JP2005234510A - Optical scanner, image forming method, and image forming apparatus - Google Patents

Optical scanner, image forming method, and image forming apparatus Download PDF

Info

Publication number
JP2005234510A
JP2005234510A JP2004047077A JP2004047077A JP2005234510A JP 2005234510 A JP2005234510 A JP 2005234510A JP 2004047077 A JP2004047077 A JP 2004047077A JP 2004047077 A JP2004047077 A JP 2004047077A JP 2005234510 A JP2005234510 A JP 2005234510A
Authority
JP
Japan
Prior art keywords
light
light source
scanned
sub
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004047077A
Other languages
Japanese (ja)
Other versions
JP4321764B2 (en
Inventor
Junji Omori
淳史 大森
Masaaki Ishida
雅章 石田
Yasuhiro Nihei
靖厚 二瓶
Madoka Kozasa
団 小篠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004047077A priority Critical patent/JP4321764B2/en
Publication of JP2005234510A publication Critical patent/JP2005234510A/en
Application granted granted Critical
Publication of JP4321764B2 publication Critical patent/JP4321764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • B41J2/473Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror using multiple light beams, wavelengths or colours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/455Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using laser arrays, the laser array being smaller than the medium to be recorded

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize an optical scanner in which the pixel shift in a vertical scanning direction in an image forming apparatus is corrected with a high degree of accuracy. <P>SOLUTION: Light beams from a plurality of light sources 2 on a surface emitting laser 1 are used for scanning along adjacent scanning lines on a plane to be scanned. Two light sources corresponding to two adjacent scanning lines form a pair, and one of the pair of light sources is used as a main light source and the other is used as a sublight source, the pixel shift in the vertical scanning direction is corrected with a high degree of accuracy by varying the light quantity distribution in the vertical scanning direction on the plane to be scanned with the light beams from a set of the light sources by varying the light quantity ratio of the main light source and the sublight source without varying the total light quantity of the pair of light sources and without making the light quantity of the sublight source exceed the light quantity of the main light source. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、レーザプリンタ、デジタル複写機等の画像形成装置と、それに適用される光走査装置に関する。   The present invention relates to an image forming apparatus such as a laser printer or a digital copying machine, and an optical scanning apparatus applied thereto.

図14は、レーザプリンタ、デジタル複写機等の電子写真プロセスを利用した画像形成装置の一般的構成を模式的に示す。図14において、光源である半導体レーザユニット1001より出力されたレーザ光は、回転するポリゴンミラー1002(偏向器)によりスキャンされ、走査レンズ1003を介して被走査媒体である感光体1004上に光スポットを形成し、該感光体1004を露光して静電潜像を形成する。1ライン毎に、フォトディテクタ1005が走査ビームを検出する。位相同期回路1009は、クロック生成回路1008からのクロックを入力し、フォトディテクタ1005の出力信号に基づいて、1ライン毎に位相同期のとれた画像クロック(画素クロック)を生成する。画像処理ユニット1006は、その画像クロックと、それに同期させた画像データとをレーザ駆動回路1007へ供給する。レーザ駆動回路1007は、画像データと画像クロックに従い、半導体レーザユニット1001の発光時間をコントロールすることにより、感光体1004上の静電潜像の形成をコントロールする。   FIG. 14 schematically shows a general configuration of an image forming apparatus using an electrophotographic process such as a laser printer or a digital copying machine. In FIG. 14, a laser beam output from a semiconductor laser unit 1001 that is a light source is scanned by a rotating polygon mirror 1002 (deflector) and passes through a scanning lens 1003 on a photoconductor 1004 that is a medium to be scanned. And exposing the photoreceptor 1004 to form an electrostatic latent image. For each line, the photodetector 1005 detects the scanning beam. The phase synchronization circuit 1009 receives the clock from the clock generation circuit 1008 and generates an image clock (pixel clock) that is phase-synchronized for each line based on the output signal of the photodetector 1005. The image processing unit 1006 supplies the image clock and the image data synchronized therewith to the laser driving circuit 1007. The laser driving circuit 1007 controls the formation of an electrostatic latent image on the photoconductor 1004 by controlling the light emission time of the semiconductor laser unit 1001 according to the image data and the image clock.

近年、印刷速度(画像形成速度)の高速化、画像の高画質化への要求が高まり、それに対して偏向器であるポリゴンモータの高速化や、レーザ変調の基準クロックとなる画素クロックの高速化で対応してきたが、どちらの高速化にも限界が近づいてきている。   In recent years, the demand for higher printing speed (image formation speed) and higher image quality has increased, and in response to this, the polygon motor, which is a deflector, and the pixel clock, which is the reference clock for laser modulation, have been increased. However, the speed limit of either method is approaching.

そこで、複数の光源を用いたマルチビームによる光走査を採用することで、高速化への対応がなされてきている。マルチビームによる光走査方法では、偏向器の偏向により同時に走査できる光束数が増えることにより、偏向器であるポリゴンモータの回転速度を下げ、また、画素クロック周波数を下げることができるため、高速かつ安定した光走査及び画像形成が可能となる。   Therefore, the use of multi-beam optical scanning using a plurality of light sources has been used to cope with higher speeds. In the multi-beam optical scanning method, the number of light beams that can be scanned simultaneously by the deflection of the deflector increases, so that the rotation speed of the polygon motor, which is a deflector, can be reduced, and the pixel clock frequency can be lowered. Thus, it is possible to perform optical scanning and image formation.

マルチビームを構成する光源としては、シングルビームのレーザチップを複数個組み合わせて用いる方法や、複数の発光素子を一つのレーザチップ上に組み込んだLDアレイなどを用いる方法が使用されている。   As a light source constituting a multi-beam, a method using a combination of a plurality of single beam laser chips or a method using an LD array in which a plurality of light emitting elements are incorporated on one laser chip is used.

上記マルチビームを構成するLDアレイなどの半導体レーザはきわめて小型であり、かつ駆動電流により直接的にかつ高速に変調を行うことが出来るので、近年レーザプリンタ等の光源として広く用いられている。しかし、半導体レーザの駆動電流と光出力との関係は温度により変化する特性を有するので、複数の光源を同一チップ上に構成する面発光レーザの場合、光源間の距離が短いため、発光、消光による温度変化や温度クロストークなどの影響が顕著であり、それが光量変動の要因となりやすい。このような熱クロストークの問題を改善するための技術に関する公知文献としては例えば特許文献1,3が、また画素単位での発光強度及び発光時間の制御に関する公知文献としては例えば特許文献2がある。   Semiconductor lasers such as LD arrays constituting the multi-beam are extremely small and can be modulated directly and at high speed by a drive current, so that they have been widely used as light sources for laser printers and the like in recent years. However, since the relationship between the drive current of the semiconductor laser and the optical output has a characteristic that changes with temperature, in the case of a surface emitting laser in which a plurality of light sources are configured on the same chip, the distance between the light sources is short. The effects of temperature change and temperature crosstalk due to the temperature are prominent, and this tends to cause fluctuations in the amount of light. For example, Patent Documents 1 and 3 are known documents relating to techniques for improving such a problem of thermal crosstalk, and Patent Document 2 is a known document relating to control of light emission intensity and light emission time in pixel units. .

特開2001−272615号公報JP 2001-272615 A 特開2003−72135号公報JP 2003-72135 A 特開2001−350111号公報JP 2001-350111 A

本発明は、面発光レーザ等からなる複数の光源を用いて光走査を行う光走査装置及びそれを用いる画像形成装置に関するものであり、その目的は、カラー画像記録の際の色ずれなどの要因になる副走査方向のドット位置ずれを効果的に補正すること、複数の光源の特性劣化の進みを均等化し、光源の長寿命化を図るとともに、複数の光源の不均等な特性劣化による光量のばらつきに起因する画像濃度むらの低減を図ること等である。   The present invention relates to an optical scanning device that performs optical scanning using a plurality of light sources including surface-emitting lasers and the like, and an image forming apparatus that uses the optical scanning device, and its purpose is a factor such as color misregistration during color image recording. Effectively corrects the dot position deviation in the sub-scanning direction, equalizes the progress of characteristic deterioration of multiple light sources, extends the life of the light source, and reduces the amount of light due to uneven characteristic deterioration of the multiple light sources. For example, image density unevenness due to variations is reduced.

請求項1の発明は、被走査面の走査のための光ビームを発生する複数の光源と、それらを駆動する光源駆動手段とを有し、光源駆動手段は、被走査面上の隣接した2本の走査線に対応する2個の光源を1組とし、1組の光源のうちの一方を主光源、もう一方を副光源とし、1組の光源の総光量を変えることなく、かつ、副光源の光量を主光源の光量を越えさせることなく、主光源と副光源の間の光量比率を変化させることにより、1組の光源より発生する光ビームの被走査面上における副走査方向の光量分布を制御することを特徴とする特徴とする光走査装置である。   The invention of claim 1 has a plurality of light sources for generating a light beam for scanning the surface to be scanned, and a light source driving means for driving them. Two light sources corresponding to one scanning line are set as one set, and one of the set of light sources is set as a main light source and the other is set as a sub light source. By changing the light quantity ratio between the main light source and the sub light source without causing the light quantity of the light source to exceed the light quantity of the main light source, the light quantity in the sub scanning direction on the surface to be scanned of the light beam generated from one set of light sources An optical scanning device characterized by controlling distribution.

