JP2005233854A - Peptide derivative and intermolecular interaction detecting method - Google Patents

Peptide derivative and intermolecular interaction detecting method Download PDF

Info

Publication number
JP2005233854A
JP2005233854A JP2004045588A JP2004045588A JP2005233854A JP 2005233854 A JP2005233854 A JP 2005233854A JP 2004045588 A JP2004045588 A JP 2004045588A JP 2004045588 A JP2004045588 A JP 2004045588A JP 2005233854 A JP2005233854 A JP 2005233854A
Authority
JP
Japan
Prior art keywords
peptide derivative
peptide
protein
molecule
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004045588A
Other languages
Japanese (ja)
Inventor
Hisakazu Mihara
久和 三原
Kinya Tomizaki
欣也 富崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Original Assignee
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai filed Critical Rikogaku Shinkokai
Priority to JP2004045588A priority Critical patent/JP2005233854A/en
Publication of JP2005233854A publication Critical patent/JP2005233854A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To rapidly and quantitatively measure the intermolecular interaction between a physiologically active molecule of protein, a nucleic acid, a sigar chain or the like and a target molecule. <P>SOLUTION: The intermolecular interaction detecting method of the target molecule has a process (a) for bringing a substance having a photochromic compound bonded thereto in its molecule into contact with the target molecule and a process (b) for measuring the optical isomerization speed constant of the photochromic compound. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ペプチド誘導体、及び分子間相互作用検出方法に関するものである。本発明のペプチド誘導体は、分子間相互作用検出方法に用いられるものであり、本発明の分子間相互作用検出方法は、物質と標的分子との相互作用の検出を容易に行うことができる。   The present invention relates to a peptide derivative and an intermolecular interaction detection method. The peptide derivative of the present invention is used for a method for detecting an interaction between molecules, and the method for detecting an interaction between molecules of the present invention can easily detect an interaction between a substance and a target molecule.

今日においては、ヒトゲノムをはじめとし、100種以上の生物ゲノムの解読が完了しているか、又は進行中である。ポストゲノム時代に突入した現在においては、膨大な遺伝情報が入手可能となってきている。DNA→RNA→タンパク質というセントラルドグマの原則に従い、全てのDNA、RNAとタンパク質を対応させ、それらの機能を解明し、応用技術へと導く技術が必要となる。DNAの発現量の指標とされるmRNAの発現量とタンパク質の存在量との間の相関は低いと考えられていることから、タンパク質を直接検出することのできる技術の開発が急務となっている。   Today, more than 100 biological genomes, including the human genome, have been decoded or are in progress. Now that we have entered the post-genomic era, a vast amount of genetic information is available. In accordance with the central dogma principle of DNA-> RNA-> protein, it is necessary to have a technology that matches all DNA, RNA and protein, elucidates their functions, and leads to applied technology. Since the correlation between the expression level of mRNA, which is an index of the expression level of DNA, and the abundance of protein is considered to be low, development of a technique capable of directly detecting protein is urgently required. .

今日においては、タンパク質を検出するための補足分子として、抗体、アプタマー、融合タンパク質、ファージディスプレイペプチド等が、また、検出方法としては、化学発光、蛍光、質量分析、表面プラズモン共鳴法等が利用されている。
例えば、補足分子として蛍光色素標識化されたペプチド群を用いることによって検体の標識化を回避することができ、またタンパク質との相互作用に基づく蛍光強度変化を「プロテインフィンガープリント」として既知のタンパク質のものと比較することにより、試料中のタンパク質の同定を容易に行なうことのできる技術が開示されている(Construction of a Protein-Detection System Using a Loop Peptide Library with a Fluorescence Label” M. Takahashi, K. Nokihara, H. Mihara Chem. Biol. 2003, 10, 53-60)。該文献に開示された方法は、簡便で高感度な方法であり、安価に実施できるというものであるが、蛍光物質が直接ペプチドに結合しているため、蛍光のバックグラウンドが比較的大きいという欠点があった。従って、ペプチドを標識する化合物の最適化が必要とされている。
Today, antibodies, aptamers, fusion proteins, phage display peptides, etc. are used as supplemental molecules for detecting proteins, and chemiluminescence, fluorescence, mass spectrometry, surface plasmon resonance, etc. are used as detection methods. ing.
For example, by using a group of fluorescent dye-labeled peptides as supplementary molecules, labeling of an analyte can be avoided, and a change in fluorescence intensity based on the interaction with a protein is known as a “protein fingerprint”. A technique that allows easy identification of proteins in a sample by comparison with a protein (Construction of a Protein-Detection System Using a Loop Peptide Library with a Fluorescence Label ”M. Takahashi, K. Nokihara, H. Mihara Chem. Biol. 2003, 10, 53-60) The method disclosed in this document is a simple and highly sensitive method and can be carried out at low cost. Since it is bound to a peptide, it has the disadvantage that the fluorescence background is relatively large, so there is a need for optimization of the compound that labels the peptide.

Construction of a Protein-Detection System Using a Loop Peptide Library with a Fluorescence Label” M. Takahashi, K. Nokihara, H. Mihara Chem. Biol. 2003, 10, 53-60Construction of a Protein-Detection System Using a Loop Peptide Library with a Fluorescence Label ”M. Takahashi, K. Nokihara, H. Mihara Chem. Biol. 2003, 10, 53-60

いわゆるDNA−DNA間の相互作用の検出とタンパク質チップにおけるタンパク質−タンパク質間の相互作用の検出との違いは、タンパク質相互作用の結合する度合いの程度の差が極めて大きくおよそ10の4乗のオーダーの強度差を検出する必要がある。本発明は、このようなタンパク質、核酸、糖鎖等の生理活性分子と標的分子との間の分子間相互作用を迅速かつ定量的に測定する方法を提供することにある。   The difference between detection of so-called DNA-DNA interaction and detection of protein-protein interaction in a protein chip is that the difference in the degree of binding of protein interaction is extremely large, on the order of about 10 to the fourth power. It is necessary to detect the intensity difference. An object of the present invention is to provide a method for quickly and quantitatively measuring the intermolecular interaction between a target molecule and a physiologically active molecule such as a protein, nucleic acid or sugar chain.

上記目的を達成するため、本発明者らは鋭意検討した結果、フォトクロミック化合物を結合してなる物質を用いることにより、上記目的を達成し得るという知見を得た。また、本発明者らは、上記物質と標的分子とを接触させた時の光異性化速度定数の変化に着目し、本発明を完成させた。   In order to achieve the above object, the present inventors have intensively studied, and as a result, have found that the above object can be achieved by using a substance formed by binding a photochromic compound. In addition, the present inventors have completed the present invention by paying attention to a change in the photoisomerization rate constant when the above substance and the target molecule are brought into contact with each other.

すなわち、本発明は、分子中にフォトクロミック化合物を結合してなるペプチド誘導体を提供するものである。
また、本発明は、下記工程を有する、標的分子の分子間相互作用検出方法を提供するものである。
(a)分子中にフォトクロミック化合物を結合してなる物質と、標的分子とを接触させる工程;及び
(b)フォトクロミック化合物の光異性化速度定数を測定する工程;
また、本発明は、下記工程を有する、標的分子の分子間相互作用検出方法を提供するものである。
(a)分子中にフォトクロミック化合物を結合してなるペプチド誘導体と、標的分子とを接触させる工程;及び
(b)フォトクロミック化合物の光異性化速度定数を測定する工程;
That is, this invention provides the peptide derivative formed by couple | bonding a photochromic compound in a molecule | numerator.
The present invention also provides a method for detecting an intermolecular interaction of a target molecule, comprising the following steps.
(A) contacting the target molecule with a substance formed by binding a photochromic compound in the molecule; and (b) measuring the photoisomerization rate constant of the photochromic compound;
The present invention also provides a method for detecting an intermolecular interaction of a target molecule, comprising the following steps.
(A) contacting a peptide derivative formed by binding a photochromic compound in the molecule with a target molecule; and (b) measuring a photoisomerization rate constant of the photochromic compound;

本発明のペプチド誘導体によれば、タンパク質等の分子と標的分子との間の分子間相互作用を測定することができる。また、本発明の分子間相互作用検出方法によれば、物質と標的分子との相互作用の検出を容易に行うことができる。   According to the peptide derivative of the present invention, the intermolecular interaction between a molecule such as a protein and a target molecule can be measured. In addition, according to the intermolecular interaction detection method of the present invention, the interaction between the substance and the target molecule can be easily detected.

以下、先ず本発明のペプチド誘導体について説明する。
本発明のペプチド誘導体は、分子中にフォトクロミック化合物を結合してなる。
フォトクロミック化合物とは、フォトクロミズムと呼ばれる現象を起こす化合物を意味する。フォトクロミズムとは、単一の化学種が2つの異なった状態間を吸収スペクトルの大きな変化を伴って可逆的に往復し、少なくとも一方の変換が光照射によって引き起こされる現象を意味する。フォトクロミック化合物の具体例として、例えば、フルギド類、ジアリルエテン類、スピロピラン類及びスピロオキサジン類等が挙げられる。これらのフォトクロミック化合物の具体例を下記に示す。
Hereinafter, the peptide derivative of the present invention will be described first.
The peptide derivative of the present invention is formed by binding a photochromic compound in the molecule.
The photochromic compound means a compound that causes a phenomenon called photochromism. Photochromism means a phenomenon in which a single chemical species reversibly reciprocates between two different states with a large change in absorption spectrum, and at least one conversion is caused by light irradiation. Specific examples of the photochromic compound include fulgides, diallylethenes, spiropyrans, spirooxazines and the like. Specific examples of these photochromic compounds are shown below.

Figure 2005233854
Figure 2005233854

Figure 2005233854
Figure 2005233854

Figure 2005233854
Figure 2005233854

Figure 2005233854
Figure 2005233854

上記フォトクロミック化合物の異性化反応は、分子構造の大幅な再構築を伴って行われるので、光異性化速度定数はフォトクロミック化合物の周囲の微小環境変化に依存すると考えられる。すなわち、光異性化速度定数の変化を分子間相互作用の結果生じる、周囲の微小環境変化と捉えることができる。従って、上記ペプチド誘導体は、以下に述べるような、分子間相互作用検出方法に用いることができる。本発明のペプチド誘導体の用途については後述する。   Since the isomerization reaction of the photochromic compound is performed with a substantial restructuring of the molecular structure, the photoisomerization rate constant is considered to depend on the microenvironment change around the photochromic compound. That is, a change in the photoisomerization rate constant can be regarded as a change in the surrounding microenvironment resulting from the intermolecular interaction. Therefore, the peptide derivative can be used in a method for detecting an intermolecular interaction as described below. The use of the peptide derivative of the present invention will be described later.

本発明のペプチド誘導体は、分子中にフォトクロミック化合物を結合してなるが、フォトクロミック化合物は、例えば分子中のペプチド鎖のリシン残基、又はリシン残基に代えてオルニチン残基、ジアミノブタン酸残基、ジアミノプロピオン酸残基を導入し、上記残基にフォトクロミック化合物を結合させたペプチド誘導体、ペプチド主鎖にフォトクロミック化合物を挿入したペプチド誘導体が挙げられる。   The peptide derivative of the present invention is formed by binding a photochromic compound in the molecule. The photochromic compound is, for example, a lysine residue of a peptide chain in the molecule, or an ornithine residue or a diaminobutanoic acid residue instead of a lysine residue. And a peptide derivative in which a diaminopropionic acid residue is introduced and a photochromic compound is bound to the residue, and a peptide derivative in which a photochromic compound is inserted into the peptide main chain.

