JP2005235387A - Magnetoresistive effect head and magnetic recording reproducing device - Google Patents

Magnetoresistive effect head and magnetic recording reproducing device Download PDF

Info

Publication number
JP2005235387A
JP2005235387A JP2005069758A JP2005069758A JP2005235387A JP 2005235387 A JP2005235387 A JP 2005235387A JP 2005069758 A JP2005069758 A JP 2005069758A JP 2005069758 A JP2005069758 A JP 2005069758A JP 2005235387 A JP2005235387 A JP 2005235387A
Authority
JP
Japan
Prior art keywords
head
alloy
magnetoresistive
layer
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005069758A
Other languages
Japanese (ja)
Inventor
Kenichi Aoshima
賢一 青島
Hitoshi Kanai
均 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005069758A priority Critical patent/JP2005235387A/en
Publication of JP2005235387A publication Critical patent/JP2005235387A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain hard magnetic characteristics, and an appropriate head characteristics by reducing head noise, and prevent a recording reproducing characteristics deterioration by preventing undulation in a write head in a magnetoresistive effect head and a magnetic recording reproducing device. <P>SOLUTION: A magnetoresistive effect film of the magnetoresistive effect element includes a stabilization bias layer for impressing a magnetization stabilization bias magnetic field and the ferromagnetic material comprising a foundation layer for the stabilization bias layer. The ferromagnetic material is configured to consist of Fe alloy, FeCo alloy, FeCoNi alloy or FeNi alloy to which at least one element chosen from a group consisting of Pt, Pd, Ir, Rh, Ru, Au is added. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、磁気抵抗効果型ヘッド及び磁気記録再生装置に係り、特に磁気抵抗効果膜に磁化安定化バイアス磁界を印加する安定化バイアス層を用いる磁気抵抗効果型ヘッド及びこのような磁気抵抗効果型ヘッドを備えた磁気記録再生装置に関する。   The present invention relates to a magnetoresistive head and a magnetic recording / reproducing apparatus, and more particularly, to a magnetoresistive head using a stabilizing bias layer that applies a magnetization stabilizing bias magnetic field to the magnetoresistive film and such a magnetoresistive effect type. The present invention relates to a magnetic recording / reproducing apparatus including a head.

図1は、従来の磁気抵抗効果型ヘッドの要部を示す断面図である。同図に示す如く、従来の磁気抵抗効果型ヘッドでは、矩形の磁気抵抗効果素子1が素子端子3に接続され、磁気抵抗効果素子(スピンバルブ素子)1及び素子端子3の上下は夫々アルミナ(Al2O3)層4,5により絶縁されている。又、これらのアルミナ層4,5の上下両側は、図示を省略する2つの軟磁性体(NiFe) によりシールドされている。 FIG. 1 is a cross-sectional view showing a main part of a conventional magnetoresistive head. As shown in the figure, in the conventional magnetoresistive head, a rectangular magnetoresistive element 1 is connected to an element terminal 3, and the upper and lower sides of the magnetoresistive element (spin valve element) 1 and the element terminal 3 are alumina ( Insulated by Al 2 O 3 ) layers 4 and 5. The upper and lower sides of these alumina layers 4 and 5 are shielded by two soft magnetic bodies (NiFe) (not shown).

再生素子は、再生出力安定化のために縦バイアス印加層7を備えており、この縦バイアス印加層7には硬磁性体が用いられている。この硬磁性体の下地として、bcc結晶構造の薄膜を用いることで、硬磁気特性を向上できることが知られている。   The reproducing element includes a longitudinal bias application layer 7 for stabilizing the reproduction output, and a hard magnetic material is used for the longitudinal bias application layer 7. It is known that the hard magnetic characteristics can be improved by using a thin film having a bcc crystal structure as the base of the hard magnetic material.

例えば、特許文献1では、硬磁性体の下地にbcc結晶構造の薄膜を用いて、再生出力の安定化を向上することが提案されている。この場合の再生出力安定化の向上は、Fe等の強磁性体がスピンバルブ素子のフリー層と交換結合するための考えられている。例えば、10nmのFeや10nmのFeCrの下地にCoCrPtからなる硬磁性体を用いた場合、磁界が1000〜1200Oeとなり、バルクハウゼンノイズを効果的に抑制できる。
特開平9−97409号公報
For example, Patent Document 1 proposes to improve the stability of reproduction output by using a thin film having a bcc crystal structure as a base of a hard magnetic material. Improvement of reproduction output stabilization in this case is considered because a ferromagnetic material such as Fe exchange-couples with the free layer of the spin valve element. For example, when a hard magnetic material made of CoCrPt is used as a base of 10 nm Fe or 10 nm FeCr, the magnetic field becomes 1000 to 1200 Oe, and Barkhausen noise can be effectively suppressed.
JP-A-9-97409

硬磁性体として用いられるCoCrPtは、比抵抗が60〜80μΩcmと高い。このため、磁気抵抗効果型ヘッド全体としての抵抗値が大きくなってしまい、ヘッドノイズ(ホワイトノイズ)の原因となり、ヘッド特性が低下するという問題があった。   CoCrPt used as a hard magnetic material has a high specific resistance of 60 to 80 μΩcm. Therefore, the resistance value of the magnetoresistive head as a whole is increased, causing head noise (white noise), and there is a problem that head characteristics are deteriorated.

又、硬磁性体として用いられるCoC
rPtの残留磁化は低く、十分なヘッド特性を得るためには、膜厚を大きくする必要があった。しかし、硬磁性体の膜厚を大きくすると、書き込みヘッドにうねりが生じて、記録再生特性を低下させてしまうと言う問題もあった。
CoC used as a hard magnetic material
The residual magnetization of rPt is low, and it was necessary to increase the film thickness in order to obtain sufficient head characteristics. However, when the thickness of the hard magnetic material is increased, there is a problem that waviness occurs in the write head and the recording / reproducing characteristics are deteriorated.

更に、磁束密度の高いCoPtを硬磁性体として用い、且つ、tokkyo特開平文献1で提案されているbcc結晶構造の強磁性下地膜を用いた場合には、図2に示すように、良好な硬磁気特性を得ることは難しいという問題もあった。同図は、Fe層を3nm、CoPt層を10nmとした場合のbcc結晶構造の強磁性下地膜の特性を示す図であり、縦軸は磁化(Gauss)、横軸は磁界(Oe) を示す。   Further, when CoPt having a high magnetic flux density is used as a hard magnetic material and a ferromagnetic underlayer film having a bcc crystal structure proposed in tokkyo Japanese Patent Laid-Open No. Hei 1 is used, as shown in FIG. There was also a problem that it was difficult to obtain hard magnetic properties. The figure shows the characteristics of a ferromagnetic underlayer having a bcc crystal structure when the Fe layer is 3 nm and the CoPt layer is 10 nm. The vertical axis indicates magnetization (Gauss) and the horizontal axis indicates magnetic field (Oe). .

そこで、本発明は、上記の問題に鑑み、ヘッドノイズを低減して良好なヘッド特性を得ることができ、書き込みヘッドのうねりを防止して記録再生特性の劣化を防止し得、良好な硬磁気特性を得ることができる磁気抵抗効果型ヘッド及び磁気記録再生装置を提供することを目的とする。   Therefore, in view of the above problems, the present invention can reduce head noise and obtain good head characteristics, prevent waviness of the write head and prevent deterioration of recording and reproduction characteristics, and good hard magnetic properties. It is an object of the present invention to provide a magnetoresistive head and a magnetic recording / reproducing apparatus capable of obtaining characteristics.

上記の課題は、磁気抵抗効果素子の磁気抵抗効果膜に磁化安定化バイアス磁界を印加する安定化バイアス層と、該安定化バイアス層の下地層を構成する強磁性体とを備え、該強磁性体はFeからなり、1.3 〜2.5 nmの膜厚を有する磁気抵抗効果型ヘッドにより達成できる。本発明になる磁気抵抗効果型ヘッドによれば、ヘッドノイズを低減して良好なヘッド特性を得ることができ、書き込みヘッドのうねりを防止して記録再生特性の劣化を防止し得、良好な硬磁気特性を得ることができる。   The above-described problem includes a stabilizing bias layer that applies a magnetization stabilizing bias magnetic field to a magnetoresistive effect film of a magnetoresistive effect element, and a ferromagnetic material that forms an underlayer of the stabilizing bias layer, The body is made of Fe and can be achieved by a magnetoresistive head having a film thickness of 1.3 to 2.5 nm. According to the magnetoresistive head according to the present invention, it is possible to reduce head noise and obtain good head characteristics, to prevent waviness of the write head and to prevent deterioration of recording and reproduction characteristics, and to obtain good hardness. Magnetic characteristics can be obtained.

この場合、前記安定化バイアス層は、Co系の合金又はCoPt合金からなる構成でも良い。   In this case, the stabilizing bias layer may be made of a Co-based alloy or a CoPt alloy.

上記の課題は、磁気抵抗効果素子の磁気抵抗効果膜に磁化安定化バイアス磁界を印加する安定化バイアス層と、該安定化バイアス層の下地層を構成する強磁性体とを備え、該強磁性体は、Co,Ni,Cr,Nb,Mo,Ta,V ,W からなるグループから選択された少なくとも1つの元素が添加されたFe合金からなり、2.5〜4.9nmの膜厚を有する磁気抵抗効果型ヘッドによっても達成できる。本発明になる磁気抵抗効果型ヘッドによれば、ヘッドノイズを低減して良好なヘッド特性を得ることができ、書き込みヘッドのうねりを防止して記録再生特性の劣化を防止し得、良好な硬磁気特性を得ることができる。   The above-described problem includes a stabilizing bias layer that applies a magnetization stabilizing bias magnetic field to a magnetoresistive effect film of a magnetoresistive effect element, and a ferromagnetic material that forms an underlayer of the stabilizing bias layer, The body is made of an Fe alloy to which at least one element selected from the group consisting of Co, Ni, Cr, Nb, Mo, Ta, V, and W is added, and has a thickness of 2.5 to 4.9 nm. This can also be achieved by a magnetoresistive head. According to the magnetoresistive head according to the present invention, it is possible to reduce head noise and obtain good head characteristics, to prevent waviness of the write head and to prevent deterioration of recording and reproduction characteristics, and to obtain good hardness. Magnetic characteristics can be obtained.

この場合、前記強磁性体は、Cr組成が10〜20at%のFeCr合金からなる構成であっても良い。   In this case, the ferromagnetic material may be composed of an FeCr alloy having a Cr composition of 10 to 20 at%.

上記の課題は、磁気抵抗効果素子の磁気抵抗効果膜に磁化安定化バイアス磁界を印加する安定化バイアス層と、該安定化バイアス層の下地層を構成する強磁性体とを備え、該強磁性体は、Pt,Pd,Ir,Rh,Ru,Auからなるグループから選択された少なくとも1つの元素が添加されたFe合金からなる磁気抵抗効果型ヘッドによっても達成できる。本発明になる磁気抵抗効果型ヘッドによれば、ヘッドノイズを低減して良好なヘッド特性を得ることができ、書き込みヘッドのうねりを防止して記録再生特性の劣化を防止し得、良好な硬磁気特性を得ることができる。   The above-described problem includes a stabilizing bias layer that applies a magnetization stabilizing bias magnetic field to a magnetoresistive effect film of a magnetoresistive effect element, and a ferromagnetic material that forms an underlayer of the stabilizing bias layer, The body can also be achieved by a magnetoresistive head made of an Fe alloy to which at least one element selected from the group consisting of Pt, Pd, Ir, Rh, Ru, and Au is added. According to the magnetoresistive head according to the present invention, it is possible to reduce head noise and obtain good head characteristics, to prevent waviness of the write head and to prevent deterioration of recording and reproduction characteristics, and to obtain good hardness. Magnetic characteristics can be obtained.

この場合、前記強磁性体は、Pt組成が1〜25at%のFePt合金からなる構成であっても良い。又、前記強磁性体は2.5nm以上の膜厚を有する構成であっても良い。更に、前記安定化バイアス層は、CoPt合金からなる構成であっても良い。 上記の課題は、磁気抵抗効果素子の磁気抵抗効果膜に磁化安定化バイアス磁界を印加する安定化バイアス層と、該安定化バイアス層の下地層を構成する強磁性体とを備え、該強磁性体は、Pt,Pd,Ir,Rh,Ru,Auからなるグループから選択された少なくとも1つの元素が添加されたFeCo合金、FeCoNi合金又はFeNi合金からなる磁気抵抗効果型ヘッドによっても達成できる。   In this case, the ferromagnetic material may be composed of an FePt alloy having a Pt composition of 1 to 25 at%. The ferromagnetic material may have a thickness of 2.5 nm or more. Furthermore, the stabilizing bias layer may be made of a CoPt alloy. The above-described problem includes a stabilizing bias layer that applies a magnetization stabilizing bias magnetic field to a magnetoresistive effect film of a magnetoresistive effect element, and a ferromagnetic material that forms an underlayer of the stabilizing bias layer, The body can also be achieved by a magnetoresistive head made of FeCo alloy, FeCoNi alloy or FeNi alloy to which at least one element selected from the group consisting of Pt, Pd, Ir, Rh, Ru and Au is added.

上記の課題は、上記の如き構成の磁気抵抗効果型ヘッドを備えた磁気記録再生装置によっても達成できる。本発明になる磁気記録再生装置によれば、ヘッドノイズを低減して良好なヘッド特性を得ることができ、書き込みヘッドのうねりを防止して記録再生特性の劣化を防止し得、良好な硬磁気特性を得ることができる。   The above problem can also be achieved by a magnetic recording / reproducing apparatus including the magnetoresistive head having the above-described configuration. According to the magnetic recording / reproducing apparatus of the present invention, the head noise can be reduced to obtain good head characteristics, the write head can be prevented from wobbling to prevent the recording / reproducing characteristics from being deteriorated, and good hard magnetism can be obtained. Characteristics can be obtained.

本発明によれば、ヘッドノイズを低減して良好なヘッド特性を得ることができ、書き込みヘッドのうねりを防止して記録再生特性の劣化を防止し得、良好な硬磁気特性を得ることができる磁気抵抗効果型ヘッド及び磁気記録再生装置を実現できる。   According to the present invention, it is possible to obtain good head characteristics by reducing head noise, to prevent waviness of the write head, to prevent deterioration of recording and reproducing characteristics, and to obtain good hard magnetic characteristics. A magnetoresistive head and a magnetic recording / reproducing apparatus can be realized.

以下、図3以降と共に、本発明の実施例を説明する。   The embodiment of the present invention will be described below with reference to FIG.

先ず、本発明になる磁気抵抗効果型ヘッドの第1実施例を説明する。図3は、磁気抵抗効果型ヘッドの第1実施例の製造工程を説明する断面図であり、図4は、磁気抵抗効果型ヘッドの第1実施例の要部を示す断面図である。   First, a first embodiment of the magnetoresistive head according to the present invention will be described. FIG. 3 is a cross-sectional view for explaining the manufacturing process of the first embodiment of the magnetoresistive head. FIG. 4 is a cross-sectional view showing the main part of the first embodiment of the magnetoresistive head.

図3において、FeZrN からなる下部シールド層10は、スパッタ法により基板(図示せず)上に例えば2μmの膜厚で形成される。この磁気シールド層10の上には、アルミナ(Al2O3)からなる下部ギャップ層11が例えば50nmの膜厚で形成される。下部ギャップ層11の上には、磁気抵抗効果素子(スピンバルブ素子)12が形成される。この磁気抵抗効果素子12は、括弧内の数値が膜厚をnmで示すものとすると、Ta(5)/NiFe(2)/CoFeB(1.5)/Cu(3)/CoFeB(2)/PdPtMn(20)/Ta(6)nmからなる。尚、磁気抵抗効果素子12は、スピンパルブ素子に限定されず、AMR,TMR等の磁気抵抗効果素子であっても良いことは、言うまでもない。 In FIG. 3, the lower shield layer 10 made of FeZrN is formed with a film thickness of, for example, 2 μm on a substrate (not shown) by sputtering. On the magnetic shield layer 10, a lower gap layer 11 made of alumina (Al 2 O 3 ) is formed with a film thickness of 50 nm, for example. A magnetoresistive effect element (spin valve element) 12 is formed on the lower gap layer 11. This magnetoresistive element 12 has Ta (5) / NiFe (2) / CoFeB (1.5) / Cu (3) / CoFeB (2) / PdPtMn (), where the value in parentheses indicates the film thickness in nm. 20) / Ta (6) nm. Needless to say, the magnetoresistive effect element 12 is not limited to a spin valve element, and may be a magnetoresistive effect element such as AMR or TMR.

次に、磁気抵抗効果素子12上に、例えば幅1μmで高さが3μmのレジスト膜13をパターニングにより形成し、このレジスト膜13をマスクにしてドライエッチングにより、磁気抵抗効果素子12を下部ギャップ層11が露出するまでエッチングする。この状態で、図4に示すように、露出した下部ギャップ層11上に、例えば1.6nmのFeからなる強磁性下地層15と、例えば30nmのCoPtからなる硬磁性層16を順次形成する。この硬磁性層16は、磁気抵抗効果素子12の磁気抵抗効果膜に磁化安定化バイアス磁界を印加するための安定化バイアス層を構成する。硬磁性層16の膜厚は、磁気抵抗効果素子12のフリー層の磁化に対して約1〜7倍程度の残留磁化を有するように設定することが望ましい。   Next, a resist film 13 having a width of 1 μm and a height of 3 μm, for example, is formed on the magnetoresistive effect element 12 by patterning, and the resist film 13 is used as a mask to dry-etch the magnetoresistive effect element 12 to form the lower gap layer. Etch until 11 is exposed. In this state, as shown in FIG. 4, a ferromagnetic underlayer 15 made of, for example, 1.6 nm of Fe and a hard magnetic layer 16 made of, for example, 30 nm of CoPt are sequentially formed on the exposed lower gap layer 11. The hard magnetic layer 16 constitutes a stabilizing bias layer for applying a magnetization stabilizing bias magnetic field to the magnetoresistive effect film of the magnetoresistive effect element 12. The film thickness of the hard magnetic layer 16 is desirably set so as to have a residual magnetization of about 1 to 7 times the magnetization of the free layer of the magnetoresistive element 12.

その後、硬磁性層16の上に、例えば80nmのTaからなる素子端子17が形成され、レジスト層13が除去された後に例えば50nmのアルミナからなる上部ギャップ層18及び例えば2μmのFeZrN からなる上部シールド層19等が形成される。その他の磁気抵抗効果型ヘッドの製造工程は、周知の工程を使用し得るため、本明細書ではその図示及び説明は省略する。   Thereafter, an element terminal 17 made of, for example, 80 nm Ta is formed on the hard magnetic layer 16, and after the resist layer 13 is removed, an upper gap layer 18 made of, for example, 50 nm of alumina and an upper shield made of, for example, 2 μm of FeZrN. Layer 19 and the like are formed. Since the other manufacturing processes of the magnetoresistive head can use known processes, illustration and description thereof are omitted in this specification.

尚、硬磁性層16は、CoPtからなる構成であっても、Co系の合金からなる構成であっても良い。Fe強磁性下地層15の磁化は例えば22kGauss であり、CoPt硬磁性層16の磁化は例えば14kGauss である。   The hard magnetic layer 16 may be composed of CoPt or a Co-based alloy. The magnetization of the Fe ferromagnetic underlayer 15 is, for example, 22 kGauss, and the magnetization of the CoPt hard magnetic layer 16 is, for example, 14 kGauss.

次に、本発明になる磁気抵抗効果型ヘッドの第2実施例を説明する。本実施例では、磁気抵抗効果型ヘッドの基本構成は、上記第1実施例と同じであるため、その図示は省略する。本実施例は、強磁性下地層15を、Feの代わりにFeCrで構成し、強磁性下地層15の膜厚を例えば4nmに設定する点が上記第1実施例と異なる。   Next, a description will be given of a second embodiment of the magnetoresistive head according to the present invention. In the present embodiment, the basic configuration of the magnetoresistive head is the same as that of the first embodiment, and the illustration thereof is omitted. This embodiment is different from the first embodiment in that the ferromagnetic underlayer 15 is made of FeCr instead of Fe and the film thickness of the ferromagnetic underlayer 15 is set to 4 nm, for example.

図5は、上記第1及び第2実施例におけるCoPt硬磁性層16の磁気特性を示す図である。同図中、縦軸は磁界Hc(Oe) を示し、横軸は強磁性下地層15の膜厚(nm)を示す。同図において、特性I は第1実施例の、強磁性下地層15がFeからなる場合を示し、特性IIは第2実施例の、強磁性下地層15がFeCrからなる場合を示し、CoPt硬磁性層18の膜厚は10nmであるものとする。特性I から、第1実施例におけるFe強磁性下地層15の膜厚の最適値は、1.3〜2.5nmであることがわかる。又、第2実施例におけるFeCr強磁性下地層15の膜厚の最適値は、2.5nm以上であることがわかる。   FIG. 5 is a diagram showing the magnetic characteristics of the CoPt hard magnetic layer 16 in the first and second embodiments. In the figure, the vertical axis represents the magnetic field Hc (Oe), and the horizontal axis represents the film thickness (nm) of the ferromagnetic underlayer 15. In the figure, characteristic I shows the case where the ferromagnetic underlayer 15 is made of Fe in the first embodiment, and characteristic II shows the case where the ferromagnetic underlayer 15 is made of FeCr in the second embodiment. The thickness of the magnetic layer 18 is assumed to be 10 nm. From the characteristic I, it can be seen that the optimum value of the film thickness of the Fe ferromagnetic underlayer 15 in the first example is 1.3 to 2.5 nm. It can also be seen that the optimum value of the film thickness of the FeCr ferromagnetic underlayer 15 in the second example is 2.5 nm or more.

このように、上記第1及び第2実施例によれば、最適な膜厚のFe又はFeCr強磁性下地層15を用いることで、硬磁性層16の磁気特性を向上することができる。又、強磁性下地層15にFeCrを用いると、Feを用いた場合と比較すると、最適な膜厚の範囲を更に広げることができる。又、硬磁性層16にCoPtを用いることで、CoCrPtを用いた場合と比較すると、膜厚を減少させることができ、これにより書き込みヘッドにうねりを生じたりすることもなく、ノイズの少ない安定した磁気抵抗効果型ヘッドを実現することができる。又、磁気抵抗効果型ヘッドの歩留まりも向上できる。   As described above, according to the first and second embodiments, the magnetic characteristics of the hard magnetic layer 16 can be improved by using the Fe or FeCr ferromagnetic underlayer 15 having an optimum film thickness. In addition, when FeCr is used for the ferromagnetic underlayer 15, the range of the optimum film thickness can be further expanded as compared with the case where Fe is used. Further, by using CoPt for the hard magnetic layer 16, the film thickness can be reduced as compared with the case of using CoCrPt, thereby causing no waviness in the write head and stable with less noise. A magnetoresistive head can be realized. Also, the yield of the magnetoresistive head can be improved.

次に、本発明になる磁気抵抗効果型ヘッドの第3実施例を説明する。本実施例では、磁気抵抗効果型ヘッドの基本構成は、上記第1実施例と同じであるため、その図示は省略する。本実施例は、強磁性下地層15を、Feの代わりに、Co,Ni,Cr,Nb,Mo,Ta,V ,W からなるグループから選択された少なくとも1つの元素が添加されたFe合金で構成し、強磁性下地層15の膜厚を2.5〜4.9nmに設定する点が上記第1実施例と異なる。   Next, a description will be given of a third embodiment of the magnetoresistive head according to the present invention. In the present embodiment, the basic configuration of the magnetoresistive head is the same as that of the first embodiment, and the illustration thereof is omitted. In this embodiment, the ferromagnetic underlayer 15 is made of an Fe alloy to which at least one element selected from the group consisting of Co, Ni, Cr, Nb, Mo, Ta, V, and W is added instead of Fe. This is different from the first embodiment in that the ferromagnetic underlayer 15 is configured to have a thickness of 2.5 to 4.9 nm.

尚、強磁性下地層15をFeCr合金で構成する場合、Cr組成は好ましくは10〜20at%である。   When the ferromagnetic underlayer 15 is made of an FeCr alloy, the Cr composition is preferably 10 to 20 at%.

次に、本発明になる磁気抵抗効果型ヘッドの第4実施例を説明する。本実施例では、磁気抵抗効果型ヘッドの基本構成は、上記第1実施例と同じであるため、その図示は省略する。本実施例は、強磁性下地層15を、Feの代わりに、Pt,Pd,Ir,Rh,Ru,Auからなるグループから選択された少なくとも1つの元素が添加されたFe合金で構成し、強磁性下地層15の膜厚を2.5nm以上に設定する点が上記第1実施例と異なる。   Next, a description will be given of a fourth embodiment of the magnetoresistive head according to the present invention. In the present embodiment, the basic configuration of the magnetoresistive head is the same as that of the first embodiment, and the illustration thereof is omitted. In this embodiment, the ferromagnetic underlayer 15 is made of an Fe alloy to which at least one element selected from the group consisting of Pt, Pd, Ir, Rh, Ru, and Au is added instead of Fe. The difference from the first embodiment is that the thickness of the magnetic underlayer 15 is set to 2.5 nm or more.

尚、強磁性下地層15をFePt合金で構成する場合、Pt組成は好ましくは1〜25at%である。   When the ferromagnetic underlayer 15 is made of an FePt alloy, the Pt composition is preferably 1 to 25 at%.

図6は、上記第4実施例におけるCoPt硬磁性層16の磁気特性を示す図である。同図中、縦軸は磁界Hc(Oe) を示し、横軸は強磁性下地層15の膜厚(nm)を示す。CoPt硬磁性層18の膜厚は、20nmであるものとする。同図において、特性IVは第4実施例の、強磁性下地層15がFePtからなる場合を示し、第4実施例におけるFePt強磁性下地層15の膜厚の最適値は、2.5nm以上であることがわかる。このように、強磁性下地層15にFePtを用いると、Feを用いた場合と比較すると、最適な膜厚の範囲を更に広げることができる。   FIG. 6 is a diagram showing the magnetic characteristics of the CoPt hard magnetic layer 16 in the fourth embodiment. In the figure, the vertical axis represents the magnetic field Hc (Oe), and the horizontal axis represents the film thickness (nm) of the ferromagnetic underlayer 15. The film thickness of the CoPt hard magnetic layer 18 is 20 nm. In the figure, characteristic IV shows the case where the ferromagnetic underlayer 15 of the fourth embodiment is made of FePt, and the optimum value of the film thickness of the FePt ferromagnetic underlayer 15 in the fourth embodiment is 2.5 nm or more. I know that there is. As described above, when FePt is used for the ferromagnetic underlayer 15, the range of the optimum film thickness can be further expanded as compared with the case where Fe is used.

図7は、上記第4実施例におけるCoPt硬磁性層18の磁化特性を示す図である。同図中、縦軸は残留磁化(Gauss)を示し、横軸は強磁性下地層15の膜厚(nm)を示す。同図において、特性V は第1実施例の、強磁性下地層15がFeからなる場合を示し、特性VIは第4実施例の、強磁性下地層15がFePtからなる場合を示し、CoPt硬磁性層18の膜厚は20nmであるものとする。特性VIからも、第4実施例におけるFePt強磁性下地層15の膜厚の最適値は2.5 nm以上であり、Fe強磁性下地層15の場合より更に高い磁化が得られることがわかる。   FIG. 7 is a diagram showing the magnetization characteristics of the CoPt hard magnetic layer 18 in the fourth embodiment. In the figure, the vertical axis represents residual magnetization (Gauss), and the horizontal axis represents the film thickness (nm) of the ferromagnetic underlayer 15. In the figure, the characteristic V shows the case where the ferromagnetic underlayer 15 is made of Fe in the first embodiment, and the characteristic VI shows the case where the ferromagnetic underlayer 15 is made of FePt in the fourth embodiment. The thickness of the magnetic layer 18 is assumed to be 20 nm. The characteristic VI also shows that the optimum value of the film thickness of the FePt ferromagnetic underlayer 15 in the fourth example is 2.5 nm or more, and a higher magnetization can be obtained than in the case of the Fe ferromagnetic underlayer 15.

図8は、上記第4実施例におけるCoPt硬磁性層18の角型比を示す図である。同図中、縦軸は角型比を示し、横軸は強磁性下地層15の膜厚(nm)を示す。同図において、特性VII は第4実施例の、強磁性下地層15がFePtからなる場合を示し、CoPt硬磁性層18の膜厚は20nmであるものとする。特性VII からも、第4実施例におけるFePt強磁性下地層15の膜厚の最適値は2.5nm以上であることがわかる。   FIG. 8 is a diagram showing the squareness ratio of the CoPt hard magnetic layer 18 in the fourth embodiment. In the figure, the vertical axis represents the squareness ratio, and the horizontal axis represents the film thickness (nm) of the ferromagnetic underlayer 15. In the figure, characteristic VII shows the case where the ferromagnetic underlayer 15 is made of FePt in the fourth embodiment, and the thickness of the CoPt hard magnetic layer 18 is 20 nm. The characteristic VII also shows that the optimum value of the film thickness of the FePt ferromagnetic underlayer 15 in the fourth example is 2.5 nm or more.

図9は、FeCr,CoCrPt,CoPt,FePtに対するアノード分極曲線測定結果、即ち、耐食性を示す図である。同図中、縦軸は孔食電位を示し、横軸は自然電位を示す。同図からも明らかなように、FePtの耐食性は、FeCr,CoCrPt,CoPtの耐食性と比較すると高いので、特に強磁性下地層15として適していることがわかる。 上記の如く、特許文献1では、Feへの添加元素としてFeの持つbcc 構造を保つために、Cr,Nb,Mo又はTaというbcc の原子構造を持つ元素を添加していた。しかし、Cr以外のこれらの元素は、耐食性やCoPtと組み合わせた時の磁気特性が良くなかった。   FIG. 9 is a diagram showing the anodic polarization curve measurement results for FeCr, CoCrPt, CoPt, and FePt, that is, the corrosion resistance. In the figure, the vertical axis represents the pitting potential and the horizontal axis represents the natural potential. As can be seen from the figure, the corrosion resistance of FePt is higher than that of FeCr, CoCrPt, and CoPt, so that it is particularly suitable as the ferromagnetic underlayer 15. As described above, in Patent Document 1, an element having a bcc atomic structure of Cr, Nb, Mo, or Ta is added in order to maintain the bcc structure of Fe as an additive element to Fe. However, these elements other than Cr had poor corrosion resistance and magnetic properties when combined with CoPt.

これに対し、本発明者らは、Pt,Pd等のfcc の原子構造を持つ元素をFeに添加することで、構造的にはbcc 構造ではなくなるものの、耐食性やCoPtと組み合わせた時の磁気特性が著しく向上することを実験的に確認した。   In contrast, the present inventors added an element having an atomic structure of fcc such as Pt, Pd, etc. to Fe, but structurally it is not a bcc structure, but the corrosion resistance and magnetic properties when combined with CoPt Has been confirmed experimentally.

次に、本発明になる磁気抵抗効果型ヘッドの第5実施例を説明する。本実施例では、磁気抵抗効果型ヘッドの基本構成は、上記第1実施例と同じであるため、その図示は省略する。本実施例は、強磁性下地層15を、Feの代わりに、Pt,Pd,Ir,Rh,Ruからなるグループから選択された少なくとも1つの元素が添加されたFeCo合金、FeCoNi合金又はFeNi合金で構成しする点が上記第1実施例と異なる。   Next, a description will be given of a fifth embodiment of the magnetoresistive head according to the present invention. In the present embodiment, the basic configuration of the magnetoresistive head is the same as that of the first embodiment, and the illustration thereof is omitted. In this embodiment, the ferromagnetic underlayer 15 is made of FeCo alloy, FeCoNi alloy or FeNi alloy to which at least one element selected from the group consisting of Pt, Pd, Ir, Rh and Ru is added instead of Fe. The configuration is different from the first embodiment.

次に、本発明になる磁気記録再生装置の一実施例を説明する。磁気記録再生装置の実施例では、上記磁気抵抗型ヘッドの第1〜第5実施例のいずれかを用いる。   Next, an embodiment of the magnetic recording / reproducing apparatus according to the present invention will be described. In the embodiment of the magnetic recording / reproducing apparatus, any one of the first to fifth embodiments of the magnetoresistive head is used.

図10は、本実施例で用いる磁気抵抗効果型ヘッドの分解斜視図であり、図11は、磁気抵抗効果型ヘッドの上部を一部取り除いて示す斜視図である。図10及び図11中、図4と同一部分には同一符号を付し、その説明は省略する。   FIG. 10 is an exploded perspective view of the magnetoresistive head used in this embodiment, and FIG. 11 is a perspective view of the magnetoresistive head with a part removed. 10 and 11, the same parts as those in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted.

図10及び図11において、引き出し導体層40は、図4に示す強磁性下地層15と、硬磁性層16と、素子端子17とからなる。図10に示す各層が形成された後、周知の加工処理により図11に示す加工面41まで削り込むことで、磁気抵抗効果型ヘッドが作成される。図11において、42は電極であり、センス電流はこの電極42に印加される。   10 and 11, the lead conductor layer 40 includes the ferromagnetic underlayer 15, the hard magnetic layer 16, and the element terminal 17 shown in FIG. After each layer shown in FIG. 10 is formed, a magnetoresistive head is created by cutting to the processing surface 41 shown in FIG. 11 by a known processing. In FIG. 11, reference numeral 42 denotes an electrode, and a sense current is applied to this electrode 42.

図12は、図10及び図11に示す磁気抵抗効果型ヘッドとインダクティブヘッドとが一体的に設けられた記録再生ヘッド100の要部を示す斜視図である。図12中、図10及び図11と同一部分には同一符号を付し、その説明は省略する。この記録再生ヘッド100の基本構成自体は、磁気抵抗効果型ヘッドの引き出し導体層40の構成を除き、周知の構成を採用し得るので、その詳細な説明は省略する。   FIG. 12 is a perspective view showing a main part of the recording / reproducing head 100 in which the magnetoresistive head and the inductive head shown in FIGS. 10 and 11 are integrally provided. In FIG. 12, the same parts as those in FIGS. 10 and 11 are denoted by the same reference numerals, and the description thereof is omitted. As the basic configuration of the recording / reproducing head 100, a well-known configuration can be adopted except for the configuration of the lead conductor layer 40 of the magnetoresistive head. Therefore, detailed description thereof is omitted.

図12において、21は基板、22は基板保護膜、24は端子、25は磁気トランスデューサである。又、51は記録コイル、52は記録上部磁極、53は記録ギャップである。更に、60は磁気記録媒体であり、61はトラック幅、62はビット長を示す。磁気抵抗効果型ヘッドは再生ヘッド部101を構成し、インダクティブヘッドは記録ヘッド部102を構成する。   In FIG. 12, 21 is a substrate, 22 is a substrate protective film, 24 is a terminal, and 25 is a magnetic transducer. Reference numeral 51 denotes a recording coil, 52 denotes a recording upper magnetic pole, and 53 denotes a recording gap. Reference numeral 60 denotes a magnetic recording medium, 61 denotes a track width, and 62 denotes a bit length. The magnetoresistive head constitutes the reproducing head unit 101, and the inductive head constitutes the recording head unit 102.

図13は、磁気記録再生装置の実施例の要部を示す分解斜視図である。同図中、ハウジング70内には、複数の磁気記録媒体60が設けられており、ハウジング70上部は、蓋71がねじ止めされることで封止される。ハウジング70内には、複数のアーム74が設けられ、各アーム74の先端には記録再生ヘッド100が設けられている。図13に示す磁気記録再生装置の基本構成自体も周知の構成を採用し得るので、その詳細な説明は省略する。   FIG. 13 is an exploded perspective view showing a main part of an embodiment of the magnetic recording / reproducing apparatus. In the figure, a plurality of magnetic recording media 60 are provided in a housing 70, and the upper portion of the housing 70 is sealed by a lid 71 being screwed. A plurality of arms 74 are provided in the housing 70, and a recording / reproducing head 100 is provided at the tip of each arm 74. Since the basic configuration itself of the magnetic recording / reproducing apparatus shown in FIG. 13 can adopt a well-known configuration, detailed description thereof is omitted.

尚、本発明になる磁気抵抗効果型ヘッドが適用される記録再生ヘッドの構成、及び磁気記録再生装置の構成は、いずれも上記実施例の構成に限定されるものではなく、本発明になる磁気抵抗効果型ヘッドが適用可能な構成の記録再生ヘッドや磁気記録再生装置であれば良い。   The configuration of the recording / reproducing head to which the magnetoresistive head according to the present invention is applied and the configuration of the magnetic recording / reproducing apparatus are not limited to the configurations of the above-described embodiments, but the magnetic according to the present invention. Any recording / reproducing head or magnetic recording / reproducing apparatus having a configuration to which a resistance effect type head can be applied may be used.

以上、本発明を実施例により説明したが、本発明は上記実施例に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能であることは言うまでもない。   While the present invention has been described with reference to the embodiments, it is needless to say that the present invention is not limited to the above-described embodiments, and various modifications and improvements can be made within the scope of the present invention.

従来の磁気抵抗効果型ヘッドの要部を示す断面図である。It is sectional drawing which shows the principal part of the conventional magnetoresistive head. bcc結晶構造の強磁性下地膜の特性を示す図である。It is a figure which shows the characteristic of the ferromagnetic base film of a bcc crystal structure. 磁気抵抗効果型ヘッドの第1実施例の製造工程を説明する断面図である。It is sectional drawing explaining the manufacturing process of 1st Example of a magnetoresistive head. 磁気抵抗効果型ヘッドの第1実施例の要部を示す断面図である。It is sectional drawing which shows the principal part of 1st Example of a magnetoresistive head. 第1及び第2実施例におけるCoPt硬磁性層の磁気特性を示す図である。It is a figure which shows the magnetic characteristic of the CoPt hard magnetic layer in a 1st and 2nd Example. 第4実施例におけるCoPt硬磁性層の磁気特性を示す図である。It is a figure which shows the magnetic characteristic of the CoPt hard magnetic layer in 4th Example. 第4実施例におけるCoPt硬磁性層の磁化特性を示す図である。It is a figure which shows the magnetization characteristic of the CoPt hard magnetic layer in 4th Example. 第4実施例におけるCoPt硬磁性層の角型比を示す図である。It is a figure which shows the squareness ratio of the CoPt hard magnetic layer in 4th Example. FeCr,CoCrPt,CoPt,FePtの耐食性を示す図である。It is a figure which shows the corrosion resistance of FeCr, CoCrPt, CoPt, and FePt. 本実施例で用いる磁気抵抗効果型ヘッドの分解斜視図である。It is a disassembled perspective view of the magnetoresistive head used in the present embodiment. 磁気抵抗効果型ヘッドの上部を一部取り除いて示す斜視図である。It is a perspective view which removes and partially shows the upper part of a magnetoresistive head. 図10及び図11に示す磁気抵抗効果型ヘッドとインダクティブヘッドとが一体的に設けられた記録再生ヘッドの要部を示す斜視図である。FIG. 12 is a perspective view showing a main part of a recording / reproducing head in which the magnetoresistive head and the inductive head shown in FIGS. 10 and 11 are integrally provided. 磁気記録再生装置の実施例の要部を示す分解斜視図である。It is a disassembled perspective view which shows the principal part of the Example of a magnetic recording / reproducing apparatus.

符号の説明Explanation of symbols

10 下部シールド層
11 下部ギャップ層
12 磁気抵抗効果素子
13 レジスト膜
15 強磁性下地層
16 硬磁性層
17 素子端子
18 上部ギャップ層
19 上部シールド層
40 引き出し導体層
100 記録再生ヘッド
101 再生ヘッド部
102 記録ヘッド部
DESCRIPTION OF SYMBOLS 10 Lower shield layer 11 Lower gap layer 12 Magnetoresistive element 13 Resist film 15 Ferromagnetic underlayer 16 Hard magnetic layer 17 Element terminal 18 Upper gap layer 19 Upper shield layer 40 Leading conductor layer 100 Recording / reproducing head 101 Reproducing head part 102 Recording Head

Claims (5)

磁気抵抗効果素子の磁気抵抗効果膜に磁化安定化バイアス磁界を印加する安定化バイアス層と、
該安定化バイアス層の下地層を構成する強磁性体とを備え、
該強磁性体は、Pt,Pd,Ir,Rh,Ru,Auからなるグループから選択された少なくとも1つの元素が添加されたFe合金、FeCo合金、FeCoNi合金又はFeNi合金からなる、磁気抵抗効果型ヘッド。
A stabilizing bias layer for applying a magnetization stabilizing bias magnetic field to the magnetoresistive film of the magnetoresistive element;
A ferromagnetic material constituting the underlayer of the stabilizing bias layer,
The ferromagnetic material is composed of a Fe alloy, a FeCo alloy, a FeCoNi alloy, or a FeNi alloy to which at least one element selected from the group consisting of Pt, Pd, Ir, Rh, Ru, and Au is added. head.
前記強磁性体は、Pt組成が1〜25at%のFePt合金からなる、請求項1記載の磁気抵抗効果型ヘッド。   2. The magnetoresistive head according to claim 1, wherein the ferromagnetic body is made of an FePt alloy having a Pt composition of 1 to 25 at%. 前記強磁性体は2.5nm以上の膜厚を有する、請求項2記載の磁気抵抗効果型ヘッド。   The magnetoresistive head according to claim 2, wherein the ferromagnetic body has a film thickness of 2.5 nm or more. 前記安定化バイアス層は、CoPt合金からなる、請求項1〜3のいずれか1項記載の磁気抵抗効果型ヘッド。   The magnetoresistive head according to claim 1, wherein the stabilizing bias layer is made of a CoPt alloy. 請求項1〜3のいずれか1項記載の磁気抵抗効果型ヘッドを備えた、磁気記録再生装置。
A magnetic recording / reproducing apparatus comprising the magnetoresistive head according to claim 1.
JP2005069758A 2005-03-11 2005-03-11 Magnetoresistive effect head and magnetic recording reproducing device Pending JP2005235387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005069758A JP2005235387A (en) 2005-03-11 2005-03-11 Magnetoresistive effect head and magnetic recording reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005069758A JP2005235387A (en) 2005-03-11 2005-03-11 Magnetoresistive effect head and magnetic recording reproducing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11112790A Division JP2000306218A (en) 1999-04-20 1999-04-20 Magnetoresistance effect type head and magnetic recording and reproducing device

Publications (1)

Publication Number Publication Date
JP2005235387A true JP2005235387A (en) 2005-09-02

Family

ID=35018142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005069758A Pending JP2005235387A (en) 2005-03-11 2005-03-11 Magnetoresistive effect head and magnetic recording reproducing device

Country Status (1)

Country Link
JP (1) JP2005235387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180704A (en) * 2015-03-24 2016-10-13 株式会社東芝 Distortion detection element and pressure sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180704A (en) * 2015-03-24 2016-10-13 株式会社東芝 Distortion detection element and pressure sensor
US10746526B2 (en) 2015-03-24 2020-08-18 Kabushiki Kaisha Toshiba Strain sensing element and pressure sensor

Similar Documents

Publication Publication Date Title
KR100269820B1 (en) Magneto-resistance effect head
JP3990751B2 (en) Magnetoresistive magnetic head and magnetic recording / reproducing apparatus
JP2000228002A (en) Magnetoresistance effect type device
JP2004103204A (en) Perpendicular writer with magnetically soft and stable high magnetic moment main pole
JP2000215414A (en) Magnetic sensor
JP3253557B2 (en) Magnetoresistive element, magnetic head and magnetic storage device using the same
JP2003178408A (en) Spin valve type magneto-resistance effect reproducing head and its manufacturing method
JP2013004166A (en) Magnetic sensor having hard bias seed structure
JP4371983B2 (en) CPP type magnetoresistive effect element, CPP type magnetic read head, method for forming CPP type magnetoresistive effect element, and method for manufacturing CPP type magnetic read head
JP2007311013A (en) Perpendicular magnetic head
JP2006128379A (en) Magnetoresistance effect element, magnetic head, and magnetic recorder
JP2004103215A (en) Recording head writer having high magnetic moment material in writing gap and method related to the same
US6477020B1 (en) Magneto-resistive head and magnetic recording and reproducing apparatus
JP2007335788A (en) Magnetic shield and manufacturing method thereof, and thin-film magnetic head
JP2006018876A (en) Perpendicular magnetic recording apparatus
JP2005174449A (en) Vertical magnetic recording element, thin film magnetic head, magnetic head device, and magnetic recording/reproducing device
JP2008166530A (en) Tunnel magnetism detection element
JP2007158058A (en) Magnetic detecting element
JP2005235387A (en) Magnetoresistive effect head and magnetic recording reproducing device
JPH10241125A (en) Thin film magnetic head and recording/reproducing separation type magnetic head and magnetic recording/ reproducing apparatus using the same
JP3872958B2 (en) Magnetoresistive element and manufacturing method thereof
JP2005251385A (en) Magneto-resistive effect type head and magnetic recording and reproducing device
JP4622847B2 (en) Magnetic detection element
JPH0660333A (en) Magneto-resistance effect head
JP2000340857A (en) Magnetoresistive effect film and magnetoresistive effect element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127