JP2005236721A - Compensator for light wavelength dispersion, and light transmission system using the same - Google Patents

Compensator for light wavelength dispersion, and light transmission system using the same Download PDF

Info

Publication number
JP2005236721A
JP2005236721A JP2004044076A JP2004044076A JP2005236721A JP 2005236721 A JP2005236721 A JP 2005236721A JP 2004044076 A JP2004044076 A JP 2004044076A JP 2004044076 A JP2004044076 A JP 2004044076A JP 2005236721 A JP2005236721 A JP 2005236721A
Authority
JP
Japan
Prior art keywords
dispersion
dispersion medium
optical
light
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004044076A
Other languages
Japanese (ja)
Inventor
Toshio Katsuyama
俊夫 勝山
Kazuhiko Hosomi
和彦 細見
Toshihiko Fukamachi
俊彦 深町
Shigehisa Tanaka
慈久 田中
Yasuhiko Arakawa
泰彦 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
University of Tokyo NUC
Original Assignee
Hitachi Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, University of Tokyo NUC filed Critical Hitachi Ltd
Priority to JP2004044076A priority Critical patent/JP2005236721A/en
Publication of JP2005236721A publication Critical patent/JP2005236721A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein a conventional dispersion compensator cannot flexibly cope with a request from a transmission system, because the dispersion compensator is large in size and has large optical loss and a fixed dispersion compensated amount. <P>SOLUTION: A compensator for light wavelength dispersion has a dispersive medium 4, whose front and rear faces are parallel and which has a function for generating group delay wavelength dispersion of an optical pulse, and a mirror 5 for reflecting light, wherein an optical beam 3, immediately before reaching the mirror, is perpendicular to the front face of the mirror 5 so that incident light and reflected light passes through the same route. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光半導体装置に係り、特に光通信システムにおいて光ファイバなどの光パルス伝送の際に生ずる光パルス伝送路の波長分散を相殺することにより伝送ひずみを低減するための光波長分散補償器に関する。   The present invention relates to an optical semiconductor device, and more particularly, to an optical chromatic dispersion compensator for reducing transmission distortion by canceling chromatic dispersion of an optical pulse transmission path that occurs during optical pulse transmission of an optical fiber or the like in an optical communication system. About.

光伝送システムでは、光信号を光パルス列として伝送する。この場合、光伝送システムは、通常は、光信号の伝送媒体として高純度のシリカ光ファイバを用いる。しかしながら、光ファイバは波長分散を持つ為に、一定の波長広がりをもつ光信号パルスを伝送するとパルス波形が劣化する。ファイバの分散による光パルス波形の劣化は光伝送システムの伝送距離や伝送容量を制限する大きな要因となる。このため、大容量光伝送システムにおいてはこの波長分散を打ち消す技術が重要となる。例えば、光ファイバの分散と逆の分散を有する光学系を光伝送路に挿入すれば、ファイバの分散は相殺され、劣化した波形を修復することができる。   In an optical transmission system, an optical signal is transmitted as an optical pulse train. In this case, the optical transmission system normally uses a high-purity silica optical fiber as an optical signal transmission medium. However, since the optical fiber has chromatic dispersion, the pulse waveform deteriorates when an optical signal pulse having a certain wavelength spread is transmitted. Degradation of the optical pulse waveform due to fiber dispersion is a major factor that limits the transmission distance and transmission capacity of an optical transmission system. For this reason, in a large-capacity optical transmission system, a technique for canceling this chromatic dispersion is important. For example, if an optical system having a dispersion opposite to the dispersion of the optical fiber is inserted into the optical transmission line, the dispersion of the fiber is canceled and the deteriorated waveform can be repaired.

従来技術としては、符号が逆で絶対値の大きな分散を有するファイバ(分散補償ファイバ)を用いて分散を補償するという技術が実用化されている。分散補償ファイバは、所望の特性を再現性よく実現できる、補償可能な帯域が広い、等の特徴があり広く用いられている。しかしながら分散補償ファイバの単位長さあたりの分散補償量は−20ps/nm/km程度と小さく、所望の分散量を得ようとすると非常に長いファイバが必要となる。このため、小型化が不可能で且つコストもかかるという問題がある。   As a conventional technique, a technique of compensating for dispersion by using a fiber (dispersion compensation fiber) having a sign that is opposite in sign and having a large absolute value has been put into practical use. Dispersion compensating fibers are widely used because they have features such as the ability to realize desired characteristics with good reproducibility and a wide band that can be compensated. However, the dispersion compensation amount per unit length of the dispersion compensating fiber is as small as about −20 ps / nm / km, and a very long fiber is required to obtain a desired dispersion amount. For this reason, there exists a problem that size reduction is impossible and cost is high.

分散補償器の小型化を目指した最近の技術として、二種類以上の屈折率の異なる媒質の多次元構造、即ちフォトニック結晶を用いた分散補償器が考案されている。フォトニック結晶を透過する光は、特有の分散特性を示すことが知られており、所望の波長の光に対し、適切な格子構造・周期・媒質の屈折率差を選択すると、大きな分散を得ることができる。例えば特許文献1(特開2000−121987号公報)にその具体例が開示されている。この分散補償器はSi基板に二次元フォトニック結晶を作製し、分散を補償するというもので、長さ5mmで数十ps/nmの分散量を得ている。しかしながら、二次元フォトニック結晶中伝播する光は散乱による損失が避けられないとされており、特許文献1の開示例では挿入損失が問題になる。また、分散補償量も実際の光伝送システムでは、さらに大きなものが求められている。   As a recent technique aimed at miniaturization of a dispersion compensator, a dispersion compensator using a multi-dimensional structure of two or more types of media having different refractive indexes, that is, a photonic crystal has been devised. Light passing through a photonic crystal is known to exhibit unique dispersion characteristics, and for light of a desired wavelength, large dispersion can be obtained by selecting an appropriate grating structure, period, and medium refractive index difference. be able to. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2000-121987) discloses a specific example. This dispersion compensator forms a two-dimensional photonic crystal on a Si substrate and compensates for dispersion. The dispersion compensator has a length of 5 mm and a dispersion amount of several tens of ps / nm. However, it is said that light propagating in the two-dimensional photonic crystal is inevitably lost due to scattering. In the disclosed example of Patent Document 1, insertion loss becomes a problem. Also, a larger dispersion compensation amount is required in an actual optical transmission system.

また、フォトニック結晶として結合微小共振器導波路を用いた分散補償器が考案されている。特許文献2(特開2002−333536号公報)にその具体例が開示されている。この分散補償器の場合、上述したフォトニック結晶自体の分散関係を用いる場合に比べて、制御性の優れた高効率の分散補償が可能であることが開示されている。しかしながら、これらのフォトニック結晶を用いた分散補償器は、上述したフォトニック結晶自体の波長分散を用いた場合と同様、その分散補償量が小さいという欠点がある。   A dispersion compensator using a coupled microresonator waveguide as a photonic crystal has been devised. The specific example is disclosed by patent document 2 (Unexamined-Japanese-Patent No. 2002-333536). It is disclosed that this dispersion compensator can perform highly efficient dispersion compensation with excellent controllability compared to the case where the dispersion relationship of the photonic crystal itself is used. However, the dispersion compensator using these photonic crystals has a drawback that the amount of dispersion compensation is small as in the case of using the chromatic dispersion of the photonic crystal itself.

