JP2005235918A - Electric double-layer capacitor and carbon material therefor - Google Patents

Electric double-layer capacitor and carbon material therefor Download PDF

Info

Publication number
JP2005235918A
JP2005235918A JP2004041304A JP2004041304A JP2005235918A JP 2005235918 A JP2005235918 A JP 2005235918A JP 2004041304 A JP2004041304 A JP 2004041304A JP 2004041304 A JP2004041304 A JP 2004041304A JP 2005235918 A JP2005235918 A JP 2005235918A
Authority
JP
Japan
Prior art keywords
carbon material
electric double
layer capacitor
double layer
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004041304A
Other languages
Japanese (ja)
Other versions
JP5025890B2 (en
Inventor
Tetsuya Kume
哲也 久米
Yasuyuki Higashionno
靖之 東恩納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp filed Critical Cataler Corp
Priority to JP2004041304A priority Critical patent/JP5025890B2/en
Publication of JP2005235918A publication Critical patent/JP2005235918A/en
Application granted granted Critical
Publication of JP5025890B2 publication Critical patent/JP5025890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric double layer capacitor having high capacitance and small internal resistance, and to provide a carbon material used for a polarized material thereof. <P>SOLUTION: The carbon material 21 is used for an electrode material of the electric double layer capacitor 1 wherein a sulfur content is 0.2 weight % or below, or the size L<SB>a</SB>of a crystallite that is calculated from an equation L<SB>a</SB>=Kλ/β cosθ by the use of a half value breadth β(radian) of a diffracted ray measured by an X-ray diffracted method about 110 surfaces, a diffracted angle θ thereof, a wavelength λ of an X-ray used therefor, and a constant K=1.84 is within a range of 1nm to 3nm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気二重層キャパシタ用炭素材料及びこれを分極性電極に用いた電気二重層キャパシタに関する。   The present invention relates to a carbon material for an electric double layer capacitor and an electric double layer capacitor using the same for a polarizable electrode.

電気二重層キャパシタは、一対の分極性電極を向かい合わせに配置し、それらの間に非水電解質溶液を介在させた構造を有している。電気二重層キャパシタは、エネルギーデバイスとして利用されており、充電時間が短い、放電が速く瞬時に大きなエネルギーを取り出すことができる、サイクル寿命が長い、環境にやさしい、メンテナンスフリーであるなどの特徴を有している。   The electric double layer capacitor has a structure in which a pair of polarizable electrodes are arranged facing each other and a nonaqueous electrolyte solution is interposed between them. Electric double layer capacitors are used as energy devices and have features such as short charging time, fast discharge and large instantaneous energy extraction, long cycle life, environmental friendliness and maintenance free. doing.

この電気二重層キャパシタでは、分極性電極と電解液との界面に形成される界面電気二重層へのイオンの吸着・脱着現象を利用してエネルギーの出し入れを行う。そのため、静電容量の観点では、分極性電極の単位重量当りの表面積が大きいことが有利であると考えられている。   In this electric double layer capacitor, energy is taken in and out by utilizing the adsorption / desorption phenomenon of ions to / from the interface electric double layer formed at the interface between the polarizable electrode and the electrolyte. Therefore, from the viewpoint of capacitance, it is considered advantageous that the surface area per unit weight of the polarizable electrode is large.

このような理由から、従来、分極性電極の材料としては、賦活処理の条件を最適化することにより比表面積を大きくした活性炭,例えばBET吸着等温式を利用して得られる比表面積(以下、単に比表面積という)が1000m2/g以上の活性炭,を使用していた。しかしながら、活性炭の比表面積を増大させることにより実現され得る静電容量は、限界に達しつつある。 For these reasons, conventionally, as a material for a polarizable electrode, activated carbon whose specific surface area is increased by optimizing activation conditions, for example, a specific surface area obtained by using a BET adsorption isotherm (hereinafter, simply referred to as a specific surface area) Activated carbon having a specific surface area of 1000 m 2 / g or more was used. However, the capacitance that can be achieved by increasing the specific surface area of the activated carbon is reaching its limit.

より高い静電容量を実現すべく、分極性電極の材料として、002面の格子面間隔をコントロールした炭素材料を使用することが提案されている。   In order to realize a higher capacitance, it has been proposed to use a carbon material in which the lattice spacing of the 002 plane is controlled as the material of the polarizable electrode.

例えば、以下の特許文献1には、分極性電極の材料として、黒鉛類似の微結晶炭素を有し、002面の格子面間隔が0.360nm乃至0.380nmである非多孔性炭素を使用することが記載されている。この非多孔性炭素は、比表面積が270m2/g以下と小さいにも拘らず、電気二重層キャパシタの電極材料として用いた場合に比較的高い静電容量を実現可能とする。なお、引用文献1には、この炭素材料を使用した場合に高い静電容量が得られる理由に関連して、微結晶炭素の層間に電解質イオンが溶媒を伴ってインターカレートすることが記載されている。 For example, in Patent Document 1 below, non-porous carbon having a microcrystalline carbon similar to graphite and having a lattice plane spacing of 002 planes of 0.360 nm to 0.380 nm is used as a material for a polarizable electrode. It is described. Although this non-porous carbon has a specific surface area as small as 270 m 2 / g or less, it can realize a relatively high capacitance when used as an electrode material of an electric double layer capacitor. Reference 1 describes that electrolyte ions intercalate with a solvent between layers of microcrystalline carbon in relation to the reason why a high capacitance is obtained when this carbon material is used. ing.

このように、分極性電極の材料として、002面の格子面間隔を広げた炭素材料を使用すると、比較的高い静電容量を実現することができる。しかしながら、電気二重層キャパシタには、さらに大きな静電容量が要求されている。また、本発明者らは、分極性電極の材料として002面の格子面間隔を広げた炭素材料を使用した電気二重層キャパシタは、活性炭を使用した通常の電気二重層キャパシタと比較して、内部抵抗が高いことを見出している。
特開2002−25867号公報
As described above, when a carbon material having a wide lattice spacing on the 002 plane is used as a material for the polarizable electrode, a relatively high capacitance can be realized. However, the electric double layer capacitor is required to have a larger capacitance. In addition, the present inventors have found that an electric double layer capacitor using a carbon material having a wide 002 plane lattice spacing as a material for a polarizable electrode has a higher internal capacity than an ordinary electric double layer capacitor using activated carbon. We find that resistance is high.
JP 2002-25867 A

本発明の目的は、静電容量が大きく且つ内部抵抗の小さい電気二重層キャパシタ及びその分極性材料に用いる炭素材料を提供することにある。   An object of the present invention is to provide an electric double layer capacitor having a large capacitance and a small internal resistance, and a carbon material used for the polarizable material.