本発明のペプチド誘導体は、後述するように、分子間相互作用を検出するために用いられる。従って、この分子間相互作用を検出するための標的分子が酵素である場合、ペプチド誘導体としては、標的分子である酵素の基質ペプチドにフォトクロミック化合物を結合したものが挙げられる。また、標的分子である酵素の基質ペプチド以外のペプチドであっても、標的分子と結合するものであればよい。
本発明のペプチド誘導体の具体例を以下に示す。
The peptide derivative of the present invention is used for detecting an intermolecular interaction, as will be described later. Therefore, when the target molecule for detecting this intermolecular interaction is an enzyme, peptide derivatives include those obtained by binding a photochromic compound to a substrate peptide of the enzyme that is the target molecule. Moreover, even if it is a peptide other than the substrate peptide of the enzyme which is a target molecule, it should just be a thing couple | bonded with a target molecule.
Specific examples of the peptide derivative of the present invention are shown below.

Ac-Cys(Acm)-Gly-Lys(SP)-Gly-Ile-Tyr-Gly-Glu-Phe-Lys-Lys-Lys-Gly-NH2 (1)
Ac-Cys(Acm)-Gly-Lys(SP)-Gly-Ile-Tyr-Ala-Ala-Pro-Lys-Lys-Lys-Gly-NH2 (2)
Ac-Cys(Acm)-Gly-Lys(SP)-Gly-Leu-Arg-Arg-Ala-Ser-Leu-Gly-NH2 (3)
Ac-Cys(Acm)-Gly-Lys(SP)-Gly-Lys-Arg-Thr-Leu-Arg-Arg-Gly-NH2 (4)
Ac-Cys(Acm)-Gly-(amino-SP)-Gly-Leu-Arg-Arg-Ala-Ser-Leu-Gly-NH2 (5)
Ac-Cys(Acm)-Gly-Gly-Leu-Arg-(amino-SP)-Arg-Ala-Ser-Leu-Gly-NH2 (6)
Ac-Cys(Acm)-Gly-Gly-Leu-Arg-Arg-Ala-Ser-(amino-SP)-Leu-Gly-NH2 (7)
Ac-Cys(Acm)-Gly-Orn(SP)-Gly-Leu-Arg-Arg-Ala-Ser-Leu-Gly-NH2 (8)
Ac-Cys(Acm)-Gly-Dab(SP)-Gly-Leu-Arg-Arg-Ala-Ser-Leu-Gly-NH2 (9)
Ac-Cys(Acm)-Gly-Dap(SP)-Gly-Leu-Arg-Arg-Ala-Ser-Leu-Gly-NH2 (10)
Ac-Cys(Acm)-Gly-Lys(amino-SP)-Gly-Leu-Arg-Arg-Ala-Ser-Leu-Gly-NH2 (11)
SP-Cys(Acm)-Gly-Ala-Gly-Leu-Arg-Arg-Ala-Ser-Leu-Gly-NH2 (12)
上記式(1)〜(12)において、SPはフォトクロミック化合物である。
Ac-Cys (Acm) -Gly-Lys (SP) -Gly-Ile-Tyr-Gly-Glu-Phe-Lys-Lys-Lys-Gly-NH 2 (1)
Ac-Cys (Acm) -Gly-Lys (SP) -Gly-Ile-Tyr-Ala-Ala-Pro-Lys-Lys-Lys-Gly-NH 2 (2)
Ac-Cys (Acm) -Gly-Lys (SP) -Gly-Leu-Arg-Arg-Ala-Ser-Leu-Gly-NH 2 (3)
Ac-Cys (Acm) -Gly-Lys (SP) -Gly-Lys-Arg-Thr-Leu-Arg-Arg-Gly-NH 2 (4)
Ac-Cys (Acm) -Gly- (amino-SP) -Gly-Leu-Arg-Arg-Ala-Ser-Leu-Gly-NH 2 (5)
Ac-Cys (Acm) -Gly-Gly-Leu-Arg- (amino-SP) -Arg-Ala-Ser-Leu-Gly-NH 2 (6)
Ac-Cys (Acm) -Gly-Gly-Leu-Arg-Arg-Ala-Ser- (amino-SP) -Leu-Gly-NH 2 (7)
Ac-Cys (Acm) -Gly-Orn (SP) -Gly-Leu-Arg-Arg-Ala-Ser-Leu-Gly-NH 2 (8)
Ac-Cys (Acm) -Gly-Dab (SP) -Gly-Leu-Arg-Arg-Ala-Ser-Leu-Gly-NH 2 (9)
Ac-Cys (Acm) -Gly-Dap (SP) -Gly-Leu-Arg-Arg-Ala-Ser-Leu-Gly-NH 2 (10)
Ac-Cys (Acm) -Gly-Lys (amino-SP) -Gly-Leu-Arg-Arg-Ala-Ser-Leu-Gly-NH 2 (11)
SP-Cys (Acm) -Gly-Ala-Gly-Leu-Arg-Arg-Ala-Ser-Leu-Gly-NH 2 (12)
In the above formulas (1) to (12), SP is a photochromic compound.

上記式(1)〜(4)に示すペプチド誘導体は、それぞれ、c-Srcキナーゼ、c-Ablチロシンキナーゼ、プロテインキナーゼA及びプロテインキナーゼCの基質ペプチドのN末端側にGlyを介してLysを配置し、そのLys側鎖に、フォトクロミック化合物であるスピロピラン分子を結合したペプチド誘導体である。
上記式(5)〜(7)に示すペプチド誘導体は、それぞれ、スピロピラン分子のニトロ基を還元し、アミノ化スピロピランを得、得られたアミノ化スピロピラン分子をプロテインキナーゼAの基質ペプチドの主鎖骨格に挿入したペプチド誘導体である。
In the peptide derivatives represented by the above formulas (1) to (4), Lys is arranged via Gly on the N-terminal side of substrate peptides of c-Src kinase, c-Abl tyrosine kinase, protein kinase A and protein kinase C, respectively. And, it is a peptide derivative in which a spiropyran molecule that is a photochromic compound is bound to the Lys side chain.
The peptide derivatives represented by the above formulas (5) to (7) each reduce the nitro group of the spiropyran molecule to obtain an aminated spiropyran, and the resulting aminated spiropyran molecule is converted into the main chain skeleton of the substrate peptide of protein kinase A. Is a peptide derivative inserted in

上記式(8)〜(10)に示すペプチド誘導体は、それぞれ、式(3)に示すペプチド誘導体のスピロピラン分子が結合するLysをオルニチン(Orn)、ジアミノブタン酸(Dab)及びジアミノプロピオン酸(Dap)に代えたペプチド誘導体であり、式(11)に示すペプチド誘導体は、式(3)に示すペプチド誘導体のLys側鎖に結合するスピロピラン分子をアミノ化スピロピランに代えたペプチド誘導体であり、式(12)に示すペプチド誘導体は、式(3)に示すペプチド誘導体のLys(SP)に代えて、N末端側にスピロピラン分子を結合したペプチド誘導体である。   In the peptide derivatives represented by the above formulas (8) to (10), Lys to which the spiropyran molecule of the peptide derivative represented by the formula (3) binds is converted to ornithine (Orn), diaminobutanoic acid (Dab), and diaminopropionic acid (Dap). The peptide derivative represented by the formula (11) is a peptide derivative obtained by replacing the spiropyran molecule bonded to the Lys side chain of the peptide derivative represented by the formula (3) with an aminated spiropyran. The peptide derivative shown in 12) is a peptide derivative in which a spiropyran molecule is bonded to the N-terminal side instead of Lys (SP) of the peptide derivative shown in formula (3).

上記ペプチド誘導体の製造方法について以下に説明する。
まず、式(1)〜(4)に示すペプチド誘導体の製造方法について説明する。まず、スピロピランを活性化し、この活性化されたスピロピラン分子を用いてペプチド誘導体を製造する。
スピロピランの活性化について、図1を参照しつつ説明する。スピロピランを、Raymo, F. M.; Giordani, S. J. Am. Chem. Soc. 2001, 123, 4651-4652 及び Raymo, F. M.; Giordani, S. J. Am. Chem. Soc. 2002, 124, 2004-2007に記載の方法に従って合成した(図1中の化合物1)。次いで、スピロピランを、ジイソプロピルエチルアミン(DIAE)等の塩基の存在下、塩化メチレン中においてp−ニトロクロロフォルメートでスピロピラン(化合物1)を活性化し、化合物2を得る。
The method for producing the peptide derivative will be described below.
First, the manufacturing method of the peptide derivative shown to Formula (1)-(4) is demonstrated. First, spiropyran is activated, and a peptide derivative is produced using the activated spiropyran molecule.
The activation of spiropyran will be described with reference to FIG. Spiropyran was synthesized according to the method described in Raymo, FM; Giordani, SJ Am. Chem. Soc. 2001, 123, 4651-4652 and Raymo, FM; Giordani, SJ Am. Chem. Soc. 2002, 124, 2004-2007 (Compound 1 in FIG. 1). The spiropyran is then activated with p-nitrochloroformate in methylene chloride in the presence of a base such as diisopropylethylamine (DIAE) to give compound 2.

次いで、図2に示すように、ペプチドをFmoc固相合成法により伸長し、樹脂上化合物2を反応させ、Lys側鎖にスピロピラン分子を選択的に導入する。保護基の除去及び樹脂から脱離をした後、得られたペプチド誘導体を逆相HPLCを用いて精製することにより、上記ペプチド誘導体を得ることができる。   Next, as shown in FIG. 2, the peptide is elongated by Fmoc solid-phase synthesis, reacted with compound 2 on the resin, and a spiropyran molecule is selectively introduced into the Lys side chain. After removal of the protecting group and elimination from the resin, the peptide derivative can be obtained by purifying the obtained peptide derivative using reverse phase HPLC.

式(5)〜(7)に示すペプチド誘導体は、アミノ化スピロピラン分子がペプチドの主鎖骨格に挿入されたペプチド誘導体である。このペプチド誘導体を製造するには、図3に示すように、活性化アミノスピロピランを合成する。図3に示すように、スピロピラン1のニトロ基を塩化第一スズで還元し、Fmoc-OSu(スクシンイミドエステル)を添加して、Fmoc化アミノスピロピラン3を得る。このFmoc化アミノスピロピラン3に、塩基の存在下でp−ニトロフェニルクロロフォルメートを作用させて、4の化合物を得る。この4の化合物を用い、ペプチドをFmoc固相合成法により伸長して、式(5)〜(7)に示すペプチド誘導体を得る。   The peptide derivatives represented by the formulas (5) to (7) are peptide derivatives in which an aminated spiropyran molecule is inserted into the main chain skeleton of the peptide. To produce this peptide derivative, an activated aminospiropyran is synthesized as shown in FIG. As shown in FIG. 3, the nitro group of spiropyran 1 is reduced with stannous chloride, and Fmoc-OSu (succinimide ester) is added to obtain Fmocated aminospiropyran 3. This Fmocated amino spiropyran 3 is allowed to react with p-nitrophenyl chloroformate in the presence of a base to obtain 4 compounds. Using the compound of 4 above, the peptide is extended by the Fmoc solid phase synthesis method to obtain peptide derivatives represented by the formulas (5) to (7).