特開2000−121987号公報JP 2000-121987

特開2002−333536号公報JP 2002-333536 A

従来技術に述べたように、長距離光ファイバ通信における分散補償器に関しては既に実用化されているものもあるが、小型高性能で低コストなものは実現できていない。本発明の目的は、超小型で分散補償量が大きく、かつ分散補償量が可変な分散補償器を低コストで提供することにある。   As described in the prior art, some dispersion compensators in long-distance optical fiber communication have already been put into practical use, but small, high-performance and low-cost ones have not been realized. An object of the present invention is to provide a dispersion compensator that is ultra-compact, has a large amount of dispersion compensation, and has a variable amount of dispersion compensation, at a low cost.

図1は本発明による波長分散補償器の構成を説明する概念図である。長距離光ファイバ1を通して伝送された光ビーム3は、光部品、この場合は、典型的な例としてサーキュレータを用いることとする。このサーキュレータ20を介してレンズ2に導入された後、分散媒質4に入射される。分散媒質4は表面と裏面が平行である直方体構造とされていて、光ビームは、これが入射される分散媒質4の表面の垂直線に対して5°程度傾けて入射される。分散補償素子としての分散媒質4に入射された光ビームが出射する面の側には出射した光ビームを反射させる鏡5が備えられる。鏡5表面は、出射した光ビーム3が逆方向から分散媒質4を同一コースを通って通過するような角度で設けられる。すなわち、鏡5表面に到達する直前の光ビーム3と鏡5表面との角度を直角にすると、図の左方から入ってきた光ビーム3は反射した後、元の経路を戻ることになる。光ビーム3が鏡5表面で反射されて、再び分散媒質4を通過した後、光ビーム3はレンズ2に導入された後、サーキュレータ20を介して、光ビーム21として出力される。サーキュレータ20の構成は、例えば、"Development of a Low^Loss Optical Circulator" (Y. Makiuchi et al., p.p. 1-4, Furukawa Review, 2002)に一例が紹介されている。   FIG. 1 is a conceptual diagram illustrating the configuration of a chromatic dispersion compensator according to the present invention. The light beam 3 transmitted through the long-distance optical fiber 1 uses an optical component, in this case, a circulator as a typical example. After being introduced into the lens 2 through the circulator 20, the light enters the dispersion medium 4. The dispersion medium 4 has a rectangular parallelepiped structure in which the front surface and the back surface are parallel, and the light beam is incident with an inclination of about 5 ° with respect to the vertical line of the surface of the dispersion medium 4 on which the dispersion medium 4 is incident. A mirror 5 for reflecting the emitted light beam is provided on the side of the surface from which the light beam incident on the dispersion medium 4 as the dispersion compensation element is emitted. The surface of the mirror 5 is provided at an angle such that the emitted light beam 3 passes through the dispersion medium 4 from the opposite direction through the same course. That is, when the angle between the light beam 3 just before reaching the surface of the mirror 5 and the surface of the mirror 5 is set to a right angle, the light beam 3 entering from the left side of the figure is reflected and then returns to the original path. After the light beam 3 is reflected by the surface of the mirror 5 and passes through the dispersion medium 4 again, the light beam 3 is introduced into the lens 2 and then output as the light beam 21 through the circulator 20. An example of the configuration of the circulator 20 is introduced in “Development of a Low ^ Loss Optical Circulator” (Y. Makiuchi et al., P.p. 1-4, Furukawa Review, 2002).

本発明によれば、光パルスの群遅延波長分散を生じさせる機能を有する分散媒質4を2度通過するので、分散媒質4の光パルスの群遅延波長分散量の2倍の群遅延波長分散を得ることができる。   According to the present invention, since the dispersion medium 4 having the function of causing the group delay wavelength dispersion of the optical pulse passes twice, the group delay wavelength dispersion of twice the group delay wavelength dispersion amount of the optical pulse of the dispersion medium 4 can be obtained. Can be obtained.

また、分散補償器は、適用される光通信システムの光ファイバの構成および長さに対応して補償量を可変にできることが適応性を改善する上で有用である。本発明では、分散媒質4の中心軸と分散媒質4の中を伝播する光ビーム3の交点を回転中心として図にθで示すように回転させることにより、分散媒質4の表面の角度を光ビーム3に対して変化させることにより、構造物の群遅延波長分散を変え、補償量を可変にすることができる。   In addition, the dispersion compensator is useful in improving adaptability so that the compensation amount can be made variable in accordance with the configuration and length of the optical fiber of the applied optical communication system. In the present invention, the angle of the surface of the dispersion medium 4 is changed by rotating the intersection of the center axis of the dispersion medium 4 and the light beam 3 propagating in the dispersion medium 4 as indicated by θ in the drawing. By changing with respect to 3, the group delay wavelength dispersion of the structure can be changed, and the compensation amount can be made variable.

図2は分散媒質4の光ビーム3の入射する表面に垂直の角度から傾けた角度に応じた分散量の波長依存性を示した図である。図から分かるように、光ビーム3の波長にもよるが、θを制御すれば分散量が制御できる。   FIG. 2 is a diagram showing the wavelength dependence of the dispersion amount according to the angle inclined from the angle perpendicular to the surface of the dispersion medium 4 on which the light beam 3 is incident. As can be seen from the figure, although depending on the wavelength of the light beam 3, the amount of dispersion can be controlled by controlling θ.

上述した分散補償器の分散補償量をさらに増大させるには、光ビーム3が分散媒質4の中を通過する回数を増加させることで容易に実現できる。図1では、光ビーム3は分散媒質4の中を2回通過するに過ぎなかったが、分散媒質4の両面に反射用の鏡を設けて、ここで繰り返し反射した後に光ビーム3が分散媒質4から出射して鏡5表面で反射された後、同一コースで戻ってくる構成とすれば、分散補償量を飛躍的に増加させることができる。   In order to further increase the dispersion compensation amount of the dispersion compensator described above, it can be easily realized by increasing the number of times the light beam 3 passes through the dispersion medium 4. In FIG. 1, the light beam 3 only passes through the dispersion medium 4 only twice, but reflection mirrors are provided on both sides of the dispersion medium 4, and the light beam 3 is reflected after being repeatedly reflected here. If it is configured to return from the same course after being emitted from 4 and reflected by the surface of the mirror 5, the amount of dispersion compensation can be drastically increased.

図3は分散補償素子としての分散媒質4の両面に反射用の鏡6を設けて、ここで繰り返し反射する構成とした波長分散補償器の構成を説明する概念図である。鏡6は、分散媒質4に光ビームが入射し、あるいは、出射する領域を除いて分散媒質4の両面に金(Au)薄膜を蒸着して形成する。図3において、図1で説明した構成要素と同じものには同じ参照符号を付した。図3と図1を対比して明らかなように、図3に示す構成では、分散媒質4の両面に設けられた反射用の鏡6で入射した光ビーム3は多重反射を経た後、出射して光ビームは鏡5表面で反射されて同一ルートで戻る。このときにも反射用の鏡6間で多重反射を繰り返すから、図1の構成と比べて、多重反射の回数倍だけの分散量が得られる。θを制御すれば分散量が制御できるのは、図1と同じである。   FIG. 3 is a conceptual diagram illustrating the configuration of a chromatic dispersion compensator in which reflection mirrors 6 are provided on both surfaces of a dispersion medium 4 serving as a dispersion compensation element and the reflection mirror 6 is repeatedly reflected here. The mirror 6 is formed by depositing a gold (Au) thin film on both surfaces of the dispersion medium 4 except for a region where the light beam enters or exits the dispersion medium 4. In FIG. 3, the same components as those described in FIG. As apparent from the comparison between FIG. 3 and FIG. 1, in the configuration shown in FIG. 3, the light beam 3 incident on the reflecting mirrors 6 provided on both surfaces of the dispersion medium 4 is emitted after being subjected to multiple reflection. The light beam is reflected by the surface of the mirror 5 and returns along the same route. Also at this time, since multiple reflection is repeated between the reflecting mirrors 6, a dispersion amount that is the number of times of multiple reflection can be obtained as compared with the configuration of FIG. 1. The amount of dispersion can be controlled by controlling θ as in FIG.

ここで、分散媒質4の具体的な構成としては、第一にフォトニック結晶を挙げることができる。この場合、両面が平行な分散媒質4で、分散媒質に入射した光ビームが、入射した角度と同じ角度で分散媒質から出射し、入射した光ビームと平行に分散媒質から出射する必要がある。そうでなければ、光ビームが元の経路を戻ることができないためである。この条件を満たすフォトニック結晶としては、分散媒質4の両面に垂直な方向のみ組成が変化する1次元フォトニック結晶が適している。この1次元フォトニック結晶の中でも、結合欠陥型フォトニック結晶は、その群遅延波長分散特性が大きく、分散媒質4として最も優れている。   Here, as a specific configuration of the dispersion medium 4, first, a photonic crystal can be cited. In this case, it is necessary that the light beam incident on the dispersion medium is emitted from the dispersion medium at the same angle as the incident angle and is emitted from the dispersion medium in parallel with the incident light beam. Otherwise, the light beam cannot return to the original path. As the photonic crystal satisfying this condition, a one-dimensional photonic crystal whose composition changes only in the direction perpendicular to both surfaces of the dispersion medium 4 is suitable. Among the one-dimensional photonic crystals, the coupling defect type photonic crystal has a large group delay wavelength dispersion characteristic and is most excellent as the dispersion medium 4.

以下、簡単に結合欠陥型フォトニック結晶を説明する。フォトニック結晶とは、屈折率の異なる二つあるいはそれ以上の数の媒質を組み合わせた多次元周期構造のことであり、1次元フォトニック結晶とは、その次元が1次元の場合を言う。このようなフォトニック結晶では、特定の(規格化)周波数領域では第一ブリルアンゾーン全域に渡ってバンドが存在しない。これは、この帯域に対応する周波数の光はフォトニック結晶中を伝播できないことを意味する。このような、伝播が禁止された周波数帯域をフォトニックバンドギャップと呼ぶ。例えば外部からバンドギャップに相当する波長の光を結晶に入射すると全反射される。   Hereinafter, the bond defect type photonic crystal will be briefly described. The photonic crystal is a multidimensional periodic structure in which two or more media having different refractive indexes are combined. The one-dimensional photonic crystal is a case where the dimension is one-dimensional. In such a photonic crystal, there is no band over the entire first Brillouin zone in a specific (normalized) frequency region. This means that light having a frequency corresponding to this band cannot propagate through the photonic crystal. Such a frequency band in which propagation is prohibited is called a photonic band gap. For example, when light having a wavelength corresponding to the band gap is incident on the crystal from the outside, the light is totally reflected.

バンドギャップを持つフォトニック結晶に欠陥、つまり周期構造中の不均一要素が導入された場合を考える。欠陥部では周期構造が乱れているので、バンドギャップ波長の光でも存在できる。しかし欠陥の周囲は完全なフォトニック結晶なので、光は外部へ伝播できず欠陥内部に反射されることになる。   Consider a case where a defect, that is, a nonuniform element in a periodic structure is introduced into a photonic crystal having a band gap. Since the periodic structure is disturbed in the defect portion, light having a band gap wavelength can exist. However, since the periphery of the defect is a complete photonic crystal, light cannot propagate to the outside and is reflected inside the defect.

図4は、1次元フォトニック結晶に欠陥がある場合の様子を概念的に示した図である。例えば、TaとSiOとの積層構造からなるフォトニック結晶を考える。Ta層16とSiO層15が交互に積層されてフォトニック結晶8を構成しているとき、Ta層16が欠けた欠陥11が存在すると、その周囲のフォトニック結晶8は微小共振器を形成し、その内部で光は多重反射を起こし定常状態を形成する。このフォトニック結晶欠陥内での光の定常状態を欠陥順位と呼ぶ。欠陥が共振器として作用するためには、周りのフォトニック結晶で全反射されることが必要なので、欠陥準位は必ずバンドギャップに対応する周波数に存在する。 FIG. 4 is a diagram conceptually showing a state where the one-dimensional photonic crystal has a defect. For example, consider a photonic crystal having a laminated structure of Ta 2 O 5 and SiO 2 . When the Ta 2 O 5 layer 16 and the SiO 2 layer 15 are alternately stacked to constitute the photonic crystal 8, if the defect 11 lacking the Ta 2 O 5 layer 16 is present, the surrounding photonic crystal 8 is formed. Forms a microresonator, in which light undergoes multiple reflections to form a steady state. The steady state of light within this photonic crystal defect is called defect order. In order for the defect to act as a resonator, it is necessary to be totally reflected by the surrounding photonic crystal. Therefore, the defect level always exists at a frequency corresponding to the band gap.

このような微小共振器を周期的に形成すると、結合微小共振器導波路が形成される。この結合微小共振器導波路の特性に関しては例えばオプティクスレターズ(Optics Letters)第24巻、711頁に示されている。   When such a microresonator is formed periodically, a coupled microresonator waveguide is formed. The characteristics of this coupled microresonator waveguide are shown, for example, in Optics Letters Vol. 24, page 711.

図5は結合微小共振器導波路での光の伝播の様子を模式的に表した図である。図4に示されるように、結合微小共振器導波路とは、I,II,III,IVで示されるような共鳴周波数(即ち局在モードの周波数)Ωの微小共振器13を、一定の間隔Λで連ねて配置した構造である。通常、微小共振器13の中では光は内部反射を繰り返し、定在波を形成する。理想的な微小共振器が孤立して存在する場合、光子は内部に完全に閉じ込められ外部に出ることはない。しかし適当な距離で他の共振器がある場合、光のエバネッセントモードの空間分布に重なりが生じるため、二つの共振器の間でエネルギー14の伝搬が可能となる。このように共振器間でエネルギーのやり取りがある場合を指して「二つの共振器は結合している」と言う。   FIG. 5 is a diagram schematically showing the state of light propagation in the coupled microresonator waveguide. As shown in FIG. 4, the coupled microresonator waveguide refers to a microresonator 13 having a resonance frequency (namely, a frequency of a localized mode) Ω as indicated by I, II, III, and IV at a constant interval. It is a structure arranged in series with Λ. Usually, in the microresonator 13, light repeats internal reflection and forms a standing wave. When an ideal microresonator is present in isolation, the photon is completely confined inside and never exits. However, if there are other resonators at an appropriate distance, the spatial distribution of the light evanescent mode overlaps, so that energy 14 can propagate between the two resonators. In this way, when energy is exchanged between the resonators, it is said that “the two resonators are coupled”.

図5に示すように、隣り合った二つが互いに結合した状態で多数の共振器を並べると、前記のエネルギー伝播が連続的に繰り返えされ、入射パルスは微小共振器列中を次々に伝播していくことになる。これが結合微小共振器導波路の原理である。この場合、伝播に伴う損失は原理的に発生せず、実際上も光は狭い領域に強く閉じこめられた状態で伝播するので、散乱等による損失は極めて小さいことが予測される。   As shown in FIG. 5, when a large number of resonators are arranged in a state where two adjacent ones are coupled to each other, the above-described energy propagation is continuously repeated, and incident pulses propagate one after another through the microresonator array. Will do. This is the principle of the coupled microresonator waveguide. In this case, loss due to propagation does not occur in principle, and light is propagated in a state of being strongly confined in a narrow region in practice, so that it is predicted that loss due to scattering or the like is extremely small.

このような構造をフォトニック結晶中の欠陥で形成したものを結合欠陥型フォトニック結晶と呼ぶ。この結合欠陥型フォトニック結晶では、例えばアイ・イー・イー・イー・ジャーナル・クアンタムエレクトロニクス(IEEE Journal Quantum Electronics)第38巻、825頁に記載されているように、その群速度波長分散が大きいことが示されている。1次元結合欠陥型フォトニック結晶は、図3に示した欠陥を周期的に配置した構造からなる。   A structure in which such a structure is formed by defects in the photonic crystal is called a bond defect type photonic crystal. This bond defect type photonic crystal has a large group velocity chromatic dispersion as described in, for example, IEEE Journal Quantum Electronics, Vol. 38, page 825. It is shown. The one-dimensional coupled defect photonic crystal has a structure in which the defects shown in FIG. 3 are periodically arranged.

以上述べたごとく本発明によれば、超小型で安価かつ補償量が非常に大きく、補償量が可変な分散補償器を得ることができる。更に本発明により安価で信頼性の高い光伝送システムを構築する事が出来る。   As described above, according to the present invention, it is possible to obtain a dispersion compensator that is ultra-compact, inexpensive, has a very large compensation amount, and has a variable compensation amount. Furthermore, an inexpensive and highly reliable optical transmission system can be constructed according to the present invention.

以下、本発明の波長分散補償素子を応用した分散補償器の実施例およびこれを応用した光伝送システムを説明する。   Hereinafter, an embodiment of a dispersion compensator to which the chromatic dispersion compensation element of the present invention is applied and an optical transmission system to which the dispersion compensator is applied will be described.

(実施例1)
図6は本発明の実施例1の波長分散補償器の構成を示すブロック図である。波長分散補償素子としての分散媒質4は回転ステージ27の上に保持されるとともに、回転ステージ27は駆動装置28によって、分散媒質4の中心位置で、紙面に垂直方向の軸中心に回転駆動される。分散媒質4の一面から、入射光ファイバ1、サーキュレータ20および対物レンズ2を介して、光入射ビームを分散媒質4の表面に対して垂直から10°程度以下の傾き角度(例えば、5度)をもって入射させる。光入射ビームは、まず分散媒質4を通過し、分散媒質4の反対の一面から出射する。出射した光ビームは鏡5表面で反射されて同一ルートで戻り、対物レンズ2およびサーキュレータ20を介して、出射ビーム21として出射光ファイバ26に導入される。45は波長分散補償器のケースである。なお、図示しなかったが、駆動装置28はケース45に保持されている固定ステージ(図示しない)に保持される。
(Example 1)
FIG. 6 is a block diagram showing the configuration of the chromatic dispersion compensator according to the first embodiment of the present invention. The dispersion medium 4 as a chromatic dispersion compensation element is held on a rotation stage 27, and the rotation stage 27 is rotationally driven by a driving device 28 at the center position of the dispersion medium 4 about the axis center perpendicular to the paper surface. . From one surface of the dispersion medium 4 via the incident optical fiber 1, the circulator 20 and the objective lens 2, the light incident beam has an inclination angle (for example, 5 degrees) of about 10 ° or less with respect to the surface of the dispersion medium 4. Make it incident. The light incident beam first passes through the dispersion medium 4 and exits from the opposite surface of the dispersion medium 4. The emitted light beam is reflected by the surface of the mirror 5 and returns along the same route, and is introduced into the outgoing optical fiber 26 as the outgoing beam 21 through the objective lens 2 and the circulator 20. Reference numeral 45 denotes a case of a chromatic dispersion compensator. Although not shown, the driving device 28 is held by a fixed stage (not shown) held by the case 45.

より具体的に述べると、光ファイバ1は、コア径10μmのシングルモード(SM)光ファイバを用いた。この光ファイバの出射端にサーキュレータ20を配置して、これから出射した光ビームを、NAが0.2の対物レンズ2を配置して、光ファイバ1から出射した光ビームをほぼ平行な光ビームに変換した。光パルスの群遅延波長分散を生じさせる分散媒質4は、実施例1では、2次元のSiからなる円孔三角格子型フォトニック結晶を用いた。この場合、円孔軸と分散媒質両面とが平行になるようにした。このフォトニック結晶の構造は、円孔半径が0.24μm、格子間隔が0.5μmで光ビームはΓ−M方向に進む様にした。また、鏡5および表面側鏡6および裏面側鏡6は、反射率の波長依存性が少ないAuを表面に蒸着したものを用いた。   More specifically, the optical fiber 1 is a single mode (SM) optical fiber having a core diameter of 10 μm. A circulator 20 is arranged at the emission end of the optical fiber, and the light beam emitted from the circulator 20 is arranged with the objective lens 2 having an NA of 0.2, so that the light beam emitted from the optical fiber 1 is made into a substantially parallel light beam. Converted. In the first embodiment, a circular hole triangular lattice photonic crystal made of two-dimensional Si is used as the dispersion medium 4 for generating the group delay wavelength dispersion of the optical pulse. In this case, the hole axis and both surfaces of the dispersion medium were made parallel. The structure of this photonic crystal was such that the circular hole radius was 0.24 μm, the lattice spacing was 0.5 μm, and the light beam traveled in the Γ-M direction. Further, the mirror 5, the front side mirror 6, and the back side mirror 6 were made by depositing Au on the surface with less wavelength dependency of reflectance.

このようにして、まず分散媒質4の平行な両面と、サーキュレータ20および対物レンズ2を介して、分散媒質4に入射する光ビームとの角度を90°にし、かつ分散媒質4を透過した光ビームと鏡5との角度も90°にして、波長1.5μmの光ビームを入射させた。鏡5で反射されて同一ルートを通り、対物レンズ2およびサーキュレータ20を介して出射光ファイバ26に導入される出射ビーム21で群速度分散を測定したところ、200ps/nmと非常に大きな群速度分散が得られた。   In this manner, first, the angle between the parallel both surfaces of the dispersion medium 4 and the light beam incident on the dispersion medium 4 via the circulator 20 and the objective lens 2 is set to 90 °, and the light beam transmitted through the dispersion medium 4 is transmitted. The angle between the mirror 5 and the mirror 5 was 90 °, and a light beam with a wavelength of 1.5 μm was made incident. When the group velocity dispersion is measured with the outgoing beam 21 that is reflected by the mirror 5 and passes through the same route and introduced into the outgoing optical fiber 26 through the objective lens 2 and the circulator 20, the group velocity dispersion is as large as 200 ps / nm. was gotten.

次に、分散媒質4を入射する光ビームに対して傾け、分散媒質4表面と光ビームとの角度を90°からずらし、95°とした。この場合、分散媒質を透過した光ビームと鏡5との角度は90°と変わらず、光ビームは鏡5で反射された後、元の経路をたどって出射光ファイバ26に入射した。このときの群速度分散は、分散媒質4の平行な両面と分散媒質に入射する光ビームとの角度が90°の場合に比べて10ps/nm増加し、分散媒質4の角度を変えることによって群速度分散を変えることが出来た(図2参照)。また、光ファイバの出射光量に対して、光が戻ってきたときの入射光量の比は、分散媒質表面と光ビームとの角度が90°の場合も、95°の場合も1dB以下と小さく、この分散補償器の光損失は小さいことが示された。   Next, the dispersion medium 4 was tilted with respect to the incident light beam, and the angle between the surface of the dispersion medium 4 and the light beam was shifted from 90 ° to 95 °. In this case, the angle between the light beam transmitted through the dispersion medium and the mirror 5 remains the same as 90 °, and the light beam is reflected by the mirror 5 and then enters the outgoing optical fiber 26 along the original path. The group velocity dispersion at this time is increased by 10 ps / nm as compared with the case where the angle between the two parallel surfaces of the dispersion medium 4 and the light beam incident on the dispersion medium is 90 °, and the group velocity dispersion is changed by changing the angle of the dispersion medium 4. The velocity dispersion could be changed (see Fig. 2). In addition, the ratio of the incident light amount when the light returns with respect to the emitted light amount of the optical fiber is as small as 1 dB or less when the angle between the dispersion medium surface and the light beam is 90 ° or 95 °, It was shown that the optical loss of this dispersion compensator is small.

(実施例2)
本発明の実施例2の波長分散補償器の構成は、ブロック図で見ると、実施例1と同じ図6に示す構成である。光パルスの群遅延波長分散を生じさせる分散媒質4を、2次元の円孔三角格子型フォトニック結晶から1次元結合欠陥型フォトニック結晶に変えた点でのみ異なる。1次元結合欠陥型フォトニック結晶は、図4で設明したTa層15とSiO層16との積層構造で、欠陥11の数7、総数50のものを用いた。その結果、波長1.5μmの光に対し、光ビームと分散媒質4との角度が90°の場合、群速度分散量が40ps/nmと非常に大きな値が得られた。この値は、光ビームが分散媒質としての結合欠陥型フォトニック結晶を単に1回通過したときの値に比べて、4倍になっており、本構成で非常に大きな群速度分散が得られることが示された。これは、結合欠陥型フォトニック結晶と外界との光結合が鏡5による反射によって大幅に変えられたことによる。また、光ビームと分散媒質4との角度を90°から変えた場合、1°につき10ps/nmの群速度分散量の変化が得られ、角度を変えることによって群速度分散が大幅に変化できることが示された。
(Example 2)
The configuration of the chromatic dispersion compensator of Example 2 of the present invention is the same as that of Example 1 shown in FIG. The only difference is that the dispersion medium 4 that causes group delay wavelength dispersion of the optical pulse is changed from a two-dimensional circular triangular triangular lattice photonic crystal to a one-dimensional coupled defect photonic crystal. As the one-dimensional bond defect type photonic crystal, the number of defects 11 and the number of defects 11 are 50 and the number of defects is 50, which is the laminated structure of the Ta 2 O 5 layer 15 and the SiO 2 layer 16 established in FIG. As a result, when the angle between the light beam and the dispersion medium 4 is 90 ° with respect to light having a wavelength of 1.5 μm, the group velocity dispersion amount is 40 ps / nm, which is a very large value. This value is four times as large as the value when the light beam passes through the coupling defect type photonic crystal as a dispersion medium only once, and this configuration provides very large group velocity dispersion. It has been shown. This is because the optical coupling between the coupling defect photonic crystal and the outside world is greatly changed by reflection by the mirror 5. Further, when the angle between the light beam and the dispersion medium 4 is changed from 90 °, a change in the group velocity dispersion amount of 10 ps / nm per 1 ° can be obtained, and the group velocity dispersion can be significantly changed by changing the angle. Indicated.

また、光ファイバ1の出射光量に対して、光が戻ってきたときの光ファイバ26への入射光量の比は、分散媒質表面と光ビームとの角度が90°の場合も、95°の場合も1dB以下と小さく、この分散補償器の光損失は小さいことが示された。   The ratio of the amount of light incident on the optical fiber 26 when the light returns with respect to the amount of light emitted from the optical fiber 1 is either 95 degrees or 90 degrees between the dispersion medium surface and the light beam. Was as small as 1 dB or less, indicating that the optical loss of this dispersion compensator was small.

(実施例3)
図7は本発明の実施例3の波長分散補償器の構成を示すブロック図である。実施例2で説明した1次元結合欠陥型フォトニック結晶を用いて、分散媒質4の両表面にAuを蒸着した鏡6を形成した以外は、実施例2に示した構成と同じである。多重反射を4回起こすように、分散媒質4の表面と光ビームの角度を設定し、群速度分散量を量ったところ、波長1.5μmの光に対し、400ps/nmと実施形態2に比べてさらに大きな値が得られた。また、分散媒質4の表面と光ビームの角度を変化させると、1°につき100ps/nmの群速度分散量の変化が得られ、角度を変えることによって群速度分散が大幅に変化できることが示された。
(Example 3)
FIG. 7 is a block diagram showing the configuration of the chromatic dispersion compensator according to the third embodiment of the present invention. The configuration is the same as that shown in Example 2 except that the mirror 6 in which Au is vapor-deposited on both surfaces of the dispersion medium 4 is formed using the one-dimensional coupling defect photonic crystal described in Example 2. The surface of the dispersion medium 4 and the angle of the light beam were set so that multiple reflections occurred four times, and the group velocity dispersion amount was measured. An even larger value was obtained. Further, when the angle of the surface of the dispersion medium 4 and the light beam is changed, a change in the group velocity dispersion amount of 100 ps / nm per degree is obtained, and it is shown that the group velocity dispersion can be changed significantly by changing the angle. It was.

また、光ファイバ1の出射光量に対して、光が戻ってきたときの光ファイバ26への入射光量の比は、分散媒質表面と光ビームとの角度が90°の場合も、95°の場合も1dB以下と小さく、この分散補償器の光損失は小さいことが示された。   The ratio of the amount of light incident on the optical fiber 26 when the light returns with respect to the amount of light emitted from the optical fiber 1 is either 95 degrees or 90 degrees between the dispersion medium surface and the light beam. Was as small as 1 dB or less, indicating that the optical loss of this dispersion compensator was small.

(実施例4)
図8は本発明の実施例4の波長分散補償器のための波長分散補償素子10の構成を示す斜視図であり、図9はこれを利用した実施例4の波長分散補償器のブロック図である。
Example 4
FIG. 8 is a perspective view showing a configuration of a chromatic dispersion compensator 10 for a chromatic dispersion compensator according to a fourth embodiment of the present invention, and FIG. 9 is a block diagram of the chromatic dispersion compensator according to the fourth embodiment using this. is there.

実施例4の波長分散補償器のための波長分散補償素子10は、他の実施例の分散媒質4と同様に、表面と裏面が平行である直方体の分散媒質4と、その対向する2面に設けられた光を反射させる表面側鏡6と裏面側鏡6とから構成される。表面側鏡6は、それが設けられている面の1つの辺に平行に分散媒質4が露出するように形成される。裏面側鏡6は、それが設けられている面の1つの辺に対して斜めに分散媒質4が露出するように形成される。表面側鏡6の側の露出部と裏面側鏡6の露出部とは、それぞれの鏡が設けられる面の反対位置になるように成される。 Similar to the dispersion medium 4 of the other embodiments, the chromatic dispersion compensation element 10 for the chromatic dispersion compensator of the fourth embodiment has a rectangular parallelepiped dispersion medium 4 whose front surface and rear surface are parallel to each other and two opposing surfaces thereof. composed of the surface-side mirror 61 for reflecting the light is provided and the back-side mirror 6 1 Tokyo. Surface mirror 61, it is formed so as to expose the parallel dispersion medium 4 to one side of the surface are provided. Back side mirror 6 2, it is dispersed medium 4 at an angle with respect to one side of which surface is provided is formed so as to expose. The exposed portion and the back-side mirror 6 2 of the exposed portions of the surface mirror 61 side, are made to be opposite to the position of the plane in which each mirror is provided.

表面側鏡6の側の露出部は光入射ビームの入射窓12として利用される。すなわち、光入射ビームを入射窓12から分散媒質4の表面に対して垂直から10°程度以下の傾きをもって入射させる。光入射ビームは、まず分散媒質4を通過し、次に、傾きに応じて、鏡6と6によって多重反射された後、裏面側鏡6の側の露出部である出射窓17から出射する。 The exposed portion of the side surface side mirror 61 is used as an entrance window 12 of the light incident beam. That is, the light incident beam is incident on the surface of the dispersion medium 4 from the incident window 12 with an inclination of about 10 ° or less from the vertical. Light incident beam, first passing through the dispersion medium 4, then in accordance with the inclination, after being multiplexed reflected by the mirror 6 1 and 6 2, from the exit window 17 is exposed portion on the side of the back side mirror 6 2 Exit.

図8に示す波長分散補償素子10は、分散媒質4への入射光の入射点を維持したまま、図に矢印を付記したように上下させると、裏面側鏡6の形が、移動方向に対して斜めに成されているので、段階的に多重反射の回数が変化する。図9はこれを利用するものであり、図7に示す実施例3と対比して明らかなように、上下動駆動装置29が付加されている点でのみ異なる。すなわち、図8を参照して、波長分散補償素子10が下側に移動されると、多重反射の回数が減り、上側に移動されると、多重反射の回数が増加する。それぞれの位置で、実施例3と同様に回転の制御を加えると、図2に示す特性で連続的に変化する。 Chromatic dispersion compensation device 10 shown in FIG. 8, while maintaining the point of incidence of the incident light to the dispersion medium 4, when the up and down as appended arrows in the figure, the shape of the back side mirror 6 2, in the direction of movement On the other hand, since it is formed obliquely, the number of multiple reflections changes stepwise. FIG. 9 utilizes this and differs only in that a vertical movement drive device 29 is added, as is clear in comparison with the third embodiment shown in FIG. That is, referring to FIG. 8, the number of multiple reflections decreases when the chromatic dispersion compensation element 10 is moved downward, and the number of multiple reflections increases when it is moved upward. When rotation control is applied at each position in the same manner as in the third embodiment, it continuously changes with the characteristics shown in FIG.

(実施例5)
次に、本発明の分散補償器を適用した光伝送システムを例示する。
(Example 5)
Next, an optical transmission system to which the dispersion compensator of the present invention is applied will be exemplified.

図10は実施例1−3の可変分散補償器を用いた40Gbps/チャンネルの波長分割多重光伝送システムを示す図である。このシステムは送信装置50、伝送ファイバ路、受信装置52から構成される。送信装置50は各波長(チャンネル)ごとの電気―光変換器53、波長多重器54、光送信増幅器55から構成されるが、これらは通例のものを使用すれば十分である。使用波長は1.55μmを中心とした帯域とする。伝送ファイバ路には分散シフトファイバ51を用い、伝送距離は80kmである。受信装置52は光受信増幅器56、波長分離器57、実施例1に記載の本発明の可変分散補償器58、光―電気変換器59から構成される。多重されて伝送された光パルスを波長分離装置57で各波長に分割し、可変分散補償器58で各々のチャンネルで最適な分散補償を行う。   FIG. 10 is a diagram illustrating a 40 Gbps / channel wavelength division multiplexing optical transmission system using the variable dispersion compensator of Example 1-3. This system includes a transmitter 50, a transmission fiber path, and a receiver 52. The transmission device 50 includes an electric-optical converter 53, a wavelength multiplexer 54, and an optical transmission amplifier 55 for each wavelength (channel). However, it is sufficient to use conventional ones. The wavelength used is a band centered at 1.55 μm. A dispersion shifted fiber 51 is used for the transmission fiber path, and the transmission distance is 80 km. The receiving device 52 includes an optical receiving amplifier 56, a wavelength separator 57, the tunable dispersion compensator 58 of the present invention described in the first embodiment, and an optical-electrical converter 59. The multiplexed optical pulse is divided into wavelengths by the wavelength demultiplexer 57, and optimum dispersion compensation is performed in each channel by the variable dispersion compensator 58.

分散シフトファイバの分散は1.53−1.6μmで数ps/nm/km以下である。伝送距離80kmで、最大±200ps/nm程度の分散を受けるが、その値はチャンネル(波長)によって異なる。実施例1で詳細に説明したように、可変分散補償器58は可変幅±−160ps/nmであるから、全てのチャンネルに対して渡って分散をほぼ補償することが可能である。ここでは、実施例1の分散補償器を代表として例示したが、他の実施例で示された分散補償器を用いても同様な効果が得られることは勿論である。   The dispersion of the dispersion-shifted fiber is 1.53-1.6 μm, which is several ps / nm / km or less. At a transmission distance of 80 km, the maximum dispersion is about ± 200 ps / nm, but the value varies depending on the channel (wavelength). As described in detail in the first embodiment, since the tunable dispersion compensator 58 has a variable width of ± 160 ps / nm, it is possible to substantially compensate dispersion for all channels. Here, the dispersion compensator of the first embodiment is exemplified as a representative, but it is needless to say that the same effect can be obtained even if the dispersion compensator shown in another embodiment is used.

(実施例6)
次に、本発明の可変分散補償器を適用した光伝送システムの他の実施例を例示する。
(Example 6)
Next, another embodiment of the optical transmission system to which the variable dispersion compensator of the present invention is applied will be exemplified.

図11は本発明の可変分散補償器を用いた10Gbps/チャンネルの波長分割多重光伝送システムを示す図である。このシステムは送信装置50、伝送ファイバ路、受信装置60から構成される。送信装置50の構成は実施例5で例示したものと同様の構成である。伝送ファイバ路61には1.3μm帯に最低分散領域を持つシングルモードファイバを用い、伝送距離は80kmである。即ち本システムは既設のシングルモードファイバを用いて波長分割多重方式により大容量伝送を行う際に用いるシステムである。受信装置60は光受信増幅器56、波長分離装置57、実施例1に記載の本発明の可変分散補償器分散器62、光―電気変換器59から構成される。   FIG. 11 is a diagram showing a wavelength division multiplexing optical transmission system of 10 Gbps / channel using the variable dispersion compensator of the present invention. This system includes a transmission device 50, a transmission fiber path, and a reception device 60. The configuration of the transmission device 50 is the same as that illustrated in the fifth embodiment. The transmission fiber path 61 is a single mode fiber having the lowest dispersion region in the 1.3 μm band, and the transmission distance is 80 km. That is, this system is a system that is used when performing large-capacity transmission by wavelength division multiplexing using an existing single mode fiber. The receiving device 60 includes an optical receiving amplifier 56, a wavelength separation device 57, the variable dispersion compensator disperser 62 of the present invention described in the first embodiment, and an optical-electrical converter 59.

本システムでは波長分離装置57の前段に可変分散補償器62を設置し、複数のチャンネルを一括して補償する。そのための分散補償器は、実施例1に示したものを使用した。この場合、分散補償器の構造パラメータを多少変え、図12に示した波長λと分散量Dの関係をもつものを用いた。このように、この分散補償器ではシングルモードファイバと逆向きの分散スロープを示し、効果的な分散補償が可能である。ここでは、実施例1の分散補償器を代表として例示したが、他の実施例で示された分散補償器を用いても同様な効果が得られることは勿論である。   In this system, a tunable dispersion compensator 62 is installed in front of the wavelength separation device 57, and a plurality of channels are compensated collectively. As the dispersion compensator for that purpose, the one shown in Example 1 was used. In this case, the structure parameter of the dispersion compensator was slightly changed, and the one having the relationship between the wavelength λ and the dispersion amount D shown in FIG. 12 was used. As described above, this dispersion compensator exhibits a dispersion slope opposite to that of the single mode fiber, and enables effective dispersion compensation. Here, the dispersion compensator of the first embodiment is exemplified as a representative, but it is needless to say that the same effect can be obtained even if the dispersion compensator shown in another embodiment is used.

(その他の実施形態)
以上示した実施例1−3は、群速度分散量を変え、波長分散補償器としての機能を示したものであるが、分散媒質4として光パルスを時間的に遅らせる機能を持つものを使えば、実施形態1−3で示した構成は、光遅延器として働く。具体的に、分散媒質としての1次元結合欠陥型フォトニック結晶として、遅延時間10psのものを用いた場合、実施形態2での構成で40ps、実施形態3の多重反射型の構成で100psの光遅延時間が得られた。また、この構成での光損失は、実施形態2と3に示した場合と同じで、低損失で遅延時間の大きな光遅延器が得られた。
(Other embodiments)
Embodiment 1-3 described above shows the function as a chromatic dispersion compensator by changing the group velocity dispersion amount. However, if a dispersion medium 4 having a function of delaying an optical pulse in time is used, The configuration shown in Embodiment 1-3 functions as an optical delay device. Specifically, when a one-dimensional coupled defect type photonic crystal as a dispersion medium having a delay time of 10 ps is used, light of 40 ps in the configuration of the second embodiment and 100 ps in the multi-reflection type configuration of the third embodiment. Delay time was obtained. The optical loss in this configuration is the same as that shown in the second and third embodiments, and an optical delay device having a low loss and a large delay time was obtained.

光パルスを時間的に遅らせる機能に着目した光遅延器を図10、図11に示した光伝送システムの可変分散補償器分散器58、62の部分に適用すれば、光パルスの到着タイミングを正確に制御する機能を持たせることが出来る。   If an optical delay device that focuses on the function of delaying the optical pulse in time is applied to the variable dispersion compensator dispersion units 58 and 62 of the optical transmission system shown in FIGS. 10 and 11, the arrival timing of the optical pulse can be accurately determined. Can have a control function.

本発明による波長分散補償器の構成を説明する概念図である。It is a conceptual diagram explaining the structure of the wavelength dispersion compensator by this invention. 分散媒質4の光ビーム3の入射する表面に垂直の角度から傾けた角度に応じた分散量の波長依存性を示した図である。It is a figure which showed the wavelength dependence of the dispersion amount according to the angle inclined from the perpendicular | vertical angle with respect to the surface in which the light beam 3 of the dispersion medium 4 injects. 分散補償素子としての分散媒質4の両面に反射用の鏡6を設けて、ここで繰り返し反射する構成とした波長分散補償器の構成を説明する概念図である。It is a conceptual diagram explaining the structure of the wavelength dispersion compensator which provided the mirror 6 for reflection on both surfaces of the dispersion medium 4 as a dispersion compensation element, and made the structure reflected repeatedly here. 1次元フォトニック結晶に欠陥がある場合の様子を概念的に示した図である。It is the figure which showed notionally the mode when a one-dimensional photonic crystal has a defect. 結合微小共振器導波路での光の伝播の様子を模式的に表した図である。It is the figure which represented typically the mode of the propagation of the light in a coupling microresonator waveguide. 本発明の実施例1および実施例2の波長分散補償器の構成を示すブロック図である。It is a block diagram which shows the structure of the wavelength dispersion compensator of Example 1 and Example 2 of this invention. 本発明の実施例3の波長分散補償器の構成を示すブロック図である。It is a block diagram which shows the structure of the wavelength dispersion compensator of Example 3 of this invention. 本発明の実施例4の波長分散補償器のための波長分散補償素子10の構成を示す斜視図である。It is a perspective view which shows the structure of the wavelength dispersion compensation element 10 for the wavelength dispersion compensator of Example 4 of this invention. 図8に示す波長分散補償素子10を利用した実施例4の波長分散補償器のブロック図である。FIG. 9 is a block diagram of a chromatic dispersion compensator according to a fourth embodiment that uses the chromatic dispersion compensating element 10 illustrated in FIG. 8. 実施例1−3の可変分散補償器を用いた40Gbps/チャンネルの波長分割多重光伝送システムを示す図である。It is a figure which shows the wavelength division multiplexing optical transmission system of 40 Gbps / channel using the variable dispersion compensator of Example 1-3. 本発明の可変分散補償器を用いた10Gbps/チャンネルの波長分割多重光伝送システムを示す図である。It is a figure which shows the wavelength division multiplexing optical transmission system of 10 Gbps / channel using the variable dispersion compensator of this invention. 実施例7で採用した分散補償器の波長λと分散量Dの関係を示す図である。FIG. 10 is a diagram illustrating the relationship between the wavelength λ and the dispersion amount D of the dispersion compensator employed in Example 7.

符号の説明Explanation of symbols

1…入射用光ファイバ、2…入射側対物レンズ、3…光ビーム、4…分散媒質、5…鏡、6,6…表面ミラー、6,6…裏面ミラー、8…一次元フォトニック結晶、10…波長分散補償素子、11…一次元フォトニック結晶中に設けられた欠陥、12…入射窓、13…微小共振器、14…エネルギー、15…SiO層、16…Ta層、17…出射窓、20…サーキュレータ、21…光ビーム、26…出射側光ファイバ、27…可動ステージ、28…ステージ回転駆動装置、29…ステージ上下動駆動装置、45…ケース。
DESCRIPTION OF SYMBOLS 1 ... Incident optical fiber, 2 ... Incident side objective lens, 3 ... Light beam, 4 ... Dispersion medium, 5 ... Mirror, 6, 6 1 ... Front mirror, 6, 6 2 ... Back mirror, 8 ... One-dimensional photonic crystal, 10 ... wavelength dispersion compensation element, defects formed during 11 ... one-dimensional photonic crystal, 12 ... incident window, 13 ... microresonator, 14 ... energy, 15 ... SiO 2 layer, 16 ... Ta 2 O 5 Layers: 17 ... exit window, 20 ... circulator, 21 ... light beam, 26 ... exit side optical fiber, 27 ... movable stage, 28 ... stage rotation drive device, 29 ... stage vertical drive device, 45 ... case.

Claims (5)

入射光ビームを一つの方向に出射させる光部品と、該光部品から出射された光ビームを入射される表面と裏面が平行である直方体の分散媒質と、該分散媒質を通過して出射された光ビームを同一光路を通って戻るように反射させる鏡と、該鏡から反射によって入射された光ビームが前記分散媒質を通過して出射された光ビームを前記一つの方向と90°異なった方向に出射させる光部品を備えることを特徴とする光波長分散補償器。   An optical component that emits an incident light beam in one direction, a rectangular parallelepiped dispersion medium in which a front surface and a back surface are parallel to each other, and the light beam emitted from the optical component is emitted through the dispersion medium. A mirror that reflects the light beam so as to return through the same optical path, and a light beam incident from the mirror through the dispersion medium that is emitted through the dispersion medium is 90 ° different from the one direction. An optical wavelength dispersion compensator comprising an optical component that emits light to a light source. 前記光ビームの入射角度が制御可能とされた請求項1記載の光波長分散補償器。   The optical chromatic dispersion compensator according to claim 1, wherein an incident angle of the light beam is controllable. 前記分散媒質表面と裏面に反射面を形成して前記分散媒質が、光を多重反射する機能をもつ請求項1記載の光波長分散補償器。   2. The optical chromatic dispersion compensator according to claim 1, wherein a reflection surface is formed on the front and back surfaces of the dispersion medium, and the dispersion medium has a function of multiply reflecting light. 前記分散媒質裏面に形成された反射面の形状を、前記分散媒質の移動方向に対して反射の回数が変化する形とされるとともに、前記分散媒質の移動を制御する手段を備えた請求項1記載の光波長分散補償器。   The shape of the reflection surface formed on the back surface of the dispersion medium is a shape in which the number of reflections changes with respect to the movement direction of the dispersion medium, and further includes means for controlling the movement of the dispersion medium. The optical chromatic dispersion compensator as described. 前記分散媒質が結合欠陥型フォトニック結晶からなる請求項1記載の光波長分散補償器。
2. The optical wavelength dispersion compensator according to claim 1, wherein the dispersion medium is made of a coupling defect type photonic crystal.
JP2004044076A 2004-02-20 2004-02-20 Compensator for light wavelength dispersion, and light transmission system using the same Pending JP2005236721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004044076A JP2005236721A (en) 2004-02-20 2004-02-20 Compensator for light wavelength dispersion, and light transmission system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004044076A JP2005236721A (en) 2004-02-20 2004-02-20 Compensator for light wavelength dispersion, and light transmission system using the same

Publications (1)

Publication Number Publication Date
JP2005236721A true JP2005236721A (en) 2005-09-02

Family

ID=35019216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004044076A Pending JP2005236721A (en) 2004-02-20 2004-02-20 Compensator for light wavelength dispersion, and light transmission system using the same

Country Status (1)

Country Link
JP (1) JP2005236721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032916A (en) * 2007-07-27 2009-02-12 Fujifilm Corp Dispersion compensator, solid-state laser system, and dispersion compensating method
JP2012053338A (en) * 2010-09-02 2012-03-15 Anritsu Corp Variable light delay unit and variable light delay method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032916A (en) * 2007-07-27 2009-02-12 Fujifilm Corp Dispersion compensator, solid-state laser system, and dispersion compensating method
JP2012053338A (en) * 2010-09-02 2012-03-15 Anritsu Corp Variable light delay unit and variable light delay method

Similar Documents

Publication Publication Date Title
JP3349950B2 (en) Wavelength demultiplexing circuit
JP3665273B2 (en) Chromatic dispersion compensator and optical transmission system using the same
US6243516B1 (en) Merging optical waveguides having branch angle within a specific range
US7630603B2 (en) Optical waveguide ring resonator with photo-tunneling input/output port
CN104204880A (en) Optical element, light transmitting element, light receiving element, hybrid laser, and light transmitting apparatus
JP2000056146A (en) Light self-guide optical circuit
US7512344B2 (en) Variable dispersion compensator
US8456741B2 (en) Optical module having three or more optically transparent layers
WO2002023234A1 (en) Optical dispersion compensating device, composite optical dispersion compensating device comprising the device, and optical dispersion compensating method using the device
JP2002267998A (en) Wavelength dispersion compensation module, optical receiving circuit, and optical communication system
JP4639836B2 (en) Variable dispersion compensator
US7257292B2 (en) Variable dispersion compensator
US7590356B2 (en) Variable dispersion compensator
US6956700B1 (en) Wavelength dispersion compensating apparatus
JP2008065030A (en) Optical control element and compound optical control element
JP2005236721A (en) Compensator for light wavelength dispersion, and light transmission system using the same
US8818193B2 (en) Multichannel tunable optical dispersion compensator
Mao et al. An ARROW optical wavelength filter: design and analysis
JP2000121987A (en) Wavelength dispersion compensator
Ohmori et al. Integrated-optic add/drop multiplexing of free-space waves for intra-board chip-to-chip optical interconnects
JP2005236716A (en) Variable dispersion compensating device and optical transmission system using it
JP5023703B2 (en) Variable dispersion compensator
JP2000224109A (en) Dispersion compensation optical circuit
JP2006221075A (en) Variable dispersion compensator
US11675134B1 (en) Optical bandpass filter based on reflective devices

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20060411

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060623

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728