本発明の第1側面によると、電気二重層キャパシタの電極材料として使用する炭素材料であって、硫黄含量が0.2重量%以下であることを特徴とする炭素材料が提供される。   According to a first aspect of the present invention, there is provided a carbon material used as an electrode material for an electric double layer capacitor, wherein the carbon content is 0.2 wt% or less.

本発明の第2側面によると、電気二重層キャパシタの電極材料として使用する炭素材料であって、110面についてX線回折法によって測定した回折線の半価幅β(ラジアン)と、その回折角θと、それに使用したX線の波長λと、定数K=1.84とを用いて、等式:La=Kλ/βcosθから算出される結晶子の大きさLaが1nm乃至3nmの範囲内にあることを特徴とする炭素材料が提供される。 According to the second aspect of the present invention, a carbon material used as an electrode material of an electric double layer capacitor, which has a half-value width β (radian) of a diffraction line measured by an X-ray diffraction method on the 110 plane, and a diffraction angle thereof. using the theta, and the wavelength λ of X-rays used to it, and a constant K = 1.84, equation: L a = Kλ / crystallite calculated from βcosθ size L a is 1nm to 3nm range A carbon material is provided that is characterized by being within.

本発明の第3側面によると、互いに対向した一対の分極性電極と、それらの間に介在した非水電解質溶液とを具備し、前記一対の分極性電極の少なくとも一方は第1側面または第2側面に係る炭素材料を含有したことを特徴とする電気二重層キャパシタが提供される。   According to the third aspect of the present invention, it comprises a pair of polarizable electrodes opposed to each other and a non-aqueous electrolyte solution interposed therebetween, wherein at least one of the pair of polarizable electrodes is the first side or the second. An electric double layer capacitor characterized by containing the carbon material according to the side surface is provided.

本発明によると、静電容量が大きく且つ内部抵抗の小さい電気二重層キャパシタ及びその分極性材料に用いる炭素材料が提供される。   According to the present invention, an electric double layer capacitor having a large capacitance and a small internal resistance and a carbon material used for the polarizable material are provided.

以下、本発明の態様について、図面を参照しながら詳細に説明する。なお、各図において、同様または類似する構成要素には同一の参照符号を付し、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same referential mark is attached | subjected to the same or similar component, and the overlapping description is abbreviate | omitted.

図1は、本発明の一態様に係る電気二重層キャパシタを概略的に示す断面図である。
この電気二重層キャパシタ1は、互いに対向した一対の分極性電極2a,2bを含んでいる。分極性電極2a,2b間には、セパレータ3が介在している。分極性電極2a,2bの外面には、それぞれ、集電体4a,4bが設けられている。これら分極性電極2a,2b、セパレータ3、及び集電体4a,4bは、非水電解質溶液5とともに、図示しない容器内に封入されている。
FIG. 1 is a cross-sectional view schematically showing an electric double layer capacitor according to an aspect of the present invention.
The electric double layer capacitor 1 includes a pair of polarizable electrodes 2a and 2b facing each other. A separator 3 is interposed between the polarizable electrodes 2a and 2b. Current collectors 4a and 4b are provided on the outer surfaces of the polarizable electrodes 2a and 2b, respectively. The polarizable electrodes 2a and 2b, the separator 3, and the current collectors 4a and 4b are enclosed in a container (not shown) together with the nonaqueous electrolyte solution 5.

この電気二重層キャパシタ1には、さらに、充放電に利用するための一対の外部取出電極(図示せず)が設けられている。これら外部取出電極の一端はそれぞれ集電体4a及び4bに接続されており、他端は容器の外側に位置している。   The electric double layer capacitor 1 is further provided with a pair of external extraction electrodes (not shown) for use in charging and discharging. One end of each of the external extraction electrodes is connected to the current collectors 4a and 4b, and the other end is located outside the container.

分極性電極2a,2bは、電極材料として粉体状の炭素材料21を含有している。分極性電極2a,2bは、これら炭素材料21を凝集させてなる多孔質体であり、非水電解質溶液5を含浸している。分極性電極2a,2bの少なくとも一方,典型的にはそれらの双方,の炭素材料21としては、例えば、以下の方法により製造したものを使用することができる。   The polarizable electrodes 2a and 2b contain a powdery carbon material 21 as an electrode material. The polarizable electrodes 2 a and 2 b are porous bodies formed by aggregating these carbon materials 21 and impregnated with the non-aqueous electrolyte solution 5. As the carbon material 21 of at least one of the polarizable electrodes 2a, 2b, typically both of them, for example, one produced by the following method can be used.

まず、原料として、硫黄含量CSが0.5重量%未満の石油または石炭系コークスを準備する。なお、従来から、電気二重層キャパシタの電極材料の製造では、硫黄含量CSが0.5重量%よりも遥かに高いコークスやピッチを使用している。したがって、従来と同様に比較的高い濃度で硫黄を含有している石油または石炭系コークスを使用する場合は、例えば、水素化処理を施して脱硫することにより、石油または石炭系コークスの硫黄含量CSを0.5重量%未満にまで減少させる。或いは、比較的高価ではあるが、硫黄含量CSが0.5重量%未満の石油または石炭系コークスを購入し、これを炭素材料の原料として使用する。 First, as a raw material, a sulfur content C S prepares a petroleum or coal coke less than 0.5 wt%. Incidentally, conventionally, in the production of an electrode material of an electric double layer capacitor, a sulfur content C S is using much higher coke and pitch than 0.5 wt%. Therefore, when using petroleum or coal-based coke containing sulfur at a relatively high concentration as in the past, the sulfur content C of petroleum or coal-based coke is obtained by, for example, hydrotreating and desulfurizing. Reduce S to less than 0.5 wt%. Alternatively, there is a relatively expensive, sulfur content C S purchases petroleum or coal-based coke less than 0.5 wt%, which is used as a raw material of the carbon material.

この硫黄含量CSは、例えば、以下の方法により測定することができる。
まず、試料を燃焼させて酸化ガスを発生させ、この酸化ガスの一定量を採取する。次に、採取した酸化ガス中の酸化硫黄ガスを澱粉水溶液に吸収させる。次いで、この水溶液に所定量のヨウ化カリウムを添加し、その吸光度を測定する。この吸光度を、検量線に参照することにより、試料中の硫黄含量CSを求める。なお、この検量線は、例えば、高純度のグラファイトと硫黄とを混合して硫黄濃度が互いに異なる複数の混合物を調製し、これら混合物を試料として用いること以外は先と同様の測定を行うことにより得る。
This sulfur content C S can be measured, for example, by the following method.
First, the sample is burned to generate an oxidizing gas, and a certain amount of the oxidizing gas is collected. Next, the sulfur oxide gas in the collected oxidizing gas is absorbed by the starch aqueous solution. Next, a predetermined amount of potassium iodide is added to the aqueous solution, and the absorbance is measured. The sulfur content C S in the sample is determined by referring to this absorbance with a calibration curve. This calibration curve can be obtained by, for example, preparing a plurality of mixtures having different sulfur concentrations by mixing high-purity graphite and sulfur, and performing the same measurement as above except that these mixtures are used as samples. obtain.

