ca3(Si0.8Ag0.23x(0.6≦x≦4.5)の製造
Ca粒(純度99.5%)と、Si粉末(純度99.999%)と、Ag粉末(純度99.9%)とを混合し、アルゴンガス雰囲気にて高周波溶解した。さらに、アルゴンガス雰囲気にて660℃、24時間の熱処理を施した後、水冷し、Ca0.5(Si0.8Ag0.20.5のインゴットを得た。得られたインゴットを、アルゴンガスで満たされたグローブボックス内で粉砕し粉末状にした。この粉末を、温度150℃、水素圧力9MPaの条件下で水素化し、Ca3(Si0.8Ag0.23x(0.6≦x≦4.5)を得た。得られたCa3(Si0.8Ag0.23x(0.6≦x≦4.5)について、上記同様にX線回折測定を行った。X線回折プロファイルから、Ca3(Si0.8Ag0.23x(0.6≦x≦4.5)は、ほぼ単相からなり、Ca3Si34型結晶構造を有することが確認された。
(4) Production of Ca 3 (Si 0.8 Ag 0.2 ) 3 H x (0.6 ≦ x ≦ 4.5) Ca grains (purity 99.5%), Si powder (purity 99.999%), Ag The powder (purity 99.9%) was mixed and high-frequency dissolved in an argon gas atmosphere. Further, after heat treatment at 660 ° C. for 24 hours in an argon gas atmosphere, water cooling was performed to obtain an ingot of Ca 0.5 (Si 0.8 Ag 0.2 ) 0.5 . The obtained ingot was pulverized into a powder form in a glove box filled with argon gas. This powder was hydrogenated under conditions of a temperature of 150 ° C. and a hydrogen pressure of 9 MPa to obtain Ca 3 (Si 0.8 Ag 0.2 ) 3 H x (0.6 ≦ x ≦ 4.5). X-ray diffraction measurement was performed on the obtained Ca 3 (Si 0.8 Ag 0.2 ) 3 H x (0.6 ≦ x ≦ 4.5) in the same manner as described above. From the X-ray diffraction profile, it is confirmed that Ca 3 (Si 0.8 Ag 0.2 ) 3 H x (0.6 ≦ x ≦ 4.5) is substantially composed of a single phase and has a Ca 3 Si 3 H 4 type crystal structure. It was done.

本発明の水素貯蔵材料の一例であるCa3Si34のエネルギー変換サイクルを示す。An energy conversion cycle of Ca 3 Si 3 H 4 which is an example of a hydrogen storage material of the present invention. 同Ca3Si34の粉末X線回折プロファイルを示す。Shows the powder X-ray diffraction profile of the Ca 3 Si 3 H 4. 同Ca3Si34のエネルギーバンド構造および状態密度分布を示す。The energy band structure and state density distribution of the same Ca 3 Si 3 H 4 are shown. 本発明の蓄熱装置の一実施形態のモデル図である。It is a model figure of one Embodiment of the thermal storage apparatus of this invention. 本発明のケミカルヒートポンプを用いた冷却サイクルのモデル図である。It is a model figure of the cooling cycle using the chemical heat pump of this invention. 本発明の金属水素化物センサの作動原理を示す。The operation principle of the metal hydride sensor of the present invention is shown.

符号の説明Explanation of symbols

1:蓄熱装置 2:熱源 3:蓄熱容器(蓄熱部) 4:水素タンク(蓄水素部)
5:ケミカルヒートポンプ 6:第一容器 7:第二容器 8:熱源
9:金属水素化物センサ 10:感温部 11:水素ガス圧検出部
110:シリンダ 111:ピストン 12:フィルタ
1: Thermal storage device 2: Heat source 3: Thermal storage container (thermal storage unit) 4: Hydrogen tank (hydrogen storage unit)
5: Chemical heat pump 6: First container 7: Second container 8: Heat source 9: Metal hydride sensor 10: Temperature sensing unit 11: Hydrogen gas pressure detection unit 110: Cylinder 111: Piston 12: Filter

Claims (7)

Ca3Si34型結晶構造を有する化合物相を主相とする水素貯蔵材料。 A hydrogen storage material whose main phase is a compound phase having a Ca 3 Si 3 H 4 type crystal structure. 容器と、該容器に収容された水素貯蔵材料とを備え、
該水素貯蔵材料は、Ca3Si34型結晶構造を有する化合物相を主相とすることを特徴とする水素貯蔵装置。
A container, and a hydrogen storage material accommodated in the container,
The hydrogen storage material is characterized in that the main phase is a compound phase having a Ca 3 Si 3 H 4 type crystal structure.
請求項1に記載の水素貯蔵材料を含むニッケル−水素化物電池用負極材料。   A negative electrode material for a nickel-hydride battery comprising the hydrogen storage material according to claim 1. 熱源と、
請求項1に記載の水素貯蔵材料を持ち、該熱源からの加熱により水素を放出する蓄熱部と、
該蓄熱部に連結され、該蓄熱部から放出された水素を貯溜する蓄水素部と、
を備える蓄熱装置。
A heat source,
A heat storage part having the hydrogen storage material according to claim 1 and releasing hydrogen by heating from the heat source;
A hydrogen storage unit connected to the heat storage unit and storing hydrogen released from the heat storage unit;
A heat storage device comprising:
請求項1に記載の水素貯蔵材料を持つ第一容器と、
水素を吸蔵、放出することができ、その平衡水素圧が該水素貯蔵材料と異なる第二材料を持ち、該第一容器に連結された第二容器と、を備え、
該水素貯蔵材料および該第二材料の各々における水素の吸蔵、放出反応により、該第一容器と該第二容器との間で水素を移動させ熱の授受を行うケミカルヒートポンプ。
A first container having the hydrogen storage material according to claim 1;
A second container capable of storing and releasing hydrogen, having a second material whose equilibrium hydrogen pressure is different from that of the hydrogen storage material, and connected to the first container;
A chemical heat pump for transferring heat by transferring hydrogen between the first container and the second container by a hydrogen storage and release reaction in each of the hydrogen storage material and the second material.
請求項1に記載の水素貯蔵材料を持つ感温部と、
該感温部に連結され、該感温部の昇温により放出された水素ガス圧を検出する水素ガス圧検出部と、
を備える金属水素化物センサ。
A temperature sensing part having the hydrogen storage material according to claim 1;
A hydrogen gas pressure detection unit connected to the temperature sensing unit for detecting the hydrogen gas pressure released by the temperature rise of the temperature sensing unit;
A metal hydride sensor comprising:
基材と、
該基材の表面に形成され、請求項1に記載の水素貯蔵材料を含む対水素反応膜と、
からなる光透過率可変素子。
A substrate;
A hydrogen-reactive membrane comprising a hydrogen storage material according to claim 1 formed on the surface of the substrate;
A light transmittance variable element comprising:
JP2004048477A 2004-02-24 2004-02-24 Hydrogen storage material Pending JP2005239454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048477A JP2005239454A (en) 2004-02-24 2004-02-24 Hydrogen storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048477A JP2005239454A (en) 2004-02-24 2004-02-24 Hydrogen storage material

Publications (1)

Publication Number Publication Date
JP2005239454A true JP2005239454A (en) 2005-09-08

Family

ID=35021589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048477A Pending JP2005239454A (en) 2004-02-24 2004-02-24 Hydrogen storage material

Country Status (1)

Country Link
JP (1) JP2005239454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863205A (en) * 2011-07-07 2013-01-09 夏普株式会社 Multiple inorganic compound structure and use thereof, and method of producing multiple inorganic compound structure
WO2016178957A1 (en) * 2015-05-04 2016-11-10 Basf Corporation Electrochemical hydrogen storage electrodes and cells

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863205A (en) * 2011-07-07 2013-01-09 夏普株式会社 Multiple inorganic compound structure and use thereof, and method of producing multiple inorganic compound structure
WO2016178957A1 (en) * 2015-05-04 2016-11-10 Basf Corporation Electrochemical hydrogen storage electrodes and cells
CN107710462A (en) * 2015-05-04 2018-02-16 巴斯夫公司 Electrochemical hydrogen storage electrode and battery
JP2018514923A (en) * 2015-05-04 2018-06-07 ビーエーエスエフ コーポレーション Electrochemical hydrogen storage electrode and electrochemical cell
US10522827B2 (en) 2015-05-04 2019-12-31 Basf Corporation Electrochemical hydrogen storage electrodes and cells
CN107710462B (en) * 2015-05-04 2022-08-02 巴斯夫公司 Electrochemical hydrogen storage electrode and battery

Similar Documents

Publication Publication Date Title
TW585928B (en) Hydrogen-based ecosystem
US6591616B2 (en) Hydrogen infrastructure, a combined bulk hydrogen storage/single stage metal hydride hydrogen compressor therefor and alloys for use therein
US7344677B2 (en) Hydrogen storage alloys having improved cycle life and low temperature operating characteristics
JPWO2008015844A1 (en) Power generator
US6328821B1 (en) Modified magnesium based hydrogen storage alloys
KR101875633B1 (en) Solid state hydrogen storage device and solid state hydrogen storage system
Zhang et al. Effect of magnesium on the crystal transformation and electrochemical properties of A2B7-type metal hydride alloys
Zhao et al. Ti2Ni alloy: a potential candidate for hydrogen storage in nickel/metal hydride secondary batteries
Sandrock State-of-the-art review of hydrogen storage in reversible metal hydrides for military fuel cell applications
US20070054158A1 (en) Combination of photovoltaic devices and batteries which utilize a solid polymeric electrolyte
Tang et al. Effect of Al substitution for Co on the hydrogen storage characteristics of Ml0. 8Mg0. 2Ni3. 2Co0. 6− xAlx (x= 0–0.6) alloys
Chao et al. Hydrogen storage in interstitial metal hydrides
Yartys et al. Thermodynamics and crystal chemistry of the RE2MgNi9H12-13 (RE= La and Nd) hydrides
Arya et al. Nickel‐metal hydride (Ni‐MH) batteries
JP2005239454A (en) Hydrogen storage material
CA2424861A1 (en) Method of absorption-desorption of hydrogen storage alloy and hydrogen storage alloy and fuel cell using said method
Dymek et al. Hydrogenation and corrosion properties of LaNi4. 5Co0. 5-based alloy doped with 1.7 at% Sn
US4358432A (en) Material for hydrogen absorption and desorption
Ramakrishna et al. Solid state materials for hydrogen storage
JP2003047843A (en) Carbon material for hydrogen storage and method of producing the same
Yang et al. Development of Mg-added MmNi5-based alloys with low Co content for high power applications
Lu et al. The Phase Structure and Electrochemical Properties of La4MgNi19-xCox (x= 0~ 2) Hydrogen Storage Alloys
Bououdina et al. Carrying clean energy to the future–hydrogen absorbing materials
Xia et al. Hydrogen storage properties of mechanically milled La2Mg17-x wt.% Ni (x= 0, 50, 100, 150 and 200) composites
Wang Rare Earth Hydrides and Hydrogen Storage Alloys