JP2005235446A - Safeguard - Google Patents

Safeguard Download PDF

Info

Publication number
JP2005235446A
JP2005235446A JP2004040193A JP2004040193A JP2005235446A JP 2005235446 A JP2005235446 A JP 2005235446A JP 2004040193 A JP2004040193 A JP 2004040193A JP 2004040193 A JP2004040193 A JP 2004040193A JP 2005235446 A JP2005235446 A JP 2005235446A
Authority
JP
Japan
Prior art keywords
terminal
contact
movable plate
thermally responsive
responsive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004040193A
Other languages
Japanese (ja)
Inventor
Hideaki Takeda
秀昭 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchiya Thermostat Co Ltd
Original Assignee
Uchiya Thermostat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchiya Thermostat Co Ltd filed Critical Uchiya Thermostat Co Ltd
Priority to JP2004040193A priority Critical patent/JP2005235446A/en
Priority to PCT/JP2005/002275 priority patent/WO2005078756A1/en
Publication of JP2005235446A publication Critical patent/JP2005235446A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H37/5427Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting encapsulated in sealed miniaturised housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/12Means for adjustment of "on" or "off" operating temperature
    • H01H37/14Means for adjustment of "on" or "off" operating temperature by anticipatory electric heater

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safeguard with little voltage loss, of which a detecting part detecting excessive current or temperature with the use of a heat-responsive element is downsized. <P>SOLUTION: A fixed contact 7 connected to a first terminal 3 and a movable plate 9 having a movable contact 8 at a position opposite to the fixed contact 7 are arranged inside a housing 2. The movable plate 9 has a tip of a bimetal 15 engaged with a folded claw part 9a of its own tip. A resistive element 16 is arranged between the bimetal 15 and the movable plate 9. The resistive element 6, of a thin sheet member full of elasticity with insulation treatment applied, is arranged in connection with a second terminal 4 and a third terminal 5. When a current exceeding a certain value flows between the second terminal 4 and the third terminal 5, the resistive element 16 radiates heat to have the bimetal 15 inverted, which closes the fixed contact 7 and the movable contact 8 to form a contact circuit between a first contact 3 and a second contact 4, and with this current, a latching relay device 24 of a tripping unit 22, for instance, is driven to open a normally closed switch 23 of a power source line 21. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

熱応動素子を使用して過大な電流や温度を検出する安全装置に関する。   The present invention relates to a safety device that detects excessive current and temperature using a thermal actuator.

従来、過大な電流や温度を検出する安全装置としては、熱応動型のブレーカーとして厚いバイメタルの平板の回りに通電電線を巻き、電線で発生するジュール熱でバイメタルを変位させ、この変位の動作で直接スイッチング部のラッチを外して電流を遮断するものが知られている。(例えば、特許文献1参照。)
また、通電電流によるジュール熱で可溶体を溶断させ、電流を遮断する電流ヒューズによるものも知られている。(例えば、特許文献2参照。)
特開2000−340093号公報([要約]、図1) 特開2000−331591号公報([要約]、図1)
Conventionally, as a safety device that detects excessive current and temperature, as a thermally responsive breaker, a conductive wire is wound around a thick bimetal plate, and the bimetal is displaced by Joule heat generated by the wire. It is known that the current is cut off by directly removing the latch of the switching unit. (For example, refer to Patent Document 1.)
Also known is a current fuse that cuts off a current by fusing a fusible body with Joule heat generated by an energizing current. (For example, see Patent Document 2.)
JP 2000-340093 A ([Summary], FIG. 1) JP 2000-315991 ([Summary], FIG. 1)

しかしながら、上記特許文献1の技術のように、通電する電流を直接遮断するブレーカでは、過大な電流に対し検出部分が直接電源電流を通電する構造となっているので電流が大きくなるにつれて検出装置本体も大型化し、構造的にも複雑となり、このため設置上の制約を有している。   However, the breaker that directly cuts off the energized current as in the technique of the above-mentioned Patent Document 1 has a structure in which the detection portion directly energizes the power supply current with respect to the excessive current. The size is also increased and the structure is complicated, and thus there are restrictions on installation.

また、通電部分の抵抗で発生するジュール熱により熱応動素子を作動させているため検出部分がそのまま通電部分ともなっており、このためその通電部分に抵抗が生じ、この通電回路が低電圧回路である場合には電圧ロスの原因となっていた。
また、特許文献2の技術のように、通電部分の抵抗により発生するジュール熱により可溶体を溶断させる構成は、大電流を安定して流せるように取り付けられるようにするには可溶体の溶断時の状態を考慮しなければならないため検出部分と取付部等に制約が多いという問題がある。また、一度溶断すると、復元させるためには新たな可溶体に交換しなければならないから作業性が悪いという問題も有している。
In addition, since the thermo-responsive element is operated by Joule heat generated by the resistance of the energized portion, the detection portion is also directly the energized portion, so that resistance is generated in the energized portion, and this energizing circuit is a low voltage circuit In some cases, voltage loss was caused.
In addition, as in the technique of Patent Document 2, the configuration in which the fusible body is blown by Joule heat generated by the resistance of the energized portion is used when the fusible body is blown so that the large current can be stably flowed. Therefore, there is a problem that there are many restrictions on the detection part and the mounting part. In addition, once melted, there is a problem that workability is poor because it must be replaced with a new soluble material to restore it.

本発明の課題は、上記従来の実情に鑑み、検出部を小型化し且つ電圧のロスの少ない安全装置を提供することである。   In view of the above-described conventional situation, an object of the present invention is to provide a safety device in which a detection unit is downsized and voltage loss is small.

先ず、第1の発明の安全装置は、熱応動素子が素子周囲の温度上昇を感知して反り返り方向を反転したとき接点回路を閉じる構成の安全装置において、第1の端子に接続された固定接点に対向する位置に可動接点を有して第2の端子に接続された可動板と、平常の反り返り状態のとき接点回路を開放状態とする熱応動素子と、該熱応動素子と上記可動板との間に抵抗体部分が上記熱応動素子及び上記可動板から電気的に絶縁されて挟み込まれ上記第2の端子と第3の端子の間に接続された抵抗体と、を有して構成される。   First, a safety device according to a first aspect of the present invention is a safety device configured to close a contact circuit when a thermally responsive element senses a temperature rise around the element and reverses the direction of warping, and a fixed contact connected to the first terminal. A movable plate having a movable contact at a position facing the second terminal and connected to the second terminal, a thermally responsive element that opens the contact circuit when in a normal warping state, the thermally responsive element and the movable plate, A resistor portion is interposed between the second terminal and the third terminal, and the resistor portion is sandwiched and electrically insulated from the thermally responsive element and the movable plate. The

次に、第2の発明の安全装置は、熱応動素子が素子周囲の温度上昇を感知して反り返り方向を反転したとき接点回路を閉じる構成の安全装置において、第1の端子に接続された固定接点に対向する位置に可動接点を有して第2の端子に接続された可動板と、平常の反り返り状態のとき接点回路を開放状態とする熱応動素子と、該熱応動素子と上記可動板との間に抵抗体部分が上記熱応動素子及び上記可動板から電気的に絶縁されて挟み込まれ上記第1及び第2の端子から独立した第3の端子と第4の端子の間に接続された抵抗体と、を有して構成される。   Next, a safety device according to a second invention is a safety device configured to close a contact circuit when a thermally responsive element senses a temperature rise around the element and reverses the direction of warping, and is fixed to the first terminal. A movable plate having a movable contact at a position opposite to the contact and connected to the second terminal, a thermally responsive element that opens the contact circuit when in a normal warping state, the thermally responsive element and the movable plate Between the third terminal and the fourth terminal which are electrically insulated from the thermal responsive element and the movable plate and are independent of the first and second terminals. And a resistor.

上記安全装置において、上記抵抗体は、例えば、柔軟性を有して構成され、上記熱応動素子が所定の動作温度以下における上記平常の反り返り方向に反り返っているとき上記熱応動素子と上記可動板とに密着的状態で接触し、上記熱応動体の所定の動作温度以上での上記平常の反り返り方向からの反転動作により上記熱応動素子、上記可動板、及び上記抵抗体の3部材間の密着的状態が開放される、ように構成される。   In the safety device, the resistor is configured to have flexibility, for example, and when the thermally responsive element is warped in the normal warp direction at a predetermined operating temperature or lower, the thermally responsive element and the movable plate In close contact with each other, and the heat response element, the movable plate, and the resistor are in close contact with each other by the reversal operation from the normal warping direction above the predetermined operating temperature of the heat response body. The target state is opened.

続いて、第3の発明の安全装置は、熱応動素子が素子周囲の温度上昇を感知して、反り返り方向を反転したとき接点回路を閉じる構成の安全装置において、第1の端子に接続された固定接点に対向する位置となる頂点部に可動接点を有して略U字形状に形成さた可動板と、該可動板のU字の一端に接続された第2の端子と、上記可動板のU字の他端に接続された第3の端子と、所定の動作温度以下の平常の反り返り状態で上記可動板と密着的状態で接触し且つ該接触部分で電気的に絶縁されて配置され、上記第2の端子と上記第3の端子間に所定以上の電流が流れたことによる上記可動板の発熱に基づいて上記平常の反り返り方向を反転する熱応動素子と、を有して構成される。   Subsequently, a safety device according to a third aspect of the present invention is the safety device configured to close the contact circuit when the thermally responsive element senses a temperature rise around the element and reverses the direction of warping, and is connected to the first terminal. A movable plate having a movable contact at the apex that is positioned opposite to the fixed contact and having a substantially U-shape, a second terminal connected to one end of the U-shape of the movable plate, and the movable plate The third terminal connected to the other end of the U-shaped is in contact with the movable plate in a normal warping state at a predetermined operating temperature or lower and in an insulative state, and is electrically insulated at the contact portion. And a thermally responsive element that reverses the normal direction of warping based on the heat generated by the movable plate due to a current greater than or equal to a predetermined value flowing between the second terminal and the third terminal. The

この安全装置は、例えば、上記熱応動素子が所定の動作温度以上での上記平常の反り返り方向からの反転動作を行ったとき、上記熱応動素子と上記可動板との密着的状態の接触が開放されるように構成される。
更に、第4の発明の安全装置は、熱応動素子が素子周囲の温度上昇を感知して、反り返り方向を反転したとき接点回路を閉じる構成の安全装置において、第1の端子に接続された固定接点に対向する位置となる頂点部に可動接点を有して略U字形状に形成され、U字の一端が第2の端子に接続され、U字の他端が第3の端子に接続され、上記第2の端子と上記第3の端子間に所定以上の電流が流れたことによる自己発熱に基づいて上記平常の反り返り方向を反転する熱応動素子を備えて構成される。
In this safety device, for example, when the thermally responsive element performs a reversing operation from the normal warping direction at a predetermined operating temperature or higher, contact between the thermally responsive element and the movable plate is released. Configured to be.
Furthermore, the safety device of the fourth invention is a safety device configured to close the contact circuit when the thermally responsive element senses the temperature rise around the element and reverses the direction of warping, and is fixed to the first terminal. It has a movable contact at the apex that is opposite to the contact and is formed in a substantially U shape. One end of the U shape is connected to the second terminal, and the other end of the U shape is connected to the third terminal. And a thermoresponsive element that reverses the normal warping direction based on self-heating caused by a current greater than or equal to a predetermined value flowing between the second terminal and the third terminal.

上記可動板又は熱応動素子がU字の形状であるとき、上記第1の端子は、上記熱応動素子が上記平常の反り返り方向を反転したとき、上記第2の端子又は上記第3の端子との間で接点回路を構成するように構成される。   When the movable plate or the thermally responsive element is U-shaped, the first terminal is connected to the second terminal or the third terminal when the thermally responsive element reverses the normal warping direction. The contact circuit is configured to be configured between the two.

本発明の安全装置によれば、電源回路からの僅かな分流で動作するので、装置回路の抵抗を最小に抑えながら電源回路の過電流を検出することができると共に直接大電流を通さないので信頼性が高く、また、大電流を扱う場合でも小型のままでよく大型化する必要がないので経済的である。   According to the safety device of the present invention, since it operates with a slight shunt from the power supply circuit, it is possible to detect the overcurrent of the power supply circuit while minimizing the resistance of the device circuit and not to pass a large current directly. In addition, even when handling a large current, it is economical because it is small and does not need to be enlarged.

また、電源回路からの分流で動作するので、電源回路の抵抗や遮断条件に合わせて安全装置の抵抗体の抵抗値や構造を選定することができ、これにより検出抵抗を広い範囲で設定することが可能である。
また、電流以外に温度での動作も可能であり、したがって、電源電線、電源部のトランス、電池、又は中間の接続部であるコネクタ部等の異常温度を検出して通電を遮断することにも使用できて便利である。
In addition, since it operates with a shunt current from the power supply circuit, the resistance value and structure of the safety device resistor can be selected according to the resistance of the power supply circuit and the interrupting conditions, thereby setting the detection resistance in a wide range Is possible.
In addition to current, operation at temperature is also possible, so it is also possible to shut off the power supply by detecting abnormal temperatures such as power supply wires, power supply transformers, batteries, or connector parts that are intermediate connection parts. It is usable and convenient.

また、過電流の検出部を電源回路の任意の導体の2点間に設定でき、したがって、電源側又はアース側等の区別なく配置場所に柔軟性があるので便利である。
また、検出部の接点構成を常温時OFF型としているので、通常動作のリレーを使う必要が無く、電源・負荷システムの起動時にリレーの動作を伴わず、したがって、高い信頼性の安全な電源・負荷システムを構築することができる。
Further, the overcurrent detection unit can be set between two points of an arbitrary conductor of the power supply circuit. Therefore, the arrangement location is flexible regardless of the power supply side or the ground side, which is convenient.
In addition, the contact configuration of the detector is OFF at room temperature, so there is no need to use a normal operation relay, and there is no relay operation when starting up the power supply / load system. A load system can be constructed.

以下、本発明の実施の形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1(a) は、第1の実施の形態における安全装置の平面図であり、同図(b) はその側断面図、同図(c) は内部の抵抗体を取り出して示す図である。同図(a),(b) に示すように、この安全装置1は、先ず、ハウジング2と、このハウジング2の外部に引き出された第1の端子3、第2の端子4、及び第3の端子5を備えている。上記第1の端子3は被覆のない金属板であり、第2の端子4及び第3の端子5は金属線でそれぞれ被覆材6で中間部を被覆され、ハウジング2の内外に配置される両端部が被覆材6から露出している。   FIG. 1 (a) is a plan view of the safety device according to the first embodiment, FIG. 1 (b) is a side sectional view thereof, and FIG. 1 (c) is a view showing an internal resistor taken out. . As shown in FIGS. 4A and 4B, the safety device 1 includes a housing 2, a first terminal 3, a second terminal 4, and a third terminal drawn out of the housing 2. Terminal 5 is provided. The first terminal 3 is an uncovered metal plate, and the second terminal 4 and the third terminal 5 are both ends covered with a covering member 6 with metal wires and disposed inside and outside the housing 2. The part is exposed from the covering material 6.

ハウジング2の内部には、第1の端子3に接続された固定接点7がハウジング2の底面左端部に配設されている。そして、固定接点7に対向する位置に可動接点8を有する可動板9が、その長手方向の可動接点8の在る端部を自由端とし、反対側端部をハウジング2の右端側にある支持部11に固定して支持されて配置されている。   Inside the housing 2, a fixed contact 7 connected to the first terminal 3 is disposed at the bottom left end of the housing 2. Then, the movable plate 9 having the movable contact 8 at a position facing the fixed contact 7 has a longitudinal end where the movable contact 8 is located as a free end, and an opposite end on the right end side of the housing 2. The unit 11 is fixedly supported and arranged.

この可動板9は、上記自由端の先端に折り返し爪部9aを形成されており、底面のほぼ中央部を上記の支持部11と一体に構成され支持部11からハウジング2の左方に延設された基部の延設部先端に形成された凸部12によって下から支持されている。そして、この可動板9は、電極13及び内部配線14を介して第2の端子4に接続されている。   The movable plate 9 has a claw portion 9a formed at the tip of the free end, and a substantially central portion of the bottom surface is formed integrally with the support portion 11 and extends from the support portion 11 to the left side of the housing 2. The base portion is supported from below by a convex portion 12 formed at the distal end of the extending portion. The movable plate 9 is connected to the second terminal 4 via the electrode 13 and the internal wiring 14.

また、安全装置1は、上記の支持部11に一端を支持され、他端を可動板9の折り返し爪部9aに差し込まれて配置された熱応動素子としてのバイメタル15と、このバイメタル15と可動板9の間に挟まれて配置された抵抗体16を備えている。
上記の過大電流を検出する検出部の構成に用いられる熱応動素子は、バイメタル素子と限るものではないが、本例ではバイメタル素子を用いる例で説明する。バイメタル素子は、一般に2種以上の熱膨張率の異なる金属を張り合わせたバイメタルにプレス加工により湾曲形状に仕上げたもので、所定の温度で反り返り方向を瞬時に反転する動作が設定できる。
The safety device 1 has a bimetal 15 as a thermally responsive element disposed at one end supported by the support portion 11 and the other end inserted into the folded claw portion 9a of the movable plate 9, and is movable with the bimetal 15. A resistor 16 disposed between the plates 9 is provided.
Although the thermally responsive element used for the structure of the detection part which detects said excessive electric current is not restricted to a bimetal element, in this example, it demonstrates by the example using a bimetal element. A bimetal element is generally a bimetal obtained by bonding two or more metals having different coefficients of thermal expansion to a curved shape by press working, and can set an operation that instantaneously reverses the warping direction at a predetermined temperature.

また、これをスイッチ動作に応用する場合、電流の接続・遮断を確実に行うため、接点が設けられ、接点同士を一定の圧力で接触させる為のバネ機構と組み合わせて使用される。バイメタルの反り返り方向と、このバネ機構との組合せにより、常温時ON構成と常温時OFF構成のいずれかの電流検出部の構成を採用できる。   Further, when this is applied to a switch operation, a contact is provided in order to surely connect / cut off the current, and it is used in combination with a spring mechanism for bringing the contacts into contact with each other with a constant pressure. Depending on the combination of the bimetal warping direction and this spring mechanism, the configuration of the current detection unit of either the normal temperature ON configuration or the normal temperature OFF configuration can be employed.

常温時ON型の検出部を使用すると、遮断ユニットはリレー型となり、この安全装置を組み込むシステムの起動の度にリレーが動作し、電源を接続状態とする必要がある。システムが動作状態の間はリレーにより接続状態が維持され、異常を感知した場合、検出部、リレーの順にOFFとなり、電源を遮断する動作となる。   When an ON-type detection unit at room temperature is used, the shut-off unit becomes a relay type, and it is necessary to operate the relay each time a system incorporating this safety device is activated and to connect the power source. While the system is in the operating state, the connection state is maintained by the relay. When an abnormality is detected, the detection unit and the relay are turned off in this order, and the power supply is shut off.

他方、常温時OFF型の検出部では、遮断ユニットには接続状態を維持するためにラッチがセットされ、異常を感知した場合、検出部がONとなり、引き外し部に電流が流れ、ラッチが外されることにより遮断が実現する。異常のときのみ動作する形態であるため、安全装置の寿命や、信頼性の面で有利となる。   On the other hand, in the normal temperature OFF type detection unit, a latch is set in the interrupting unit to maintain the connection state. When an abnormality is detected, the detection unit is turned on, current flows in the tripping unit, and the latch is removed. As a result, blocking is realized. Since it operates only when there is an abnormality, it is advantageous in terms of life and reliability of the safety device.

上記の抵抗体16は、薄型で柔軟性に富むシート状の抵抗体が望ましい。抵抗材料であるステンレスやニクロムのシートでもよく、また抵抗値によってはより低抵抗のニッケルや銅合金も使用可能である。このようなシート状の金属材料をプレス加工やエッチングでパターン加工し、両面に絶縁フィルムやコーティングで絶縁処理を行い、反転動作を行う熱応動素子(例えばバイメタル15)と、可動接点を取り付けた可動板15との間に挟み込む様に取り付け、それぞれの端子に必要な長さのリード線を取り付け、ハウジング2に挿入し、封止する。   The resistor 16 is preferably a sheet-like resistor that is thin and flexible. A sheet of stainless steel or nichrome, which is a resistance material, may be used. Depending on the resistance value, nickel or copper alloy having a lower resistance can be used. Such a sheet-like metal material is patterned by pressing or etching, and insulation treatment is performed on both sides with an insulating film or coating, and a movable element with a movable contact attached to a reversing operation (eg, bimetal 15). It is attached so as to be sandwiched between the plate 15 and a lead wire having a required length is attached to each terminal, and is inserted into the housing 2 and sealed.

この抵抗体16は、比較的小さな抵抗値を有する抵抗体であり、同図(b) に示すように、バイメタル15が所定の動作温度以下の平常の反り返り方向に可動板9と共に反り返っているときは、可動板9とバイメタル15の両方に密着的状態で接触している。そして、特には図示しないが、バイメタル15が所定の動作温度以上で同図(b) に示す平常の反り返り方向から反転動作を行って固定接点7と可動接点8が閉じて接点回路を形成したときには、上記のバイメタル15、可動板9、及び抵抗体16の3部材間の密着的状態が開放される。   The resistor 16 is a resistor having a relatively small resistance value, and when the bimetal 15 is warped together with the movable plate 9 in a normal warping direction below a predetermined operating temperature, as shown in FIG. Is in close contact with both the movable plate 9 and the bimetal 15. Although not shown in particular, when the bimetal 15 performs a reversing operation from the normal warping direction shown in FIG. 5 (b) at a predetermined operating temperature or more, the fixed contact 7 and the movable contact 8 are closed to form a contact circuit. The close contact state between the three members of the bimetal 15, the movable plate 9, and the resistor 16 is released.

上記の抵抗体16は、同図(c) に示すように、Jの字を横にした形状で、バイメタル15と可動板9に挟まれる部分が絶縁シート17によって両面から被覆されている(同図(b) では上面の絶縁シート17を取り除いて示している)。そして、一方では横にしたJの字の短端部が電極13を介して第2の端子4及び可動板9に接続され、他方ではJの字の長端部が直接第3の端子5に接続されている。電極13に近接して取付孔18が形成されている。   As shown in FIG. 6C, the resistor 16 has a shape in which the letter “J” is placed horizontally, and a portion sandwiched between the bimetal 15 and the movable plate 9 is covered with an insulating sheet 17 from both sides (same as above). In FIG. (B), the upper insulating sheet 17 is removed). On the one hand, the short end of the J-shaped side is connected to the second terminal 4 and the movable plate 9 via the electrode 13, and on the other hand, the long end of the J-shape is directly connected to the third terminal 5. It is connected. A mounting hole 18 is formed adjacent to the electrode 13.

この抵抗体16は、第2の端子4及び第3の端子5間に所定以上の電流が流れると、バイメタル15の所定の動作温度以上に発熱する。そして、バイメタル15が所定の動作温度以上で反転動作を行って固定接点7と可動接点8が閉じると、第1の端子3と第2の端子4との間に接点回路が形成される。   The resistor 16 generates heat above a predetermined operating temperature of the bimetal 15 when a predetermined current or more flows between the second terminal 4 and the third terminal 5. When the bimetal 15 performs the reversing operation at a predetermined operating temperature or more and the fixed contact 7 and the movable contact 8 are closed, a contact circuit is formed between the first terminal 3 and the second terminal 4.

例えば、電源電流が比較的低電流の場合を想定した試験においては、この抵抗体16の抵抗値は0.2Ωに設定される。動作確認として電源電線の抵抗値を35mΩで設定すると、この電源電線83Aの電流が流れたとき、抵抗体16にはおよそ10.6Aの電流が流れ、1秒間で動作した。   For example, in a test assuming that the power supply current is relatively low, the resistance value of the resistor 16 is set to 0.2Ω. When the resistance value of the power supply wire was set to 35 mΩ as an operation check, when the current of the power supply wire 83A flowed, a current of about 10.6 A flowed through the resistor 16 and operated for 1 second.

これは、35mΩの電源電線部で83Aでの電圧降下が約2.8V生じ、0.2Ωの抵抗に10.6Aの電流が流れ、約30Wの電力が消費され、バイメタル15が約1秒で動作したものである。
尚、電源電線の或る区間の2点間の配線抵抗と、遮断すべき短絡電流値と、遮断時間を実測すれば、これらの関係特性図から、検出抵抗の抵抗値を算出することができる。
This is because the voltage drop at 83A is about 2.8V in the 35mΩ power line, the current of 10.6A flows through the 0.2Ω resistor, the power of about 30W is consumed, and the bimetal 15 takes about 1 second. It has worked.
If the wiring resistance between two points in a certain section of the power supply wire, the short-circuit current value to be cut off, and the cut-off time are measured, the resistance value of the detection resistor can be calculated from these relational characteristic diagrams. .

図2(a) は、上記常温時OFF構成のスイッチとしての安全装置1を、電源・負荷回路におけるラッチ式の遮断ユニットと組み合わせたシステムの一例を示す図であり、同図(b) は、安全装置の変形例とそれを用いた電源・負荷回路システムの一例を示す図である。尚、同図(a),(b) には、図1(a),(b),(c) と同一機能を有する構成部分には図1(a),(b),(c) と同一の符号を付与して示している。   FIG. 2 (a) is a diagram showing an example of a system in which the safety device 1 as a switch having an OFF configuration at normal temperature is combined with a latch-type shut-off unit in a power supply / load circuit, and FIG. It is a figure which shows an example of the modification of a safety device, and an example of a power supply and load circuit system using the same. In FIGS. 1 (a), (b), components having the same functions as those in FIGS. 1 (a), (b), (c) are shown in FIGS. 1 (a), (b), (c). The same reference numerals are given.

図2(a) に示す電源・負荷システムは、電源19、負荷20と、電源19と負荷20を接続する電源線21(プラス側電源線21a、マイナス側電源線21b)を備えている。プラス側電源線21aには電源回路を遮断する引き外しユニット22が配設されている。引き外しユニット22は、電流が矢印a方向に流れるプラス側電源線21aの適宜の中間部に配置された常時閉スイッチ23と、この常時閉スイッチ23を開にするラッチングリレー装置24等から成る。   The power source / load system shown in FIG. 2A includes a power source 19, a load 20, and a power source line 21 (a plus side power source line 21a and a minus side power source line 21b) connecting the power source 19 and the load 20. A tripping unit 22 that cuts off the power supply circuit is disposed on the positive power supply line 21a. The tripping unit 22 includes a normally closed switch 23 disposed at an appropriate intermediate portion of the plus-side power line 21a in which a current flows in the direction of arrow a, a latching relay device 24 that opens the normally closed switch 23, and the like.

この電源・負荷システムにおいて、本例の安全装置1は、過大電流の電流検出器として動作する。先ず、同図(a) に示すように、安全装置1の抵抗体16が接続される第2の端子4と第3の端子5とがそれぞれプラス側電源線21aの所定の配線抵抗を有する区間bの両端21−1、21−2から引き出された線に接続される。   In this power source / load system, the safety device 1 of this example operates as an overcurrent detector. First, as shown in FIG. 6A, the second terminal 4 and the third terminal 5 to which the resistor 16 of the safety device 1 is connected have a predetermined wiring resistance of the positive power supply line 21a. It connects to the line pulled out from both ends 21-1 and 21-2 of b.

尚、この区間bの配線抵抗は(内部抵抗)の抵抗値は数mΩ程度のものであり、これに対して抵抗体16の抵抗値は数十mΩから数百mΩに設定される。また、この接続はプラス側電源線21aと限るものではなく、マイナス側電源線21bの所定の配線抵抗を有する区間であっても良い。   Note that the wiring resistance in this section b has an (internal resistance) resistance value of about several mΩ, whereas the resistance value of the resistor 16 is set to several tens mΩ to several hundreds mΩ. Further, this connection is not limited to the plus power supply line 21a, and may be a section having a predetermined wiring resistance of the minus power supply line 21b.

上記の接続により、区間bの配線抵抗値と抵抗体16の抵抗値との比に応じた分圧に対応する電流が抵抗体16に分流するが、電源配線の通常の電流範囲では、抵抗体16への分流電流も小さく、安全装置1内部での抵抗体16の発熱は少ない。このように抵抗体16の抵抗値は、平常の分流電流ではバイメタル15が反転動作することのない少ない発熱しかしないような抵抗値に設定されている。   With the above connection, a current corresponding to the voltage division according to the ratio between the wiring resistance value of the section b and the resistance value of the resistor 16 is shunted to the resistor 16. However, in the normal current range of the power supply wiring, the resistor The shunt current to 16 is also small, and the heat generation of the resistor 16 inside the safety device 1 is small. As described above, the resistance value of the resistor 16 is set to such a resistance value that only generates a small amount of heat that does not cause the bimetal 15 to perform a reverse operation with a normal shunt current.

しかし、電源配線21に何らかの要因で短絡25が発生すると、電源配線21に過大な電流が流れる。このように短絡25のように過大な電流が電源配線21に流れた場合、電源配線21の電線抵抗がたとえ僅かなものであっても区間bの両端21−1、21−2間では比較的大きな電圧降下を示すようになる。   However, when the short circuit 25 occurs in the power supply wiring 21 for some reason, an excessive current flows in the power supply wiring 21. As described above, when an excessive current flows in the power supply wiring 21 as in the case of the short circuit 25, even if the wire resistance of the power supply wiring 21 is very small, it is relatively between the both ends 21-1 and 21-2 of the section b. It shows a large voltage drop.

例えば区間bで抵抗値が1mΩの電源電線があるとすると、1000Aの短絡電流が流れると、区間bの両端21−1、21−2では1Vの電圧降下が生じる。そうすると、これに並列に接続されている抵抗体16の抵抗値が例えば0.1Ωに設定されているものとすればれば、上記1Vの電位差で10Aの電流が流れることになる。勿論並列接続することで、合成抵抗は多少変動するが、いずれにしても上記のような条件で、発熱体16の発熱がバイメタル15の所定の動作温度以上の温度になるように、発熱体16の発熱条件とバイメタル15の反転動作条件を設定しておけば、電源電線の短絡電流による発熱体16の発熱でバイメタル15を反転動作させることができる。   For example, if there is a power supply wire having a resistance value of 1 mΩ in the section b, when a short-circuit current of 1000 A flows, a voltage drop of 1 V occurs at both ends 21-1 and 21-2 of the section b. Then, if the resistance value of the resistor 16 connected in parallel with this is set to 0.1Ω, for example, a current of 10 A flows with the potential difference of 1V. Of course, the combined resistance varies somewhat due to the parallel connection, but in any case, the heating element 16 is heated so that the heat generation of the heating element 16 is equal to or higher than the predetermined operating temperature of the bimetal 15 under the above conditions. If the heat generation condition and the reversal operation condition of the bimetal 15 are set, the bimetal 15 can be reversed by the heat generation of the heating element 16 due to the short-circuit current of the power supply wire.

このように安全装置1のバイメタル15が発熱体16の発熱に反応して反転動作を行い、固定接点7と可動接点8が閉じ、引き外しユニット22のラッチングリレー装置24に予め接続されているプラス側配線に、接点回路26a、26bが形成され、マイナス側配線26cとにより電源電流がラッチングリレー装置24に供給されて常時閉スイッチ23が引き外され、電源電流が遮断される。   In this way, the bimetal 15 of the safety device 1 performs a reversing operation in response to the heat generated by the heating element 16, the fixed contact 7 and the movable contact 8 are closed, and the plus connected to the latching relay device 24 of the tripping unit 22 in advance. Contact circuits 26a and 26b are formed on the side wiring, and the power source current is supplied to the latching relay device 24 by the minus side wiring 26c, so that the normally closed switch 23 is tripped and the power source current is cut off.

この安全装置1の構成において、短絡等の過大電流の検出部すなわち電源電線と並列に接続されている抵抗体16と、発熱を感知して動作するバイメタル15及び固定接点7と可動接点8からなるスイッチ部を含む部分は、それ自体に大電流が流れないので、過大電流検出部の構成を非常に小型にすることができる。   In the configuration of the safety device 1, an overcurrent detection unit such as a short circuit, that is, a resistor 16 connected in parallel with a power supply wire, a bimetal 15 that operates by detecting heat generation, a fixed contact 7, and a movable contact 8 are included. Since a large current does not flow in the part including the switch unit, the configuration of the excessive current detection unit can be made very small.

この為、短絡電流の様な過大な電流で発熱する、例えば電源電線、電源トランス、電源電池、電源電線のコネクタ部の発熱を感知するような取付も可能となる。これにより、過大な電流だけでなく、電源、配線等の各部の熱的な保護を同時に行うことが可能となり、ロスが少なく、しかも安全性の高い安全装置を提供することが可能となる。   For this reason, it is possible to mount such that heat is generated by an excessive current such as a short-circuit current, for example, the heat generation of the connector portion of the power cable, power transformer, power battery, and power cable is detected. As a result, not only an excessive current, but also thermal protection of each part such as a power supply and wiring can be performed simultaneously, and it is possible to provide a safety device with little loss and high safety.

尚、上記短絡時の過大電流を検知する安全装置1において、検出部としての抵抗体16、バイメタル15、及び可動板9は、十分に短い時間で過大電流を検出するために、前述したように常温時OFF型の接点部の状態において、抵抗体16がバイメタル15及び可動板9(特にバイメタル15)に対し密着的状態で接触しているように配置されている。   In the safety device 1 that detects an excessive current at the time of the short circuit, the resistor 16, the bimetal 15, and the movable plate 9 as the detection unit are as described above in order to detect the excessive current in a sufficiently short time. In the state of an OFF-type contact portion at normal temperature, the resistor 16 is disposed so as to be in close contact with the bimetal 15 and the movable plate 9 (particularly, the bimetal 15).

また、抵抗体を独立した構成とすれば、抵抗体をスイッチ部と電気的に絶縁することができ、スイッチ部と無関係となればスイッチ部のように取付上の制約がなくなり、任意の位置に電流検出位置を選定することができる。すなわち電源側でも、アース側でも負荷に近い側でも良いことになる。   In addition, if the resistor is configured independently, the resistor can be electrically insulated from the switch part. If the resistor is not related to the switch part, there are no restrictions on the mounting as in the switch part, and it can be placed at any position. The current detection position can be selected. That is, the power supply side, the ground side, or the side close to the load may be used.

また、図2(b) に示す変形例の安全装置1´は、抵抗体16が可動板9と電気的に独立して、単独で、電源線21(同図(b) の例ではプラス側電源線21a)の所定の配線抵抗を有する区間cの両端から引き出された線に接続されている。この場合は、特には図示しないが、図1(a),(b) に示したハウジング2から外部に4本の端子が引き出されることになる。この図2(b) のように構成しても、同図(a) と同様の作用が得られる。   Further, the safety device 1 'of the modified example shown in FIG. 2 (b) has a resistor 16 that is electrically independent of the movable plate 9 and is independent of the power line 21 (in the example of FIG. 2 (b), on the plus side). The power supply line 21a) is connected to a line drawn from both ends of the section c having a predetermined wiring resistance. In this case, although not particularly shown, four terminals are drawn out from the housing 2 shown in FIGS. 1 (a) and 1 (b). Even when configured as shown in FIG. 2 (b), the same operation as in FIG. 2 (a) can be obtained.

図3(a) は、第2の実施の形態における安全装置に用いられる可動板兼抵抗体を示す平面図であり、同図(b) は、抵抗体としての形状に加工される前の図1(a),(b) に示した可動板を参考のために示す図である。
図3(a) に示す可動板兼抵抗体9´は、同図(b) に示す可動板9に対し、同図(a) のように端子側から中央部に接点8の近傍まで切り込み27を形成し、同図(b) に示す可動板9をUの字形(同図(a) ではUの字が右90度に回転した形状)の抵抗体に形成している。このUの字形の両端部9´−1及び9´ー2を端子部として第2の端子4及び第3の端子5に接続するためにUの字形の両端部9´−1及び9´ー2にリード線を溶接などで取り付ける。
FIG. 3 (a) is a plan view showing a movable plate / resistor used in the safety device according to the second embodiment, and FIG. 3 (b) is a diagram before being processed into a shape as a resistor. It is a figure which shows the movable plate shown to 1 (a), (b) for reference.
The movable plate / resistor 9 ′ shown in FIG. 3 (a) is cut from the movable plate 9 shown in FIG. 3 (b) to the vicinity of the contact 8 from the terminal side to the center as shown in FIG. 3 (a). The movable plate 9 shown in FIG. 2B is formed as a resistor having a U shape (in FIG. 1A, the U shape is rotated 90 degrees to the right). The U-shaped end portions 9'-1 and 9'-2 are connected to the second terminal 4 and the third terminal 5 with the U-shaped end portions 9'-1 and 9'-2 as terminal portions. Attach the lead wire to 2 by welding.

また、可動板兼抵抗体9´のUの字形状の頂点部には可動側の接点8を取付る。また、バイメタル15を可動板兼抵抗体9´の上側に置く場合は、可動板兼抵抗体9´を持ち上げる為の折り返し爪部9aを先端に設ける。
本例では、可動板9が抵抗体を兼ねて可動板兼抵抗体9´となっているので、図1(c) に示した抵抗体16は不要となる。また、可動板兼抵抗体9´はU字の端部から端部の間で短絡電流検出動作時、数Vの電位差が生じるため、これと重ね合わせる図1(a),(b) に示したバイメタル15との間を絶縁する必要が有る。
A movable contact 8 is attached to the apex of the U-shape of the movable plate / resistor 9 '. Further, when the bimetal 15 is placed on the upper side of the movable plate / resistor 9 ', a folding claw portion 9a for lifting the movable plate / resistor 9' is provided at the tip.
In this example, since the movable plate 9 also serves as a resistor and serves as a movable plate / resistor 9 ′, the resistor 16 shown in FIG. 1 (c) is not necessary. In addition, the movable plate / resistor 9 ′ has a potential difference of several volts during the short-circuit current detection operation between the ends of the U-shape, and is shown in FIGS. 1 (a) and 1 (b). It is necessary to insulate from the bimetal 15.

この絶縁には、耐熱性の絶縁シートや絶縁テープ等で対応できる。短絡電流検出用の抵抗値が比較的小さい場合、たとえば0.1Ω以下のような場合、図3(a) に示すようにような構成が有効であり、可動板兼抵抗体9´として使用する材料により抵抗値を調整できる。材料としては、一般的なバネ用材料である低抵抗な材料ではベリリウム銅があり、高抵抗の材料ではステンレス鋼がある。その他チタン銅合金や銅ニッケル合金も使用可能である。   This insulation can be handled with a heat-resistant insulating sheet or insulating tape. When the resistance value for detecting the short-circuit current is relatively small, for example, 0.1Ω or less, the configuration as shown in FIG. 3 (a) is effective and used as the movable plate / resistor 9 ′. The resistance value can be adjusted depending on the material. As a material, beryllium copper is used for a low resistance material that is a general spring material, and stainless steel is used for a high resistance material. Other titanium copper alloys and copper nickel alloys can also be used.

図4(a) は、第3の実施の形態における安全装置に用いられる熱応動素子兼抵抗体を示す平面図であり、同図(b) は、抵抗体としての形状に加工される前の平板のバイメタルを参考のために示す図である。
図4(a) に示す熱応動素子兼抵抗体28´は、同図(b) に示すように図1(a),(b) の場合とほぼ同一形状のただし平板状のバイメタル28に対し、同図(a) のように端子側から中央部に左端部近傍まで、先の可動板9の場合と同様に切り込み28を形成し、Uの字形(同図(a) ではUの字が右90度に回転した形状)の抵抗体に形成している。
FIG. 4 (a) is a plan view showing a thermally responsive element / resistor used in the safety device in the third embodiment, and FIG. 4 (b) is a diagram before being processed into a shape as a resistor. It is a figure which shows the bimetal of a flat plate for reference.
The thermally responsive element / resistor 28 'shown in FIG. 4 (a) is substantially the same as that shown in FIGS. 1 (a) and 1 (b) as shown in FIG. As in the case of the movable plate 9, a notch 28 is formed from the terminal side to the vicinity of the left end as shown in FIG. 9 (a), and a U-shape (the U-shape in FIG. (A shape rotated 90 degrees to the right).

このUの字形の両端部15´−1及び15´ー2は端子部として同図(b) の場合よりも長めに形成している。これら端子部としてのUの字形の両端部15´−1及び15´ー2を第2の端子4及び第3の端子5に接続するためにUの字形の両端部15´−1及び15´ー2にリード線を溶接などで取り付ける。   Both ends 15'-1 and 15'-2 of the U-shape are formed as terminal portions longer than in the case of FIG. In order to connect these U-shaped end portions 15′-1 and 15′-2 as the terminal portions to the second terminal 4 and the third terminal 5, both U-shaped end portions 15′-1 and 15 ′. Attach the lead wire to -2.

一般に、バイメタルを用いたプロテクタには、バイメタルの感熱素子それ自身に電流を流す形式のものが多く使用されている。その多くは、反り返り形状を設定した反転動作型の感熱素子であるが、本例の熱応動素子兼抵抗体15´は、U字の末端部近傍を開く方向、又は閉じる方向にわずかに変位させることで、反転動作を設定することが可能であり、切り込みの先端部を中心に反り返る形状を形成させることができる。予めこのU字先端部に接点8を取り付け、バイメタル15自体を抵抗体とし、熱応動素子兼抵抗体15´として用いることで、そのままスイッチ部として使用することができる。   In general, many types of protectors using a bimetal are used in which a current flows through the bimetallic thermal element itself. Most of them are reversal-type thermosensitive elements having a warped shape, but the thermoresponsive element / resistor 15 'of this example is slightly displaced in the direction of opening or closing the vicinity of the U-shaped end. Thus, it is possible to set the reversal operation, and it is possible to form a shape that warps around the front end of the cut. By attaching the contact 8 to the U-shaped tip in advance, and using the bimetal 15 itself as a resistor and using it as a thermal actuator / resistor 15 ', it can be used as it is as a switch.

すなわち上記のように設定した熱応動素子兼抵抗体15´の湾曲方向を常温時の反り返り方向として設定しておくと、温度上昇によって上記の湾曲する力が反り返り形状で抑えられる限界を超えた時点で、反り返り方向を反転するスナップアクションを行うようになる。   That is, when the bending direction of the thermoresponsive element / resistor 15 ′ set as described above is set as the warping direction at room temperature, the time when the bending force exceeds the limit that can be suppressed by the warping shape due to temperature rise. Then, a snap action to reverse the direction of warping is performed.

また、バイメタルもその組み合わせる材料によって湾曲係数も、体積抵抗率も変化させることができ、さらに中間層に低抵抗材料を使用した3層のトリメタルとすることで、低抵抗の材料とすることもできる。この様なバイメタル自体に検出電流が流れると、バイメタルがジュール熱を発生させ、バイメタル自身の熱で所定温度で反転をすることになる。構造が簡単で、抵抗体自体が感熱素子である為、電流の応答性は本発明のなかで最も応答の早い、高感度の構成となる。   In addition, the bimetal can change the curvature coefficient and the volume resistivity depending on the combined material, and can also be a low-resistance material by using a tri-layer trimetal using a low-resistance material for the intermediate layer. . When a detection current flows in such a bimetal itself, the bimetal generates Joule heat and is inverted at a predetermined temperature by the heat of the bimetal itself. Since the structure is simple and the resistor itself is a thermal element, the current response is the fastest response and the most sensitive configuration in the present invention.

なお、特には図示しないが、検出部はその設置場所に制限さることはなく、例えば電源電線の過熱が問題で有れば、電源電線に接するような取り付が可能であり、また電源部、例えばトランスや電池で保護が必要で有れば、これらの温度を検出するように取り付けることも可能である。勿論、電線だけでなく接続部のコネクタや端子部でも同様である。   Although not particularly illustrated, the detection unit is not limited to the installation location, and for example, if overheating of the power supply wire is a problem, it can be attached so as to contact the power supply wire, For example, if protection is required with a transformer or a battery, it is also possible to attach so as to detect these temperatures. Of course, the same applies not only to the electric wires but also to the connectors and terminal portions of the connecting portions.

なお、検出ユニットの機能確認は、遮断ユニットがラッチ式で有れば予めラッチを外した状態で、抵抗体に検出電流のみを流し、これにより機能を確認することが可能であり、機能確認に点においても便利な構成である。   If the shut-off unit is a latch type, it is possible to check the function of the detection unit by passing only the detection current through the resistor with the latch removed in advance. This is also a convenient configuration in terms of points.

(a) は第1の実施の形態における安全装置の平面図、(b) はその側断面図、(c) は内部の抵抗体を取り出して示す図である。(a) is a plan view of the safety device according to the first embodiment, (b) is a side sectional view thereof, and (c) is a view showing an internal resistor taken out. (a) は常温時OFF構成のスイッチの安全装置を電源・負荷回路におけるラッチ式の遮断ユニットと組み合わせたシステムの一例を示す図、(b) は安全装置の構成の変形例とそれを用いた電源・負荷システムの一例を示す図である。(a) is a diagram showing an example of a system in which a safety device of a switch having an OFF configuration at room temperature is combined with a latch type shut-off unit in a power supply / load circuit, and (b) is a modified example of the configuration of the safety device and using it It is a figure which shows an example of a power supply and load system. (a) は第2の実施の形態における安全装置に用いられる可動板兼抵抗体を示す平面図、(b) は抵抗体としての形状に加工される前の可動板を参考のために示す図である。(a) is a top view which shows the movable plate and resistor used for the safety device in 2nd Embodiment, (b) is a figure which shows the movable plate before processing into the shape as a resistor for reference It is. (a) は第3の実施の形態における安全装置に用いられる熱応動素子兼抵抗体を示す平面、(b) は抵抗体としての形状に加工される前の平板のバイメタルを参考のために示す図である。(a) is a plane showing a thermoresponsive element / resistor used in the safety device in the third embodiment, and (b) is a bimetal of a flat plate before being processed into a shape as a resistor for reference. FIG.

符号の説明Explanation of symbols

1 安全装置
2 ハウジング
3 第1の端子
4 第2の端子
5 第3の端子
6 被覆材
7 固定接点
8 可動接点
9 可動板
9a 折り返し爪部
9´ 可動板兼抵抗体
9´−1、9´ー2 Uの字形の両端部
11 支持部
12 凸部
13 電極
14 内部配線
15 バイメタル
15´−1、15´ー2 Uの字形の両端部
16 抵抗体
17 絶縁シート
18 取付孔
19 電源
20 負荷
21 電源線
21a プラス側電源線
21b マイナス側電源線
21−1、21−2 区間bの端部
22 引き外しユニット
23 常時閉スイッチ
24 ラッチングリレー装置
25 短絡
26a、26b 接点回路
26c マイナス側配線
27、28 切り込み


DESCRIPTION OF SYMBOLS 1 Safety device 2 Housing 3 1st terminal 4 2nd terminal 5 3rd terminal 6 Coating | covering material 7 Fixed contact 8 Movable contact 9 Movable plate 9a Folding nail | claw part 9 'Movable plate and resistor 9'-1, 9' -2 U-shaped both ends 11 Supporting portion 12 Protruding portion 13 Electrode 14 Internal wiring 15 Bimetal 15'-1, 15'-2 Both ends of U-shaped 16 Resistor 17 Insulating sheet 18 Mounting hole 19 Power source 20 Load 21 Power line 21a Positive side power line 21b Negative side power line 21-1, 21-2 End of section b 22 Trip unit 23 Normally closed switch 24 Latching relay device 25 Short circuit 26a, 26b Contact circuit 26c Negative side wiring 27, 28 Notch


Claims (7)

熱応動素子が素子周囲の温度上昇を感知して反り返り方向を反転したとき接点回路を閉じる構成の安全装置において、
第1の端子に接続された固定接点に対向する位置に可動接点を有して第2の端子に接続された可動板と、
平常の反り返り状態のとき接点回路を開放状態とする熱応動素子と、
該熱応動素子と前記可動板との間に抵抗体部分が前記熱応動素子及び前記可動板から電気的に絶縁されて挟み込まれ前記第2の端子と第3の端子の間に接続された抵抗体と、
を有することを特徴とする安全装置。
In the safety device configured to close the contact circuit when the thermally responsive element senses the temperature rise around the element and reverses the direction of warping,
A movable plate connected to the second terminal having a movable contact at a position opposite to the fixed contact connected to the first terminal;
A thermally responsive element that opens the contact circuit when in a normal warping state;
A resistor portion sandwiched between the thermally responsive element and the movable plate and electrically insulated from the thermally responsive element and the movable plate, and connected between the second terminal and the third terminal. Body,
A safety device comprising:
熱応動素子が素子周囲の温度上昇を感知して反り返り方向を反転したとき接点回路を閉じる構成の安全装置において、
第1の端子に接続された固定接点に対向する位置に可動接点を有して第2の端子に接続された可動板と、
平常の反り返り状態のとき接点回路を開放状態とする熱応動素子と、
該熱応動素子と前記可動板との間に抵抗体部分が前記熱応動素子及び前記可動板から電気的に絶縁されて挟み込まれ前記第1及び第2の端子から独立した第3の端子と第4の端子の間に接続された抵抗体と、
を有することを特徴とする安全装置。
In the safety device configured to close the contact circuit when the thermally responsive element senses the temperature rise around the element and reverses the direction of warping,
A movable plate connected to the second terminal having a movable contact at a position opposite to the fixed contact connected to the first terminal;
A thermally responsive element that opens the contact circuit when in a normal warping state;
A resistor portion is sandwiched between the thermally responsive element and the movable plate so as to be electrically insulated from the thermally responsive element and the movable plate, and a third terminal and a second terminal independent of the first and second terminals. A resistor connected between the four terminals;
A safety device comprising:
前記抵抗体は、柔軟性を有して構成され、前記熱応動素子が所定の動作温度以下における前記平常の反り返り方向に反り返っているとき前記熱応動素子と前記可動板とに密着的状態で接触し、
前記熱応動体の所定の動作温度以上での前記平常の反り返り方向からの反転動作により前記熱応動素子、前記可動板、及び前記抵抗体の3部材間の密着的状態が開放される、
ことを特徴とする請求項1又は2記載に安全装置。
The resistor is configured to have flexibility, and is in close contact with the thermally responsive element and the movable plate when the thermally responsive element is warped in the normal warping direction below a predetermined operating temperature. And
The intimate state between the three members of the thermally responsive element, the movable plate, and the resistor is released by the reversal operation from the normal warping direction at a predetermined operating temperature of the thermally responsive body.
The safety device according to claim 1 or 2, characterized in that.
熱応動素子が素子周囲の温度上昇を感知して、反り返り方向を反転したとき接点回路を閉じる構成の安全装置において、
第1の端子に接続された固定接点に対向する位置となる頂点部に可動接点を有して略U字形状に形成さた可動板と、
該可動板のU字の一端に接続された第2の端子と、
前記可動板のU字の他端に接続された第3の端子と、
所定の動作温度以下の平常の反り返り状態で前記可動板と密着的状態で接触し且つ該接触部分で電気的に絶縁されて配置され、前記第2の端子と前記第3の端子間に所定以上の電流が流れたことによる前記可動板の発熱に基づいて前記平常の反り返り方向を反転する熱応動素子と、
を有することを特徴とする安全装置。
In the safety device configured to close the contact circuit when the thermally responsive element senses the temperature rise around the element and reverses the direction of warping,
A movable plate formed in a substantially U shape having a movable contact at the apex portion which is a position facing the fixed contact connected to the first terminal;
A second terminal connected to one end of the U-shape of the movable plate;
A third terminal connected to the other end of the U-shape of the movable plate;
It is disposed in contact with the movable plate in a state of normal warping below a predetermined operating temperature in an intimate contact state and electrically insulated at the contact portion, and is more than a predetermined amount between the second terminal and the third terminal. A thermally responsive element that reverses the normal warping direction based on the heat generated by the movable plate due to the flow of the current;
A safety device comprising:
前記熱応動素子が所定の動作温度以上での前記平常の反り返り方向からの反転動作を行ったとき、前記熱応動素子と前記可動板との密着的状態の接触が開放される、ことを特徴とする請求項4記載の安全装置。   When the thermally responsive element performs a reversing operation from the normal warping direction at a predetermined operating temperature or higher, contact between the thermally responsive element and the movable plate is released. The safety device according to claim 4. 熱応動素子が素子周囲の温度上昇を感知して、反り返り方向を反転したとき接点回路を閉じる構成の安全装置において、
第1の端子に接続された固定接点に対向する位置となる頂点部に可動接点を有して略U字形状に形成され、U字の一端が第2の端子に接続され、U字の他端が第3の端子に接続され、前記第2の端子と前記第3の端子間に所定以上の電流が流れたことによる自己発熱に基づいて前記平常の反り返り方向を反転する熱応動素子を備えたことを特徴とする安全装置。
In the safety device configured to close the contact circuit when the thermally responsive element senses the temperature rise around the element and reverses the direction of warping,
It has a movable contact at the apex that is positioned opposite to the fixed contact connected to the first terminal, is formed in a substantially U shape, and one end of the U shape is connected to the second terminal. A heat-responsive element having an end connected to a third terminal and reversing the normal warping direction based on self-heating caused by a current greater than or equal to a predetermined amount flowing between the second terminal and the third terminal; Safety device characterized by that.
前記第1の端子は、前記熱応動素子が前記平常の反り返り方向を反転したとき、前記第2の端子又は前記第3の端子との間で接点回路を構成することを特徴とする請求項4又は6記載の安全装置。

5. The first terminal forms a contact circuit with the second terminal or the third terminal when the thermally responsive element reverses the normal warping direction. Or the safety device of 6.

JP2004040193A 2004-02-17 2004-02-17 Safeguard Pending JP2005235446A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004040193A JP2005235446A (en) 2004-02-17 2004-02-17 Safeguard
PCT/JP2005/002275 WO2005078756A1 (en) 2004-02-17 2005-02-15 Safety device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040193A JP2005235446A (en) 2004-02-17 2004-02-17 Safeguard

Publications (1)

Publication Number Publication Date
JP2005235446A true JP2005235446A (en) 2005-09-02

Family

ID=34857869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040193A Pending JP2005235446A (en) 2004-02-17 2004-02-17 Safeguard

Country Status (2)

Country Link
JP (1) JP2005235446A (en)
WO (1) WO2005078756A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193667A1 (en) * 2017-04-18 2018-10-25 ウチヤ・サーモスタット株式会社 Thermally operated switch
WO2024009461A1 (en) * 2022-07-07 2024-01-11 株式会社生方製作所 Thermal protector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012103306B3 (en) * 2012-04-17 2013-04-25 Thermik Gerätebau GmbH Temperature-dependent switch with contact part as heating resistor
ITMI20132139A1 (en) * 2013-12-19 2015-06-20 Electrica S R L PROTECTIVE DEVICE FOR ELECTRIC APPLIANCES, IN PARTICULAR FOR ELECTRIC MOTORS, COMPRESSORS AND TRANSFORMERS

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939514Y1 (en) * 1970-01-23 1974-10-30
US4088976A (en) * 1975-10-14 1978-05-09 Technar, Inc. Thermally operated bimetal actuator
JPH0193019A (en) * 1987-10-01 1989-04-12 Toubu Denki Kk Protector
JP3393981B2 (en) * 1997-09-02 2003-04-07 ウチヤ・サーモスタット株式会社 Thermal protector
JP4401603B2 (en) * 2001-08-16 2010-01-20 ウチヤ・サーモスタット株式会社 thermostat

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193667A1 (en) * 2017-04-18 2018-10-25 ウチヤ・サーモスタット株式会社 Thermally operated switch
CN110494945A (en) * 2017-04-18 2019-11-22 打矢恒温器株式会社 Temperature driving switch
US11043348B2 (en) 2017-04-18 2021-06-22 Uchiya Thermostat Co., Ltd. Temperature actuated switch
CN110494945B (en) * 2017-04-18 2022-05-06 打矢恒温器株式会社 Temperature-driven switch
WO2024009461A1 (en) * 2022-07-07 2024-01-11 株式会社生方製作所 Thermal protector

Also Published As

Publication number Publication date
WO2005078756A1 (en) 2005-08-25

Similar Documents

Publication Publication Date Title
JP5274013B2 (en) Electrical composite element
TWI567773B (en) Protection device and electronic device having the same
JP6313301B2 (en) Protective device
KR20070014990A (en) Protection apparatus
JP5300840B2 (en) Circuit protection device
JP6357221B2 (en) Protective device
US20120001721A1 (en) Thermal switch
JP5752354B2 (en) Circuit protection device
WO2005081276A1 (en) Safety device and overcurrent cut-off system using same
US7446643B2 (en) Resetable over-current and/or over-temperature protection system
CN103380555B (en) Protective device
WO2005078756A1 (en) Safety device
JP2607367B2 (en) Breaker
EP2913836A1 (en) Thermal trip device of a thermal magnetic circuit breaker having a resistor element, thermal magnetic circuit breaker and switching device for interrupting a current flow and method for protecting an electrical circuit from damage
JP7181295B2 (en) Electrochemical energy storage modules and vehicles
JP3483098B2 (en) Overcurrent protection device
US3833873A (en) Thermal protector
EP2587604A1 (en) A fault protection device
JP2001176371A (en) Thermomotive overload detection device
CN211980542U (en) Overload protector
JP3120688U (en) Overload protector and equipment using the same
KR100586574B1 (en) Bimetal plate laminated thereon positive temperature coefficient material layer and Device of blocking over current in electrical circuit using the same
JP4368039B2 (en) Thermal fuse having a self-heating element and a battery pack incorporating the thermal fuse
CN116263356A (en) Temperature sensing belt based on bimetal switch and temperature control method
KR20050062125A (en) Trip mechanisim of molded case circuit breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060828

A131 Notification of reasons for refusal

Effective date: 20081021

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20081202

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Effective date: 20090714

Free format text: JAPANESE INTERMEDIATE CODE: A02