次いで、硫黄含量CSが0.5重量%未満の石油または石炭系コークスを不活性雰囲気中で炭化処理する。この炭化処理は、これにより得られる生成物が以下の物理的性質を有するように実施する。
002=0.34nm〜0.35nm
a=0.5nm〜3.0nm
c=1.0nm〜3.0nm
ここで、d002は002面の格子面間隔を示している。この格子面間隔d002は、例えば、X線回折法を利用して測定することができる。
Next, petroleum or coal-based coke having a sulfur content C S of less than 0.5% by weight is carbonized in an inert atmosphere. This carbonization is carried out so that the resulting product has the following physical properties:
d 002 = 0.34 nm to 0.35 nm
L a = 0.5 nm to 3.0 nm
L c = 1.0 nm to 3.0 nm
Here, d 002 indicates the lattice spacing of the 002 plane. This lattice plane distance d002 can be measured using, for example, an X-ray diffraction method.

また、La及びLcは、それぞれ、結晶子の大きさ及び厚さを示している。結晶子の大きさLaは、X線回折法によって得られる110面についての回折線の半価幅β(ラジアン)及び回折角θと、それに使用したX線の波長λ(nm)と、定数K=1.84とを用いて、等式:La=Kλ/βcosθから算出される。他方、結晶子の厚さLcは、X線回折法によって得られる002面についての回折線の半価幅β(ラジアン)及び回折角θと、それに使用したX線の波長λ(nm)と、定数K=0.9とを用いて、等式:Lc=Kλ/βcosθから算出される。 L a and L c indicate the size and thickness of the crystallite, respectively. Size L a crystallite has a half width beta (radian) and the diffraction angle θ of the diffraction line for the 110 plane obtained by X-ray diffraction method, the wavelength λ and (nm) of the X-rays used to it, the constant Calculated from the equation: L a = Kλ / βcos θ using K = 1.84. On the other hand, the thickness L c of the crystallite is determined by the half-value width β (radian) and diffraction angle θ of the diffraction line about the 002 plane obtained by the X-ray diffraction method, and the wavelength λ (nm) of the X-ray used therefor. And the constant K = 0.9 and is calculated from the equation: L c = Kλ / βcos θ.

炭化処理により得られる生成物の物理的性質,すなわち002面の格子面間隔d002並びに結晶子の大きさLa及び厚さLc,は、原料の物理的及び化学的性質と炭化処理の条件とに応じて変化する。典型的には、この炭化処理の温度は600℃乃至900℃の範囲内とし、時間は0.5時間乃至4時間の範囲内とする。 Physical properties of the products obtained by the carbonization treatment, i.e. the size L a and the thickness L c of the lattice plane of a 002 plane spacing d 002 and crystallite, the condition of the carbonization treatment and physical and chemical properties of the material It changes according to. Typically, the carbonization temperature is in the range of 600 ° C. to 900 ° C. and the time is in the range of 0.5 hours to 4 hours.

次に、炭化処理後の材料に、例えば水酸化カリウムなどの苛性アルカリを用いた賦活処理を施す。次いで、この材料に、例えば加圧濾過洗浄等を施すことにより、余分なアルカリ成分などを除去する。この洗浄は、炭素材料中のアルカリ成分が10000ppm以下になるまで行う。その後、必要に応じ、先の材料に、水素化処理などの表面処理を施す。さらに、この材料を、例えば平均粒径が1μm乃至50μm程度となるように粉砕する。以上のようにして、分極性電極2a,2bに使用する炭素材料21が得られる。   Next, activation treatment using a caustic alkali such as potassium hydroxide is performed on the carbonized material. Next, excess alkaline components and the like are removed by subjecting this material to, for example, pressure filtration washing. This cleaning is performed until the alkali component in the carbon material is 10,000 ppm or less. Thereafter, if necessary, surface treatment such as hydrogenation is performed on the above material. Further, this material is pulverized so that the average particle diameter becomes, for example, about 1 μm to 50 μm. As described above, the carbon material 21 used for the polarizable electrodes 2a and 2b is obtained.

上記の賦活処理から粉砕までの工程は、最終製品が以下の物理的性質を有するように実施する。なお、SSAは、BET吸着等温式を利用して得られる比表面積を示している。   The steps from the activation treatment to pulverization are performed so that the final product has the following physical properties. In addition, SSA has shown the specific surface area obtained using a BET adsorption isotherm.

SSA≦500m2/g
002=0.355nm〜0.385nm
a=1.0nm〜3.0nm
c=1.0nm〜2.0nm
S≦0.2重量%
最終製品の物理的及び化学的性質,すなわち、比表面積SSA、002面の格子面間隔d002、結晶子の大きさLa及び厚さLc、並びに硫黄含量CS,は、炭化処理後の材料の物理的及び化学的性質、賦活処理の条件、必要に応じて行う表面処理の条件などに応じて変化する。賦活処理については、典型的には、苛性アルカリ添加量は炭化処理後の材料に対して1.5倍乃至2.5倍(重量比)の範囲内とし、不活性雰囲気中で行う熱処理の温度は700℃乃至900℃の範囲内とし、時間は1時間乃至10時間の範囲内とする。
SSA ≦ 500m 2 / g
d 002 = 0.355 nm to 0.385 nm
L a = 1.0 nm to 3.0 nm
L c = 1.0 nm to 2.0 nm
C S ≦ 0.2% by weight
Physical and chemical properties of the final product, i.e., the specific surface area SSA, lattice planes of a 002 plane spacing d 002 of crystallite size L a and the thickness L c, as well as the sulfur content C S, is after carbonization It varies depending on the physical and chemical properties of the material, the conditions for the activation treatment, the conditions for the surface treatment performed as necessary, and the like. As for the activation treatment, typically, the amount of caustic added is in the range of 1.5 to 2.5 times (weight ratio) with respect to the carbonized material, and the temperature of the heat treatment performed in an inert atmosphere. Is in the range of 700 ° C. to 900 ° C. and the time is in the range of 1 hour to 10 hours.

分極性電極2a,2bは、この炭素材料21に加え、例えばカーボンブラックなどの導電性補助剤や、例えばポリテトラフルオロエチレン(PTFE)などの結着剤をさらに含有することができる。   In addition to the carbon material 21, the polarizable electrodes 2a and 2b can further contain a conductive auxiliary agent such as carbon black and a binder such as polytetrafluoroethylene (PTFE).