請求項2の発明は、被走査面の走査のための光ビームを発生する複数の光源と、それらを駆動する光源駆動手段とを有し、光源駆動手段は、被走査面上の隣接した3本の走査線に対応する3個の光源を1組とし、1組の光源のうち、中央の走査線に対応する光源を主光源、残りの2個の光源をそれぞれ副光源とし、1組の光源の総光量を変えることなく、かつ、各副光源の光量を主光源の光量を越えさせることなく、主光源と各副光源の間の光量比率を変化させることにより、1組の光源より発生する光ビームの被走査面上における副走査方向の光量分布を制御することを特徴とする光走査装置である。   The invention of claim 2 has a plurality of light sources for generating a light beam for scanning the surface to be scanned, and a light source driving means for driving them, and the light source driving means includes three adjacent light sources on the surface to be scanned. Three light sources corresponding to one scanning line are set as one set, and among the one set of light sources, a light source corresponding to the center scanning line is a main light source, and the remaining two light sources are sub-light sources, respectively. Generated from a set of light sources by changing the light intensity ratio between the main light source and each sub light source without changing the total light amount of the light source and without exceeding the light amount of each sub light source. An optical scanning device that controls a light amount distribution in the sub-scanning direction of a light beam to be scanned on a surface to be scanned.

請求項3の発明は、被走査面の走査のための光ビームを発生する複数の光源と、それらを駆動する光源駆動手段とを有し、光源駆動手段は、被走査面上の隣接した2本の走査線に対応する2個の光源を1組とし、1組の光源の総光量を変えることなく光源間の光量比率を変化させることにより、1組の光源より発生する光ビームの被走査面上における副走査方向の光量分布を制御することをことを特徴とする光走査装置である。   The invention of claim 3 has a plurality of light sources for generating a light beam for scanning the surface to be scanned and light source driving means for driving them, and the light source driving means are adjacent to each other on the surface to be scanned. Two light sources corresponding to one scanning line are made into one set, and the ratio of the light quantity between the light sources is changed without changing the total light quantity of the one light source, thereby scanning the light beam generated from the one set of light sources. An optical scanning device characterized by controlling a light amount distribution in a sub-scanning direction on a surface.

請求項4の発明は、請求項1又は2の発明による光走査装置において、光源駆動手段は、主光源として駆動する光源と副光源として駆動する光源を切り替える手段を含むことを特徴とする光走査装置である。   According to a fourth aspect of the present invention, in the optical scanning device according to the first or second aspect of the present invention, the light source driving means includes means for switching between a light source driven as a main light source and a light source driven as a sub light source. Device.

請求項5の発明は、請求項1又は2の発明による光走査装置において、被走査面における主光源に対応する走査線の間隔をΔXとするとき、被走査面における主光源に対応する走査線と、当該主光源に対する副光源に対応する走査線との間隔はΔX/2以下であることを特徴とする光走査装置である。   According to a fifth aspect of the invention, in the optical scanning device according to the first or second aspect of the invention, when the interval between the scanning lines corresponding to the main light source on the surface to be scanned is ΔX, the scanning line corresponding to the main light source on the surface to be scanned is And an interval between the main light source and the scanning line corresponding to the sub-light source is ΔX / 2 or less.

請求項6の発明は、請求項1乃至5のいずれか1項の発明による光走査装置において、複数の光源として、同一チップ上に複数の光源を格子状に配列した面発光レーザを備えることを特徴とする光走査装置である。   According to a sixth aspect of the present invention, in the optical scanning device according to any one of the first to fifth aspects, a surface emitting laser in which a plurality of light sources are arranged in a grid on the same chip is provided as the plurality of light sources. This is a featured optical scanning device.

請求項7の発明は、被走査媒体の表面を被走査面として、被走査面を光ビームにより走査することにより被走査媒体上に静電潜像を形成する画像形成方法において、被走査面上の隣接した走査線を走査する2本の光ビームを1組とし、1組の光ビームにより画素列の静電潜像を形成し、1組の光ビームの総光量を変えることなく光ビーム間の光量比率を変化させることにより副走査方向の画素の重心位置を制御することを特徴とする画像形成方法である。   According to a seventh aspect of the present invention, there is provided an image forming method for forming an electrostatic latent image on a scanned medium by using the surface of the scanned medium as a scanned surface and scanning the scanned surface with a light beam. A set of two light beams that scan adjacent scanning lines is formed to form an electrostatic latent image of the pixel array by one set of light beams, and the total light quantity of one set of light beams is changed without changing the total amount of light beams. The image forming method is characterized in that the barycentric position of the pixel in the sub-scanning direction is controlled by changing the light quantity ratio.

請求項8の発明は、被走査媒体の表面を被走査面として、被走査面を光ビームにより走査することにより被走査媒体上に静電潜像を形成する画像形成方法において、被走査面上の隣接した走査線を走査する3本の光ビームを1組とし、1組の光ビームにより画素列の静電潜像を形成し、1組の光ビームのうちの中央の光ビームを主ビーム、残りの2本の光ビームをそれぞれ副ビームとし、1組の光ビームの総光量を変えることなく主ビームと各副ビームの間の光量比率を変化させることにより副走査方向の画素の重心位置を制御することを特徴とする画像形成方法である。   According to an eighth aspect of the present invention, there is provided an image forming method for forming an electrostatic latent image on a scanned medium by using the surface of the scanned medium as a scanned surface and scanning the scanned surface with a light beam. A set of three light beams that scan the adjacent scanning lines is formed to form an electrostatic latent image of the pixel array by one set of light beams, and the central light beam of the one set of light beams is used as the main beam. The remaining two light beams are sub-beams, and the barycentric position of the pixel in the sub-scanning direction is obtained by changing the light amount ratio between the main beam and each sub-beam without changing the total light amount of one set of light beams. Is an image forming method.

請求項9の発明は、被走査媒体と、その表面を被走査面として光ビームにより走査する光走査装置とを有し、被走査媒体上に静電潜像を形成する画像形成装置において、光走査装置は請求項1乃至6のいずれか1項の発明による光走査装置からなることを特徴とする画像形成装置である。   According to a ninth aspect of the present invention, there is provided an image forming apparatus that includes a medium to be scanned and an optical scanning device that scans the surface with a light beam using a light beam, and forms an electrostatic latent image on the medium to be scanned. The scanning apparatus is an image forming apparatus comprising the optical scanning apparatus according to any one of claims 1 to 6.

請求項10の発明は、色別の複数の被走査媒体と、それらの表面を被走査面として光ビームにより走査する光走査装置とを有し、複数の被走査媒体上に色別の静電潜像を形成する画像形成装置において、光走査装置は請求項1乃至6のいずれか1項の発明による光走査装置からなることを特徴とする画像形成装置である。   The invention of claim 10 includes a plurality of color-measuring scanned media and an optical scanning device that scans with a light beam using the surface as a surface to be scanned. In the image forming apparatus for forming a latent image, the optical scanning device comprises the optical scanning device according to any one of claims 1 to 6.

請求項1〜6の発明によれば、1組の光源からの光ビームの副走査方向の光量分布が制御されるため、1組の光源からの光ビームによって画素列を記録する場合に画素の副走査方向の重心位置を制御することができ、したがって、記録される画素の副走査方向の位置ずれの高精度な補正が可能となる。そして、請求項3の発明によれば、画素の副走査方向の位置ずれ補正を両方向について、より広範囲に行うことができる。請求項4の発明によれば、複数の光源の特性劣化の進みを均等化することができる。請求項5の発明によれば、隣り合う組の光源による光分布の重なり、すなわち隣り合う画素列の重なりが生じにくくなる。請求項6の発明によれば、光源に関連した構造を単純化することができ、また、複数の光源の位置関係を精度よく規定することができる。請求項7,8の発明によれば、記録される画素列の副走査方向の位置ずれを高精度に補正することができる。請求項9,10の発明によれば、画素の副走査方向の位置ずれの補正された高画質の画像形成が可能であり、特に、請求項10の発明によれば画素の副走査方向の位置ずれに起因する色ずれの少ない画像を形成可能である、等々の効果を得られる。   According to the first to sixth aspects of the present invention, since the light amount distribution in the sub-scanning direction of the light beam from the one set of light sources is controlled, the pixel array is recorded when the pixel row is recorded by the light beams from the one set of light sources. It is possible to control the position of the center of gravity in the sub-scanning direction, and therefore it is possible to correct the positional deviation of the recorded pixels in the sub-scanning direction with high accuracy. According to the third aspect of the present invention, it is possible to perform correction of positional deviation of pixels in the sub-scanning direction in a wider range in both directions. According to the fourth aspect of the present invention, the progress of the characteristic deterioration of the plurality of light sources can be equalized. According to the fifth aspect of the present invention, it is difficult to cause overlapping of light distribution by adjacent sets of light sources, that is, overlapping of adjacent pixel columns. According to the sixth aspect of the invention, the structure related to the light source can be simplified, and the positional relationship between the plurality of light sources can be defined with high accuracy. According to the seventh and eighth aspects of the invention, it is possible to correct the positional deviation in the sub-scanning direction of the recorded pixel row with high accuracy. According to the ninth and tenth aspects of the invention, it is possible to form a high-quality image in which the positional deviation of the pixel in the sub-scanning direction is corrected. In particular, according to the tenth aspect of the invention, the position of the pixel in the sub-scanning direction is possible. For example, it is possible to form an image with little color misregistration due to misregistration.

本発明の典型的な実施の形態においては、被走査面を走査するための光ビームを発生する手段として、複数の光源を同一チップ上に配置した1個又は複数個の面発光レーザが用いられ、複数本の光ビームにより被走査面が同時に走査される。そして、2つ以上の光源を1組として、各組の光源からの2本以上の光ビームにより被走査面上の隣接した2本以上の走査線が走査されることにより、画素列が記録される。つまり複数個の光源が同じ画素の記録に利用される。この記録の際に、各組の複数の光源間の光量の比率を変えることによって記録される画素の副走査方向の重心位置が制御される。   In a typical embodiment of the present invention, one or a plurality of surface emitting lasers in which a plurality of light sources are arranged on the same chip are used as means for generating a light beam for scanning a surface to be scanned. The scanned surface is simultaneously scanned by a plurality of light beams. Then, with two or more light sources as one set, two or more adjacent scanning lines on the surface to be scanned are scanned by two or more light beams from each set of light sources, thereby recording a pixel row. The That is, a plurality of light sources are used for recording the same pixel. At the time of recording, the barycentric position of the recorded pixels in the sub-scanning direction is controlled by changing the ratio of the amount of light between the plurality of light sources in each group.

光源の光量制御の方法は、1組の光源のうちの1つを主光源、残りのものを副光源として光量を制御する方法(1)と、2個1組の光源をそれぞれ主光源として光量を制御する方法(2)とに分けることができる。その違いは次の通りである。   The light quantity control method of the light source includes a method (1) for controlling the light quantity by using one of the light sources as a main light source and the remaining light source as a sub light source, and a light quantity by using two light sources as a main light source. It can be divided into the method (2) for controlling. The difference is as follows.

前者の方法(2)の場合、副光源の光量は常に主光源の光量より小さく、かつ、主光源と副光源の総光量は一定に維持しつつ、各光源の光量の比率を変化させることにより、主光源の光ビームによる走査線を基準として、記録される画素の副走査方向の重心位置が制御される。後者の方法(2)の場合、主光源と副光源のような光量の大小関係の制約はなく、2個の主光源の総光量を一定に維持しつつ各主光源の光量の比率を変化させることにより、2個の主光源の光ビームによる2本の走査線の中間位置を基準として、記録される画素の副走査方向の重心位置が制御される。   In the case of the former method (2), the light quantity of the sub light source is always smaller than the light quantity of the main light source, and the total light quantity of the main light source and the sub light source is kept constant, and the ratio of the light quantity of each light source is changed. The position of the center of gravity of the recorded pixel in the sub-scanning direction is controlled with reference to the scanning line by the light beam of the main light source. In the case of the latter method (2), there is no restriction on the magnitude relationship between the light amounts of the main light source and the sub light source, and the ratio of the light amounts of the main light sources is changed while keeping the total light amount of the two main light sources constant. Thus, the barycentric position of the recorded pixel in the sub-scanning direction is controlled with reference to the intermediate position of the two scanning lines by the light beams of the two main light sources.

複数の光源からの複数本の光ビームは、例えば、光学レンズなどからなる光学系を介してポリゴンミラーなどの偏光器に導かれ、この偏光器により偏向された光ビームは光学レンズなどからなる光学系を介して被走査面に導かれ被走査面上に光スポットを形成する。電子写真式画像形成装置の場合、被走査面は感光体の表面であり、予め一様に帯電された感光体の表面が光スポットにより露光されることにより静電潜像が形成され、これがトナー現像されることにより顕像化される。カラー画像形成装置の場合には、静電潜像の形成とトナー現像とが色版別に行われる。   A plurality of light beams from a plurality of light sources are guided to a polarizer such as a polygon mirror via an optical system including an optical lens, for example, and the light beams deflected by the polarizer are optical lenses including an optical lens. A light spot is formed on the scanned surface by being guided to the scanned surface through the system. In the case of an electrophotographic image forming apparatus, the surface to be scanned is the surface of a photoconductor, and an electrostatic latent image is formed by exposing the surface of the photoconductor uniformly charged in advance with a light spot. It is visualized by developing. In the case of a color image forming apparatus, formation of an electrostatic latent image and toner development are performed for each color plate.

以下、本発明の実施の形態について具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described.

本実施例においては、画像形成のための複数本の光ビームを発生する手段として、例えば、図1に示すような同一チップ上に複数の光源(発光点)2が格子状に配置された面発光レーザ1が用いられる。以下の説明において、個々の光源2の特定のために図示のようなP1A〜P4Cの記号を適宜使用する。なお、チップ上に配列される光源の個数は適宜増減し得るものである。   In this embodiment, as a means for generating a plurality of light beams for image formation, for example, a surface in which a plurality of light sources (light emitting points) 2 are arranged in a grid pattern on the same chip as shown in FIG. A light emitting laser 1 is used. In the following description, the symbols P1A to P4C as shown in the figure are appropriately used for specifying the individual light sources 2. The number of light sources arranged on the chip can be increased or decreased as appropriate.

このような面発光レーザ1の各光源2より発せらる光ビームは偏光器(ここではポリゴンミラーとする)を含む光学系を通じて被走査面を走査するために用いられるが、複数の光源からの複数本の光ビームによる走査線が副走査方向に所定の間隔で並ぶように、図1乃至図3に模式的に示すごとく、光源2の配列格子の列方向が副走査方向に対し所定の角度θをなすように、面発光レーザ1とポリゴンミラーの反射面との相対角度が設定される。このような角度関係は、特許文献1,3などに述べられていることである。かくして、光源P1A,P2A,P3A,P4A,P1B,P2B,P3B,P4B,P1C,P2C,P3C,P4Cからの光ビームの走査線が順に隣接することになる。   A light beam emitted from each light source 2 of such a surface emitting laser 1 is used to scan a surface to be scanned through an optical system including a polarizer (here, a polygon mirror). As schematically shown in FIGS. 1 to 3, the column direction of the array grating of the light sources 2 is at a predetermined angle with respect to the sub-scanning direction so that the scanning lines by the plurality of light beams are arranged at predetermined intervals in the sub-scanning direction. The relative angle between the surface emitting laser 1 and the reflecting surface of the polygon mirror is set so as to form θ. Such an angular relationship is described in Patent Documents 1 and 3 and the like. Thus, the scanning lines of the light beams from the light sources P1A, P2A, P3A, P4A, P1B, P2B, P3B, P4B, P1C, P2C, P3C, and P4C are sequentially adjacent.

なお、特許文献3に記載されている例と同様に、面発光レーザ1を傾けるのではなく、面発光レーザ1上の光源の配列格子の列方向を予め所定の角度だけ傾けてくこともでき、かかる態様も本実施例に包含されるものである。また、複数個の面発光レーザを組み合わせて用いることもできる。例えば図5に模式的に例示するように、2個の面発光レーザ1a,1bを用いることもできる。3個以上を組み合わせることもできる。このように、複数個の面発光レーザを組み合わせて用いる態様も本実施例に包含されるものである。   As in the example described in Patent Document 3, instead of tilting the surface emitting laser 1, the column direction of the array grating of the light sources on the surface emitting laser 1 can be tilted by a predetermined angle in advance. Such an embodiment is also included in this embodiment. Also, a plurality of surface emitting lasers can be used in combination. For example, as schematically illustrated in FIG. 5, two surface emitting lasers 1a and 1b may be used. Three or more can be combined. Thus, an embodiment in which a plurality of surface emitting lasers are used in combination is also included in this embodiment.

被走査面上の隣接する走査線を走査する光ビームを発生するための複数の光源を1組とし、各組の光源からの複数本の光ビームが画像の1ラインの形成に用いられる。そして、各組の光源の光量制御の方法として前述の2つの方法が用いられる。   A plurality of light sources for generating light beams for scanning adjacent scanning lines on the surface to be scanned are set as one set, and a plurality of light beams from each set of light sources are used for forming one line of an image. The above-described two methods are used as a method of controlling the light amount of each set of light sources.

図2及び図3は前記方法(1)の例を模式的に示している。図2は、隣接する2本の走査線を走査する2本の光ビームを発生するための2個の光源2を1組とし、各組の一方の光源を主光源、もう一方の光源を副光源として用いる場合を示している。この例では、光源P1A,P2Aのペアのうち、光源P1Aが主光源、光源P2Aが副光源として用いられ、光源P3A,P4Aのペアのうち光源P3Aが主光源、光源P4Aが副光源として用いられ、光源P1B,P2Bのペアのうち光源P1Bが主光源、光源P2Bが副光源として用いられる。同様に、光源P3Bが主光源、光源P4Bが副光源として、光源1Cが主光源、光源P2Cが副光源として、また、光源3Cが主光源、光源P4Cが副光源として用いられる。   2 and 3 schematically show an example of the method (1). FIG. 2 shows a pair of two light sources 2 for generating two light beams for scanning two adjacent scanning lines, one light source of each set being a main light source and the other light source being a sub light source. The case where it uses as a light source is shown. In this example, of the pair of light sources P1A and P2A, the light source P1A is used as the main light source and the light source P2A is used as the sub light source, and the light source P3A is used as the main light source and the light source P4A is used as the sub light source among the pair of the light sources P3A and P4A. Of the pair of light sources P1B and P2B, the light source P1B is used as the main light source and the light source P2B is used as the sub-light source. Similarly, the light source P3B is used as the main light source, the light source P4B as the sub light source, the light source 1C as the main light source, the light source P2C as the sub light source, the light source 3C as the main light source, and the light source P4C as the sub light source.

図3は、隣接する3本の走査線を走査する3本光ビームを発生するための3個の光源2を1組とし、各組の光源のうち、中央の走査線に対応する光源を主光源、残りの2個の光源を副光源として用いる場合を示している。この例では、光源P2A,P3A,P4Aが1組とされ、そのうちの光源P3Aが主光源、光源P2A,P4Aが副光源として用いられる。同様に、光源P1B,P2B,P3Bが1組とされ、そのうちの光源P2Bが主光源、残りの光源P1B,3Bが副光源として用いられ、また、光源P4B,P1C,P2Cが1組とされ、そのうちの光源P1Cが主光源、残りの光源P4B,P3Cが副光源として用いられる。   FIG. 3 shows a set of three light sources 2 for generating three light beams for scanning three adjacent scanning lines, and the light source corresponding to the central scanning line is the main light source among the light sources of each set. The case where a light source and the remaining two light sources are used as sub-light sources is shown. In this example, the light sources P2A, P3A, and P4A are set as one set, and the light source P3A is used as the main light source and the light sources P2A and P4A are used as the sub light sources. Similarly, the light sources P1B, P2B, and P3B are set as one set, the light source P2B is used as the main light source, the remaining light sources P1B and 3B are used as the sub-light sources, and the light sources P4B, P1C, and P2C are set as one set. Of these, the light source P1C is used as a main light source, and the remaining light sources P4B and P3C are used as sub-light sources.

図4は前記方法(2)の例を模式的に示している。この例では、光源P1A,P2Aの組、光源P3A,P4Aの組、光源P1B,P2Bの組、光源P3B,P4Bの組、光源P1C,P2Cの組、光源P3C,P4Cの組において、両方の光源がそれぞれ主光源として用いられる。   FIG. 4 schematically shows an example of the method (2). In this example, both light sources P1A and P2A, light sources P3A and P4A, light sources P1B and P2B, light sources P3B and P4B, light sources P1C and P2C, and light sources P3C and P4C Are used as main light sources.

図7は、1組の光源において、光源間の光量比率を変えることにより、1組の光源からの光ビームの被走査面上の副走査方向の光量分布(被走査光量分布)がどのように変化するかを模式的に示している。図中、上段部は光源A,Bの発光信号を示し、下段部は光源A,Bからの光ビームによる被走査面上での走査光量分布を示している。なお、ここでは、光源の発光時間を変えることによって光量を制御する場合を想定している。   FIG. 7 shows how the light amount distribution (scanned light amount distribution) in the sub-scanning direction on the surface to be scanned of the light beam from one set of light sources is changed by changing the light amount ratio between the light sources. It shows schematically how it changes. In the figure, the upper part shows the light emission signals of the light sources A and B, and the lower part shows the scanning light amount distribution on the surface to be scanned by the light beams from the light sources A and B. Here, it is assumed that the amount of light is controlled by changing the light emission time of the light source.

図2の例における主光源P1Aを光源A、副光源P2Aを光源Bとする。画素7のように、光源Aの光量を100%、光源Bの光量を0%とすると、これら2光源の光ビームの走査光量分布の中心は光源Aの光ビームの中心と一致し、したがって、これら2光源の光ビームにより記録される画素の副走査方向の重心位置は光源Aの光ビームによる走査線と一致する。画素6のように光源Aの光量を減らし、光源Bの光量を増加させると、走査光量分布の中心は下側にずれるため、記録される画素の副走査方向の重心位置は、光源Bの光ビームによる走査線側に寄ってくる。画素5のように、光源Aの光量をさらに減らし光源Bの光量をさらに増加させると、記録画素の重心はさらに移動する。ただし、光源A,Bの総光量は一定に維持されるため、画素の記録濃度は一定となる。2つの光源のうちの一方を主光源、もう一方を副光源として利用する方法では、副光源の光量は主光源の光量を超えないように光量比率が制御されるので、図6に示す画素5,6,7のような光量比率、走査光量分布が利用されることになる。   In the example of FIG. 2, the main light source P1A is the light source A, and the sub-light source P2A is the light source B. As in the pixel 7, when the light amount of the light source A is 100% and the light amount of the light source B is 0%, the center of the scanning light amount distribution of the light beams of these two light sources coincides with the center of the light beam of the light source A. The barycentric position in the sub-scanning direction of the pixels recorded by the light beams of these two light sources coincides with the scanning line by the light beam of the light source A. If the light amount of the light source A is decreased and the light amount of the light source B is increased as in the pixel 6, the center of the scanning light amount distribution is shifted downward, so that the barycentric position of the recorded pixel is the light of the light source B. It approaches the scanning line side by the beam. When the light amount of the light source A is further reduced and the light amount of the light source B is further increased as in the pixel 5, the center of gravity of the recording pixel further moves. However, since the total light amount of the light sources A and B is kept constant, the recording density of the pixels is constant. In the method of using one of the two light sources as the main light source and the other as the sub light source, the light amount ratio is controlled so that the light amount of the sub light source does not exceed the light amount of the main light source. , 6 and 7, and a scanning light amount distribution are used.

図3の例のように主光源と2個の副光源の組が用いられる場合は、主光源を光源A、各副光源を光源Bとして、同様の光量比率の制御により走査光量分布を副走査方向に制御し、記録される画素の副走査方向の重心位置を、主光源による走査線を基準として、一方の副光源による走査線側へ、あるいは、他方の副光源による走査線側へ両方向に移動させることができることは明らかである。   When a set of a main light source and two sub light sources is used as in the example of FIG. 3, the main light source is the light source A and each sub light source is the light source B, and the scanning light amount distribution is sub-scanned by controlling the same light amount ratio. The position of the center of gravity of the recorded pixel in the sub-scanning direction is set in both directions from the scanning line by the main light source to the scanning line side by one sub-light source or to the scanning line side by the other sub-light source. Obviously, it can be moved.

また、図4の例における主光源P1Aを光源A、もう一方の主光源P2Aを光源Bとする。この場合、光源A,Bの光量をそれぞれ50%とすると、画素5のように、記録画像の重心は光源A,Bの走査線間の境界に位置する。光源Aの光量比率を上げると、光源Aの走査線側へ記録画素の重心が移動し、逆に、光源Bの光量比率を上げると光源Bの走査線側へ記録画素の重心が移動する。すなわち、この方法では、光源A,Bの光量比率を変えることにより、画素1〜7のような走査光量分布を全て利用することができる。総光量は一定に維持されるため、画素の記録濃度は一定となる。   In the example of FIG. 4, the main light source P1A is the light source A, and the other main light source P2A is the light source B. In this case, if the light amounts of the light sources A and B are 50%, the center of gravity of the recorded image is located at the boundary between the scanning lines of the light sources A and B as in the pixel 5. When the light amount ratio of the light source A is increased, the center of gravity of the recording pixel moves toward the scanning line side of the light source A. Conversely, when the light amount ratio of the light source B is increased, the center of gravity of the recording pixel moves toward the scanning line side of the light source B. That is, in this method, by changing the light quantity ratio between the light sources A and B, all the scanning light quantity distributions such as the pixels 1 to 7 can be used. Since the total light amount is kept constant, the recording density of the pixels is constant.

上の説明では、光源の発光時間(発光信号のパルス幅)を変化させることにより光量を制御するものとした。同様の光量制御は、図7に示すように、発光強度すなわち発光信号のレベルを変化させて行うことも可能である。   In the above description, the light quantity is controlled by changing the light emission time (pulse width of the light emission signal) of the light source. Similar light quantity control can be performed by changing the light emission intensity, that is, the level of the light emission signal, as shown in FIG.

図2又は図3の例のような光量比率の制御を行う場合、例えば図8又は図9に例示するように、主走査方向の画素位置に対応した主,副光源の光量比率のデータを予め用意しておき、記録走査時に、画素位置に対応した光量比率をテーブルより読み出して各光源の発光信号のパルス幅又はレベルを調整することにより、上に述べたような光量比率の制御を行って副走査方向の画素の重心位置を制御し、これにより画像の各ラインの副走査方向の位置ずれを高精度に補正することができる。図3の例のような2つの主光源の光量比率の制御も同様の方法で可能である。   When the light amount ratio control as in the example of FIG. 2 or FIG. 3 is performed, as illustrated in FIG. 8 or FIG. 9, for example, the light amount ratio data of the main and sub light sources corresponding to the pixel positions in the main scanning direction is stored in advance. Prepare and read out the light amount ratio corresponding to the pixel position from the table and adjust the pulse width or level of the light emission signal of each light source at the time of recording scanning, thereby controlling the light amount ratio as described above. By controlling the barycentric position of the pixel in the sub-scanning direction, it is possible to correct the positional deviation of each line of the image in the sub-scanning direction with high accuracy. Control of the light quantity ratio of the two main light sources as in the example of FIG. 3 is also possible by the same method.

なお、主光源の光ビーム(主ビーム)による走査線の間隔をΔxとしたときに、主ビームによる走査線と、その副光源の光ビーム(副ビーム)による走査線との間隔はΔx/2以下とするのが好ましい。このようにすると、各組の光源の光ビームの走査光量分布の重なり、すなわち隣接するラインの画素の副走査方向の重なりを防止することができる。   Note that when the interval between the scanning lines by the light beam (main beam) of the main light source is Δx, the interval between the scanning line by the main beam and the scanning line by the light beam (sub beam) of the sub light source is Δx / 2. The following is preferable. In this way, it is possible to prevent the overlapping of the scanning light amount distributions of the light beams of the light sources of each set, that is, the overlapping of the pixels in the adjacent lines in the sub-scanning direction.

さて、主光源と副光源の組み合わせ光量比率を制御する場合、一般に主光源のほうが発光量及び発光時間が多くなるため、副光源に比べ主光源のほうが特性劣化が進みやすい。つまり、主光源の寿命が副光源より短くなりやすい。光源の特性劣化の進み具合が不均等であると、記録濃度むら、保守などの面で好ましくない。かかる不都合を避けるためには、主光源と副光源を切り替えることが有効である。この切り替えは、例えば、1ライン走査毎、1ページ走査毎などで行うことができる。本実施例では、図2又は図3のような制御方法を利用する場合に、そのような主光源と副光源の切り替えが行われる。   When controlling the combined light amount ratio of the main light source and the sub light source, the main light source generally has a larger light emission amount and light emission time, and therefore the main light source is more likely to deteriorate in characteristics than the sub light source. That is, the lifetime of the main light source is likely to be shorter than that of the auxiliary light source. If the progress of deterioration of the characteristics of the light source is uneven, it is not preferable in terms of uneven recording density and maintenance. In order to avoid such inconvenience, it is effective to switch between the main light source and the sub light source. This switching can be performed, for example, every line scan, every page scan, or the like. In this embodiment, when the control method as shown in FIG. 2 or FIG. 3 is used, such switching between the main light source and the sub light source is performed.

図10は、本実施例における光源駆動系の構成例を示すブロック図である。図10において、LD駆動回路14は、図2〜図9に関連して説明したような方法で光源P1A〜P4Cを駆動するための発光信号を発生する手段である。主走査カウンタ11は、各ラインの水平走査に同期した画素クロックをカウントすることにより水平走査位置を検出する手段である。光量比生成回路12は、水平走査位置に対応した光量比率のデータを格納したルックアップテーブル(LUT)などからなり、主走査カウンタ11により指示される水平走査位置に対応した光量比率をLD駆動回路14に供給する手段である。切換カウンタ13は、主走査カウンタ11の出力に応答して走査ライン数をカウントし、所定数ライン毎に主光源と副光源とを切り替える信号をLD駆動回路14に供給する手段である。LD駆動回路14は、画像データに従って各組の光源に対する発光信号を発生するが、この際に、光量比生成回路12より与えられる光量比率に応じて各組の光源に対する発光信号のパルス幅又はレベルを制御する。また、切換カウンタ13からの信号に従って、主光源と副光源の切換を行う。   FIG. 10 is a block diagram illustrating a configuration example of a light source driving system in the present embodiment. In FIG. 10, an LD driving circuit 14 is a means for generating a light emission signal for driving the light sources P1A to P4C by the method described with reference to FIGS. The main scanning counter 11 is means for detecting a horizontal scanning position by counting a pixel clock synchronized with the horizontal scanning of each line. The light quantity ratio generation circuit 12 includes a look-up table (LUT) that stores data on the light quantity ratio corresponding to the horizontal scanning position, and the LD driving circuit sets the light quantity ratio corresponding to the horizontal scanning position indicated by the main scanning counter 11. 14 is a means for supplying to. The switching counter 13 is means for counting the number of scanning lines in response to the output of the main scanning counter 11 and supplying a signal for switching the main light source and the sub light source to the LD driving circuit 14 every predetermined number of lines. The LD drive circuit 14 generates a light emission signal for each set of light sources according to the image data. At this time, the pulse width or level of the light emission signal for each set of light sources according to the light amount ratio given from the light amount ratio generation circuit 12. To control. Further, the main light source and the sub light source are switched according to the signal from the switching counter 13.

図11は、本実施例に係る光走査装置の構成例を示す概略斜視図である。図11において、801は光学ユニットであり、複数の光源が配置された1つ以上の面発光レーザを備え、その裏面側に図10で説明したような駆動系の回路が実装されたプリント基板802が装着されている。この光学ユニット801は、光軸と直交する光学ハウジングの壁面にスプリングにより押圧され、調節ネジ803により、その傾きを調節されて保持される。この調節ネジ803はハウジング壁面に形成された突起部に螺合される。光学ハウジング内部には、シリンダレンズ805、ポリゴンミラー808とその駆動用モータ、fθレンズ806、折り返しミラー807、トロイダルレンズ812がそれぞれ位置決めされて取り付けられている。813は水平同期検知のためのミラーであり、このミラー813により反射された光ビームを検知するための同期検知センサが実装されたプリント基板809が、ハウジング壁面に装着されている。光学ハウジングは、カバー811により上部が封止され、壁面から突出した複数の取付部810にて画像形成装置本体のフレーム部材にネジにより固定される。   FIG. 11 is a schematic perspective view illustrating a configuration example of the optical scanning device according to the present embodiment. In FIG. 11, reference numeral 801 denotes an optical unit, which includes one or more surface emitting lasers on which a plurality of light sources are arranged, and a printed circuit board 802 on which a drive system circuit as described in FIG. Is installed. The optical unit 801 is pressed against the wall surface of the optical housing perpendicular to the optical axis by a spring, and the inclination of the optical unit 801 is adjusted and held by an adjusting screw 803. The adjustment screw 803 is screwed into a protrusion formed on the wall surface of the housing. Inside the optical housing, a cylinder lens 805, a polygon mirror 808 and its driving motor, an fθ lens 806, a folding mirror 807, and a toroidal lens 812 are positioned and attached. Reference numeral 813 denotes a mirror for horizontal synchronization detection, and a printed circuit board 809 on which a synchronization detection sensor for detecting a light beam reflected by the mirror 813 is mounted is mounted on the wall surface of the housing. The upper portion of the optical housing is sealed with a cover 811 and is fixed to the frame member of the image forming apparatus main body with screws by a plurality of mounting portions 810 protruding from the wall surface.

光学ユニット810の面発光レーザの光源は前述したように駆動され、複数の光ビームを発生する。この光ビームはシリンダレンズ805を介してポリゴンミラー808に導かれる。ポリゴンミラー808により偏向された光ビームはfθレンズ806、ミラー807、トロイダルレンズ812を経由して被走査面(不図示)へ向かい、被走査面を走査することになる。   The light source of the surface emitting laser of the optical unit 810 is driven as described above to generate a plurality of light beams. This light beam is guided to the polygon mirror 808 via the cylinder lens 805. The light beam deflected by the polygon mirror 808 goes to the scanning surface (not shown) via the fθ lens 806, the mirror 807, and the toroidal lens 812, and scans the scanning surface.

図12は、本実施例に係る画像形成装置の構成例を示す概略断面図である。図12において、900は図11に示した光走査装置である。901は感光体ドラムであり、その表面が光走査装置900により走査される被走査面である。感光体ドラム901の周囲には、その表面を高圧に帯電するための帯電器902、現像ローラ903と現像ローラ903にトナーを供給するトナーカートリッジ904などからなる現像器、感光体ドラム901のトナー像を記録紙へ転写するための転写チャージャ906、感光体ドラム901上の残留トナーを掻き取り備蓄するクリーニングケース905が配置されている。記録紙は給紙トレイ906から給紙コロ907により供給され、レジストローラ対908により副走査方向の記録開始のタイミングに合わせて送り出され、感光体ドラム901と転写チャージャ906の間を通過し、その際にトナー像が転写される。この記録紙は、定着ローラ909によりトナー像を定着した後に排紙ローラ912により排紙トレイ910へ排出される。記録動作は周知の通りであり、帯電器902により帯電された感光体ドラム901の表面は光走査装置900からの光ビームで走査される。この走査により形成された静電潜像は現像器を通過時にトナー現像され、そのトナー像は転写チャージャ906を通過時に記録紙に転写される。   FIG. 12 is a schematic cross-sectional view illustrating a configuration example of the image forming apparatus according to the present embodiment. In FIG. 12, 900 is the optical scanning device shown in FIG. Reference numeral 901 denotes a photosensitive drum, and the surface of the photosensitive drum 901 is scanned by the optical scanning device 900. Around the photosensitive drum 901, a charging device 902 for charging the surface thereof at a high voltage, a developing roller 903 and a toner cartridge 904 for supplying toner to the developing roller 903, and a toner image on the photosensitive drum 901. A transfer charger 906 for transferring the toner onto the recording paper and a cleaning case 905 for scraping and storing residual toner on the photosensitive drum 901 are disposed. The recording paper is supplied from the paper supply tray 906 by the paper supply roller 907, is sent out by the registration roller pair 908 in accordance with the recording start timing in the sub-scanning direction, passes between the photosensitive drum 901 and the transfer charger 906, and At this time, the toner image is transferred. The recording sheet is discharged onto the discharge tray 910 by the discharge roller 912 after fixing the toner image by the fixing roller 909. The recording operation is well known, and the surface of the photosensitive drum 901 charged by the charger 902 is scanned with the light beam from the optical scanning device 900. The electrostatic latent image formed by this scanning is developed with toner when passing through the developing device, and the toner image is transferred onto the recording paper when passing through the transfer charger 906.

光走査装置900によれば、図2〜図10に関連して説明したように副走査方向の画素の位置ずれを高精度に補正することができる。したがって、この画像形成装置は、副走査方向の画素の位置ずれが高精度に補正された高画質の画像記録が可能である。また、光走査装置900によれば複数ラインの記録走査を同時に行うことができるため、高速な画像記録が可能である。   According to the optical scanning device 900, as described with reference to FIGS. 2 to 10, it is possible to correct the positional deviation of the pixels in the sub-scanning direction with high accuracy. Therefore, this image forming apparatus is capable of high-quality image recording in which the positional deviation of the pixels in the sub-scanning direction is corrected with high accuracy. In addition, since the optical scanning device 900 can simultaneously perform recording scanning of a plurality of lines, high-speed image recording is possible.

本発明は、タンデム方式のカラー画像形成装置にも同様に適用し得る。そのような実施例の概略を図13により説明する。   The present invention can be similarly applied to a tandem color image forming apparatus. An outline of such an embodiment will be described with reference to FIG.

本実施例に係るカラー画像形成装置は、シアン、マゼンダ、イエロー、ブラックの各色の画像形成に別々の感光体2509a,2509b,2509c,2509dを用いる。このようなタンデム方式の装置においては、各色ステーションにおける感光体は別々の光路を経た光ビームにより走査されるため、感光体上で発生する副走査方向のドット位置ずれはステーション毎に異なる特性を有する。したがって、各色ステーション毎に副走査方向のドット位置補正を的確に行わないと、良好な画質、特に良好な色再現性を得ることができない。   The color image forming apparatus according to the present embodiment uses separate photoconductors 2509a, 2509b, 2509c, and 2509d for forming images of each color of cyan, magenta, yellow, and black. In such a tandem apparatus, the photoconductor in each color station is scanned by a light beam that has passed through a separate optical path, so that the dot position deviation in the sub-scanning direction that occurs on the photoconductor has different characteristics for each station. . Therefore, good image quality, particularly good color reproducibility cannot be obtained unless dot position correction in the sub-scanning direction is performed accurately for each color station.

図13において、2505は上下2段構成のポリゴンミラーである。図13には図示されていないが、各色ステーション毎に用意された、図1〜図9に関連したような面発光レーザより複数本の光ビームが出力され、これが不図示のコリメータレンズやシリンダーレンズなどの光学系を介して、ポリゴンミラー2505の異なった反射面に同時に入射される。   In FIG. 13, reference numeral 2505 denotes a polygon mirror having a two-stage configuration. Although not shown in FIG. 13, a plurality of light beams are output from the surface emitting lasers prepared for each color station and related to FIGS. 1 to 9, which are not shown in the figure. Are simultaneously incident on different reflecting surfaces of the polygon mirror 2505.

感光体2509aを含むステーションについて説明すると、ポリゴンミラー2505により偏向された光ビームは、第1の走査レンズ2506a、ミラー2513a、第2の走査レンズ2507a、ミラー2514a,2515a、ビームスプリッタ2508aを経由して感光体2509aを走査し、静電潜像を形成する。ビームスプリッタ2508aのハーフミラー面で反射された一部のレーザ光ビームは、水平同期検知用のフォトディテクタ2510aで検出される。他の色のステーションの走査系も同様の構成であることは図面から明らかであるので、説明を繰り返さない。   The station including the photoreceptor 2509a will be described. The light beam deflected by the polygon mirror 2505 passes through the first scanning lens 2506a, the mirror 2513a, the second scanning lens 2507a, the mirrors 2514a and 2515a, and the beam splitter 2508a. The photoconductor 2509a is scanned to form an electrostatic latent image. A part of the laser light beam reflected by the half mirror surface of the beam splitter 2508a is detected by a photodetector 2510a for horizontal synchronization detection. Since it is clear from the drawings that the scanning systems of the other color stations have the same configuration, the description will not be repeated.

図示しないが、各ステーション毎に図10のような光源駆動系が備えられ、それぞれに水平同期検知用のフォトディテクタ2501a,2510b,2510c,2510dによる水平同期信号と同期した画素クロックが供給され、それに同期して各光源駆動系は面発光レーザの各光源を駆動する。その駆動方法は、図2〜図9により説明した通りであるので説明を繰り返さない。   Although not shown, a light source driving system as shown in FIG. 10 is provided for each station, and pixel clocks synchronized with horizontal synchronizing signals from the photodetectors 2501a, 2510b, 2510c, and 2510d for detecting horizontal synchronization are supplied to each station. Each light source driving system drives each light source of the surface emitting laser. The driving method is as described with reference to FIGS.

各ステーションの感光体2509a,2509b,2509c,2509dの周囲には、感光体表面を一様に帯電させるための手段、感光体上の静電潜像を対応した色のトナー像に現像する手段、現像されたトナー像を中間転写体2516に転写させる手段、感光体表面に転写されずに残留したトナーを除去回収する手段、中間転写体2516上の各色トナー像を重ね合わせて用紙に転写させる手段、用紙上のトナー像を定着させる手段などが存在するが、図示されていない。   Around the photoconductors 2509a, 2509b, 2509c, and 2509d of each station, there are means for uniformly charging the surface of the photoconductor, means for developing the electrostatic latent image on the photoconductor into a corresponding color toner image, Means for transferring the developed toner image to the intermediate transfer member 2516, means for removing and collecting the toner that has not been transferred to the surface of the photosensitive member, and means for superimposing the color toner images on the intermediate transfer member 2516 onto a sheet. There are means for fixing the toner image on the paper, which are not shown.

本実施例の画像形成装置は、各色ステーションにおける副走査方向のドット位置ずれが高精度に補正されるため、副走査ドット位置ずれが小さい高画質な画像を得ることができる。特に、各ステーション間の副走査ドット位置ずれに起因する色ずれを効果的に低減することができるため、色再現性の良い画像が得られる。   The image forming apparatus of this embodiment can obtain a high-quality image with a small sub-scanning dot position shift because the dot-position shift in the sub-scanning direction at each color station is corrected with high accuracy. In particular, since color misregistration caused by sub-scanning dot position misalignment between stations can be effectively reduced, an image with good color reproducibility can be obtained.

面発光レーザ上の光源配列を示す図である。It is a figure which shows the light source arrangement | sequence on a surface emitting laser. 主光源と1個の副光源の組による記録走査の説明図である。It is explanatory drawing of the recording scan by the group of the main light source and one sublight source. 主光源と2個の副光源の組による記録走査の説明図である。It is explanatory drawing of the recording scanning by the group of a main light source and two sub light sources. 2個の主光源の組による記録走査の説明図である。It is explanatory drawing of the recording scan by the group of two main light sources. 2個の面発光レーザを用いる例を示す図である。It is a figure which shows the example using two surface emitting lasers. 2個の光源の組を用いる場合の光量比率と走査光量分布の説明図である。It is explanatory drawing of the light quantity ratio and scanning light quantity distribution in the case of using the group of two light sources. 2個の光源の組を用いる場合の光量比率を発光信号のレベルを変化させて制御する例を示す図である。It is a figure which shows the example which controls the light quantity ratio in the case of using the group of two light sources by changing the level of a light emission signal. 主光源と副光源の組を用いる場合の光量比率データの例を示す図である。It is a figure which shows the example of the light quantity ratio data in the case of using the group of a main light source and a sublight source. 主光源と2個の副光源の組を用いる場合の光量比率データの例を示す図である。It is a figure which shows the example of the light quantity ratio data in the case of using the group of a main light source and two sub light sources. 本発明に係る光源駆動系の例を示すブロック図である。It is a block diagram which shows the example of the light source drive system which concerns on this invention. 本発明に係る光走査装置の一例を示す斜視図である。It is a perspective view which shows an example of the optical scanning device concerning this invention. 本発明に係る画像形成装置の一例を示す断面図である。1 is a cross-sectional view illustrating an example of an image forming apparatus according to the present invention. 本発明に係るタンデム方式のカラー画像形成装置の一例を示す模式図である。1 is a schematic diagram illustrating an example of a tandem color image forming apparatus according to the present invention. 電子写真式の画像形成装置の一般的構成の説明図である。1 is an explanatory diagram of a general configuration of an electrophotographic image forming apparatus.

符号の説明Explanation of symbols

1 面発光レーザ
2 光源
11 主走査カウンタ
12 光量比生成回路
13 切換カウンタ
14 LD駆動回路
801 光源ユニット
805 シリンダレンズ
806 fθレンズ
807 折り返しミラー
808 ポリゴンミラー
812 トロイダルレンズ
900 光走査装置
901 感光体ドラム
DESCRIPTION OF SYMBOLS 1 Surface emitting laser 2 Light source 11 Main scanning counter 12 Light quantity ratio production | generation circuit 13 Switching counter 14 LD drive circuit 801 Light source unit 805 Cylinder lens 806 f (theta) lens 807 Folding mirror 808 Polygon mirror 812 Toroidal lens 900 Optical scanning device 901 Photosensitive drum

Claims (10)

被走査面の走査のための光ビームを発生する複数の光源と、それらを駆動する光源駆動手段とを有し、
光源駆動手段は、被走査面上の隣接した2本の走査線に対応する2個の光源を1組とし、1組の光源のうちの一方を主光源、もう一方を副光源とし、1組の光源の総光量を変えることなく、かつ、副光源の光量を主光源の光量を越えさせることなく、主光源と副光源の間の光量比率を変化させることにより、1組の光源より発生する光ビームの被走査面上における副走査方向の光量分布を制御することを特徴とする特徴とする光走査装置。
A plurality of light sources for generating a light beam for scanning the surface to be scanned, and light source driving means for driving them,
The light source driving means includes two light sources corresponding to two adjacent scanning lines on the scanning surface as one set, one of the light sources as a main light source, and the other as a sub light source. It is generated from a set of light sources by changing the light amount ratio between the main light source and the sub light source without changing the total light amount of the light source and without exceeding the light amount of the main light source. An optical scanning device characterized by controlling a light amount distribution in a sub-scanning direction on a surface to be scanned of a light beam.
被走査面の走査のための光ビームを発生する複数の光源と、それらを駆動する光源駆動手段とを有し、
光源駆動手段は、被走査面上の隣接した3本の走査線に対応する3個の光源を1組とし、1組の光源のうち、中央の走査線に対応する光源を主光源、残りの2個の光源をそれぞれ副光源とし、1組の光源の総光量を変えることなく、かつ、各副光源の光量を主光源の光量を越えさせることなく、主光源と各副光源の間の光量比率を変化させることにより、1組の光源より発生する光ビームの被走査面上における副走査方向の光量分布を制御することを特徴とする光走査装置。
A plurality of light sources for generating a light beam for scanning the surface to be scanned, and light source driving means for driving them,
The light source driving means sets three light sources corresponding to three adjacent scanning lines on the surface to be scanned as one set, and among the one set of light sources, the light source corresponding to the central scanning line is the main light source and the remaining light sources Each of the two light sources is a sub-light source, and the amount of light between the main light source and each sub-light source is not changed without changing the total light amount of one set of light sources and without exceeding the light amount of each sub-light source. An optical scanning apparatus characterized by controlling a light amount distribution in a sub-scanning direction on a surface to be scanned of a light beam generated from a set of light sources by changing a ratio.
被走査面の走査のための光ビームを発生する複数の光源と、それらを駆動する光源駆動手段とを有し、
光源駆動手段は、被走査面上の隣接した2本の走査線に対応する2個の光源を1組とし、1組の光源の総光量を変えることなく光源間の光量比率を変化させることにより、1組の光源より発生する光ビームの被走査面上における副走査方向の光量分布を制御することをことを特徴とする光走査装置。
A plurality of light sources for generating a light beam for scanning the surface to be scanned, and light source driving means for driving them,
The light source driving means sets two light sources corresponding to two adjacent scanning lines on the scanned surface as one set, and changes the light amount ratio between the light sources without changing the total light amount of the one light source. An optical scanning device characterized by controlling a light amount distribution in a sub-scanning direction on a surface to be scanned of a light beam generated from a set of light sources.
請求項1又は2に記載の光走査装置において、
光源駆動手段は、主光源として駆動する光源と副光源として駆動する光源を切り替える手段を含むことを特徴とする光走査装置。
The optical scanning device according to claim 1 or 2,
The light source driving means includes means for switching between a light source driven as a main light source and a light source driven as a sub light source.
請求項1又は2に記載の光走査装置において、
被走査面における主光源に対応する走査線の間隔をΔXとするとき、
被走査面における主光源に対応する走査線と、当該主光源に対する副光源に対応する走査線との間隔はΔX/2以下であることを特徴とする光走査装置。
The optical scanning device according to claim 1 or 2,
When the interval between the scanning lines corresponding to the main light source on the surface to be scanned is ΔX,
An optical scanning device characterized in that an interval between a scanning line corresponding to a main light source on a surface to be scanned and a scanning line corresponding to a sub-light source with respect to the main light source is ΔX / 2 or less.
請求項1乃至5のいずれか1項に記載の光走査装置において、
複数の光源として、同一チップ上に複数の光源を格子状に配列した面発光レーザを備えることを特徴とする光走査装置。
The optical scanning device according to any one of claims 1 to 5,
An optical scanning device comprising a surface emitting laser in which a plurality of light sources are arranged in a grid on the same chip as the plurality of light sources.
被走査媒体の表面を被走査面として、被走査面を光ビームにより走査することにより被走査媒体上に静電潜像を形成する画像形成方法において、
被走査面上の隣接した走査線を走査する2本の光ビームを1組とし、1組の光ビームにより画素列の静電潜像を形成し、1組の光ビームの総光量を変えることなく光ビーム間の光量比率を変化させることにより副走査方向の画素の重心位置を制御することを特徴とする画像形成方法。
In an image forming method for forming an electrostatic latent image on a scanned medium by scanning the scanned surface with a light beam using the surface of the scanned medium as a scanned surface,
A set of two light beams that scan adjacent scanning lines on the surface to be scanned is formed as a set, and an electrostatic latent image of a pixel row is formed by the set of light beams, and the total amount of light of the set of light beams is changed. An image forming method comprising controlling a barycentric position of a pixel in a sub-scanning direction by changing a light amount ratio between light beams without any change.
被走査媒体の表面を被走査面として、被走査面を光ビームにより走査することにより被走査媒体上に静電潜像を形成する画像形成方法において、
被走査面上の隣接した走査線を走査する3本の光ビームを1組とし、1組の光ビームにより画素列の静電潜像を形成し、1組の光ビームのうちの中央の光ビームを主ビーム、残りの2本の光ビームをそれぞれ副ビームとし、1組の光ビームの総光量を変えることなく主ビームと各副ビームの間の光量比率を変化させることにより副走査方向の画素の重心位置を制御することを特徴とする画像形成方法。
In an image forming method for forming an electrostatic latent image on a scanned medium by scanning the scanned surface with a light beam using the surface of the scanned medium as a scanned surface,
A set of three light beams that scan adjacent scanning lines on the surface to be scanned is formed, and an electrostatic latent image of a pixel row is formed by one set of light beams, and the center light of the one set of light beams is formed. The beam is a main beam and the remaining two light beams are sub-beams, and the light quantity ratio between the main beam and each sub-beam is changed without changing the total light quantity of one set of light beams. An image forming method comprising controlling a barycentric position of a pixel.
被走査媒体と、その表面を被走査面として光ビームにより走査する光走査装置とを有し、被走査媒体上に静電潜像を形成する画像形成装置において、
光走査装置は請求項1乃至6のいずれか1項に記載の光走査装置からなることを特徴とする画像形成装置。
In an image forming apparatus that has a scanned medium and an optical scanning device that scans with a light beam using the surface as a scanned surface, and forms an electrostatic latent image on the scanned medium,
An image forming apparatus comprising the optical scanning device according to claim 1.
色別の複数の被走査媒体と、それらの表面を被走査面として光ビームにより走査する光走査装置とを有し、複数の被走査媒体上に色別の静電潜像を形成する画像形成装置において、
光走査装置は請求項1乃至6のいずれか1項に記載の光走査装置からなることを特徴とする画像形成装置。
Image forming that has a plurality of scanned media for different colors and an optical scanning device that scans with a light beam using those surfaces as scanned surfaces, and forms electrostatic latent images for different colors on the scanned media In the device
An image forming apparatus comprising the optical scanning device according to claim 1.
JP2004047077A 2004-02-23 2004-02-23 Optical scanning apparatus and image forming apparatus Expired - Fee Related JP4321764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004047077A JP4321764B2 (en) 2004-02-23 2004-02-23 Optical scanning apparatus and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004047077A JP4321764B2 (en) 2004-02-23 2004-02-23 Optical scanning apparatus and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2005234510A true JP2005234510A (en) 2005-09-02
JP4321764B2 JP4321764B2 (en) 2009-08-26

Family

ID=35017486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004047077A Expired - Fee Related JP4321764B2 (en) 2004-02-23 2004-02-23 Optical scanning apparatus and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4321764B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121347A (en) * 2005-10-25 2007-05-17 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2007148346A (en) * 2005-10-25 2007-06-14 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2007160508A (en) * 2005-12-09 2007-06-28 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2007249172A (en) * 2006-02-17 2007-09-27 Ricoh Co Ltd Pixel forming apparatus, optical scanner, optical scanning method, image forming apparatus, color image forming apparatus, program and recording medium
EP1844943A1 (en) 2006-04-12 2007-10-17 Canon Kabushiki Kaisha Image forming apparatus and control method thereof
WO2007126159A1 (en) 2006-04-28 2007-11-08 Ricoh Company, Ltd. Surface-emission laser array, optical scanning apparatus and image forming apparatus
JP2008107704A (en) * 2006-10-27 2008-05-08 Ricoh Co Ltd Pixel forming apparatus, optical scanner, method of optical scanning, image forming apparatus and color image forming apparatus
JP2008213243A (en) * 2007-03-02 2008-09-18 Ricoh Co Ltd Optical scanning apparatus, optical scanning method, program, recording medium and image forming apparatus
US20090091805A1 (en) * 2006-03-10 2009-04-09 Jun Tanabe Light scanning apparatus, light scanning method, image forming apparatus, color image forming apparatus, and recording medium having program
JP2009234256A (en) * 2008-03-04 2009-10-15 Ricoh Co Ltd Image forming apparatus
US7719559B2 (en) 2006-04-12 2010-05-18 Canon Kabushiki Kaisha Image forming apparatus, optical scanning apparatus, and auto light power control method
US7903134B2 (en) 2007-02-28 2011-03-08 Ricoh Company, Ltd. Laser scanning apparatus having a photodetector having first and second light receiving units
JP2012078849A (en) * 2006-02-17 2012-04-19 Ricoh Co Ltd Optical scanner, image forming apparatus, and color image forming apparatus
US8179414B2 (en) 2007-07-13 2012-05-15 Ricoh Company, Ltd. Surface-emitting laser array, optical scanning device, and image forming device
US8253768B2 (en) 2005-12-09 2012-08-28 Ricoh Company, Ltd. Optical scanner and image forming apparatus

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121347A (en) * 2005-10-25 2007-05-17 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2007148346A (en) * 2005-10-25 2007-06-14 Ricoh Co Ltd Optical scanner and image forming apparatus
JP4662264B2 (en) * 2005-10-25 2011-03-30 株式会社リコー Optical scanning apparatus and image forming apparatus
JP2007160508A (en) * 2005-12-09 2007-06-28 Ricoh Co Ltd Optical scanner and image forming apparatus
US8253768B2 (en) 2005-12-09 2012-08-28 Ricoh Company, Ltd. Optical scanner and image forming apparatus
JP2007249172A (en) * 2006-02-17 2007-09-27 Ricoh Co Ltd Pixel forming apparatus, optical scanner, optical scanning method, image forming apparatus, color image forming apparatus, program and recording medium
JP2012078849A (en) * 2006-02-17 2012-04-19 Ricoh Co Ltd Optical scanner, image forming apparatus, and color image forming apparatus
EP1993843A4 (en) * 2006-03-10 2015-10-14 Ricoh Co Ltd Light scanning apparatus, light scanning method, image forming apparatus, color image forming apparatus, and recording medium having program
US8310516B2 (en) * 2006-03-10 2012-11-13 Ricoh Company, Ltd. Light scanning apparatus, light scanning method, image forming apparatus, color image forming apparatus, and recording medium having program
US20090091805A1 (en) * 2006-03-10 2009-04-09 Jun Tanabe Light scanning apparatus, light scanning method, image forming apparatus, color image forming apparatus, and recording medium having program
EP1844943A1 (en) 2006-04-12 2007-10-17 Canon Kabushiki Kaisha Image forming apparatus and control method thereof
US7688342B2 (en) 2006-04-12 2010-03-30 Canon Kabushiki Kaisha Image forming apparatus and control method thereof
US7719559B2 (en) 2006-04-12 2010-05-18 Canon Kabushiki Kaisha Image forming apparatus, optical scanning apparatus, and auto light power control method
WO2007126159A1 (en) 2006-04-28 2007-11-08 Ricoh Company, Ltd. Surface-emission laser array, optical scanning apparatus and image forming apparatus
US8089498B2 (en) 2006-04-28 2012-01-03 Ricoh Company, Ltd. Surface-emission laser array, optical scanning apparatus apparatus and image forming apparatus
US8508567B2 (en) 2006-04-28 2013-08-13 Ricoh Company, Ltd. Surface-emission laser array, optical scanning apparatus and image forming apparatus
US8830287B2 (en) 2006-04-28 2014-09-09 Ricoh Company, Ltd. Surface-emission laser array, optical scanning apparatus and image forming apparatus
US8089665B2 (en) 2006-10-27 2012-01-03 Ricoh Company, Ltd. Optical scanning device moving gravity center of pixel in sub-scanning direction, image forming apparatus having light sources, and method
JP2008107704A (en) * 2006-10-27 2008-05-08 Ricoh Co Ltd Pixel forming apparatus, optical scanner, method of optical scanning, image forming apparatus and color image forming apparatus
US7903134B2 (en) 2007-02-28 2011-03-08 Ricoh Company, Ltd. Laser scanning apparatus having a photodetector having first and second light receiving units
JP2008213243A (en) * 2007-03-02 2008-09-18 Ricoh Co Ltd Optical scanning apparatus, optical scanning method, program, recording medium and image forming apparatus
US8179414B2 (en) 2007-07-13 2012-05-15 Ricoh Company, Ltd. Surface-emitting laser array, optical scanning device, and image forming device
JP2009234256A (en) * 2008-03-04 2009-10-15 Ricoh Co Ltd Image forming apparatus

Also Published As

Publication number Publication date
JP4321764B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP4364010B2 (en) Pixel clock generation device, optical scanning device, and image forming device
JP4912071B2 (en) Optical scanning apparatus, optical scanning method, image forming apparatus, color image forming apparatus, program, and recording medium
JP4863840B2 (en) Pixel forming apparatus, optical scanning apparatus, optical scanning method, image forming apparatus, and color image forming apparatus
US7956882B2 (en) Multiple-beam scanning device and image forming apparatus having the multiple-beam scanning device
US7515170B2 (en) Optical scanner and image forming apparatus
JP4768348B2 (en) Optical scanning apparatus and image forming apparatus
JP4868841B2 (en) Optical scanning apparatus and image forming apparatus
JP2007269001A (en) Light scanning apparatus, light scanning method, image forming apparatus, color image forming apparatus, program, and recording medium
US9266351B2 (en) Optical scanning device and image forming apparatus
JP4321764B2 (en) Optical scanning apparatus and image forming apparatus
JP2007079295A (en) Multi-beam light source device, optical scanner, and image forming apparatus
JP4896663B2 (en) Pixel forming apparatus, optical scanning apparatus, optical scanning method, image forming apparatus, color image forming apparatus, program, and recording medium
JP2006198896A (en) Multicolor image forming apparatus
JP4523440B2 (en) Multicolor image forming apparatus
JP4313224B2 (en) Dot position correction method and image forming apparatus using the same
JP2007008132A (en) Dot position correction device, optical scanning device, image formation device, and color image formation device
JP4919680B2 (en) Optical scanning apparatus, image forming apparatus, color image forming apparatus
JP2007160508A (en) Optical scanner and image forming apparatus
JP2006116716A (en) Optical scanner, pixel clock generation method of optical scanner and image forming apparatus
JP2008107674A (en) Optical scanner, method of optical scanning, image forming apparatus and color image forming apparatus
JP2008026434A (en) Optical scanner, optical scanning method, image forming apparatus, color image forming apparatus, program, and recording medium
JP4895242B2 (en) Optical scanning apparatus and image forming apparatus
JP2008026852A (en) Optical scanner, optical scanning method, image forming apparatus and color image forming apparatus
JP4662264B2 (en) Optical scanning apparatus and image forming apparatus
JP5445798B2 (en) Optical scanning apparatus, optical scanning method, image forming apparatus, color image forming apparatus, program, and recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees