JP2005235873A - Nonacqueous electrolyte based electric double layer capacitor, electrode active substance for use therein, carbon material and precursor of carbon material - Google Patents

Nonacqueous electrolyte based electric double layer capacitor, electrode active substance for use therein, carbon material and precursor of carbon material Download PDF

Info

Publication number
JP2005235873A
JP2005235873A JP2004040732A JP2004040732A JP2005235873A JP 2005235873 A JP2005235873 A JP 2005235873A JP 2004040732 A JP2004040732 A JP 2004040732A JP 2004040732 A JP2004040732 A JP 2004040732A JP 2005235873 A JP2005235873 A JP 2005235873A
Authority
JP
Japan
Prior art keywords
carbon material
oil
precursor
electrode active
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004040732A
Other languages
Japanese (ja)
Inventor
Takashi Maeda
崇志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2004040732A priority Critical patent/JP2005235873A/en
Publication of JP2005235873A publication Critical patent/JP2005235873A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Coke Industry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high capacity nonaqueous electrolyte based electric double layer capacitor using an electrode active substance produced by activating a carbon material obtained from a specific petroleum based heavy oil, and to provide the electrode active substance, the carbon material and a precursor of the carbon material. <P>SOLUTION: A specific petroleum based heavy oil is held for three hours or longer at a temperature of 400-600°C under a pressure of 2.0 MPa or less to obtain a precursor of carbon material, and the precursor is heat treated at 600-900°C to obtain the carbon material. Furthermore, a nonaqueous electrolyte based electric double layer capacitor using an electrode active substance produced by activating the carbon material, the electrode active substance for the nonaqueous electrolyte based electric double layer capacitor, the carbon material becoming its material and its precursor are provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、非水電解液系電気二重層キャパシタ、それに用いる電極活物質、炭素材料およびその前駆体に関するものである。   The present invention relates to a non-aqueous electrolyte based electric double layer capacitor, an electrode active material used therefor, a carbon material, and a precursor thereof.

近年、携帯電話やノート型パソコンやPDA(携帯情報端末)などの新しい電子機器が次々に出現し、これら商品の小型軽量化、携帯化などの開発競争から、そこに内蔵されるICメモリーやマイコンなども小型高性能化が進んでいる。   In recent years, new electronic devices such as mobile phones, notebook personal computers, and PDAs (personal digital assistants) have emerged one after another, and IC products and microcomputers built into these products have been developed due to the development competition for miniaturization and weight reduction of these products. Etc. are also becoming smaller and higher performance.

ところが、このようなICメモリーなどの素子やマイコンは、電力瞬断や電圧低下に対して電子機器のメモリー消却や機能停止など誤動作する恐れがある。実際、コンピュータ機器は、適切な対策を講じなければ10〜20%のわずかな電圧低下であっても、0.003〜0.02秒続くだけで機能停止やメモリー内容の喪失などが起こり、電子機器の機能が麻痺してしまう。   However, such an element such as an IC memory or a microcomputer may malfunction due to a memory interruption or a function stop of an electronic device in response to an instantaneous power interruption or a voltage drop. In fact, if computer equipment takes no appropriate measures, even if it is a slight voltage drop of 10 to 20%, it will stop functioning or memory contents will be lost in just 0.003 to 0.02 seconds. The function of the device is paralyzed.

この対策として、Ni−Cd電池やアルミ電解コンデンサがバックアップ電源に用いられてきた。しかし、これらの電源は使用温度範囲、充放電のサイクル回数、容量、急速充放電性およびコストなどの点で充分なものでなかった。   As countermeasures, Ni-Cd batteries and aluminum electrolytic capacitors have been used for backup power supplies. However, these power sources have not been sufficient in terms of operating temperature range, number of charge / discharge cycles, capacity, rapid charge / discharge performance, cost, and the like.

この市場ニーズに応え開発されたものが電気二重層キャパシタである。最近、より高比表面積を有する活性炭を用いた電気二重層キャパシタが注目されるようになってきている。   Electric double layer capacitors have been developed to meet this market need. Recently, electric double layer capacitors using activated carbon having a higher specific surface area have attracted attention.

さらに、従来の小電力分野から電気自動車用バッテリーの補助電源や無停電電源等の大容量分野への応用が考えられ、一部、減速時の回生エネルギーをキャパシタに充電し、加速時に逆に放電してエンジンの出力の補助をさせるという目的でキャパシタを搭載した乗用車が参考出品の段階に来ている。   In addition, it can be applied to the high-capacity field such as the auxiliary power supply and uninterruptible power supply for electric vehicle batteries from the conventional low-power field, and in part, the regenerative energy during deceleration is charged to the capacitor and reversely discharged during acceleration. Passenger cars equipped with capacitors for the purpose of assisting engine output are now in the stage of reference exhibition.

電気二重層キャパシタは充放電に通常の二次電池のような化学反応を伴わない。このために、二次電池と比較し内部抵抗が格段に低く大電流放電が可能である。さらに、充放電回数の制限が無いという特徴も有している。しかし、電気二重層キャパシタの最大の問題点は二次電池に比べてエネルギー密度が低いという点であって、この点を改良すべく現在各種の検討がなされている。   An electric double layer capacitor does not involve a chemical reaction like a normal secondary battery in charge and discharge. For this reason, compared with a secondary battery, internal resistance is remarkably low and large current discharge is possible. Furthermore, there is also a feature that there is no limit on the number of charge / discharge cycles. However, the biggest problem of the electric double layer capacitor is that the energy density is lower than that of the secondary battery, and various studies have been made to improve this point.

電気二重層キャパシタには、プロピレンカーボネート等の有機系極性溶媒に四級アンモニウム塩あるいは過塩素酸リチウム等の電解質を溶解させた非水電解液を使用するものと、硫酸水溶液あるいは水酸化カリウム水溶液のような水溶液系電解液を使用するものとの大きく分けて2種類が存在する。   For electric double layer capacitors, non-aqueous electrolytes in which an electrolyte such as quaternary ammonium salt or lithium perchlorate is dissolved in an organic polar solvent such as propylene carbonate, an aqueous sulfuric acid solution or an aqueous potassium hydroxide solution are used. There are roughly two types, one using such an aqueous electrolyte.

水溶液系電解液を使用した場合には電気二重層キャパシタの容量は非水電解液を使用した場合の約1.3倍から2倍に上げることができ、さらに内部抵抗を1/5から1/10に下げることができる。   When an aqueous electrolyte is used, the capacity of the electric double layer capacitor can be increased from about 1.3 to 2 times that when a non-aqueous electrolyte is used, and the internal resistance is further reduced from 1/5 to 1 /. Can be lowered to 10.

水溶液系電解液を使用した場合に内部抵抗を下げることができる理由は、水溶液系電解液の電気抵抗が低いことに起因しているが、水溶液系の電解液を使用する場合には、電圧を1V余りまでにしか上げることができないために体積当たりの蓄電エネルギー量は少ないという短所も併せ持っている。   The reason why the internal resistance can be lowered when using an aqueous electrolyte is due to the low electrical resistance of the aqueous electrolyte, but when using an aqueous electrolyte, the voltage must be reduced. Since it can only be raised to more than 1V, it also has the disadvantage that the amount of energy stored per volume is small.

一方、非水電解液を使用した場合には、電気二重層キャパシタの電圧を最高3V以上まで上げることができるために電気二重層キャパシタの体積当たりの蓄電エネルギー量(蓄電エネルギー量=CV/2で与えられる。C:キャパシタ容量、V:電圧)を上げることができるため、容積当たりのエネルギーの高密度化という観点からは、非水電解液系の方が有利である。 On the other hand, when using the non-aqueous electrolyte energy stored per volume of the electric double layer capacitor in order to be able to raise the voltage of the electric double layer capacitor to more than the maximum 3V (power storage energy amount = CV 2/2 (C: capacitor capacity, V: voltage) can be increased, and the nonaqueous electrolyte system is more advantageous from the viewpoint of increasing the energy density per volume.

これらの電気二重層キャパシタの電極活物質としては、比表面積の大きな活性炭が最適と考えられ、各方面で電極活物質の最適化の研究が盛んである。電気二重層キャパシタの電極活物質は、通常、ヤシ殻、石炭やフェノール樹脂等難黒鉛系炭素材(いわゆるハードカーボン)を原料として、通常、水蒸気や二酸化炭素等によるガス賦活により得られる高比表面積の活性炭を用い製造されている。   As the electrode active material of these electric double layer capacitors, activated carbon having a large specific surface area is considered to be optimal, and research on optimization of the electrode active material is actively conducted in various directions. The electrode active material of an electric double layer capacitor is usually a high specific surface area obtained by gas activation with water vapor, carbon dioxide, etc., starting from coconut shell, non-graphite carbon material (so-called hard carbon) such as coal and phenol resin It is manufactured using activated carbon.

すなわち、炭素材と水蒸気や二酸化炭素の反応による脱炭素現象によって形成される細孔を利用している訳である。しかし、静電容量の大きな電気二重層キャパシタ用電極材得るためには、BET方式で2000m2/g以上の活性炭が必要とされ、このため、賦活収率が20wt%以下にも低下するような賦活が必要となり、得られる活性炭の製造コストをアップさせている。それだけではなく、活性炭そのものの嵩密度も低く電極材としての嵩密度を高くできない等の問題点も有している。 That is, the pores formed by the decarbonization phenomenon caused by the reaction between the carbon material and water vapor or carbon dioxide are used. However, in order to obtain an electrode material for an electric double layer capacitor having a large capacitance, activated carbon having a BET method of 2000 m 2 / g or more is required, and thus the activation yield is reduced to 20 wt% or less. Activation is required, increasing the production cost of the activated carbon obtained. Not only that, the bulk density of the activated carbon itself is low, and the bulk density as an electrode material cannot be increased.

また、本発明者の測定によると、これを原料として用いたBET方式で2000m2
/gの活性炭を用いた電極活物質の非水電解液での静電容量は30F/g程度であり、比表面積から考えるとまだまだ改良の余地があるものと判断される。
Further, according to the measurement of the present inventor, 2000 m 2 by the BET method using this as a raw material.
The electrostatic capacity of the electrode active material using activated carbon of / g in the non-aqueous electrolyte is about 30 F / g, and it is judged that there is still room for improvement in view of the specific surface area.

これは、後述するように、BET式で示される比表面積のすべてが電気二重層の形成に利用されているわけではないことを示しているものと考えられる。即ち、電気二重層の形成には、用いる電解液に最適な細孔径があるものと推察される。   As will be described later, this is considered to indicate that not all of the specific surface area represented by the BET formula is used for forming the electric double layer. That is, it is presumed that the formation of the electric double layer has an optimum pore size for the electrolyte used.

このため、活性炭の製造において、低コストであり、かつ賦活収率が高く、体積あたりの容量が高い炭素材料の開発が望まれており、それを賦活処理して得られた活性炭を電気二重層キャパシタ用電極材として用いることも、最近研究され成果が見られている.   For this reason, in the production of activated carbon, it is desired to develop a carbon material that is low in cost, has a high activation yield, and has a high capacity per volume, and the activated carbon obtained by activating it is used as an electric double layer. The use as an electrode material for capacitors has recently been studied and achieved results.

この発明の課題は、安価な石油系重質油から得た炭素材料を賦活し、非水電解液系電気二重層キャパシタの電極活物質として用いながら、容量が大きい前記非水電解液系電気二重層キャパシタを安定して提供することである。また、本発明は、前記非水電解液系電気二重層キャパシタの電極に用いる電極活物質、その原料となる炭素材料および該炭素材料の前駆体を提供することである。   An object of the present invention is to activate a carbon material obtained from inexpensive petroleum heavy oil and use it as an electrode active material of a non-aqueous electrolyte electric double layer capacitor, while having a large capacity. It is to provide a multilayer capacitor stably. Moreover, this invention is providing the electrode active material used for the electrode of the said non-aqueous electrolyte type electric double layer capacitor, the carbon material used as the raw material, and the precursor of this carbon material.

本発明者らは、石油系重質油の種類、熱処理条件などが、得られた炭素材料を賦活して得た活性炭を電気二重層キャパシタ電極活物質として用いたときに、電気二重層キャパシタの特性に及ぼす影響を詳細に検討した。その結果、電気二重層キャパシタの特性は石油系重質油の種類と前記炭素材料が経た熱処理条件に依存していることを見出した。例えば、常圧蒸留残渣油および/または流動接触分解残渣油を原料とし、特定の条件下で熱処理した場合に、大きな容量が得られることを見出した。本発明は係る知見に基づいてなされたものである。   When the activated carbon obtained by activating the obtained carbon material is used as the electric double layer capacitor electrode active material, the type of petroleum heavy oil, the heat treatment conditions, etc. The effects on characteristics were discussed in detail. As a result, it has been found that the characteristics of the electric double layer capacitor depend on the kind of heavy petroleum oil and the heat treatment conditions passed through the carbon material. For example, it has been found that when an atmospheric distillation residue oil and / or fluid catalytic cracking residue oil is used as a raw material and a heat treatment is performed under specific conditions, a large capacity can be obtained. The present invention has been made based on such knowledge.

すなわち、本発明は、常圧蒸留残渣油および/または流動接触分解残渣油を主成分として含む原料油を、圧力2.0MPa以下、温度400〜600℃で3時間以上保持して得た、非水電解液系電気二重層キャパシタ用電極活物質に用いる炭素材料の前駆体である。
さらに、本発明は、前記前駆体を600〜900℃、好ましくは650〜850℃で熱処理して得た、非水電解液系電気二重層キャパシタに用いる電極活物質の原料となる炭素材料である。
さらに、本発明は、前記炭素材料を賦活して得た、非水電解液系電気二重層キャパシタの電極に用いる電極活物質である。ここで行われる賦活は一般的なガス賦活およびアルカリ等による薬剤賦活であり、望ましくはアルカリ金属の水酸化物によるアルカリ賦活が好ましい。
That is, the present invention was obtained by maintaining a raw oil containing atmospheric distillation residue oil and / or fluid catalytic cracking residue oil as a main component at a pressure of 2.0 MPa or less and a temperature of 400 to 600 ° C. for 3 hours or more. It is a precursor of the carbon material used for the electrode active material for water electrolyte type electric double layer capacitors.
Furthermore, the present invention is a carbon material used as a raw material for an electrode active material used for a non-aqueous electrolyte electric double layer capacitor, obtained by heat-treating the precursor at 600 to 900 ° C., preferably 650 to 850 ° C. .
Furthermore, this invention is an electrode active material used for the electrode of the non-aqueous electrolyte type electric double layer capacitor obtained by activating the said carbon material. The activation performed here is general gas activation and chemical activation by alkali or the like, and preferably alkali activation by an alkali metal hydroxide.

また、本発明は、前記の電極活物質を用いた非水電解液系電気二重層キャパシタである。   Moreover, this invention is a non-aqueous electrolyte type electric double layer capacitor using the said electrode active material.

本発明は、特定の石油系重質油から得られた炭素材料を電気二重層キャパシタ電極活物質の原料として用いながら、高容量の非水電解液系電気二重層キャパシタを提供することができ、および該非水電解液系電気二重層キャパシタに用いるための前記電極活物質、炭素材料およびその前駆体を提供することができる。   The present invention can provide a high-capacity non-aqueous electrolyte based electric double layer capacitor while using a carbon material obtained from a specific heavy petroleum oil as a raw material for the electric double layer capacitor electrode active material, And the electrode active material, carbon material and precursor thereof for use in the non-aqueous electrolyte-based electric double layer capacitor.

本発明において、常圧蒸留残渣油および/または流動接触分解残渣油を原料として用いる。さらに、これらの水素化脱硫油を用いることが好ましい。常圧蒸留残渣油は、原油を常圧蒸留して得られる残渣油である。常圧蒸留残渣油の水素化脱硫油は、常圧蒸留残渣油を直接、水素化脱硫(直脱)して得られる残渣留分である。流動接触分解残渣油は、通常、重質軽油、減圧軽油、常圧蒸留残渣油を、流動する粉状ゼオライト触媒と約430〜550℃で接触させて分解し、ガソリン留分や軽油留分を生成する流動接触分解装置から副生するスラリーオイル或いはデカンテッドオイルを指す。流動接触分解残渣油の水素化脱硫油としては、前記スラリーオイル或いはデカンテッドオイルを水素化脱硫装置で処理して得られた脱硫油が挙げられる。このほか、水素化脱硫を経た原料油、例えば、間接脱硫留出油、直脱留出油などを流動接触分解装置で処理して得られたスラリーオイル或いはデカンテッドオイルなども流動接触分解残渣油の水素化脱硫油に含まれる。   In the present invention, atmospheric distillation residue oil and / or fluid catalytic cracking residue oil is used as a raw material. Furthermore, it is preferable to use these hydrodesulfurized oils. The atmospheric distillation residue oil is a residue oil obtained by atmospheric distillation of crude oil. The hydrodesulfurized oil of atmospheric distillation residue oil is a residue fraction obtained by directly hydrodesulfurizing (direct dehydration) of atmospheric distillation residue oil. Fluid catalytic cracking residue oil is usually decomposed by bringing heavy gas oil, vacuum gas oil, or atmospheric distillation residue oil into contact with a flowing powdered zeolite catalyst at about 430 to 550 ° C. to decompose gasoline fraction and light oil fraction. It refers to slurry oil or decanted oil by-produced from the generated fluid catalytic cracker. Examples of the hydrodesulfurized oil of the fluid catalytic cracking residue oil include desulfurized oil obtained by treating the slurry oil or decanted oil with a hydrodesulfurization apparatus. In addition, slurry oil or decanted oil obtained by processing a hydrodesulfurized raw material oil, for example, indirect desulfurized distillate oil, direct destilled distillate oil, etc. with a fluid catalytic cracking apparatus is also fluid catalytic cracking residual oil. Of hydrodesulfurized oil.

さらに、常圧蒸留残渣油および/またはその水素化脱硫油と流動接触分解残渣油および/またはその水素化脱硫油との混合油を用いることもできる。この場合、常圧蒸留残渣油および/またはその水素化脱硫油の混合比率が70vol%以下、好ましくは60vol%以下であることが望ましく、さらに好ましくは、常圧蒸留残渣油および/またはその水素化脱硫油の混合比率が40vol%以下である。このような原料を用いて炭素材料の前駆体を得、該前駆体をさらに熱処理することにより、六員環網状平面の層状構造の配向性が高い炭素材料を得ることができる。
以上の比率で混合した原料油の性状としては、芳香族炭化水素成分40〜95wt%、レジン分0.2〜25wt%、残炭0.1〜10wt%であることが望ましい。さらに好ましくは、芳香族炭化水素成分45〜95wt%、レジン分0.5〜20wt%、残炭0.2〜8wtであることが望ましい。特には、芳香族炭化水素成分50〜90wt%、レジン分1.0〜15wt%、残炭0.5〜5wtであることが望ましい。
なお、コーキングプロセスの原料として、減圧残渣油も石油精製の分野で一般的であるが、本発明において、減圧残渣油あるいはその水素化脱硫油では、所望の電気二重層キャパシタ用の炭素材料あるいは該炭素材料の前駆体を得ることができない。
Furthermore, a mixed oil of atmospheric distillation residue oil and / or its hydrodesulfurized oil and fluid catalytic cracking residue oil and / or its hydrodesulfurized oil can also be used. In this case, it is desirable that the mixing ratio of the atmospheric distillation residue oil and / or its hydrodesulfurized oil is 70 vol% or less, preferably 60 vol% or less, more preferably the atmospheric distillation residue oil and / or its hydrogenation. The mixing ratio of desulfurized oil is 40 vol% or less. By using such a raw material to obtain a precursor of a carbon material and further heat-treating the precursor, a carbon material having a high orientation of a layered structure of a six-membered ring network plane can be obtained.
As the properties of the raw material oil mixed at the above ratio, it is desirable that the aromatic hydrocarbon component is 40 to 95 wt%, the resin content is 0.2 to 25 wt%, and the remaining coal is 0.1 to 10 wt%. More preferably, the aromatic hydrocarbon component is 45 to 95 wt%, the resin content is 0.5 to 20 wt%, and the residual carbon is 0.2 to 8 wt%. In particular, it is desirable that the aromatic hydrocarbon component is 50 to 90 wt%, the resin content is 1.0 to 15 wt%, and the remaining coal is 0.5 to 5 wt%.
Note that, as a raw material for the caulking process, a vacuum residue oil is also commonly used in the field of petroleum refining. However, in the present invention, the vacuum residue oil or its hydrodesulfurized oil is a desired carbon material for an electric double layer capacitor or the The precursor of the carbon material cannot be obtained.

炭素材料の前駆体を得るために原料油は、圧力2.0MPa以下、温度400〜600℃で3時間以上保持する。この間に原料油は熱分解されて、ガスや分解ナフサおよび分解軽油などの軽質油とともに電気二重層キャパシタ用炭素材料の前駆体であるコークスを生成する。前記の圧力、温度および保持時間の範囲を外れると、得られた前駆体をさらに熱処理を行っても六員環網状平面の層状構造の配向性が高い炭素材料を得ることができない。好ましくは、圧力0.4〜1.0MPa、温度420〜550℃で20時間以上の条件下で熱処理して前駆体であるコークスを生成する。   In order to obtain the precursor of the carbon material, the raw material oil is held at a pressure of 2.0 MPa or less and a temperature of 400 to 600 ° C. for 3 hours or more. During this time, the raw oil is pyrolyzed to produce coke, which is a precursor of the carbon material for electric double layer capacitors, together with light oil such as gas, cracked naphtha and cracked light oil. If the pressure, temperature and holding time are out of the range, a carbon material having a high orientation of the layered structure of the six-membered ring network plane cannot be obtained even if the obtained precursor is further heat-treated. Preferably, the coke which is a precursor is produced | generated by heat-processing on the conditions of pressure 0.4-1.0MPa, temperature 420-550 degreeC for 20 hours or more.

炭素材料の前駆体を製造する為には、装置として、実験室レベルではいわゆるチューブボム、商用レベルで安定して大量にコークスを製造するにはディレードコーカー、両者の中間スケールとしてはディレードコーカーのベンチリアクターなど、様々な装置を用いることができる。
チューブボムは、実験室レベルでニードルコークスを製造するために用いられる一般的な装置であり、例えばMochida et al., Chemistry and Physics of Carbon, 24, 111 (1994) に記載されている重質油の熱分解装置などが挙げられ、これを用いて、重質油から分解ガス、分解油と比較的良質なコークス(ここでいう炭素材料の前駆体)を製造することができる。鉄製の缶に原料油を充填し、頭頂にガス排出ラインをつなげ、缶を熱したサンドバスに挿入して保持することによりコークスを製造する実験装置である。このチューブボムでは、ガス排出ラインの圧力計と制御弁により反応圧力を任意に設定でき、かつ反応圧力を一定に保つことができる。また、反応温度はサンドバスの設定温度、反応時間はサンドバスに挿入してから引き出すまでの時間であり、両者とも任意に設定できる。
反応時間(保持時間)が異なると、得られたコークスの特性も微妙に異なる。そこで本発明における炭素材料前駆体は3時間以上の熱履歴を受けたものを炭素材料前駆体として用いる。
In order to produce a precursor of carbon material, as a device, a so-called tube bomb at the laboratory level, a delayed coker to produce a large amount of coke stably at a commercial level, and a bench of a delayed coker as an intermediate scale between the two. Various devices such as a reactor can be used.
Tube bombs are a common device used to produce needle coke at the laboratory level, such as heavy oils described in Mochida et al., Chemistry and Physics of Carbon, 24, 111 (1994). These can be used to produce cracked gas, cracked oil and relatively high quality coke (precursor of carbon material here) from heavy oil. This is an experimental device for producing coke by filling a steel can with raw material oil, connecting a gas discharge line to the top of the can, and inserting and holding the can in a heated sand bath. In this tube bomb, the reaction pressure can be arbitrarily set by the pressure gauge and the control valve of the gas discharge line, and the reaction pressure can be kept constant. Moreover, the reaction temperature is the set temperature of the sand bath, and the reaction time is the time from insertion into the sand bath until it is pulled out, both of which can be set arbitrarily.
When the reaction time (retention time) is different, the properties of the obtained coke are also slightly different. Therefore, the carbon material precursor used in the present invention is subjected to a heat history of 3 hours or more as the carbon material precursor.

ディレードコーカーは、重質油の工業的な熱分解装置であり、重質油から分解ガス、分解油と比較的良質なコークス(ここでいう炭素材料の前駆体)を製造する。原料油は連続的に加熱炉に送られ、短時間で急速に加熱されてコークドラムの底部に供給される。断熱されたコークドラム内では適当な温度と圧力のもと、炭素化が進み液相から生成したコークスが蓄積されてドラムを満たしてゆく。分解生成物(ガスと分解油)はドラム頂部から抜き出して精留塔に送られ、分留される。精留塔の塔底から抜き出された重質油は原料油とともに再び加熱炉に送られ、上記の熱処理が繰り返される。コークドラムは通常2基あり、1基がコークスで満たされると、原料油は空ドラムに切り替えて供給され、前記のように処理される。一方、コークスで満たされ、切り離されたドラムは冷却後、蓄積したコークスは高圧水などで切り出される。   The delayed coker is an industrial thermal cracking apparatus for heavy oil, and produces cracked gas, cracked oil and relatively high quality coke (precursor of carbon material here) from heavy oil. The raw material oil is continuously sent to a heating furnace, rapidly heated in a short time, and supplied to the bottom of the coke drum. In the heat-insulated coke drum, carbonization proceeds under appropriate temperature and pressure, and coke generated from the liquid phase is accumulated to fill the drum. The cracked products (gas and cracked oil) are extracted from the top of the drum, sent to the rectification column, and fractionated. The heavy oil extracted from the bottom of the rectification tower is sent again to the heating furnace together with the raw material oil, and the above heat treatment is repeated. There are usually two coke drums, and when one is filled with coke, the feed oil is supplied by switching to an empty drum and processed as described above. On the other hand, after the drum filled with coke and separated is cooled, the accumulated coke is cut out with high-pressure water or the like.

コークドラム内でコークス(炭素材料前駆体)はドラムの底部から頂部に向かって蓄積されてゆくので、下部と上部のコークスでは熱履歴を受ける時間(保持時間)が異なり、それぞれの部位から得られたコークスの特性も微妙に異なる。そこで本発明における炭素材料前駆体は3時間以上の熱履歴を受けたものを用いる。3時間以上の熱履歴を受けた炭素材料前駆体は、コークドラムに蓄積されたコークスの量(ドラム底部からのコークスの高さ)とその量に達するまでに要した時間から特定することができる。具体的には、コークドラムに蓄積したコークスの上面から、ドラムがコークスで満たされて原料油の供給を停止した時より3時間前のコークスの高さまでのもの取り除き、それ以下ドラム底部までのコークスを切り出して炭素材料前駆体として用いる。
このようにチューブボム、あるいはディレードコーカーなどを用いて得られたコークス(炭素材料前駆体)の性状としては、揮発分2〜20wt%、乾燥ベースでの水素含有率1〜6wt%であることが望ましい。
Since coke (carbon material precursor) accumulates in the coke drum from the bottom to the top of the drum, the lower and upper cokes have different times of heat history (holding time) and can be obtained from each part. The characteristics of coke are also slightly different. Therefore, the carbon material precursor used in the present invention is one that has received a heat history of 3 hours or more. The carbon material precursor that has received a heat history of 3 hours or more can be identified from the amount of coke accumulated in the coke drum (the height of coke from the bottom of the drum) and the time required to reach that amount. . Specifically, from the upper surface of the coke accumulated in the coke drum, the one up to the coke height 3 hours before when the drum was filled with coke and the supply of the feedstock was stopped, and then the coke to the bottom of the drum Is cut out and used as a carbon material precursor.
As described above, the coke (carbon material precursor) obtained using a tube bomb or a delayed coker has a volatile content of 2 to 20 wt% and a hydrogen content of 1 to 6 wt% on a dry basis. desirable.

得られた前駆体は、雰囲気炉、シャトル炉、ロータリーキルン、トンネル炉などの焼成炉により600〜900℃、好ましくは650〜850℃で数十分から数時間かけて熱処理して、炭素材料を得ることができる。
さらに、得られた炭素材料を賦活して活性炭、すなわち(ここでいう電極活物質)を得ることでき、この電極活物質は電気二重層キャパシタの電極に好適に用いることができる。ここで行われる賦活は一般的なガス賦活およびアルカリ等による薬剤賦活であり、なかでもアルカリ金属の水酸化物などによるアルカリ賦活が高い静電容量を発現するので好ましい。前記炭素材料は、賦活のまえにジェットミルなどで粉砕し、気流分級機などで分級することにより、平均粒径10〜15μmの粉末状にしておくことが好ましい。賦活後に粉砕、分級することもできるが、塊状よりも粉末状の炭素材料を賦活する方が均一に賦活処理される。また、粉末状の炭素材料を賦活した後、再度粉砕、分級してもよい。
The obtained precursor is heat-treated at 600 to 900 ° C., preferably 650 to 850 ° C. for several tens of minutes to several hours in a firing furnace such as an atmospheric furnace, shuttle furnace, rotary kiln, tunnel furnace, etc., to obtain a carbon material. be able to.
Furthermore, the obtained carbon material can be activated to obtain activated carbon, that is, (electrode active material here), and this electrode active material can be suitably used for an electrode of an electric double layer capacitor. The activation performed here is general gas activation and chemical activation by alkali or the like, and among them, alkali activation by alkali metal hydroxide or the like expresses a high capacitance, which is preferable. The carbon material is preferably pulverized with a jet mill or the like before activation and classified with an airflow classifier or the like to form a powder with an average particle size of 10 to 15 μm. Although it can also grind | pulverize and classify after activation, the direction of activating a powdery carbon material rather than lump is uniformly activated. Moreover, after activating a powdery carbon material, you may grind | pulverize and classify again.

このようにして得られた電極活物質(活性炭)は、電気二重層キャパシタの電極に用い、非水電解液と適宜組み合わせて、非水電解液系電気二重層キャパシタを製造することができる。非水電解液は、電気二重層キャパシタに通常用いることのできるものであれば、特に制限するものではない。好ましい非水電解液として、例えば、ホウフッ化四級アンモニウム(例えば、ホウフッ化トリエチルメチルアンモニウムなど)、ホウフッ化リチウム、過塩素酸リチウムなどを溶解したプロピレンカーボネート、γ‐ブチルラクトンなどの電解液などが挙げられる。
また、電極は、公知の方法によって作製すればよい。例えば、上記電極活物質を粉砕して得られる粉体をバインダー(結着剤、例えば、ポリテトラフルオロエチレン(PTFE)、ポリ塩化ビニリデン(PVDC)など)と混合し、電極材をシート状に成形してアルミ箔等の集電体の表面に圧着し、必要に応じて電極密度を高めるべく圧縮形成してキャパシタ用電極を作製することができる。キャパシタ用電極の一例を概略図として図1に示す。すなわち、上記のようにして形成された一対の電極材シート4は、それぞれアルミニウム箔2に圧着され、電解液を含む濾紙5を挟んでサンドイッチ状に構成される。さらに、絶縁体のポリプロピレン板1で全体を、ねじ6とナット7などの締め付け手段を用いて密封する。アルミニウム箔にはアルミニウム線3などの導線が連結されており、これで充放電を繰り返すことができる。
The electrode active material (activated carbon) thus obtained can be used for an electrode of an electric double layer capacitor and appropriately combined with a nonaqueous electrolyte to produce a nonaqueous electrolyte electric double layer capacitor. The nonaqueous electrolytic solution is not particularly limited as long as it can be usually used for an electric double layer capacitor. Preferred non-aqueous electrolytes include, for example, electrolytes such as quaternary ammonium borofluoride (for example, triethylmethylammonium borofluoride), lithium borofluoride, lithium perchlorate, etc., propylene carbonate, γ-butyl lactone, etc. Can be mentioned.
Moreover, what is necessary is just to produce an electrode by a well-known method. For example, powder obtained by pulverizing the electrode active material is mixed with a binder (binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene chloride (PVDC), etc.), and the electrode material is formed into a sheet shape. Then, the electrode for a capacitor can be produced by pressure-bonding to the surface of a current collector such as an aluminum foil, and compression forming to increase the electrode density as necessary. An example of a capacitor electrode is shown in FIG. 1 as a schematic diagram. That is, each of the pair of electrode material sheets 4 formed as described above is pressure-bonded to the aluminum foil 2 and configured in a sandwich shape with the filter paper 5 containing the electrolytic solution in between. Further, the whole is sealed with an insulating polypropylene plate 1 using fastening means such as screws 6 and nuts 7. Conductive wires such as aluminum wires 3 are connected to the aluminum foil, and charging and discharging can be repeated with this.

以上のようにして得られた、特定の石油系重質油から得られる炭素材料は適度な比表面積に賦活することができ、得られた電極活物質は体積あたりの容量が大きく、また抵抗値の低い材料となる。しかし、石炭を原料とする易黒鉛化炭素では、灰分が多く、結晶性も高すぎるため、非水電解液系電気二重層キャパシタ用電極活物質とした場合、ガス発生や電極の膨張といった問題が発生する。あるいは炭素源として化学合成ピッチ等を用いた場合は、コストが多くかかると言った問題がある。   The carbon material obtained from the specific petroleum heavy oil obtained as described above can be activated to an appropriate specific surface area, and the obtained electrode active material has a large capacity per volume and a resistance value. Low material. However, easily graphitized carbon using coal as a raw material has a large amount of ash and crystallinity is too high. Therefore, when it is used as an electrode active material for a non-aqueous electrolyte electric double layer capacitor, there are problems such as gas generation and electrode expansion. Occur. Alternatively, when a chemically synthesized pitch or the like is used as a carbon source, there is a problem that costs are high.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明は、係る実施例によってなんら制限されない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not restrict | limited at all by the example which concerns.

チューブボムを用い、原料油として常圧蒸留残渣油と流動接触分解残渣油を70:30で混合した混合油を用い、圧力約0.5MPa、約500℃で40時間保持することにより炭素材料の前駆体を得た。該前駆体を窒素雰囲気中にて毎時200℃の昇温速度で昇温して炉内温度を700℃とし、1時間保持したのち、自然放冷で室温まで冷却することにより炭素材料を作製した。該炭素材料をジェットミルで粉砕し、気流分級機で分級することにより、平均粒径10〜15μmの炭素材料粉末を得た。   By using a tube bomb, using a mixed oil obtained by mixing an atmospheric distillation residue oil and a fluid catalytic cracking residue oil at 70:30 as a raw material oil, and holding at a pressure of about 0.5 MPa and about 500 ° C. for 40 hours, A precursor was obtained. The precursor was heated at a heating rate of 200 ° C. per hour in a nitrogen atmosphere to keep the furnace temperature at 700 ° C., held for 1 hour, and then cooled to room temperature by natural cooling to prepare a carbon material. . The carbon material was pulverized with a jet mill and classified with an airflow classifier to obtain a carbon material powder having an average particle size of 10 to 15 μm.

次に、以下の手順で炭素材料粉末の賦活を行って、電極活物質を得た。すなわち、炭素材料粉末1重量部に対して水酸化カリウム2重量部を混合し、ニッケル容器に入れ、容器より溢れないように昇温し、750℃で2時間保持した。その後、自然降温した後、取り出した混合物をpH7になるまで繰り返し水洗を行い電極活物質(活性炭)が得られた。   Next, the carbon material powder was activated by the following procedure to obtain an electrode active material. That is, 2 parts by weight of potassium hydroxide was mixed with 1 part by weight of the carbon material powder, put into a nickel container, heated so as not to overflow from the container, and held at 750 ° C. for 2 hours. Then, after naturally cooling, the extracted mixture was repeatedly washed with water until pH 7 was obtained, whereby an electrode active material (activated carbon) was obtained.

このようにして得られた電極活物質にアセチレンブラックを10wt%導電助剤として添加し、バインダーとしてPTFEを10wt%添加し圧延して電極材シートに成形した後、アルミニウム箔に圧着し電極とした。図1に示すように電極間(図1において、電極は電極材シート4とアルミニウム箔2に離して示す)にセパレータとして濾紙5を用い、電解液に電解質として1Mのホウフッ化トリエチルメチルアンモニウムを含むプロピレンカーボネートを用い電気二重層キャパシタを試作し容量の測定、すなわち静電容量を評価した。その結果を表1に示す。
静電容量の測定は前記で作製した電気二重層キャパシタセルにlmA/cmの電流密度で両極間の電位差が電解液を分解しない電位(2.5〜3.0V)まで充電を行う。ここでは2.7Vまで充電を行い、その後2.7Vで1時間保持した後、1mA/cmの電流密度で0Vまで放電を行って、静電容量を算出した。
The electrode active material thus obtained was added with 10 wt% of acetylene black as a conductive additive, 10 wt% of PTFE was added as a binder, rolled and formed into an electrode material sheet, and then pressed onto an aluminum foil to form an electrode. . As shown in FIG. 1, a filter paper 5 is used as a separator between the electrodes (in FIG. 1, the electrodes are shown separated from the electrode material sheet 4 and the aluminum foil 2), and the electrolyte contains 1M triethylmethylammonium borofluoride as the electrolyte. An electric double layer capacitor was prototyped using propylene carbonate, and the capacitance was measured, that is, the capacitance was evaluated. The results are shown in Table 1.
The capacitance is measured by charging the electric double layer capacitor cell produced above to a potential (2.5 to 3.0 V) at a current density of 1 mA / cm 2 so that the potential difference between the two electrodes does not decompose the electrolyte. Here, the battery was charged up to 2.7 V, then held at 2.7 V for 1 hour, then discharged to 0 V at a current density of 1 mA / cm 2 , and the capacitance was calculated.

原料油として常圧蒸留残渣油と流動接触分解残渣油を30:70で混合した混合油を用いた他は、実施例1と同様にして電極活物質の粉末を得、電極を作製し、静電容量を評価した。その結果を表1に示す。   An electrode active material powder is obtained in the same manner as in Example 1 except that a mixed oil obtained by mixing atmospheric distillation residue oil and fluid catalytic cracking residue oil at 30:70 is used as a raw material oil. The capacity was evaluated. The results are shown in Table 1.

原料油として流動接触分解残渣油を用いた他は、実施例1と同様にして電極活物質の粉末を得、電極を作製し、静電容量を評価した。その結果を表1に示す。   An electrode active material powder was obtained in the same manner as in Example 1 except that fluid catalytic cracking residue oil was used as the raw material oil, electrodes were produced, and electrostatic capacity was evaluated. The results are shown in Table 1.

原料油として常圧蒸留残渣油と流動接触分解残渣油を30:70で混合した混合油を用い、炭素材料の前駆体を得る保持時間を60時間とし、その後、該前駆体の熱処理温度を750℃とした他は、実施例1と同様にして電極活物質粉末の活性炭を得、電極を作製し、静電容量を評価した。その結果を表1に示す。   A mixed oil obtained by mixing atmospheric distillation residue oil and fluid catalytic cracking residue oil at a ratio of 30:70 is used as a raw material oil. A holding time for obtaining a precursor of a carbon material is set to 60 hours, and then a heat treatment temperature of the precursor is set to 750. Except that the temperature was set to ° C., activated carbon as an electrode active material powder was obtained in the same manner as in Example 1, electrodes were prepared, and the capacitance was evaluated. The results are shown in Table 1.

原料油として常圧蒸留残渣油と流動接触分解残渣油を30:70で混合した混合油を用い、炭素材料の前駆体を得る保持時間を60時間とし、その後、該前駆体の熱処理温度を650℃とした他は、実施例1と同様にして電極活物質粉末の活性炭を得、電極を作製し、静電容量を評価した。その結果を表1に示す。   A mixed oil obtained by mixing an atmospheric distillation residue oil and a fluid catalytic cracking residue oil at a ratio of 30:70 is used as a raw material oil. A holding time for obtaining a precursor of a carbon material is set to 60 hours, and then a heat treatment temperature of the precursor is set to 650. Except that the temperature was set to ° C., activated carbon as an electrode active material powder was obtained in the same manner as in Example 1, electrodes were prepared, and the capacitance was evaluated. The results are shown in Table 1.

原料油として常圧蒸留残渣油と流動接触分解残渣油を50:50で混合した混合油を用い、炭素材料前駆体を得る保持時間を40時間とし、その後該前駆体の熱処理温度を700℃とした他は、実施例1と同様にして電極活物質粉末の活性炭を得、電極を作製し、静電容量を評価した。その結果を表1に示す。   A mixed oil obtained by mixing atmospheric distillation residue oil and fluid catalytic cracking residue oil at 50:50 is used as a raw material oil, and a holding time for obtaining a carbon material precursor is set to 40 hours, and then a heat treatment temperature of the precursor is set to 700 ° C. The activated carbon of the electrode active material powder was obtained in the same manner as in Example 1, electrodes were prepared, and the capacitance was evaluated. The results are shown in Table 1.

比較例1Comparative Example 1

チューブボムを用い、原料油として減圧蒸留残渣油を用い、圧力約0.5MPa、約500℃で30時間保持することにより炭素材料の前駆体を得た。該前駆体を窒素雰囲気で毎時200℃の昇温速度で昇温して炉内温度を700℃とし、1時間保持して熱処理したのち、自然放冷で室温まで冷却することにより炭素材料を作成した。該炭素材料をジェットミルで粉砕し、気流分級機で分級することにより、平均粒径10〜15μmの炭素材料粉末を得た。   Using a tube bomb, a vacuum distillation residue oil was used as a raw material oil, and a pressure of about 0.5 MPa was maintained at about 500 ° C. for 30 hours to obtain a carbon material precursor. The precursor is heated at a heating rate of 200 ° C. per hour in a nitrogen atmosphere to keep the temperature in the furnace at 700 ° C. and heat treated for 1 hour, and then cooled to room temperature by natural cooling to create a carbon material. did. The carbon material was pulverized with a jet mill and classified with an airflow classifier to obtain a carbon material powder having an average particle size of 10 to 15 μm.

次に、以下の手順で炭素材料粉末の賦活を行った。すなわち、炭素材料粉末1重量部に対して水酸化カリウム2重量部を混合し、ニッケル容器に入れ、容器より溢れないように昇温し、750℃で2時間保持した。その後、自然降温した後、取り出した混合物をpH7になるまで繰り返し水洗を行い活性炭(電極活物質)が得られた。   Next, the carbon material powder was activated by the following procedure. That is, 2 parts by weight of potassium hydroxide was mixed with 1 part by weight of the carbon material powder, put into a nickel container, heated so as not to overflow from the container, and held at 750 ° C. for 2 hours. Then, after naturally cooling, the extracted mixture was repeatedly washed with water until pH 7 was obtained, whereby activated carbon (electrode active material) was obtained.

このようにして得られた電極活物質にアセチレンブラックを10wt%導電助剤として添加し、バインダーとしてPTFEを10wt%添加し圧延成型した後、アルミニウム箔に圧着し電極とした。図1に示すように正・負極の電極間にセパレータとして濾紙を用い、電解液に電解質として1Mのホウフッ化トリエチルメチルアンモニウムを含むプロピレンカーボネートを用い電気二重層キャパシタを試作し静電容量の測定を行った。その結果を表1に示す。   The electrode active material thus obtained was added with 10 wt% acetylene black as a conductive assistant, 10 wt% PTFE was added as a binder, and after rolling and forming, the electrode was pressed onto an aluminum foil. As shown in FIG. 1, a filter paper is used as a separator between the positive and negative electrodes, and an electric double layer capacitor is manufactured using propylene carbonate containing 1M triethylmethylammonium borofluoride as an electrolyte, and the capacitance is measured. went. The results are shown in Table 1.

比較例2Comparative Example 2

原料油として石油タールを用いた他は、実施例1と同様にして電極活物質の粉末を得、電極を作製し、静電容量を評価した。その結果を表1に示す。   An electrode active material powder was obtained in the same manner as in Example 1 except that petroleum tar was used as the raw material oil, an electrode was prepared, and the capacitance was evaluated. The results are shown in Table 1.

比較例3Comparative Example 3

原料油として常圧蒸留残渣油と流動接触分解残渣油を30:70で混合した混合油を用い、炭素材料前駆体を得る保持時間を40時間とし、その後、該前駆体の熱処理温度を1000℃とした他は、実施例1と同様にして電極活物質の粉末を得、電極を作製し、静電容量を評価した。その結果を表1に示す。   A mixed oil obtained by mixing an atmospheric distillation residue oil and a fluid catalytic cracking residue oil at 30:70 is used as a raw material oil. A holding time for obtaining a carbon material precursor is set to 40 hours, and then a heat treatment temperature of the precursor is set to 1000 ° C. In the same manner as in Example 1, an electrode active material powder was obtained, an electrode was prepared, and the capacitance was evaluated. The results are shown in Table 1.

比較例4Comparative Example 4

原料油として常圧蒸留残渣油と流動接触分解残渣油を30:70で混合した混合油を用い、炭素材料前駆体を得る保持時間を2時間とした他は、実施例1と同様にして電極活物質の粉末を得、電極を作製し、静電容量を評価した。その結果を表1に示す。   An electrode was prepared in the same manner as in Example 1 except that a mixed oil obtained by mixing atmospheric distillation residue oil and fluid catalytic cracking residue oil at 30:70 was used as the raw material oil, and the holding time for obtaining the carbon material precursor was 2 hours. An active material powder was obtained, an electrode was prepared, and the capacitance was evaluated. The results are shown in Table 1.

図1は、試作した電気二重層キャパシタの概要を分解図として示す。FIG. 1 shows an outline of the prototype electric double layer capacitor as an exploded view.

符号の説明Explanation of symbols

1 ポリプロピレン板
2 アルミニウム箔
3 アルミニウム線
4 電極材シート
5 濾紙
6 ねじ
7 ナット
DESCRIPTION OF SYMBOLS 1 Polypropylene board 2 Aluminum foil 3 Aluminum wire 4 Electrode material sheet 5 Filter paper 6 Screw 7 Nut

Claims (4)

常圧蒸留残渣油および/または流動接触分解残渣油を主成分として含む原料油を、圧力2.0MPa以下、温度400〜600℃で3時間以上保持して得た、非水電解液系電気二重層キャパシタ用電極活物質に用いる炭素材料の前駆体。   A non-aqueous electrolyte-based electric oil obtained by holding a raw oil mainly containing atmospheric distillation residue oil and / or fluid catalytic cracking residue oil at a pressure of 2.0 MPa or less and a temperature of 400 to 600 ° C. for 3 hours or more. Carbon material precursor used for electrode active materials for multilayer capacitors. 常圧蒸留残渣油および/または流動接触分解残渣油を主成分として含む原料油を、圧力2.0MPa以下、温度400〜600℃で3時間以上保持して炭素材料の前駆体を得、該前駆体を600〜900℃で熱処理して得た、非水電解液系電気二重層キャパシタに用いる電極活物質の原料となる炭素材料。   A raw material oil containing atmospheric distillation residue oil and / or fluid catalytic cracking residue oil as a main component is maintained at a pressure of 2.0 MPa or less and a temperature of 400 to 600 ° C. for 3 hours or more to obtain a precursor of a carbon material, A carbon material obtained by heat-treating the body at 600 to 900 ° C. and used as a raw material for an electrode active material used for a non-aqueous electrolyte based electric double layer capacitor. 常圧蒸留残渣油および/または流動接触分解残渣油を主成分として含む原料油を、圧力2.0MPa以下、温度400〜600℃で3時間以上保持して炭素材料の前駆体を得、該前駆体を600〜900℃で熱処理して炭素材料を得、該炭素材料をさらに賦活して得た非水電解液系電気二重層キャパシタの電極に用いる電極活物質。   A raw material oil containing atmospheric distillation residue oil and / or fluid catalytic cracking residue oil as a main component is maintained at a pressure of 2.0 MPa or less and a temperature of 400 to 600 ° C. for 3 hours or more to obtain a precursor of a carbon material, The electrode active material used for the electrode of the non-aqueous-electrolyte system electric double layer capacitor obtained by heat-processing a body at 600-900 degreeC, obtaining a carbon material, and further activating this carbon material. 常圧蒸留残渣油および/または流動接触分解残渣油を主成分として含む原料油を、圧力2.0MPa以下、温度400〜600℃で3時間以上保持して炭素材料の前駆体を得、該前駆体を600〜900℃で熱処理して炭素材料を得、該炭素材料をさらに賦活して得た電極活物質を用いた非水電解液系電気二重層キャパシタ。
A raw material oil containing atmospheric distillation residue oil and / or fluid catalytic cracking residue oil as a main component is maintained at a pressure of 2.0 MPa or less and a temperature of 400 to 600 ° C. for 3 hours or more to obtain a precursor of a carbon material, A non-aqueous electrolyte type electric double layer capacitor using an electrode active material obtained by heat treating a body at 600 to 900 ° C. to obtain a carbon material and further activating the carbon material.
JP2004040732A 2004-02-18 2004-02-18 Nonacqueous electrolyte based electric double layer capacitor, electrode active substance for use therein, carbon material and precursor of carbon material Pending JP2005235873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040732A JP2005235873A (en) 2004-02-18 2004-02-18 Nonacqueous electrolyte based electric double layer capacitor, electrode active substance for use therein, carbon material and precursor of carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040732A JP2005235873A (en) 2004-02-18 2004-02-18 Nonacqueous electrolyte based electric double layer capacitor, electrode active substance for use therein, carbon material and precursor of carbon material

Publications (1)

Publication Number Publication Date
JP2005235873A true JP2005235873A (en) 2005-09-02

Family

ID=35018535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040732A Pending JP2005235873A (en) 2004-02-18 2004-02-18 Nonacqueous electrolyte based electric double layer capacitor, electrode active substance for use therein, carbon material and precursor of carbon material

Country Status (1)

Country Link
JP (1) JP2005235873A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137323A1 (en) * 2005-06-21 2006-12-28 Nippon Oil Corporation Raw oil composition for carbon material for electric double layer capacitor electrode
JP2007153640A (en) * 2005-12-01 2007-06-21 Japan Energy Corp Low-temperature calcined carbon powder for production of activated carbon
JP2008150257A (en) * 2006-12-19 2008-07-03 Bridgestone Corp Method of manufacturing silicon carbide sintered compact

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137323A1 (en) * 2005-06-21 2006-12-28 Nippon Oil Corporation Raw oil composition for carbon material for electric double layer capacitor electrode
US7993619B2 (en) 2005-06-21 2011-08-09 Nippon Oil Corporation Raw oil composition for carbon material for electric double layer capacitor electrode
JP2007153640A (en) * 2005-12-01 2007-06-21 Japan Energy Corp Low-temperature calcined carbon powder for production of activated carbon
JP2008150257A (en) * 2006-12-19 2008-07-03 Bridgestone Corp Method of manufacturing silicon carbide sintered compact

Similar Documents

Publication Publication Date Title
TWI487180B (en) Anode material for nonaqueous lithium type electrical storage element
US8895142B2 (en) High surface area and low structure carbon blacks for energy storage applications
US7964173B2 (en) Feedstock composition and raw coke for electricity storage carbon material and needle coke
JPWO2014088074A1 (en) Non-aqueous lithium storage element
US11823837B2 (en) Carbonaceous material for electric double layer capacitors and method for producing same
JP2004067498A (en) Activated carbon and electrical double layer capacitor using the same
JP2011176043A (en) Activated carbon for electric double layer capacitor
JP2010267875A (en) Negative electrode for nonaqueous lithium type electric storage element, and nonaqueous lithium type electric storage element using the same
WO2008099015A1 (en) Porous coke
KR20120126118A (en) Activated charcoal for electric double-layer capacitor electrode and method for producing the same
CN103803550B (en) A kind of preparation method of asphalt based active carbon
JP4488523B2 (en) Non-aqueous electrolyte secondary battery, carbon material used therefor, and precursor of the carbon material
JP2007221108A (en) Active carbon and method for fabrication thereof
JP2005001969A (en) Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor
JP6453560B2 (en) Negative electrode for non-aqueous lithium storage element and non-aqueous lithium storage element using the same
JP4854062B2 (en) Nonaqueous electrolyte secondary battery and carbon material used therefor
JP2005235873A (en) Nonacqueous electrolyte based electric double layer capacitor, electrode active substance for use therein, carbon material and precursor of carbon material
JP2005135659A (en) Method of manufacturing negative electrode of lithium ion secondary battery
JP2013080780A (en) Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same
JP2005001968A (en) Production method for porous carbon
JP2005093778A (en) Electric double layer capacitor
JP2005093777A (en) Electric double layer capacitor
JPH0897101A (en) Electrode material
JP2005093779A (en) Electric double layer capacitor
JP2008021876A (en) Porous carbon material for non-aqueous electric double layer capacitor, manufacturing method thereof and non-aqueous electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117