式(8)〜(10)に示すペプチド誘導体を製造するには、図4に示すように、Fmoc-L-Orn(SP)-OH、Fmoc-L-Dab(SP)-OHおよびFmoc-L-Dap(SP)-OHの合成を行う。図4は、式(8)〜(10)に示すペプチド誘導体を製造するための化合物の製造工程を示す図である。図4に示すように、Fmoc-L-Orn(Mtt)-OH(Mttは4−メチルトリチル基)、Fmoc-L-Dab(Mtt)-OH又はFmoc-L-Dap(Mtt)-OHの側鎖保護基をTFA(トリフルオロ酢酸)にて除去し、図2に示す2の化合物と結合し、Fmoc-L-Orn(SP)-OH、Fmoc-L-Dab(SP)-OH又はFmoc-L-Dap(SP)-OHを得る。得られた化合物を用い、ペプチドをFmoc固相合成法により伸長して、式(8)〜(10)に示すペプチド誘導体を得る。   In order to produce the peptide derivatives represented by the formulas (8) to (10), as shown in FIG. 4, Fmoc-L-Orn (SP) -OH, Fmoc-L-Dab (SP) -OH and Fmoc-L -Dap (SP) -OH is synthesized. FIG. 4 is a diagram showing a production process of a compound for producing peptide derivatives represented by formulas (8) to (10). As shown in FIG. 4, Fmoc-L-Orn (Mtt) -OH (Mtt is 4-methyltrityl group), Fmoc-L-Dab (Mtt) -OH or Fmoc-L-Dap (Mtt) -OH side The chain protecting group is removed with TFA (trifluoroacetic acid) and bound to the compound 2 shown in FIG. 2, and Fmoc-L-Orn (SP) -OH, Fmoc-L-Dab (SP) -OH or Fmoc- L-Dap (SP) -OH is obtained. Using the obtained compound, the peptide is elongated by the Fmoc solid phase synthesis method to obtain peptide derivatives represented by the formulas (8) to (10).

本発明のペプチド誘導体は、固相に結合されていてもよい。用いられる固相としては、例えばマイクロプレートのウェル、スライドガラス等のチップに設けた溝や穴等の凹部を用いることができる。
ペプチド誘導体を固相に結合させる方法としては、ペプチドのアミノ基やカルボキシル基等を固相上のアミノ基やカルボキシル基等と反応させて共有結合させることにより行なう方法が挙げられる。また、ペプチド誘導体にビオチン又はアビジンを結合し、固相上に固定化されたアビジン又はビオチンと結合させることによっても実施できる。
The peptide derivative of the present invention may be bound to a solid phase. As the solid phase to be used, for example, a well of a microplate, or a recess such as a groove or a hole provided in a chip such as a slide glass can be used.
Examples of a method for binding a peptide derivative to a solid phase include a method in which an amino group, a carboxyl group, or the like of a peptide is reacted with an amino group, a carboxyl group, or the like on the solid phase and covalently bonded. It can also be carried out by binding biotin or avidin to a peptide derivative and binding it to avidin or biotin immobilized on a solid phase.

固相上に結合されるペプチド誘導体の量は、何等限定されるものではなく、用途に応じて適宜設定されるが、例えば1fmol〜1000nmol程度である。
ペプチド誘導体の固相への結合は、物理的吸着によっても行なうことができる。この場合、ペプチド誘導体の結合は、ペプチド誘導体を緩衝液中に溶解した溶液と固相とを接触させて行う。この場合の結合反応は、従来と同様、例えば室温で15分〜2時間程度、4℃の温度で行う場合、一夜程度で行うことができる。固相に結合する際のペプチド誘導体溶液の濃度は、ペプチド誘導体の種類や測定すべき検体中の物質の種類や濃度に応じて適宜選択することができ、例えば1ng/mL〜100μg/mL程度が好ましい。
The amount of the peptide derivative bound on the solid phase is not limited in any way, and is appropriately set depending on the application, but is, for example, about 1 fmol to 1000 nmol.
The peptide derivative can be bound to the solid phase by physical adsorption. In this case, the peptide derivative is bound by bringing a solution obtained by dissolving the peptide derivative in a buffer solution into contact with a solid phase. In this case, the binding reaction can be performed overnight, for example, at room temperature for 15 minutes to 2 hours at a temperature of 4 ° C., as in the conventional case. The concentration of the peptide derivative solution at the time of binding to the solid phase can be appropriately selected according to the type of peptide derivative and the type and concentration of the substance in the sample to be measured, for example, about 1 ng / mL to 100 μg / mL. preferable.

本発明のペプチド誘導体を固相に結合する場合、1枚の固相上に複数種類のペプチド誘導体を、それぞれ特定の領域に結合することが好ましい。このようにすることによって、検体中の複数の試料を同時に測定することが可能となる。ペプチド誘導体の種類の数は、何等限定されないが、1枚の固相上に、10〜10,000種類程度結合してもよい。   When binding the peptide derivative of the present invention to a solid phase, it is preferable to bind a plurality of types of peptide derivatives to a specific region on one solid phase. By doing so, it is possible to simultaneously measure a plurality of samples in the specimen. The number of types of peptide derivatives is not limited in any way, but about 10 to 10,000 types may be bound on one solid phase.

次に、本発明の標的分子の分子間相互作用検出方法について説明する。
本発明の標的分子の分子間相互作用検出方法は、下記工程を有する。
(a)分子中にフォトクロミック化合物を結合してなる物質と、標的分子とを接触させる工程;及び
(b)フォトクロミック化合物の光異性化速度定数を測定する工程。
Next, the intermolecular interaction detection method for target molecules of the present invention will be described.
The method for detecting an interaction between target molecules of the present invention has the following steps.
(A) a step of contacting a target molecule with a substance formed by binding a photochromic compound in the molecule; and (b) a step of measuring a photoisomerization rate constant of the photochromic compound.

本発明において、標的分子とは、分子中にフォトクロミック化合物を結合してなる物質と相互作用する分子を意味し、タンパク質、核酸、糖鎖、低分子化合物等が挙げられる。
また、相互作用とは、通常は、標的分子とペプチド誘導体との共有結合、疎水結合、水素結合、ファンデルワールス結合、及び静電力による結合のうち少なくとも1つから生じる分子間に働く力による作用を意味するが、この用語は最も広義に解釈すべきであり、いかなる意味においても限定的に解釈してはならない。共有結合としては、配位結合、双極子結合を含有する。また、静電力による結合とは、静電結合の他、電気的反発も含有する。また、上記作用の結果生じる結合反応、合成反応、分解反応も相互作用に含まれるものとする。
In the present invention, the target molecule means a molecule that interacts with a substance formed by binding a photochromic compound in the molecule, and examples thereof include proteins, nucleic acids, sugar chains, and low molecular compounds.
In addition, the interaction is usually an action caused by a force acting between molecules generated from at least one of a covalent bond, a hydrophobic bond, a hydrogen bond, a van der Waals bond, and an electrostatic force bond between the target molecule and the peptide derivative. However, this term should be construed in the broadest sense and should not be construed as limiting in any way. The covalent bond includes a coordination bond and a dipole bond. Moreover, the coupling | bonding by an electrostatic force contains an electrical repulsion other than an electrostatic coupling. In addition, a binding reaction, a synthesis reaction, and a decomposition reaction resulting from the above action are also included in the interaction.

相互作用の具体例としては、例えば、酵素と基質との結合及び解離、抗原と抗体との結合及び解離、タンパク質レセプターとリガンドとの結合及び解離、接着分子と相手方分子との間の結合及び解離、核酸とそれに結合するタンパク質との結合及び解離、情報伝達系におけるタンパク質同士の結合及び解離、糖タンパク質とタンパク質との結合及び解離、及び糖鎖とタンパク質との結合及び解離等が挙げられる。   Specific examples of the interaction include, for example, binding and dissociation of an enzyme and a substrate, binding and dissociation of an antigen and an antibody, binding and dissociation of a protein receptor and a ligand, binding and dissociation between an adhesion molecule and a counterpart molecule. And binding and dissociation of a nucleic acid and a protein bound thereto, binding and dissociation of proteins in an information transmission system, binding and dissociation of a glycoprotein and a protein, and binding and dissociation of a sugar chain and a protein.

以下、本発明の分子間相互作用検出方法について、酵素と基質ペプチドとの結合及び解離を例として説明する。
本発明の分子間相互作用検出方法においては、まず分子中にフォトクロミック化合物を結合してなる物質と、標的分子とを接触させる。分子中にフォトクロミック化合物を結合してなる物質としては、上述した本発明のペプチド誘導体を用いることができる。本発明の分子間相互作用検出方法においては、ペプチド誘導体を固相に結合しておくことが好ましい。ペプチド誘導体を固相に結合する方法は、上述した通りである。
Hereinafter, the intermolecular interaction detection method of the present invention will be described taking the binding and dissociation of an enzyme and a substrate peptide as an example.
In the intermolecular interaction detection method of the present invention, first, a target molecule is brought into contact with a substance formed by binding a photochromic compound in a molecule. As the substance formed by binding a photochromic compound in the molecule, the above-described peptide derivative of the present invention can be used. In the intermolecular interaction detection method of the present invention, it is preferable to bind the peptide derivative to a solid phase. The method for binding the peptide derivative to the solid phase is as described above.

本発明の分子間相互作用検出方法において、ペプチド誘導体と標的分子とを接触せしめる方法としては、両分子が相互作用するのに十分な程度に接触する方法であればいかなるものであってもよい。好ましくは、ペプチド誘導体及び標的分子を生化学的に通常に使用される緩衝液に適当な濃度で溶解した溶液を調製して用いることが好ましい。ペプチド誘導体と標的分子とを接触せしめた後、過剰に存在するペプチド誘導体及び標的分子を、ペプチド誘導体及び標的分子を溶解した緩衝液で洗浄することが好ましい。   In the method for detecting an interaction between molecules of the present invention, any method for bringing a peptide derivative and a target molecule into contact with each other may be used as long as the two molecules are brought into contact with each other to a sufficient extent. Preferably, it is preferable to prepare and use a solution in which the peptide derivative and the target molecule are dissolved in a buffer solution commonly used biochemically at an appropriate concentration. After contacting the peptide derivative with the target molecule, it is preferable to wash the excess peptide derivative and target molecule with a buffer solution in which the peptide derivative and target molecule are dissolved.

次いで、本発明の分子間相互作用検出方法においては、ペプチド誘導体と標的分子との相互作用をフォトクロミック化合物の光異性化速度定数を測定することによって、ペプチド誘導体と標的分子との相互作用を検出する。フォトクロミック化合物は上述したように、フォトクロミズムを引き起こす化合物であり、このフォトクロミズムとは、単一の化学種が2つの異なった状態間を吸収スペクトルの大きな変化を伴って可逆的に往復し、少なくとも一方の変換が光照射により引き起こされる現象である。本発明においては、ペプチド誘導体と標的分子とを接触させた後、一方の化学種が変換を引き起こす波長の光を照射し、その変換した化学種が一方の化学種に戻る速度を光異性化速度定数を測定することにより測定し、ペプチド誘導体と標的分子との相互作用を求めるものである。   Next, in the intermolecular interaction detection method of the present invention, the interaction between the peptide derivative and the target molecule is detected by measuring the photoisomerization rate constant of the photochromic compound. . As described above, a photochromic compound is a compound that causes photochromism, and this photochromism is a reversible reciprocation of a single chemical species between two different states with a large change in absorption spectrum, and at least one of them. Conversion is a phenomenon caused by light irradiation. In the present invention, after bringing the peptide derivative into contact with the target molecule, the chemical species is irradiated with light having a wavelength that causes conversion, and the rate at which the converted chemical species returns to the one chemical species is the photoisomerization rate. The measurement is performed by measuring a constant, and the interaction between the peptide derivative and the target molecule is determined.

この点について、図5を参照してスピロピランを例として簡単に説明する。
フォトクロミック化合物であるスピロピランには、光異性体としてスピロピラン体とメロシアニン体が存在する(図5において、左側がメロシアニン体であり、右側がスピロピラン体である)。メロシアニン体は可視領域(500〜600nm)に吸収を有しており、かつ600nm付近に蛍光を発する。また、スピロピラン体は400nm以下の光を吸収するが蛍光を発しないという特徴を有する。タンパク質とフォトクロミック化合物を結合してなるペプチド誘導体が相互作用すると、ペプチド鎖中のスピロピラン体への光異性化速度定数に影響を及ぼすと考えられる。メロシアニン体の吸収帯(510nm)の波長の光で励起し、600nmの蛍光強度を測定する。ペプチド誘導体が標的分子と相互作用している場合(図5のkbound)としていない場合(図5のkunbound)とで、光異性化速度が異なってくると考えられるので、その光異性化速度定数を測定することによって、ペプチド誘導体と標的分子とが相互作用をしているか否かを検出することが可能となる。なお、ペプチド誘導体が標的分子と結合している場合、標的分子と結合していない場合と比較して、光異性化速度定数が大きくなる場合もあり、その逆の場合もある。光異性化速度定数がどのように変化するかは、ペプチド誘導体、標的分子の組み合わせによって異なってくる。
This point will be briefly described with reference to FIG. 5 by taking spiropyran as an example.
Spiropyran, which is a photochromic compound, has a spiropyran body and a merocyanine body as photoisomers (in FIG. 5, the left side is a merocyanine body and the right side is a spiropyran body). The merocyanine body has absorption in the visible region (500 to 600 nm) and emits fluorescence around 600 nm. Spiropyran bodies have a feature that they absorb light of 400 nm or less but do not emit fluorescence. When a peptide derivative formed by binding a protein and a photochromic compound interacts, it is considered that the photoisomerization rate constant to the spiropyran body in the peptide chain is affected. Excitation with light having a wavelength in the absorption band (510 nm) of the merocyanine body, and the fluorescence intensity at 600 nm is measured. The photoisomerization rate is considered to be different depending on whether the peptide derivative interacts with the target molecule (k bound in FIG. 5) or not (k unbound in FIG. 5). By measuring the constant, it is possible to detect whether or not the peptide derivative and the target molecule are interacting with each other. In addition, when the peptide derivative is bound to the target molecule, the photoisomerization rate constant may be larger than when the peptide derivative is not bound to the target molecule, and vice versa. How the photoisomerization rate constant changes depends on the combination of the peptide derivative and the target molecule.

例えば、式(1)で示されるペプチド誘導体は、プロテインキナーゼA、α−アミラーゼ、β−ガラクトシダーゼ、ライソザイム、S−100タンパク質と相互作用した場合には、光異性化速度定数は大きくなり、ヘキソキナーゼと相互作用した場合には逆に小さくなる。また、式(2)で示されるペプチド誘導体は、プロテインキナーゼA、β−ガラクトシダーゼ、ライソザイム、ヘキソキナーゼ、S−100タンパク質と相互作用した場合には光異性化速度定数が大きくなるが、α−アミラーゼと相互作用した場合にはほとんど変化がない。式(3)で示されるペプチド誘導体は、プロテインキナーゼAと相互作用した場合には光異性化速度は大きくなるが、α−アミラーゼ、β−ガラクトシダーゼ、ライソザイム、ヘキソキナーゼ、S−100タンパク質と相互作用した場合には光異性化速度定数は小さくなる。また、式(4)で示されるペプチド誘導体は、プロテインキナーゼA、α−アミラーゼ、β−ガラクトシダーゼ、ライソザイム、ヘキソキナーゼ、S−100タンパク質と相互作用した場合に、光異性化速度定数は小さくなる。   For example, when the peptide derivative represented by the formula (1) interacts with protein kinase A, α-amylase, β-galactosidase, lysozyme, and S-100 protein, the photoisomerization rate constant increases and hexokinase and Conversely, when it interacts, it becomes smaller. In addition, the peptide derivative represented by the formula (2) has a high photoisomerization rate constant when interacting with protein kinase A, β-galactosidase, lysozyme, hexokinase, and S-100 protein, but α-amylase and There is little change when interacting. The peptide derivative represented by the formula (3) has a higher photoisomerization rate when interacting with protein kinase A, but interacts with α-amylase, β-galactosidase, lysozyme, hexokinase, and S-100 protein. In some cases, the photoisomerization rate constant is small. The peptide derivative represented by the formula (4) has a small photoisomerization rate constant when interacting with protein kinase A, α-amylase, β-galactosidase, lysozyme, hexokinase, and S-100 protein.

本発明の分子間相互作用検出方法は、標的分子を含む可能性のある検体を試料として用い、その検体中に特定の分子を含むか否かの判定に用いることができる。このような検体としは、例えば、動物細胞破壊液、植物細胞破壊液、菌体破壊液、ウイルス破壊液、及び各分画成分、血液、血清、血漿、尿、便、唾液、組織液、髄液等の体液や、各種食品、飲料等が挙げられる。   The intermolecular interaction detection method of the present invention can be used to determine whether or not a specific molecule is contained in a specimen using a specimen that may contain a target molecule as a sample. Examples of such specimens include animal cell disruption fluid, plant cell disruption fluid, bacterial cell disruption fluid, virus disruption fluid, and fractionated components, blood, serum, plasma, urine, stool, saliva, tissue fluid, spinal fluid And body fluids, and various foods and beverages.

本発明の分子間相互作用検出方法は、初期の標的分子の検出に用いることができるだけでなく、未知の標的分子のスクリーニングにも用いることができる。すなわち、種々の構成アミノ酸側鎖にフォトクロミック化合物を結合させたペプチド誘導体を作製し、これを固相に結合させ、これと種々のタンパク質を反応させ、光異性化速度定数を測定する。その結果をデータベース化しておくことにより、極めて他種類の標的分子の検出をすることが可能になる。このようにすることにより、各種疾病の診断や新薬の開発等にも大いに貢献するものと考えられる。   The intermolecular interaction detection method of the present invention can be used not only for detection of an initial target molecule but also for screening for an unknown target molecule. That is, peptide derivatives in which photochromic compounds are bound to various constituent amino acid side chains are prepared, bound to a solid phase, reacted with various proteins, and the photoisomerization rate constant is measured. By making the results into a database, it is possible to detect extremely different types of target molecules. By doing so, it is thought that it will greatly contribute to the diagnosis of various diseases and the development of new drugs.

上述した本発明の分子間相互作用検出方法を、複数のペプチド誘導体について行い、各ペプチド誘導体について測定した値に応じて違いが肉眼で認識できるデータに変換し、各ペプチド誘導体についての視認的なデータを並べて出力することによって、容易、簡便に被検試料中の標的分子を検出することができ、未知の被検試料中に含まれる標的分子の同定が可能となる。   The intermolecular interaction detection method of the present invention described above is performed for a plurality of peptide derivatives, and the difference is converted into data that can be recognized with the naked eye according to the values measured for each peptide derivative. The target molecules in the test sample can be detected easily and simply, and the target molecules contained in the unknown test sample can be identified.

以下、本発明を実施例により更に詳細に説明する。なお、本発明の範囲は、かかる実施例に限定されないことはいうまでもない。
実施例1
下記式(13)で示される化合物1.00g(2.84mmol)及びジイソプロピルエチルアミン(DIEA)(2.0mL)の塩化メチレン溶液(20mL)に0 ℃でp−ニトロフェニルクロロホルメート(572mg、2.84mmol)の塩化メチレン溶液(5.0mL)を1分かけて滴下し、得られた混合溶液を0℃で1時間撹拌した。反応混合溶液に0℃でp−ニトロフェニルクロロホルメート(572mg、2.84mmol)の塩化メチレン溶液(5.0mL)を1分かけて滴下し、得られた混合溶液を0℃で1時間撹拌した。この操作をもう一度繰り返した後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー[酢酸エチル/石油エーテル(1:2)]、デカンテーション[酢酸エチル/石油エーテル (1:2)]で精製した後、固化[酢酸エチル/石油エーテル (1:2)]し淡桃色粉末の式(14)で示される化合物を得た。収量:827mg(56%): MALDI-MS (SA,シナピン酸) calcd 517.5; obsd 517.9 [M + H]+
Hereinafter, the present invention will be described in more detail with reference to examples. Needless to say, the scope of the present invention is not limited to such examples.
Example 1
To a methylene chloride solution (20 mL) of 1.00 g (2.84 mmol) of a compound represented by the following formula (13) and diisopropylethylamine (DIEA) (2.0 mL) at 0 ° C., p-nitrophenyl chloroformate (572 mg, 2 .84 mmol) of methylene chloride (5.0 mL) was added dropwise over 1 minute, and the resulting mixed solution was stirred at 0 ° C. for 1 hour. To the reaction mixture, p-nitrophenyl chloroformate (572 mg, 2.84 mmol) in methylene chloride (5.0 mL) was added dropwise at 0 ° C. over 1 minute, and the resulting mixture was stirred at 0 ° C. for 1 hour. did. This operation was repeated once more, followed by concentration under reduced pressure. The residue was purified by silica gel column chromatography [ethyl acetate / petroleum ether (1: 2)], decantation [ethyl acetate / petroleum ether (1: 2)], and then solidified [ethyl acetate / petroleum ether (1: 2) The compound represented by the formula (14) was obtained as a pale pink powder. Yield: 827 mg (56%): MALDI-MS (SA, sinapinic acid) calcd 517.5; obsd 517.9 [M + H] +

Figure 2005233854
Figure 2005233854

Figure 2005233854
Figure 2005233854

Fmoc-Gly-Rink amide MBHA樹脂 (254mg、30.0μmol, sub = 0.118 mmol/g)を用い、文献(Chen, W. C.; White, P. D. “Fmoc solid phase peptide synthesis: A practical approach” Oxford University Press: New York, 2000)に記載のFmoc固相合成法の常法に従い保護ペプチド付き樹脂Ac-Cys(Acm)-Gly-Lys(Mtt)-Gly-Ile-Tyr(tBu)-Gly-Glu(OtBu)-Phe-Lys(Boc)-Lys(Boc)-Lys(Boc)-Gly-NH2を得た。得られた保護ペプチド付き樹脂の半分量(15.0μmol)をTFA(トリフルオロ酢酸)/TIS(トリイソプロピルシラン)/DCM(塩化メチレン) (1/5/94)で処理しMtt基を除去した。得られた樹脂を10% DIEA/NMP (N-メチルピロリドン)(x 1)およびNMP (x 3)で洗浄し、式(14)で示される化合物(23mg、45μmol)及びDIEA (16μL、90μmol)のNMP溶液 (1.0mL)を加え、室温で振とうした。6時間振とうした後DIEA(16μL、90μmol)を加え、さらに12時間振とうした。NMP (x 3)およびクロロホルム (x 3)で洗浄した後、乾燥した樹脂をTFA/EDT(エタンジチオール)/TA(チオアニソール)/m−クレゾール2.0mL(10:0.75:0.75:0.25)で処理し保護基の除去および樹脂からの切断を行った。反応混合液を濾過、減圧濃縮し、エーテル沈殿を行い、粗ペプチドを得た。得られた粗ペプチドをRP-HPLC [(C18 semi-preparative column, AcCN: 35→60% (30分)0.1%TFAを含有する)で精製した後、凍結乾燥し、式(1)で示されるペプチド誘導体を黄色粉末状で得た。収量:5.6mg (19% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1905.2; obsd 1906.1 [M + H]+, 1891.2 [M - Me]+, 1875.3 [M - (2 x Me)]+ Fmoc-Gly-Rink amide MBHA resin (254 mg, 30.0 μmol, sub = 0.118 mmol / g) and literature (Chen, WC; White, PD “Fmoc solid phase peptide synthesis: A practical approach” Oxford University Press: New York, 2000) according to the conventional method of Fmoc solid-phase synthesis described in Ac.Cys (Acm) -Gly-Lys (Mtt) -Gly-Ile-Tyr ( t Bu) -Gly-Glu (O t Bu) -Phe-Lys (Boc) -Lys (Boc) -Lys (Boc) -Gly-NH 2 was obtained. Half of the obtained resin with a protected peptide (15.0 μmol) was treated with TFA (trifluoroacetic acid) / TIS (triisopropylsilane) / DCM (methylene chloride) (1/5/94) to remove the Mtt group. . The obtained resin was washed with 10% DIEA / NMP (N-methylpyrrolidone) (x 1) and NMP (x 3), and the compound represented by the formula (14) (23 mg, 45 μmol) and DIEA (16 μL, 90 μmol) Of NMP (1.0 mL) was added and shaken at room temperature. After shaking for 6 hours, DIEA (16 μL, 90 μmol) was added and further shaken for 12 hours. After washing with NMP (x 3) and chloroform (x 3), the dried resin was washed with TFA / EDT (ethanedithiol) / TA (thioanisole) / m-cresol 2.0 mL (10: 0.75: 0.75). : 0.25) to remove the protecting group and cleave from the resin. The reaction mixture was filtered and concentrated under reduced pressure, and ether precipitation was performed to obtain a crude peptide. The obtained crude peptide was purified by RP-HPLC [(C18 semi-preparative column, AcCN: 35 → 60% (30 min) containing 0.1% TFA)], lyophilized, and then expressed by the formula (1). The indicated peptide derivative was obtained as a yellow powder. Yield: 5.6 mg (19% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1905.2; obsd 1906.1 [M + H] + , 1891.2 [M-Me] + , 1875.3 [M-(2 x Me )] +

実施例2
実施例1と同様な操作を行い得られた粗ペプチドをRP-HPLC ((C18 semi-preparative column, AcCN:30→55%(30分)0.1% TFAを含有する)で精製した後、凍結乾燥し、式(2)で示されるペプチド誘導体を黄色粉末状で得た。収量:6.7mg(25% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1811.1; obsd 1813.3 [M + H]+, 1797.5 [M - Me]+, 1782.0 [M - (2 x Me)]+
Example 2
The crude peptide obtained by the same operation as in Example 1 was purified by RP-HPLC ((C18 semi-preparative column, AcCN: 30 → 55% (30 minutes) containing 0.1% TFA)) Lyophilization gave the peptide derivative of formula (2) as a yellow powder, yield: 6.7 mg (25% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1811.1; + H] + , 1797.5 [M-Me] + , 1782.0 [M-(2 x Me)] +

実施例3
実施例1と同様な操作を行い得られた粗ペプチドを、RP-HPLC ((C18 semi-preparative column, AcCN: 35→60%(30分)0.1% TFAを含有する)で精製した後、凍結乾燥し、式(3)で示されるペプチド誘導体を黄色粉末状で得た。収量:6.7mg (28% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1607.8; obsd 1608.9 [M + H]+, 1592.8 [M - Me]+, 1577.6 [M - (2 x Me)]+
Example 3
After purifying the crude peptide obtained by the same operation as in Example 1 by RP-HPLC ((C18 semi-preparative column, AcCN: 35 → 60% (30 minutes) containing 0.1% TFA)) The peptide derivative represented by the formula (3) was obtained as a yellow powder, yield: 6.7 mg (28% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1607.8; M + H] + , 1592.8 [M-Me] + , 1577.6 [M-(2 x Me)] +

実施例4
実施例1と同様な操作を行い得られた粗ペプチドを、RP-HPLC ((C18 semi-preparative column, AcCN: 30→55%(30分)0.1% TFAを含有する)で精製した後、凍結乾燥し、式(4)で示されるペプチド誘導体を黄色粉末状で得た。収量:4.6 mg (28% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1722.0; obsd 1723.4 [M + H]+, 1707.9 [M - Me]+
Example 4
After purifying the crude peptide obtained by the same operation as in Example 1 by RP-HPLC ((C18 semi-preparative column, AcCN: 30 → 55% (30 minutes) containing 0.1% TFA)) The product was freeze-dried to obtain the peptide derivative represented by the formula (4) as a yellow powder, yield: 4.6 mg (28% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1722.0; + H] + , 1707.9 [M-Me] +

実施例5
式(13)で示される化合物(500mg、1.41mmol)及びSnCl2×2H2O (955mg、4.23mmol)の濃塩酸溶液(9.0mL)を室温で一晩撹拌した。この溶液を50%NaOHで中和し、Fmoc-OSu (524mg、1.55mmol)のアセトニトリル溶液(20mL)、さらに水を加えて水/アセトニトリルの割合が(1:1)になるように調製し、室温で1時間撹拌した。新たにFmoc-OSu(262mg、0.78mmol)のアセトニトリル溶液(5mL)を加え、室温で1時間撹拌した。反応混合液に酢酸エチル300mLを加えて有機層を水洗した後、MgSO4で乾燥した。得られた粗生成物をシリカゲルカラムクロマトグラフィー[クロロホルム/メタノール(49:1)]で精製後、固化(エーテル/石油エーテル)し、下記式(15)で示される化合物を淡茶色粉末状で得た。収量:355mg(46%): MALDI-MS (SA) calcd 544.2; obsd 545.5 [M + H]+
Example 5
A concentrated hydrochloric acid solution (9.0 mL) of the compound represented by the formula (13) (500 mg, 1.41 mmol) and SnCl 2 × 2H 2 O (955 mg, 4.23 mmol) was stirred at room temperature overnight. This solution was neutralized with 50% NaOH, and Fmoc-OSu (524 mg, 1.55 mmol) in acetonitrile (20 mL) and water were added to prepare a water / acetonitrile ratio of (1: 1). And stirred at room temperature for 1 hour. A new acetonitrile solution (5 mL) of Fmoc-OSu (262 mg, 0.78 mmol) was added, and the mixture was stirred at room temperature for 1 hour. After adding 300 mL of ethyl acetate to the reaction mixture and washing the organic layer with water, it was dried over MgSO 4 . The resulting crude product is purified by silica gel column chromatography [chloroform / methanol (49: 1)] and then solidified (ether / petroleum ether) to obtain the compound represented by the following formula (15) as a light brown powder. It was. Yield: 355 mg (46%): MALDI-MS (SA) calcd 544.2; obsd 545.5 [M + H] +

Figure 2005233854
Figure 2005233854

上述のようにして得られた、式(15)で示される化合物(300mg、0.551mmol)及びDIEA(0.210mL)の塩化メチレン溶液(5mL)に室温でp−ニトロフェニルクロロホルメート(124mg、0.613mmol)の塩化メチレン溶液(3.0mL)を1分間かけて滴下し、得られた混合溶液を室温で2時間撹拌した。反応混合溶液に室温でp−ニトロフェニルクロロホルメート(124mg、0.613mmol)の塩化メチレン溶液(3.0mL)を1分かけて滴下し、得られた混合溶液を室温で2時間撹拌した。この操作をもう一度繰り返した後、減圧濃縮した。残渣に酢酸エチル100mLを加え、4%NaHCO3 (x 1)及び水 (x 3)で洗浄し、MgSO4で乾燥した。得られた粗生成物をシリカゲルカラムクロマトグラフィー[酢酸エチル/石油エーテル (1:3)]で精製した後、固化(酢酸エチル/石油エーテル)し、下記式(16)で示される化合物を淡緑色粉末状で得た。収量:212mg(54%): MALDI-MS (SA) calcd 709.7; obsd 711.3 [M + H]+, 695.6 [M - Me]+ To a methylene chloride solution (5 mL) of the compound represented by the formula (15) (300 mg, 0.551 mmol) and DIEA (0.210 mL) obtained as described above, p-nitrophenyl chloroformate (124 mg) was added at room temperature. 0.613 mmol) of methylene chloride (3.0 mL) was added dropwise over 1 minute, and the resulting mixed solution was stirred at room temperature for 2 hours. A methylene chloride solution (3.0 mL) of p-nitrophenyl chloroformate (124 mg, 0.613 mmol) was added dropwise to the reaction mixture solution at room temperature over 1 minute, and the resulting mixture solution was stirred at room temperature for 2 hours. This operation was repeated once more, followed by concentration under reduced pressure. To the residue was added 100 mL of ethyl acetate, washed with 4% NaHCO 3 (x 1) and water (x 3), and dried over MgSO 4 . The obtained crude product was purified by silica gel column chromatography [ethyl acetate / petroleum ether (1: 3)], then solidified (ethyl acetate / petroleum ether), and the compound represented by the following formula (16) was pale green Obtained in powder form. Yield: 212 mg (54%): MALDI-MS (SA) calcd 709.7; obsd 711.3 [M + H] + , 695.6 [M-Me] +

Figure 2005233854
Figure 2005233854

実施例6
Fmoc-Gly-Rink amide樹脂(54mg、30μmol、sub = 0.56 mmol/g) を用い、実施例1と同様に操作を行い、ペプチド鎖の伸長を行った。ペプチド鎖中への式(16)で示される化合物の縮合は、式(16)で示される化合物のNMP溶液(64mg、90μmol)にDIEA (26μL, 150μmol)を加え室温で8時間振とうすることにより行った。得られた粗ペプチドを、RP-HPLC [(C18 semi-preparative column, AcCN:20→30%(30分)0.1%TFAを含有する)で精製後、凍結乾燥し、式(5)で示されるペプチド誘導体を橙色粉末状で得た。収量:8.2mg(19% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1449.7; obsd 1450.8 [M + H]+
Example 6
Using Fmoc-Gly-Rink amide resin (54 mg, 30 μmol, sub = 0.56 mmol / g), the same operation as in Example 1 was performed to extend the peptide chain. To condense the compound represented by formula (16) into the peptide chain, add DIEA (26 μL, 150 μmol) to NMP solution (64 mg, 90 μmol) of the compound represented by formula (16) and shake at room temperature for 8 hours. It went by. The obtained crude peptide was purified by RP-HPLC [(C18 semi-preparative column, AcCN: 20 → 30% (30 min) containing 0.1% TFA)], lyophilized, and expressed by the formula (5) The indicated peptide derivative was obtained in the form of an orange powder. Yield: 8.2 mg (19% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1449.7; obsd 1450.8 [M + H] +

実施例7
実施例6と同様な操作を行い得られた粗ペプチドを、RP-HPLC [(C18 semi-preparative column, AcCN:20→30%(30分)0.1%TFAを含有する)で精製した後、凍結乾燥し、式(6)で示されるペプチド誘導体を橙色粉末状で得た。収量:6.3mg(14% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1449.7; obsd 1449.0 [M + H]+
Example 7
After the crude peptide obtained by performing the same operation as in Example 6 was purified by RP-HPLC [(C18 semi-preparative column, AcCN: 20 → 30% (30 min) containing 0.1% TFA)] The peptide derivative represented by the formula (6) was obtained as an orange powder. Yield: 6.3 mg (14% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1449.7; obsd 1449.0 [M + H] +

実施例8
実施例6と同様な操作を行い得られた粗ペプチドを、RP-HPLC [(C18 semi-preparative column, AcCN:20→30%(30分)0.1%TFAを含有する)で精製した後、凍結乾燥し、式(7)で示されるペプチド誘導体を橙色粉末状で得た。収量:6.3mg (14% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1449.7; obsd 1451.20 [M + H]+
Example 8
After the crude peptide obtained by performing the same operation as in Example 6 was purified by RP-HPLC [(C18 semi-preparative column, AcCN: 20 → 30% (30 min) containing 0.1% TFA)] The peptide derivative represented by the formula (7) was obtained as an orange powder. Yield: 6.3 mg (14% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1449.7; obsd 1451.20 [M + H] +

実施例9
Fmoc-L-Orn(Boc)-OH (175 mg, 0.386 mmol)のTFA (3.0mL)溶液を0℃で30 分間撹拌した。この反応混合溶液を減圧濃縮し、残渣にエーテル/石油エーテル(1:2)を50mL加え固化し、真空乾燥した。得られた式(14)で示される化合物、 (100 mg, 0.193 mmol)およびDIEA (134 iL, 0.772 mmol)のDMF溶液 (3.0 mL)を0 ℃で30 分間撹拌し、次いで室温で1時間撹拌した。反応混合溶液に酢酸エチル50mLを加え、10%クエン酸水 (x 1)および水 (x 3)で洗浄し、MgSO4で乾燥した。得られた粗生成物をシリカゲルカラムクロマトグラフィー[クロロホルム/メタノール/酢酸 (90:10:1)]で精製した後、固化(エーテル/石油エーテル)した。さらに酢酸エチル50mLを加え、1N HCl (x 1)および水 (x 3)で洗浄し、有機層を濃縮後、固化(エーテル/石油エーテル)し、Nα-(9-Fluorenylmethoxycarbonyl)-Nε-(SP)-L-a-ornithine (Fmoc-L-Orn(SP)-OH)を淡黄色粉末状で得た。収量:57 mg (40%): MALDI-MS (SA) calcd 732.8; obsd 733.4 [M + H]+, 717.6 [M - Me]+, 703.4 [M - (2 x Me)]+
Example 9
A solution of Fmoc-L-Orn (Boc) -OH (175 mg, 0.386 mmol) in TFA (3.0 mL) was stirred at 0 ° C. for 30 minutes. The reaction mixture was concentrated under reduced pressure, 50 mL of ether / petroleum ether (1: 2) was added to the residue, solidified, and vacuum dried. A DMF solution (3.0 mL) of the compound represented by the formula (14), (100 mg, 0.193 mmol) and DIEA (134 iL, 0.772 mmol) was stirred at 0 ° C. for 30 minutes, and then stirred at room temperature for 1 hour. did. 50 mL of ethyl acetate was added to the reaction mixture, washed with 10% aqueous citric acid (x 1) and water (x 3), and dried over MgSO 4 . The obtained crude product was purified by silica gel column chromatography [chloroform / methanol / acetic acid (90: 10: 1)] and then solidified (ether / petroleum ether). Add 50 mL of ethyl acetate and wash with 1N HCl (x 1) and water (x 3). Concentrate the organic layer and solidify (ether / petroleum ether). N α- (9-Fluorenylmethoxycarbonyl) -N ε- (SP) -La-ornithine (Fmoc-L-Orn (SP) -OH) was obtained as a pale yellow powder. Yield: 57 mg (40%): MALDI-MS (SA) calcd 732.8; obsd 733.4 [M + H] + , 717.6 [M-Me] + , 703.4 [M-(2 x Me)] +

Fmoc-Gly-Rink amide樹脂 (54 mg, 30 mmol, sub = 0.56 mmol/g)を用い、実施例1と同様に操作を行い、ペプチド鎖の伸長を行った。ペプチド鎖中のFmoc-L-Orn(SP)-OH の縮合は、NMP2.0mL中にFmoc-L-Orn(SP)-OH (33 mg, 45 mmol)およびDIEA (16 mL, 90 mmol)を加え室温で1時間振とうすることにより行った。得られた粗ペプチドを、RP-HPLC [(C4 semi-preparative column, AcCN:10→10%(10分)→60%(30分)0.1%TFAを含有する)で精製後、凍結乾燥し、式(8)で示されるペプチド誘導体を黄色粉末状で得た。Yield 1.8 mg (3.6% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1593.8; obsd 1596.8 [M + H]+, 1581.3 [M - Me]+, 1562.6 [M - (2 x Me)]+ Using Fmoc-Gly-Rink amide resin (54 mg, 30 mmol, sub = 0.56 mmol / g), the same operation as in Example 1 was carried out to extend the peptide chain. The condensation of Fmoc-L-Orn (SP) -OH in the peptide chain was carried out by adding Fmoc-L-Orn (SP) -OH (33 mg, 45 mmol) and DIEA (16 mL, 90 mmol) in 2.0 mL of NMP. In addition, it was performed by shaking at room temperature for 1 hour. The obtained crude peptide was purified by RP-HPLC [(C4 semi-preparative column, AcCN: 10 → 10% (10 minutes) → 60% (30 minutes) containing 0.1% TFA)] and then lyophilized Thus, the peptide derivative represented by the formula (8) was obtained as a yellow powder. Yield 1.8 mg (3.6% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1593.8; obsd 1596.8 [M + H] + , 1581.3 [M-Me] + , 1562.6 [M-(2 x Me)] +

実施例10
Fmoc-L-Orn(Boc)-OHに代え、Fmoc-L-Dab-OH (79 mg, 0.232 mmol)を用いた以外は実施例9と同様に操作を行い、Nα-(9-Fluorenylmethoxycarbonyl)-Nε-(SP)-L-a-diaminobutylic acid (Fmoc-Dab(SP)-OH)を淡黄色粉末状で得た。収量:95 mg (68%): MALDI-MS (SA) calcd 718.8; obsd 718.4 [M + H]+, 702.2 [M - Me]+, 688.4 [M - (2 x Me)]+.
Example 10
N α- (9-Fluorenylmethoxycarbonyl) was carried out in the same manner as in Example 9 except that Fmoc-L-Dab-OH (79 mg, 0.232 mmol) was used instead of Fmoc-L-Orn (Boc) -OH. -N epsilon - give (SP) -La-diaminobutylic acid of (Fmoc-Dab (SP) -OH ) as a pale yellow powder. Yield: 95 mg (68%): MALDI-MS (SA) calcd 718.8; obsd 718.4 [M + H] + , 702.2 [M-Me] + , 688.4 [M-(2 x Me)] + .

次いで、実施例9と同様に操作を行い、Fmoc-Dab(SP)-OHの縮合を行い、得られた粗ペプチドを、RP-HPLC [(C18 semi-preparative column, AcCN:30→60%(30分)0.1% TFAを含有する)で精製後、凍結乾燥し、式(9)で示されるペプチド誘導体を黄色粉末状で得た。収量:1.8mg (3.8% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1579.8; obsd 1582.3 [M + H]+, 1566.0 [M - Me]+ Subsequently, the same operation as in Example 9 was performed to condense Fmoc-Dab (SP) -OH, and the resulting crude peptide was RP-HPLC [(C18 semi-preparative column, AcCN: 30 → 60% ( 30 minutes) containing 0.1% TFA) and lyophilized to obtain the peptide derivative represented by the formula (9) as a yellow powder. Yield: 1.8 mg (3.8% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1579.8; obsd 1582.3 [M + H] + , 1566.0 [M-Me] +

実施例11
Fmoc-L-Orn(Boc)-OHに代え、Fmoc-L-Dap-OH (80 mg, 0.232 mmol)を用いた以外は実施例9と同様に操作を行い、Nα-(9-Fluorenylmethoxycarbonyl)-Nε-(SP)-L-a-diaminopropionic acid (Fmoc-Dap(SP)-OH)を、淡黄色粉末状で得た。収量:83 mg (61%): MALDI-MS (SA) calcd 704.7; obsd 704.6 [M + H]+, 688.8 [M - Me]+, 674.5 [M - (2 x Me)]+
Example 11
N α- (9-Fluorenylmethoxycarbonyl) was carried out in the same manner as in Example 9 except that Fmoc-L-Dap-OH (80 mg, 0.232 mmol) was used instead of Fmoc-L-Orn (Boc) -OH. -N epsilon - the (SP) -La-diaminopropionic acid ( Fmoc-Dap (SP) -OH), to give a pale yellow powder. Yield: 83 mg (61%): MALDI-MS (SA) calcd 704.7; obsd 704.6 [M + H] + , 688.8 [M-Me] + , 674.5 [M-(2 x Me)] +

次いで、実施例9と同様に操作を行い、Fmoc-Dap(SP)-OHの縮合を行い、得られた粗ペプチドを、RP-HPLC [(C18 semi-preparative column, AcCN:30→60%(30分)0.1% TFAを含有する)で精製後、凍結乾燥し、式(10)で示されるペプチド誘導体を黄色粉末状で得た。収量:1.9mg (4.0% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1565.8; obsd 1566.6 [M + H]+, 1551.0 [M - Me]+ Next, the same operation as in Example 9 was performed to condense Fmoc-Dap (SP) -OH, and the resulting crude peptide was RP-HPLC [(C18 semi-preparative column, AcCN: 30 → 60% ( 30 minutes) containing 0.1% TFA) and lyophilized to obtain the peptide derivative represented by the formula (10) as a yellow powder. Yield: 1.9 mg (4.0% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1565.8; obsd 1566.6 [M + H] + , 1551.0 [M-Me] +

実施例12
実施例1で得られた保護ペプチド付き樹脂の半分量(15.0μmol)を用い、実施例1と同様に操作を行い、ペプチドの伸長、及びLys側鎖のMttの保護基を除去した。ペプチド鎖中Lys側鎖及び式(16)で示される化合物の縮合はNMP2.0mL中に式(16)で示される化合物(30mg、45μmol)およびDIEA(15μL、90μmol)を加え、室温で2時間振とうし、さらにDIEA (15μL、90μmol)を加え、室温で一晩振とうすることにより行った。得られた粗ペプチドを、RP-HPLC [(C4 semi-preparative column, AcCN:20→50%(30分)0.1% TFAを含有する)で精製後、凍結乾燥し、式(11)で示されるペプチド誘導体を黄色粉末状で得た。収量:11.8 mg (50% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1577.9; obsd 1580.4 [M + H]+
Example 12
Using a half amount (15.0 μmol) of the resin with a protected peptide obtained in Example 1, the same procedure as in Example 1 was performed to remove the peptide and remove the Mtt protecting group on the Lys side chain. The condensation of the Lys side chain in the peptide chain and the compound represented by the formula (16) was performed by adding the compound represented by the formula (16) (30 mg, 45 μmol) and DIEA (15 μL, 90 μmol) to 2.0 mL of NMP for 2 hours at room temperature. The mixture was shaken, DIEA (15 μL, 90 μmol) was added, and the mixture was shaken overnight at room temperature. The obtained crude peptide was purified by RP-HPLC [(C4 semi-preparative column, AcCN: 20 → 50% (30 min) containing 0.1% TFA)], lyophilized, and represented by the formula (11) The peptide derivative was obtained as a yellow powder. Yield: 11.8 mg (50% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1577.9; obsd 1580.4 [M + H] +

実施例13
Fmoc-Gly-Rink amide樹脂 (54mg、30μmol, sub = 0.56mmol/g)を用い、実施例1と同様に操作を行い、ペプチド鎖を伸長した。ペプチド鎖中N末端と式(14)で示される化合物の縮合はNMP2.0mL中に式(14)で示される化合物 (47 mg, 90μmol)およびDIEA (31μL、180μmol)を加え、室温で2時間振とうし、さらにDIEA (31μL, 180μmol)を加え、室温で一晩振とうすることにより行った。得られた粗ペプチドを、RP-HPLC [(C4 semi-preparative column, AcCN;30→60%(30分)0.1%TFAを含有する)で精製後、凍結乾燥し、式(12)で示されるペプチド誘導体を黄色粉末状で得た。収量:3.3 mg (7.3% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1508.7; obsd 1509.9 [M + H]+, 1494.9 [M - Me]+, 1478.2 [M - (2 x Me)]+
Example 13
Using Fmoc-Gly-Rink amide resin (54 mg, 30 μmol, sub = 0.56 mmol / g), the same procedure as in Example 1 was performed to extend the peptide chain. Condensation of the compound represented by the formula (14) with the N-terminal in the peptide chain was performed by adding the compound represented by the formula (14) (47 mg, 90 μmol) and DIEA (31 μL, 180 μmol) to 2.0 mL of NMP for 2 hours at room temperature. The mixture was shaken, and DIEA (31 μL, 180 μmol) was added, followed by shaking overnight at room temperature. The obtained crude peptide was purified by RP-HPLC [(C4 semi-preparative column, AcCN; 30 → 60% (30 min) containing 0.1% TFA)], lyophilized, and represented by the formula (12) The peptide derivative was obtained as a yellow powder. Yield: 3.3 mg (7.3% from Fmoc-Gly-resin): MALDI-MS (SA) calcd 1508.7; obsd 1509.9 [M + H] + , 1494.9 [M-Me] + , 1478.2 [M-(2 x Me)] +

実施例14
式(1)〜(4)で示されるペプチド誘導体と、標的分子としての各種タンパク質とを接触させ、ペプチド誘導体中のスピロピランのメロシアニン体からスピロピラン体への光異性化を調べた。測定は以下のように行った。なお、タンパク質としては、プロテインキナーゼA、α−アミラーゼ、β−ガラクトシダーゼ、ライソザイム、ヘキソキナーゼ、S−100タンパク質を用いた。
Example 14
The peptide derivatives represented by the formulas (1) to (4) were brought into contact with various proteins as target molecules, and the photoisomerization of spiropyran from the merocyanine form to the spiropyran form in the peptide derivative was examined. The measurement was performed as follows. As the protein, protein kinase A, α-amylase, β-galactosidase, lysozyme, hexokinase, and S-100 protein were used.

2.0〜2.2μMの式(1)〜(4)で示されるペプチド誘導体、及び0.76mg/mLのタンパク質を含む20mMTris HCl (pH 7.4), 150 mM NaClの試料溶液1 mLを暗所で調製し、この試料溶液を冷暗所(4℃)で一晩放置した。この試料溶液を暗所で蛍光分光光度計の測定セル中に移し、30分間暗所、4℃で放置した。測定試料室のシャッターを開けると同時に510nmの励起光により生じる600nmの蛍光強度の時間変化をHitachi F-2500蛍光分光光度計で4℃で測定した。得られた減衰曲線をF=(F−F)exp(−kt)+Fでフィッティングし、光異性化速度定数を求めた。分子間相互作用の指標としては、光異性化速度定数の変化(k/k、ここで、k=タンパク質添加時の光異性化速度定数、k=タンパク質無添加時の光異性化速度定数)及び変化率[(k−k)=Δk/k]を用いた。式(1)で示されるペプチド誘導体についての結果を図6に、式(2)で示されるペプチド誘導体についての結果を図7に、式(3)で示されるペプチド誘導体についての結果を図8に、式(4)で示されるペプチド誘導体についての結果を図9に示す。
それぞれの図は、ペプチド誘導体と各種タンパク質との光異性化速度定数を調べた結果を示すグラフであり、縦軸はk/k0を示す。kはタンパク質添加時の光異性化速度定数であり、k0はタンパク質無添加時の光異性化速度定数である。
1 mL of a sample solution of 20 mM Tris HCl (pH 7.4) and 150 mM NaCl containing 2.0 to 2.2 μM of the peptide derivative represented by the formulas (1) to (4) and 0.76 mg / mL of protein was stored in the dark. The sample solution was left overnight in a cool dark place (4 ° C.). This sample solution was transferred into a measurement cell of a fluorescence spectrophotometer in the dark, and left at 4 ° C. for 30 minutes in the dark. At the same time when the shutter of the measurement sample chamber was opened, the time change of the fluorescence intensity at 600 nm caused by 510 nm excitation light was measured at 4 ° C. with a Hitachi F-2500 fluorescence spectrophotometer. The obtained attenuation curve was fitted with F = (F 0 −F ) exp (−kt) + F to obtain the photoisomerization rate constant. As an index of intermolecular interaction, changes in photoisomerization rate constant (k / k 0 , where k = photoisomerization rate constant when protein is added, k 0 = photoisomerization rate constant when no protein is added, ) And the rate of change [(k−k 0 ) = Δk / k 0 ]. The results for the peptide derivative represented by formula (1) are shown in FIG. 6, the results for the peptide derivative represented by formula (2) are shown in FIG. 7, and the results for the peptide derivative represented by formula (3) are shown in FIG. The results for the peptide derivative represented by formula (4) are shown in FIG.
Each figure is a graph showing the results of examining the photoisomerization rate constants of peptide derivatives and various proteins, and the vertical axis shows k / k0. k is a photoisomerization rate constant when protein is added, and k0 is a photoisomerization rate constant when no protein is added.

図6に示すように、式(1)で示されるペプチド誘導体は、プロテインキナーゼA、α−アミラーゼ、β−ガラクトシダーゼ、ライソザイム、S−100タンパク質と相互作用した場合には、光異性化速度定数は大きくなり、ヘキソキナーゼと相互作用した場合には逆に小さくなる。
図7に示すように、式(2)で示されるペプチド誘導体は、プロテインキナーゼA、β−ガラクトシダーゼ、ライソザイム、ヘキソキナーゼ、S−100タンパク質と相互作用した場合には光異性化速度定数が大きくなるが、α−アミラーゼと相互作用した場合にはほとんど変化がない。
図8に示すように、式(3)で示されるペプチド誘導体は、プロテインキナーゼAと相互作用した場合には光異性化速度は大きくなるが、α−アミラーゼ、β−ガラクトシダーゼ、ライソザイム、ヘキソキナーゼ、S−100タンパク質と相互作用した場合には光異性化速度定数は小さくなる。
また、図9に示すように、式(4)で示されるペプチド誘導体は、プロテインキナーゼA、α−アミラーゼ、β−ガラクトシダーゼ、ライソザイム、ヘキソキナーゼ、S−100タンパク質と相互作用した場合に、光異性化速度定数は小さくなる。
As shown in FIG. 6, when the peptide derivative represented by the formula (1) interacts with protein kinase A, α-amylase, β-galactosidase, lysozyme, and S-100 protein, the photoisomerization rate constant is When it interacts with hexokinase, it becomes smaller.
As shown in FIG. 7, the peptide derivative represented by the formula (2) has a high photoisomerization rate constant when interacting with protein kinase A, β-galactosidase, lysozyme, hexokinase, and S-100 protein. There is almost no change when interacting with α-amylase.
As shown in FIG. 8, when the peptide derivative represented by the formula (3) interacts with protein kinase A, the photoisomerization rate increases, but α-amylase, β-galactosidase, lysozyme, hexokinase, S When interacting with -100 protein, the photoisomerization rate constant decreases.
Further, as shown in FIG. 9, the peptide derivative represented by the formula (4) is photoisomerized when interacting with protein kinase A, α-amylase, β-galactosidase, lysozyme, hexokinase, and S-100 protein. The rate constant becomes smaller.

上記の結果より、各々のタンパク質における、光異性化速度定数の変化率Δk/k0を図10に示す。図10は、各種ペプチド誘導体と各種タンパク質とを相互作用させた際に光異性化速度定数の変化率を示すグラフである。図10に示すように、式(1)〜(4)で示されるペプチド誘導体の順に、プロテインキナーゼA(+/+/+/−)、α−アミラーゼ(−/+/0/−)、β−ガラクトシダーゼ(−/+/+/−)、ライソザイム(−/+/+/−)、ヘキソキナーゼ(−/−/+/−)、S−100タンパク質(−/+/+/−)のように、タンパク質を特徴づける結果が得られた。このことから、本発明の方法を利用した作製した「プロテインフィンガープリント」の有用性が示された。   From the above results, the change rate Δk / k0 of the photoisomerization rate constant in each protein is shown in FIG. FIG. 10 is a graph showing the rate of change of the photoisomerization rate constant when various peptide derivatives interact with various proteins. As shown in FIG. 10, protein kinase A (+ / + / + / −), α-amylase (− / + / 0 / −), β in the order of the peptide derivatives represented by formulas (1) to (4). -Galactosidase (-/ + / + /-), lysozyme (-/ + / + /-), hexokinase (-/-/ + /-), S-100 protein (-/ + / + /-) The results characterizing the protein were obtained. From this, the usefulness of the “protein fingerprint” produced using the method of the present invention was shown.

実施例15
式(1)で示されるペプチド誘導体のメロシアニン体からスピロピラン体への光異性化速度定数のタンパク質濃度依存性について検討した。操作は実施例14と同様に行い、タンパク質濃度を0、0.095、0.19、0.38及び0.76mg/mLとして測定を行った。タンパク質としてはプロテインキナーゼA及びα−アミラーゼを用いた。結果を図11に示す。図11は、ペプチド誘導体のメロシアニン体からスピロピラン体への光異性化速度定数のタンパク質濃度依存性を調べた結果を示すグラフであり、横軸はタンパク質濃度、縦軸は光異性化速度定数の変化率を示す。図11に示すように、プロテインキナーゼAを添加したときには、濃度上昇に伴い、速度定数の増大が見られた。一方、α−アミラーゼを用いたときには、濃度上昇に伴い、速度定数の減少が見られた。この結果より、本発明の方法により、タンパク質濃度の定量性があることが示された。
Example 15
The protein concentration dependency of the photoisomerization rate constant of the peptide derivative represented by the formula (1) from the merocyanine form to the spiropyran form was examined. The operation was carried out in the same manner as in Example 14, and the protein concentrations were measured at 0, 0.095, 0.19, 0.38 and 0.76 mg / mL. Protein kinase A and α-amylase were used as proteins. The results are shown in FIG. FIG. 11 is a graph showing the results of examining the protein concentration dependence of the photoisomerization rate constant of a peptide derivative from a merocyanine form to a spiropyran form, with the horizontal axis representing the protein concentration and the vertical axis representing the change in the photoisomerization rate constant. Indicates the rate. As shown in FIG. 11, when protein kinase A was added, the rate constant increased with increasing concentration. On the other hand, when α-amylase was used, the rate constant decreased with increasing concentration. From this result, it was shown that the protein concentration is quantitative by the method of the present invention.

実施例16
2種類のタンパク質が混在する場合の光異性化速度定数に与える影響を調べた。測定条件は実施例14と同様にして行い、ペプチド誘導体として式(1)で示されるペプチド誘導体を用い、タンパク質としては、プロテインキナーゼA及びα−アミラーゼを用いた。結果を図12に示す。図12に示すように、プロテインキナーゼAを用いた場合は、+0.046の変化率が示され、α−アミラーゼを用いた場合は−0.071の変化率が示された。プロテインキナーゼA及びα−アミラーゼを用いた場合は−0.0051の変化率が示された。プロテインキナーゼAを用いた場合と、α−アミラーゼを用いた場合の和は−0.025であり、両者を混合した場合の方が値が小さいことから、タンパク質の混合系においては、タンパク質間のペプチドとの親和性の強弱によって、光異性化速度定数の加速/減速効果が分配されることがわかった。このことから、試料中に既知のタンパク質を添加することにより、多次元の「プロテインフィンガープリント」によるタンパク質の検出の可能性が示された。
Example 16
The effect on the photoisomerization rate constant when two kinds of proteins coexist was examined. The measurement conditions were the same as in Example 14. The peptide derivative represented by the formula (1) was used as the peptide derivative, and protein kinase A and α-amylase were used as the proteins. The results are shown in FIG. As shown in FIG. 12, when protein kinase A was used, a change rate of +0.046 was shown, and when α-amylase was used, a change rate of -0.071 was shown. When protein kinase A and α-amylase were used, a change rate of −0.0051 was shown. The sum of when protein kinase A is used and when α-amylase is used is -0.025, and the value is smaller when both are mixed. It was found that the acceleration / deceleration effect of the photoisomerization rate constant is distributed depending on the affinity of the peptide. From this, it was shown that by adding a known protein to the sample, the protein can be detected by a multidimensional “protein fingerprint”.

活性化スピロピランの合成を示す図である。It is a figure which shows the synthesis | combination of activated spiropyran. ペプチド誘導体の製造方法の簡略図である。It is a simplification figure of the manufacturing method of a peptide derivative. スピロピランのアミノ化と活性化アミノスピロピランの合成を示す図である。It is a figure which shows the amination of spiropyran and the synthesis | combination of activated amino spiropyran. 式(8)〜(10)に示すペプチド誘導体を製造するための化合物の製造工程を示す図である。It is a figure which shows the manufacturing process of the compound for manufacturing the peptide derivative shown to Formula (8)-(10). ペプチド誘導体とタンパク質との相互作用様式を示す図である。It is a figure which shows the interaction mode of a peptide derivative and protein. ペプチド誘導体とタンパク質との相互作用を調べた結果を示すグラフである。It is a graph which shows the result of having investigated interaction with a peptide derivative and protein. ペプチド誘導体とタンパク質との相互作用を調べた結果を示すグラフである。It is a graph which shows the result of having investigated interaction with a peptide derivative and protein. ペプチド誘導体とタンパク質との相互作用を調べた結果を示すグラフである。It is a graph which shows the result of having investigated interaction with a peptide derivative and protein. ペプチド誘導体とタンパク質との相互作用を調べた結果を示すグラフである。It is a graph which shows the result of having investigated interaction with a peptide derivative and protein. 各種ペプチド誘導体と各種タンパク質とを相互作用させた際に光異性化速度定数の変化率を示すグラフである。It is a graph which shows the change rate of a photoisomerization rate constant when various peptide derivatives and various proteins interact. 図11は、ペプチド誘導体のメロシアニン体からスピロピラン体への光異性化速度定数のタンパク質濃度依存性を調べた結果を示すグラフである。FIG. 11 is a graph showing the results of examining the protein concentration dependence of the photoisomerization rate constant of a peptide derivative from a merocyanine form to a spiropyran form. ペプチド誘導体とタンパク質混合系との相互作用した際の光異性化速度定数の変化率を示す図である。It is a figure which shows the change rate of the photoisomerization rate constant at the time of interaction with a peptide derivative and a protein mixed system.

Claims (11)

分子中にフォトクロミック化合物を結合してなるペプチド誘導体。 A peptide derivative formed by binding a photochromic compound in the molecule. フォトクロミック化合物がスピロピランである、請求項1に記載のペプチド誘導体。 The peptide derivative according to claim 1, wherein the photochromic compound is spiropyran. 固相に結合されている、請求項1又は2に記載のペプチド誘導体。 The peptide derivative according to claim 1 or 2, which is bound to a solid phase. 下記工程を有する、標的分子の分子間相互作用検出方法。
(a)分子中にフォトクロミック化合物を結合してなる物質と、標的分子とを接触させる工程;及び
(b)フォトクロミック化合物の光異性化速度定数を測定する工程;
A method for detecting an intermolecular interaction of a target molecule, comprising the following steps.
(A) contacting the target molecule with a substance formed by binding a photochromic compound in the molecule; and (b) measuring the photoisomerization rate constant of the photochromic compound;
標的分子がタンパク質、核酸、糖鎖又は低分子化合物である、請求項4に記載の方法。 The method according to claim 4, wherein the target molecule is a protein, nucleic acid, sugar chain, or low molecular weight compound. フォトクロミック化合物がスピロピランである、請求項4又は5に記載の方法。 The method according to claim 4 or 5, wherein the photochromic compound is spiropyran. 分子中にフォトクロミック化合物を結合してなる物質が、固相に固定化されている、請求項4〜6のいずれか1項に記載の方法。 The method according to any one of claims 4 to 6, wherein a substance formed by binding a photochromic compound in the molecule is immobilized on a solid phase. 下記工程を有する、標的分子の分子間相互作用検出方法。
(a)分子中にフォトクロミック化合物を結合してなるペプチド誘導体と、標的分子とを接触させる工程;及び
(b)フォトクロミック化合物の光異性化速度定数を測定する工程;
A method for detecting an intermolecular interaction of a target molecule, comprising the following steps.
(A) contacting a peptide derivative formed by binding a photochromic compound in the molecule with a target molecule; and (b) measuring a photoisomerization rate constant of the photochromic compound;
標的分子がタンパク質、核酸、糖鎖又は低分子化合物である、請求項8に記載の方法。 The method according to claim 8, wherein the target molecule is a protein, a nucleic acid, a sugar chain, or a low molecular weight compound. フォトクロミック化合物がスピロピランである、請求項8又は9に記載の方法。 The method according to claim 8 or 9, wherein the photochromic compound is spiropyran. 分子中にフォトクロミック化合物を結合してなるペプチド誘導体が、固相に固定化されている、請求項8〜10のいずれか1項に記載の方法。

The method according to any one of claims 8 to 10, wherein a peptide derivative formed by binding a photochromic compound in the molecule is immobilized on a solid phase.

JP2004045588A 2004-02-23 2004-02-23 Peptide derivative and intermolecular interaction detecting method Pending JP2005233854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045588A JP2005233854A (en) 2004-02-23 2004-02-23 Peptide derivative and intermolecular interaction detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004045588A JP2005233854A (en) 2004-02-23 2004-02-23 Peptide derivative and intermolecular interaction detecting method

Publications (1)

Publication Number Publication Date
JP2005233854A true JP2005233854A (en) 2005-09-02

Family

ID=35016955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045588A Pending JP2005233854A (en) 2004-02-23 2004-02-23 Peptide derivative and intermolecular interaction detecting method

Country Status (1)

Country Link
JP (1) JP2005233854A (en)

Similar Documents

Publication Publication Date Title
US20240192221A1 (en) Protein sequencing method and reagents
US20210072251A9 (en) Single molecule peptide sequencing
Klymchenko et al. Fluorescent environment-sensitive dyes as reporters of biomolecular interactions
Engfeldt et al. Chemical synthesis of triple‐labelled three‐helix bundle binding proteins for specific fluorescent detection of unlabelled protein
Zhu et al. Applications of functional protein microarrays in basic and clinical research
Günay et al. Identification of soft matter binding peptide ligands using phage display
JP2016510413A (en) Photo- or chemically dissociable conjugates for the detection of molecules
US20130137117A1 (en) Method for preparing protein imprinted polymers and use thereof
Choulier et al. A peptide-based fluorescent ratiometric sensor for quantitative detection of proteins
US20230107647A1 (en) Single molecule peptide sequencing
JP4801445B2 (en) Biomolecule detection method and labeling dye and labeling kit used therefor
De Filippis et al. Incorporation of the fluorescent amino acid 7‐azatryptophan into the core domain 1–47 of hirudin as a probe of hirudin folding and thrombin recognition
US20230288411A1 (en) Polypeptide, multimer, solid phase, measurement method for test substance, and reagent kit
WO2007076339A2 (en) Isotopically labelled crosslinking agents for the analysis of protein interactions
JPWO2002090985A1 (en) Peptide-immobilized substrate and method for measuring target protein using the same
JP2005208026A (en) Biomolecule detecting method, labeling coloring matter used therein and labeling kit
Díaz-Perlas et al. High-affinity peptides developed against calprotectin and their application as synthetic ligands in diagnostic assays
Tomizaki et al. A novel fluorescence sensing system using a photochromism-based assay (P-CHROBA) technique for the detection of target proteins
JP4832291B2 (en) Labeling substances and chimeric substances, methods for producing these substances, and methods for capturing, analyzing and / or identifying biological substances using the labeling substances
JP4679368B2 (en) Detection / separation / identification method of expressed trace protein / peptide
JP2005233854A (en) Peptide derivative and intermolecular interaction detecting method
Sainlos et al. Tools for investigating peptide–protein interactions: peptide incorporation of environment-sensitive fluorophores via on-resin derivatization
Uryga‐Polowy et al. Resin‐Bound Aminofluorescein for C‐Terminal Labeling of Peptides: High‐Affinity Polarization Probes Binding to Polyproline‐Specific GYF Domains
Ramanoudjame et al. Chemoselective Acylation of Hydrazinopeptides to Access Fluorescent Probes for Time-Resolved FRET Assays on GPCRs
KR20120093151A (en) Improved screening of biopolymers

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061225

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124