セパレータ3は、イオン透過性の誘電体からなり、分極性電極2a,2b間の短絡を防止する。セパレータ3としては、例えば、ポリプロピレン及びポリエチレンなどからなる微多孔質セパレータなどを使用することができる。   The separator 3 is made of an ion-permeable dielectric and prevents a short circuit between the polarizable electrodes 2a and 2b. As the separator 3, for example, a microporous separator made of polypropylene, polyethylene, or the like can be used.

集電体4a,4bの材料としては、例えば、アルミニウムなどの金属や合金を使用することができる。   As a material for the current collectors 4a and 4b, for example, a metal such as aluminum or an alloy can be used.

非水電解質溶液5は、電解質と有機溶媒とを含有した非プロトン溶液である。この電解質としては、例えば、電離することにより、テトラアルキルアンモニウムイオンなどのカチオンと、テトラフルオロ硼酸イオンやヘキサフルオロ燐酸イオンや過塩素酸イオンなどのアニオンとを生じるものを使用することができる。テトラアルキルアンモニウムイオンとしては、例えば、Me4+、EtnMe4-n+、Et4+、n−Bu4+などを挙げることができる。なお、ここで、「Me」はメチル基を示し、「Et」はエチル基を示し、「Bu」はブチル基を示している。 The nonaqueous electrolyte solution 5 is an aprotic solution containing an electrolyte and an organic solvent. As this electrolyte, for example, an ion that generates a cation such as a tetraalkylammonium ion and an anion such as a tetrafluoroborate ion, a hexafluorophosphate ion, or a perchlorate ion by ionization can be used. Examples of tetraalkylammonium ions include Me 4 N + , Et n Me 4 -n N + , Et 4 N + , and n-Bu 4 N + . Here, “Me” represents a methyl group, “Et” represents an ethyl group, and “Bu” represents a butyl group.

非水電解質溶液5の有機溶媒としては、例えば、炭酸プロピレン、炭酸エチレン、炭酸ジメチル、炭酸ジエチル、ジメトキシエタン、ジエトキシエタン、γ−ブチルラクトン、アセトニトリル、それらの混合物などを使用することができる。この有機溶媒には、例えば、プロピオニトリル、炭酸エチレン、ジメチルスルホキシド、ニトロメタン、それらの混合物などをさらに添加することができる。   As an organic solvent of the nonaqueous electrolyte solution 5, for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, γ-butyllactone, acetonitrile, a mixture thereof, and the like can be used. For example, propionitrile, ethylene carbonate, dimethyl sulfoxide, nitromethane, a mixture thereof and the like can be further added to the organic solvent.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

(実施例1)
本例では、以下の方法により図1の電気二重層キャパシタ1を作成した。
まず、硫黄含量CSが0.4重量%の市販の石油系コークスに炭化処理を施し、その後、これを粉砕することにより平均粒径を約100μmに調整した。具体的には、この石油系コークス粉末に対し、N2気流中、750℃で1時間の熱処理を行った。これにより、上記コークスの硫黄含量CSを0.25重量%にまで減少させた。
(Example 1)
In this example, the electric double layer capacitor 1 of FIG. 1 was produced by the following method.
First, carbonization treatment was performed on a commercially available petroleum coke having a sulfur content C S of 0.4% by weight, and then the average particle size was adjusted to about 100 μm by pulverizing it. Specifically, the petroleum-based coke powder was heat-treated at 750 ° C. for 1 hour in a N 2 stream. As a result, the sulfur content C S of the coke was reduced to 0.25% by weight.

この炭化処理により得られた生成物について各種測定を実施したところ、以下の結果が得られた。   When various measurements were performed on the product obtained by this carbonization treatment, the following results were obtained.

002=0.342nm
a=1.40nm
c=2.33nm
S=0.25重量%
次いで、炭化処理後の材料を賦活処理に供した。具体的には、炭化処理後の材料に、重量比で2倍の水酸化カリウムを添加し、この混合物を、不活性雰囲気中、800℃で8時間の熱処理に供した。
d 002 = 0.342nm
L a = 1.40 nm
L c = 2.33 nm
C S = 0.25% by weight
Next, the carbonized material was subjected to activation treatment. Specifically, twice the weight ratio of potassium hydroxide was added to the carbonized material, and this mixture was subjected to heat treatment at 800 ° C. for 8 hours in an inert atmosphere.

次に、この材料に加圧濾過機等による洗浄を施し、余分なアルカリ成分を除去した。この洗浄は、炭素材料中のアルカリ成分が10000ppm以下になるまで行った。   Next, this material was washed with a pressure filter or the like to remove excess alkali components. This washing was performed until the alkali component in the carbon material became 10,000 ppm or less.

その後、先の材料に、水素化処理を施した。具体的には、この石油系コークス粉末に対し、水素気流中、700℃で4時間の熱処理を行った。   Thereafter, the previous material was subjected to hydrogenation treatment. Specifically, this petroleum coke powder was heat-treated at 700 ° C. for 4 hours in a hydrogen stream.

さらに、この材料を、平均粒径が12μm程度となるように粉砕した。以上のようにして、分極性電極2a,2bに使用する炭素材料21を得た。   Further, this material was pulverized so that the average particle size was about 12 μm. As described above, the carbon material 21 used for the polarizable electrodes 2a and 2b was obtained.

このようにして得られた炭素材料21について各種測定を実施したところ、以下の結果が得られた。   When various measurements were performed on the carbon material 21 thus obtained, the following results were obtained.

SSA=150m2/g
002=0.357nm
a=2.39nm
c=1.23nm
S=0.08重量%
次に、上記の炭素材料21を80重量部と、カーボンブラック10重量部と、10重量部のPTFEを含有したPTFE溶液とを十分に混練した。次いで、この混合物を圧延して厚さ0.1mmのシート状とし、面積が2cm2の円形形状に切り出した。
SSA = 150m 2 / g
d 002 = 0.357nm
L a = 2.39 nm
L c = 1.23 nm
C S = 0.08% by weight
Next, 80 parts by weight of the carbon material 21, 10 parts by weight of carbon black, and a PTFE solution containing 10 parts by weight of PTFE were sufficiently kneaded. Next, this mixture was rolled into a sheet having a thickness of 0.1 mm, and cut into a circular shape having an area of 2 cm 2 .

その後、このようにして得られた分極性電極2a,2bに、非水電解質溶液5として、1mol/Lの濃度でEt4N・BF4を含有したプロピレンカーボネート溶液を含浸させた。この非水電解質溶液5は、微多孔質セパレータ3にも包含させた。 Thereafter, the polarizable electrodes 2a and 2b thus obtained were impregnated with a propylene carbonate solution containing Et 4 N · BF 4 at a concentration of 1 mol / L as the non-aqueous electrolyte solution 5. This nonaqueous electrolyte solution 5 was also included in the microporous separator 3.

続いて、アルミニウムからなる集電体4a、分極性電極2a、セパレータ3、分極性電極2b、アルミニウムからなる集電体4bを順次積層し、この積層体を図示しない容器内に封入した。以上のようにして、コイン型の電気二重層キャパシタ1を完成した。   Subsequently, a current collector 4a made of aluminum, a polarizable electrode 2a, a separator 3, a polarizable electrode 2b, and a current collector 4b made of aluminum were sequentially laminated, and this laminate was sealed in a container (not shown). As described above, the coin-type electric double layer capacitor 1 was completed.

(実施例2)
本例では、以下の方法により図1の電気二重層キャパシタ1を作成した。
まず、硫黄含量CSが0.4重量%の市販の石油系コークスに炭化処理を施し、その後、粉砕することにより平均粒径を約100μmに調整した。具体的には、この石油系コークス粉末に対し、水素気流中、750℃で2時間の熱処理を行った。これにより、上記コークスの硫黄含量CSを0.12重量%にまで減少させた。
(Example 2)
In this example, the electric double layer capacitor 1 of FIG. 1 was produced by the following method.
First, carbon oil was subjected to carbonization treatment on a commercially available petroleum coke having a sulfur content C S of 0.4% by weight, and then the average particle size was adjusted to about 100 μm by grinding. Specifically, the petroleum coke powder was heat-treated at 750 ° C. for 2 hours in a hydrogen stream. As a result, the sulfur content C S of the coke was reduced to 0.12% by weight.

この炭化処理により得られた生成物について各種測定を実施したところ、以下の結果が得られた。   When various measurements were performed on the product obtained by this carbonization treatment, the following results were obtained.

002=0.340nm
a=1.41nm
c=2.61nm
S=0.12重量%
次いで、炭化処理後の材料を賦活処理に供した。具体的には、炭化処理後の材料に、重量比で2倍の水酸化カリウムを添加し、この混合物を、不活性雰囲気中、800℃で4時間の熱処理に供した。
d 002 = 0.340nm
L a = 1.41 nm
L c = 2.61 nm
C S = 0.12% by weight
Next, the carbonized material was subjected to activation treatment. Specifically, twice the weight ratio of potassium hydroxide was added to the carbonized material, and this mixture was subjected to heat treatment at 800 ° C. for 4 hours in an inert atmosphere.

次に、この材料に加圧濾過機等による洗浄を施し、余分なアルカリ成分を除去した。この洗浄は、炭素材料中のアルカリ成分が10000ppm以下になるまで行った。   Next, this material was washed with a pressure filter or the like to remove excess alkali components. This washing was performed until the alkali component in the carbon material became 10,000 ppm or less.

その後、先の材料に、水素化処理を施した。具体的には、この石油系コークス粉末に対し、水素気流中、700℃で4時間の熱処理を行った。   Thereafter, the previous material was subjected to hydrogenation treatment. Specifically, this petroleum coke powder was heat-treated at 700 ° C. for 4 hours in a hydrogen stream.

さらに、この材料を、平均粒径が12μm程度となるように粉砕した。以上のようにして、分極性電極2a,2bに使用する炭素材料21を得た。   Further, this material was pulverized so that the average particle size was about 12 μm. As described above, the carbon material 21 used for the polarizable electrodes 2a and 2b was obtained.

このようにして得られた炭素材料21について各種測定を実施したところ、以下の結果が得られた。   When various measurements were performed on the carbon material 21 thus obtained, the following results were obtained.

SSA=80m2/g
002=0.359nm
a=1.79nm
c=1.12nm
S=0.02重量%
その後、この炭素材料21を用いたこと以外は、実施例1で説明したのと同様の方法により、電気二重層キャパシタ1を完成した。
SSA = 80m 2 / g
d 002 = 0.359nm
L a = 1.79 nm
L c = 1.12 nm
C S = 0.02% by weight
Thereafter, the electric double layer capacitor 1 was completed by the same method as described in Example 1 except that this carbon material 21 was used.

(比較例1)
本例では、以下の方法により電気二重層キャパシタを作成した。
まず、硫黄含量CSが1.05重量%の市販の石油系コークスに炭化処理を施し、その後、これを粉砕して平均粒径を約100μmに調整した。具体的には、石油系コークス粉末を、窒素気流中、750℃で1時間の炭化処理に供した。この炭化処理により得られた生成物について各種測定を実施したところ、以下の結果が得られた。
(Comparative Example 1)
In this example, an electric double layer capacitor was prepared by the following method.
First, a commercial petroleum coke having a sulfur content C S of 1.05% by weight was carbonized, and then pulverized to adjust the average particle size to about 100 μm. Specifically, petroleum coke powder was subjected to carbonization treatment at 750 ° C. for 1 hour in a nitrogen stream. When various measurements were performed on the product obtained by this carbonization treatment, the following results were obtained.

002=0.344nm
a=1.28nm
c=1.63nm
S=1.01重量%
次いで、炭化処理後の材料を賦活処理に供した。具体的には、炭化処理後の材料に、重量比で2倍の水酸化カリウムを添加し、この混合物を、不活性雰囲気中、800℃で6時間の熱処理に供した。
d 002 = 0.344nm
L a = 1.28 nm
L c = 1.63 nm
C S = 1.01 wt%
Next, the carbonized material was subjected to activation treatment. Specifically, twice the weight ratio of potassium hydroxide was added to the carbonized material, and this mixture was subjected to heat treatment at 800 ° C. for 6 hours in an inert atmosphere.

次に、この材料に加圧濾過機等を用いた洗浄を施し、余分なアルカリ成分を除去した。この洗浄は、炭素材料中のアルカリ成分が10000ppm以下になるまで行った。   Next, this material was washed using a pressure filter or the like to remove excess alkali components. This washing was performed until the alkali component in the carbon material became 10,000 ppm or less.

その後、先の材料に、水素化処理を施した。具体的には、この石油系コークス粉末に対し、水素気流中、700℃で4時間の熱処理を行った。   Thereafter, the previous material was subjected to hydrogenation treatment. Specifically, this petroleum coke powder was heat-treated at 700 ° C. for 4 hours in a hydrogen stream.

さらに、この材料を、平均粒径が12μm程度となるように粉砕した。以上のようにして、分極性電極に使用する炭素材料を得た。   Further, this material was pulverized so that the average particle size was about 12 μm. As described above, a carbon material used for the polarizable electrode was obtained.

このようにして得られた炭素材料について各種測定を実施したところ、以下の結果が得られた。   When various measurements were performed on the carbon material thus obtained, the following results were obtained.

SSA=20m2/g
002=0.361nm
a=0.75nm
c=1.23nm
S=0.24重量%
その後、この炭素材料を用いたこと以外は、実施例1で説明したのと同様の方法により、電気二重層キャパシタを完成した。
SSA = 20m 2 / g
d 002 = 0.361 nm
L a = 0.75 nm
L c = 1.23 nm
C S = 0.24% by weight
Thereafter, an electric double layer capacitor was completed by the same method as described in Example 1 except that this carbon material was used.

(比較例2)
本例では、以下の方法により電気二重層キャパシタを作成した。
まず、硫黄含量CSが5.8重量%の市販の石油系コークスに炭化処理を施し、その後、これを粉砕して平均粒径を約100μmに調整した。具体的には、石油系コークス粉末を、窒素気流中、750℃で1時間の炭化処理に供した。この炭化処理により得られた生成物について各種測定を実施したところ、以下の結果が得られた。
(Comparative Example 2)
In this example, an electric double layer capacitor was prepared by the following method.
First, carbonization treatment was performed on a commercially available petroleum coke having a sulfur content C S of 5.8% by weight, and then this was pulverized to adjust the average particle size to about 100 μm. Specifically, petroleum coke powder was subjected to carbonization treatment at 750 ° C. for 1 hour in a nitrogen stream. When various measurements were performed on the product obtained by this carbonization treatment, the following results were obtained.

002=0.342nm
a=2.08nm
c=1.33nm
S=4.1重量%
次いで、炭化処理後の材料を賦活処理に供した。具体的には、炭化処理後の材料に、重量比で2倍の水酸化カリウムを添加し、この混合物を、不活性雰囲気中、800℃で2時間の熱処理に供した。
d 002 = 0.342nm
L a = 2.08 nm
L c = 1.33 nm
C S = 4.1% by weight
Next, the carbonized material was subjected to activation treatment. Specifically, twice the weight ratio of potassium hydroxide was added to the carbonized material, and this mixture was subjected to heat treatment at 800 ° C. for 2 hours in an inert atmosphere.

次に、この材料に加圧濾過機等を用いた洗浄を施し、余分なアルカリ成分を除去した。この洗浄は、炭素材料中のアルカリ成分が10000ppm以下になるまで行った。   Next, this material was washed using a pressure filter or the like to remove excess alkali components. This washing was performed until the alkali component in the carbon material became 10,000 ppm or less.

さらに、この材料を、平均粒径が12μm程度となるように粉砕した。以上のようにして、分極性電極に使用する炭素材料を得た。   Further, this material was pulverized so that the average particle size was about 12 μm. As described above, a carbon material used for the polarizable electrode was obtained.

このようにして得られた炭素材料について各種測定を実施したところ、以下の結果が得られた。   When various measurements were performed on the carbon material thus obtained, the following results were obtained.

SSA=350m2/g
002=0.364nm
a=3.36nm
c=0.91nm
S=0.43重量%
その後、この炭素材料を用いたこと以外は、実施例1で説明したのと同様の方法により、電気二重層キャパシタを完成した。
SSA = 350m 2 / g
d 002 = 0.364 nm
L a = 3.36 nm
L c = 0.91 nm
C S = 0.43 wt%
Thereafter, an electric double layer capacitor was completed by the same method as described in Example 1 except that this carbon material was used.

以上のようにして得られた実施例1及び2並びに比較例1及び2に係る電気二重層キャパシタのそれぞれについて、まず、充電圧を2V、2.5V、3V、3.5V、4Vへと順次上昇させて、各充電圧毎に静電容量を測定した。次いで、充電圧を4V、3.5V、3V、2.5V、2Vへと順次低下させて、各充電圧毎に静電容量を測定した。ここでは、充放電電流は2mA/cm2とした。 For each of the electric double layer capacitors according to Examples 1 and 2 and Comparative Examples 1 and 2 obtained as described above, first, the charging voltage was sequentially increased to 2V, 2.5V, 3V, 3.5V, and 4V. The capacitance was measured for each charging pressure. Next, the charge pressure was decreased sequentially to 4V, 3.5V, 3V, 2.5V, and 2V, and the capacitance was measured for each charge pressure. Here, the charge / discharge current was 2 mA / cm 2 .

図2は、充電圧と静電容量との関係を示すグラフである。図中、横軸は充電圧を示し、縦軸は、電気二重層キャパシタの単位体積当りの静電容量を示している。なお、図2には、実施例1及び比較例1に係る電気二重層キャパシタについて得られたデータのみを示している。   FIG. 2 is a graph showing the relationship between the charging pressure and the capacitance. In the figure, the horizontal axis indicates the charging pressure, and the vertical axis indicates the capacitance per unit volume of the electric double layer capacitor. FIG. 2 shows only data obtained for the electric double layer capacitor according to Example 1 and Comparative Example 1.

図2に示すように、これら電気二重層キャパシタの静電容量は、製造直後では極めて小さい値であったが、充電圧の上昇に伴って増大した。この静電容量は、充電圧を低下させることにより減少したが、初期の状態に戻ることはなかった。   As shown in FIG. 2, the capacitance of these electric double layer capacitors was a very small value immediately after manufacture, but increased with an increase in charging pressure. This capacitance was decreased by lowering the charging pressure, but did not return to the initial state.

次に、先の試験に供した電気二重層キャパシタについて、初期性能の評価を行った。具体的には、充電圧を3.0V、充放電電流を2mA/cm2として、実施例1及び2並びに比較例1及び2に係る電気二重層キャパシタについて、単位体積当りの静電容量及び内部抵抗を測定した。その結果を、電極材料として使用した炭素材料の物理的及び化学的性質とともに、以下の表に示す。

Figure 2005235918
Next, the initial performance of the electric double layer capacitor subjected to the previous test was evaluated. Specifically, with respect to the electric double layer capacitors according to Examples 1 and 2 and Comparative Examples 1 and 2 with a charge pressure of 3.0 V and a charge / discharge current of 2 mA / cm 2 , the capacitance per unit volume and the internal capacity Resistance was measured. The results are shown in the following table together with the physical and chemical properties of the carbon material used as the electrode material.
Figure 2005235918

図3及び図4は、実施例1及び2並びに比較例1及び2に係る電気二重層キャパシタの静電容量及び内部抵抗を示すグラフである。図3において、横軸は電極材料として使用した炭素材料の硫黄含量CSを示し、縦軸は電気二重層キャパシタの単位体積当りの静電容量及び内部抵抗を示している。他方、図4において、横軸は電極材料として使用した炭素材料の結晶子の大きさLaを示し、縦軸は電気二重層キャパシタの単位体積当りの静電容量及び内部抵抗を示している。 3 and 4 are graphs showing the capacitance and internal resistance of the electric double layer capacitors according to Examples 1 and 2 and Comparative Examples 1 and 2. FIG. In FIG. 3, the horizontal axis indicates the sulfur content C S of the carbon material used as the electrode material, and the vertical axis indicates the capacitance per unit volume and the internal resistance of the electric double layer capacitor. On the other hand, in FIG. 4, the horizontal axis represents the magnitude of L a crystallite of the carbon material used as an electrode material, and the vertical axis represents the capacitance and the internal resistance per unit volume of the electric double layer capacitor.

図3及び図4に示すように、電気二重層キャパシタの静電容量及び内部抵抗と、電極材料として使用した炭素材料の硫黄含量CS及び結晶子の大きさLaとには、相関が見られた。すなわち、図3に示すように、電極材料として使用した炭素材料の硫黄含量CSが0.2重量%以下,特には0.1重量%以下,の場合、硫黄含量CSが0.2重量%を超える場合と比較して、静電容量はより大きく、内部抵抗はより小さかった。また、図4に示すように、電極材料として使用した炭素材料の結晶子の大きさLaが1nm乃至3nmの範囲内,特には1.5nm乃至2.5nmの範囲内,の場合、結晶子の大きさLaが1nm未満である場合や3nmを超える場合と比較して、静電容量はより大きく、内部抵抗はより小さかった。 As shown in FIGS. 3 and 4, an electric double layer capacitance and the internal resistance of the capacitor, the the size L a sulfur content C S and the crystallite of the carbon material used as an electrode material, see a correlation It was. That is, as shown in FIG. 3, the sulfur content C S of the carbon material used as an electrode material of 0.2 wt% or less, particularly 0.1 wt% or less, when a sulfur content C S is 0.2 Compared to the case of exceeding%, the capacitance was larger and the internal resistance was smaller. Further, as shown in FIG. 4, the range size L a crystallite of 1nm to 3nm carbon material used as an electrode material, particularly 1.5nm to within the range of 2.5 nm, when the crystallite size L a is compared with the case where more than the case and 3nm is less than 1nm, the capacitance is larger, the internal resistance was smaller.

本発明の一態様に係る電気二重層キャパシタを概略的に示す断面図。1 is a cross-sectional view schematically showing an electric double layer capacitor according to one embodiment of the present invention. 充電圧と静電容量との関係を示すグラフ。The graph which shows the relationship between a charging pressure and an electrostatic capacitance. 実施例1及び2並びに比較例1及び2に係る電気二重層キャパシタの静電容量及び内部抵抗を示すグラフ。The graph which shows the electrostatic capacitance and internal resistance of the electric double layer capacitor which concern on Examples 1 and 2 and Comparative Examples 1 and 2. FIG. 実施例1及び2並びに比較例1及び2に係る電気二重層キャパシタの静電容量及び内部抵抗を示すグラフ。The graph which shows the electrostatic capacitance and internal resistance of the electric double layer capacitor which concern on Examples 1 and 2 and Comparative Examples 1 and 2. FIG.

符号の説明Explanation of symbols

1…電気二重層キャパシタ、2a…分極性電極、2b…分極性電極、3…セパレータ、4a…集電体、4b…集電体、5…非水電解質溶液、21…炭素材料。   DESCRIPTION OF SYMBOLS 1 ... Electric double layer capacitor, 2a ... Polarizable electrode, 2b ... Polarizable electrode, 3 ... Separator, 4a ... Current collector, 4b ... Current collector, 5 ... Non-aqueous electrolyte solution, 21 ... Carbon material.

Claims (7)

電気二重層キャパシタの電極材料として使用する炭素材料であって、硫黄含量が0.2重量%以下であることを特徴とする炭素材料。   A carbon material used as an electrode material for an electric double layer capacitor, wherein the sulfur content is 0.2% by weight or less. X線回折法によって得られる110面についての回折線の半価幅β(ラジアン)及び回折角θと、それに使用したX線の波長λ(nm)と、定数K=1.84とを用いて、等式:La=Kλ/βcosθから算出される結晶子の大きさLaが1nm乃至3nmの範囲内にあることを特徴とする請求項1に記載の炭素材料。 Using the half-value width β (radian) and diffraction angle θ of the diffraction line for the 110 plane obtained by the X-ray diffraction method, the wavelength λ (nm) of the X-ray used therefor, and a constant K = 1.84 The carbon material according to claim 1, wherein the crystallite size L a calculated from the equation: L a = Kλ / βcos θ is in the range of 1 nm to 3 nm. 電気二重層キャパシタの電極材料として使用する炭素材料であって、110面についてX線回折法によって測定した回折線の半価幅β(ラジアン)と、その回折角θと、それに使用したX線の波長λと、定数K=1.84とを用いて、等式:La=Kλ/βcosθから算出される結晶子の大きさLaが1nm乃至3nmの範囲内にあることを特徴とする炭素材料。 A carbon material used as an electrode material of an electric double layer capacitor, which is a half-value width β (radian) of a diffraction line measured by an X-ray diffraction method on the 110 plane, its diffraction angle θ, and the X-ray used Carbon having a crystallite size L a calculated from the equation: L a = Kλ / βcos θ using a wavelength λ and a constant K = 1.84. material. 比表面積が500m2/g以下であることを特徴とする請求項1乃至請求項3の何れか1項に記載の炭素材料。 The carbon material according to any one of claims 1 to 3, wherein a specific surface area is 500 m 2 / g or less. 002面の格子面間隔が0.355nm乃至0.385nmの範囲内にあることを特徴とする請求項1乃至請求項4の何れか1項に記載の炭素材料。   The carbon material according to any one of claims 1 to 4, wherein a lattice plane spacing of the 002 plane is in a range of 0.355 nm to 0.385 nm. 前記炭素材料の原料は、石油或いは石炭系コークス類であり且つ硫黄含量が0.5重量%以下であることを特徴とする請求項1乃至請求項5の何れか1項に記載の炭素材料。   The carbon material according to any one of claims 1 to 5, wherein a raw material of the carbon material is petroleum or coal-based coke and has a sulfur content of 0.5 wt% or less. 互いに対向した一対の分極性電極と、それらの間に介在した非水電解質溶液とを具備し、前記一対の分極性電極の少なくとも一方は請求項1乃至請求項6の何れか1項に記載の炭素材料を含有したことを特徴とする電気二重層キャパシタ。   A pair of polarizable electrodes facing each other and a nonaqueous electrolyte solution interposed therebetween are provided, at least one of the pair of polarizable electrodes according to any one of claims 1 to 6. An electric double layer capacitor comprising a carbon material.
JP2004041304A 2004-02-18 2004-02-18 Carbon material for electric double layer capacitor and electric double layer capacitor Expired - Fee Related JP5025890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041304A JP5025890B2 (en) 2004-02-18 2004-02-18 Carbon material for electric double layer capacitor and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041304A JP5025890B2 (en) 2004-02-18 2004-02-18 Carbon material for electric double layer capacitor and electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2005235918A true JP2005235918A (en) 2005-09-02
JP5025890B2 JP5025890B2 (en) 2012-09-12

Family

ID=35018572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041304A Expired - Fee Related JP5025890B2 (en) 2004-02-18 2004-02-18 Carbon material for electric double layer capacitor and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP5025890B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037523A1 (en) * 2005-09-30 2007-04-05 Cataler Corporation Carbon material for electric double layer capacitor and electric double layer capacitor
WO2009058226A3 (en) * 2007-10-31 2009-12-17 Corning Incorporated High energy density ultracapacitor
KR101166696B1 (en) 2011-03-30 2012-07-19 한국세라믹기술원 Supercapacitor and manufacturing method of the same
CN103021674A (en) * 2012-12-08 2013-04-03 天津大学 Carbon-based ionic intercalation energy-storage electrode material and preparation process thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297414A (en) * 1988-10-01 1990-04-10 Kansai Coke & Chem Co Ltd Production of active carbon having superior quality
JPH10144320A (en) * 1996-11-11 1998-05-29 Toyota Central Res & Dev Lab Inc Positive pole material for lithium secondary battery
JP2001180923A (en) * 1999-12-28 2001-07-03 Petoca Ltd Activated carbon, its producing method, electrode made of the same, and electrical double layer capacitor using the electrode
JP2001262153A (en) * 2000-03-22 2001-09-26 Nippon Steel Corp Method for producing low sulfur-concentration coke
JP2003051430A (en) * 2001-05-31 2003-02-21 Koa Oil Co Ltd Ingredient composition of carbon material for electric double-layer capacitor and manufacturing method therefor, and electric double-layer capacitor and manufacturing method therefor
JP2003282369A (en) * 2002-03-20 2003-10-03 Osaka Gas Co Ltd Carbon material for electric double-layer capacitor and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297414A (en) * 1988-10-01 1990-04-10 Kansai Coke & Chem Co Ltd Production of active carbon having superior quality
JPH10144320A (en) * 1996-11-11 1998-05-29 Toyota Central Res & Dev Lab Inc Positive pole material for lithium secondary battery
JP2001180923A (en) * 1999-12-28 2001-07-03 Petoca Ltd Activated carbon, its producing method, electrode made of the same, and electrical double layer capacitor using the electrode
JP2001262153A (en) * 2000-03-22 2001-09-26 Nippon Steel Corp Method for producing low sulfur-concentration coke
JP2003051430A (en) * 2001-05-31 2003-02-21 Koa Oil Co Ltd Ingredient composition of carbon material for electric double-layer capacitor and manufacturing method therefor, and electric double-layer capacitor and manufacturing method therefor
JP2003282369A (en) * 2002-03-20 2003-10-03 Osaka Gas Co Ltd Carbon material for electric double-layer capacitor and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037523A1 (en) * 2005-09-30 2007-04-05 Cataler Corporation Carbon material for electric double layer capacitor and electric double layer capacitor
JPWO2007037523A1 (en) * 2005-09-30 2009-04-16 株式会社キャタラー Carbon material for electric double layer capacitor and electric double layer capacitor
KR100978604B1 (en) * 2005-09-30 2010-08-27 가부시키가이샤 캬타라 Carbonaceous material for electric double layer capacitor and electric double layer capacitor
JP4733707B2 (en) * 2005-09-30 2011-07-27 株式会社キャタラー Carbon material for electric double layer capacitor, electric double layer capacitor, and method for producing carbon material for electric double layer capacitor
CN102336402A (en) * 2005-09-30 2012-02-01 株式会社科特拉 Carbon material for electric double layer capacitor and electric double layer capacitor
CN102336402B (en) * 2005-09-30 2014-07-09 株式会社科特拉 Carbon material for electric double layer capacitor and electric double layer capacitor
EP1930921A4 (en) * 2005-09-30 2015-07-01 Cataler Corp Carbon material for electric double layer capacitor and electric double layer capacitor
WO2009058226A3 (en) * 2007-10-31 2009-12-17 Corning Incorporated High energy density ultracapacitor
US7976587B2 (en) 2007-10-31 2011-07-12 Corning Incorporated High energy density ultracapacitor
KR101166696B1 (en) 2011-03-30 2012-07-19 한국세라믹기술원 Supercapacitor and manufacturing method of the same
CN103021674A (en) * 2012-12-08 2013-04-03 天津大学 Carbon-based ionic intercalation energy-storage electrode material and preparation process thereof

Also Published As

Publication number Publication date
JP5025890B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
EP2058828B1 (en) Electric double layer capacitor
EP2998973B1 (en) Capacitor and method for charging and discharging the same
Liu et al. Improved capacitive energy storage via surface functionalization of activated carbon as cathodes for lithium ion capacitors
EP2172422B1 (en) Process for producing activated carbon for electric double layer capacitor electrode
EP3392896B1 (en) Nonaqueous lithium power storage element
KR101346975B1 (en) Carbon material and method for producing same
US11823837B2 (en) Carbonaceous material for electric double layer capacitors and method for producing same
CN111133545A (en) Hydrated carbon material powder and use thereof for producing electrodes for electrical storage devices
US10825616B2 (en) Nonaqueous lithium storage element
KR101901281B1 (en) Carbon material for capacitor and capacitor
CN109074968B (en) Carbonaceous material, electrode material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor
CN105900199A (en) Carbon-based electrodes containing molecular sieve
CN110300728B (en) Carbonaceous material and electrode material for electric double layer capacitor containing the carbonaceous material
JP2006004978A (en) Electrical double-layer capacitor
JP6705899B2 (en) Non-aqueous alkali metal ion capacitor
JP5025890B2 (en) Carbon material for electric double layer capacitor and electric double layer capacitor
JP4762424B2 (en) Activated carbon, manufacturing method thereof, and electric double layer capacitor using the activated carbon
WO2022196746A1 (en) Electrochemical capacitor
KR20170113611A (en) Cathode for lithium ion capacitor
WO2021241334A1 (en) Electrochemical device
WO2021241420A1 (en) Electrode for electrochemical devices, and electrochemical device
JP2017088443A (en) Porous carbon material, manufacturing method, and electrode and capacitor using the same
JP6698493B2 (en) Non-aqueous lithium storage element
WO2022181605A1 (en) Electrochemical capacitor
Widmaier Improvement of hybrid supercapacitors by optimization of electrode design and material properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees