JP2005233824A - Food quality inspection method - Google Patents

Food quality inspection method Download PDF

Info

Publication number
JP2005233824A
JP2005233824A JP2004044618A JP2004044618A JP2005233824A JP 2005233824 A JP2005233824 A JP 2005233824A JP 2004044618 A JP2004044618 A JP 2004044618A JP 2004044618 A JP2004044618 A JP 2004044618A JP 2005233824 A JP2005233824 A JP 2005233824A
Authority
JP
Japan
Prior art keywords
food
inspection method
spectrum
near infrared
visible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004044618A
Other languages
Japanese (ja)
Inventor
Takashi Sato
孝史 佐藤
Yoshiki Maeda
祥貴 前田
Toshiro Hori
俊郎 堀
Mamoru Miyata
守 宮田
Tomoji Kato
友治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FOOD SAFETY INNOVATION GIJUTSU
FOOD SAFETY INNOVATION GIJUTSU KENKYU KUMIAI
Original Assignee
FOOD SAFETY INNOVATION GIJUTSU
FOOD SAFETY INNOVATION GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FOOD SAFETY INNOVATION GIJUTSU, FOOD SAFETY INNOVATION GIJUTSU KENKYU KUMIAI filed Critical FOOD SAFETY INNOVATION GIJUTSU
Priority to JP2004044618A priority Critical patent/JP2005233824A/en
Publication of JP2005233824A publication Critical patent/JP2005233824A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a food quality inspection method omitting labor and having high reliability. <P>SOLUTION: The food quality inspection method is constituted so as to determine food on the basis of a visible and/or near infrared spectrum obtained by irradiating the food with visible light and/or near infrared rays and includes a process for obtaining the visible and/or near infrared spectrum obtained by irradiating the food with visible light and/or near infrared rays, a process for analyzing the spectrum by a chemometrics and a process for judging the quality of the food on the basis of the obtained analyzed result. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、食品における品質検査の方法に関する。   The present invention relates to a method for quality inspection in foods.

近年、近赤外線分光法による有機物の品質評価方法は非破壊測定方法として注目され、過去20年間に数多くの研究がなされ、実用化が進められている。例えば、食品業界ではアミロース等の含有量を測定する米食味計(例えば、特許文献1参照)や糖質を測定する果物糖度計(例えば、特許文献2、3参照)等が実用化されている。   In recent years, organic substance quality evaluation methods using near-infrared spectroscopy have attracted attention as non-destructive measurement methods, and many studies have been made in the past 20 years and are being put into practical use. For example, in the food industry, rice taste meters that measure the content of amylose and the like (see, for example, Patent Document 1), fruit sugar content meters that measure carbohydrates (for example, see Patent Documents 2 and 3), and the like have been put into practical use. .

また、ココア含有食品のpH(水素イオンの含量)を評価する方法(例えば、特許文献4参照)、食品の加工前後における成分の違いを測定し、加工状態を評価する方法(例えば、特許文献5、6参照)が開示されている。
特開昭63−11841号公報 特開平6−186159号公報 特開平1−301147号公報 特開2001−17084号公報 特開平7−12722号公報 特開平7−107925号公報
Also, a method for evaluating the pH (hydrogen ion content) of a cocoa-containing food (for example, see Patent Document 4), a method for measuring a difference in ingredients before and after the processing of the food, and evaluating a processing state (for example, Patent Document 5) , 6).
JP 63-11841 A JP-A-6-186159 JP-A-1-301147 JP 2001-17084 A JP-A-7-12722 JP-A-7-107925

食品の加熱状態を評価する方法は、従来加熱温度をモニタリングすること、水分含有率を近赤外分光法を用いることなどにより間接的に評価する方法しかなく、また、製造工程における品質管理としてサンプリングした食品自体を破壊して内部の加熱状態を確認しなければならなかった。   The only methods for evaluating the heating state of foods are the conventional methods of monitoring the heating temperature and indirectly evaluating the moisture content by using near-infrared spectroscopy, and sampling as quality control in the manufacturing process. We had to destroy the food itself and check the internal heating condition.

さらに、サンプリングで確認する場合、統計的に計算された必要数を検査することになるが、生産ロット数が大きくなれば、その検査数も膨大となり、非常に手間がかかっていた。そのように手間をかけていたとしても、全数検査をしているわけではないので、中には品質規格を逸脱する製品が含まれることもある。   Furthermore, when confirming by sampling, the required number calculated statistically is inspected. However, if the number of production lots increases, the number of inspections becomes enormous, which is very troublesome. Even if it takes time and effort, all products are not inspected, so some products may deviate from quality standards.

従って、本発明の目的は、手間が省かれ、かつ信頼性の高い食品の品質検査方法を提供することである。   Therefore, an object of the present invention is to provide a food quality inspection method that saves labor and has high reliability.

すなわち、本発明は、
(1)食品に可視光線および/または近赤外線を照射して得られる可視および/または近赤外スペクトルに基づいて判定する、食品の品質検査方法、
(2)食品の加熱状態を判定する、前記(1)記載の検査方法、
(3)食品の殺菌状態を判定する、前記(1)記載の検査方法、
(4)食品に可視光線および/または近赤外線を照射して可視および/または近赤外スペクトルを得る工程、該スペクトルをケモメトリクスによって解析する工程、および得られた解析結果に基づき食品の品質を判定する工程を含む、前記(1)〜(3)いずれか記載の検査方法、ならびに
(5)可視および/または近赤外スペクトルの波長が400〜2500nmである、前記(1)〜(4)いずれか記載の検査方法
に関する。
That is, the present invention
(1) A food quality inspection method for determining based on a visible and / or near-infrared spectrum obtained by irradiating food with visible light and / or near-infrared rays,
(2) The inspection method according to (1), wherein the heating state of the food is determined,
(3) The inspection method according to (1), wherein the sterilization state of the food is determined,
(4) A step of obtaining a visible and / or near infrared spectrum by irradiating food with visible light and / or near infrared, a step of analyzing the spectrum by chemometrics, and a quality of the food based on the obtained analysis result The inspection method according to any one of (1) to (3), including the step of determining, and (5) the wavelength of the visible and / or near infrared spectrum is 400 to 2500 nm (1) to (4) It relates to any one of the inspection methods.

本発明により、手間が省かれ、信頼性が高く、非破壊的に検査が実施でき、かつ迅速に検査ができる食品の品質検査方法が提供される。   The present invention provides a food quality inspection method that saves labor, is highly reliable, can be non-destructively inspected, and can be inspected quickly.

本発明は、食品に可視光線および/または近赤外線を照射して得られる可視および/または近赤外スペクトルに基づいて食品の品質検査を行うことに大きな特徴を有する。   The present invention has a great feature in conducting a quality inspection of food based on a visible and / or near infrared spectrum obtained by irradiating food with visible light and / or near infrared light.

かかる特徴を有することで、短時間で食品の品質を確認することができ、食品の製造工程における品質管理の徹底を図ることができる。   By having such a feature, the quality of the food can be confirmed in a short time, and thorough quality control in the food production process can be achieved.

本発明に使用される食品としては、その製造工程中に加熱工程が必要な食品であれば特に限定されないが、例えば、卵、生乳、生クリームなどの乳製品、コーヒー、紅茶、ココア、果汁などの飲料、アルコール類、レトルト食品などが挙げられる。特に、熱管理の困難性の観点から、卵などが好ましい。   The food used in the present invention is not particularly limited as long as it is a food that requires a heating step during its production process. For example, dairy products such as eggs, raw milk, and fresh cream, coffee, tea, cocoa, fruit juice, etc. Beverages, alcohols, and retort foods. In particular, eggs and the like are preferable from the viewpoint of difficulty in thermal management.

本発明により検査可能な品質検査項目としては、例えば、加熱状態検査、殺菌状態検査などが挙げられる。   Examples of quality inspection items that can be inspected according to the present invention include heating state inspection and sterilization state inspection.

可視光線のみを照射する場合、その波長は、測定する試料によって適宜選択すればよいが、好ましくは360〜830nm、より好ましくは400〜700nmであり、一方、近赤外線のみを照射する場合、その波長は、測定する試料によって適宜選択すればよいが、好ましくは700〜2500nm、より好ましくは830〜1350nmである。また、可視光線および近赤外線を照射する場合の波長は、測定する試料によって適宜選択すればよいが、好ましくは400〜2500nm、より好ましくは400〜1350nmである。   In the case of irradiating only visible light, the wavelength may be appropriately selected depending on the sample to be measured, but is preferably 360 to 830 nm, more preferably 400 to 700 nm. May be appropriately selected depending on the sample to be measured, but is preferably 700 to 2500 nm, more preferably 830 to 1350 nm. Moreover, what is necessary is just to select suitably the wavelength in the case of irradiating visible light and near infrared rays with the sample to measure, Preferably it is 400-2500 nm, More preferably, it is 400-1350 nm.

本発明に使用される機器としては、可視光線および/または近赤外線を測定できる機器であれば特に限定されないが、例えば、フィルター型分光機器、分散型分光機器、フーリエ変換型分光機器などが挙げられる。   The device used in the present invention is not particularly limited as long as it is a device that can measure visible light and / or near-infrared light. Examples thereof include filter-type spectroscopic devices, dispersion-type spectroscopic devices, and Fourier transform spectroscopic devices. .

本発明の品質検査方法には、より正確な検査結果を得るため、食品に可視光線および/または近赤外線を照射して可視および/または近赤外スペクトルを得る工程、該スペクトルをケモメトリクスによって解析する工程、および得られた解析結果に基づき食品の品質を判定する工程が含まれることが好ましい。   In the quality inspection method of the present invention, in order to obtain a more accurate inspection result, a visible light and / or near infrared spectrum is obtained by irradiating food with visible light and / or near infrared light, and the spectrum is analyzed by chemometrics. It is preferable that the process to determine the quality of food based on the process to perform and the obtained analysis result is included.

具体的な解析方法として、定量的な分析には、重回帰分析、主成分回帰分析、PLS回帰分析、定性的な分析には、主成分分析、クラスタ分析、判別分析、SIMCAなどが挙げられる。   As specific analysis methods, quantitative analysis includes multiple regression analysis, principal component regression analysis, PLS regression analysis, and qualitative analysis includes principal component analysis, cluster analysis, discriminant analysis, SIMCA, and the like.

定量的な分析を行う際の検量線は、例えば、予め決められた条件(例えば、加熱時間、加熱温度など)で加工(例えば、加熱など)されたサンプルを用意して、各サンプルにつき可視および/または近赤外スペクトルを測定し、前記解析方法により成分値を加工時間(例えば、加熱時間)として作成することができる。なお、得られた検量線の信頼性を確認するために、相関係数を計算することが好ましい。かかる相関係数は、検査精度を確保する観点から可能な限り高いことが好ましいが、検量線の信頼性を保証するためには0.85以上であればよい。   For example, a calibration curve for performing a quantitative analysis is prepared by preparing samples processed (for example, heating) under predetermined conditions (for example, heating time, heating temperature, etc.). The near infrared spectrum is measured and the component value can be created as the processing time (for example, the heating time) by the analysis method. In order to confirm the reliability of the obtained calibration curve, it is preferable to calculate a correlation coefficient. The correlation coefficient is preferably as high as possible from the viewpoint of ensuring the inspection accuracy, but may be 0.85 or more in order to guarantee the reliability of the calibration curve.

上記のように予め作成された検量線と、解析により得られた値とを対比することで、各サンプルの品質が品質規格に適合しているか否かを判定することができ、さらに、食品加工中の食品の品質変化を経時的に確認することもできる。   By comparing the calibration curve prepared in advance as described above with the value obtained by analysis, it is possible to determine whether the quality of each sample conforms to the quality standard, and further, food processing It is also possible to check the quality change of the food inside.

本発明の方法は、例えば、液卵の製造工程における加熱状態または殺菌状態の確認に使用することができる。   The method of the present invention can be used, for example, for confirming a heating state or a sterilization state in a liquid egg manufacturing process.

例えば、液卵の場合、加熱または殺菌工程中あるいは加熱または殺菌工程後に、液卵をサンプリングして、バッチ式で、または送液中の液卵に対して連続的に本発明の方法により各液卵の加熱または殺菌状態を確認し、異常なく加熱または殺菌工程が行われていることを確認することができ、また、加熱または殺菌工程終了後に所望の液卵が製造されているかどうかを確認することもできる。さらに、短時間で全ての液卵の加熱または殺菌状態を確認することができるため、品質規格を逸脱する製品が市場に流れる前に食い止めることができる。   For example, in the case of a liquid egg, the liquid egg is sampled during the heating or sterilization process or after the heating or sterilization process, and batchwise or continuously with respect to the liquid egg being fed by the method of the present invention. You can check the heating or sterilization state of the egg, you can check that the heating or sterilization process is performed without any abnormalities, and check if the desired liquid egg is manufactured after the heating or sterilization process is completed You can also. Furthermore, since the heating or sterilization state of all the liquid eggs can be confirmed in a short time, it is possible to stop the product that deviates from the quality standard before flowing into the market.

実施例1 検量線の作成
(1)スペクトル測定用サンプルの調製
全卵液、卵黄液および卵白液をポリバックセル(光路長2mm)にそれぞれ7.5g充填し、全卵液は56℃、卵黄液は60℃および卵白液は61℃の湯浴中で1.5、2.5、3.0、3.5、4.0、4.5および5.5分間加熱し、水冷後、未加熱品と共にスペクトル測定用サンプルとした。
Example 1 Preparation of calibration curve (1) Preparation of sample for spectral measurement Whole egg liquid, egg yolk liquid and egg white liquid were filled in a polybac cell (light path length: 2 mm), respectively, and the total egg liquid was 56 ° C., yolk. The solution was heated at 60 ° C. and the egg white solution was heated in a water bath at 61 ° C. for 1.5, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.5 minutes. A sample for spectrum measurement was used together with the heated product.

(2)スペクトルの測定
各サンプルを20℃水浴中で10分間放置した後、分散型分光機器(NIRsystems社製Model6500)を用いて400〜2500nm(2nm間隔)の波長で透過法によりスペクトルを測定した。波長スキャン回数は32回とし、リファレンスには空気を用いた。また、リファレンスは1サンプル毎に測定した。
(2) Measurement of spectrum After each sample was left in a 20 ° C water bath for 10 minutes, the spectrum was measured by a transmission method at a wavelength of 400 to 2500 nm (2 nm interval) using a dispersion-type spectroscopic instrument (Model 6500 manufactured by NIRsystems). . The number of wavelength scans was 32, and air was used as a reference. The reference was measured for each sample.

(3)スペクトルの解析
(2)で得られた未加熱品および加熱品の各サンプルの平滑化した原スペクトルおよび二次微分スペクトルを用い、成分値を加熱時間としてFull cross validationによりFactor16までPLS回帰分析を行った。
(3) Spectrum analysis PLS regression to Factor 16 by full cross validation using the smoothed original spectrum and second derivative spectrum of each sample of unheated and heated products obtained in (2) as the heating time. Analysis was carried out.

(4)検量線の作成
表1に示すように、全卵液は、700〜1100nmの波長で得られた平滑化した原スペクトルを用いて解析した結果、相関係数の高い検量線を作成することが可能であった。
(4) Preparation of calibration curve As shown in Table 1, the whole egg solution is analyzed using a smoothed original spectrum obtained at a wavelength of 700 to 1100 nm, and as a result, a calibration curve with a high correlation coefficient is created. It was possible.

卵黄液は、1100〜1350nmの波長で得られた平滑化した原スペクトルおよび二次微分スペクトルのいずれを用いて解析しても、相関係数の高い検量線を作成することが可能であった。   Even when the egg yolk liquid was analyzed using either the smoothed original spectrum or the second derivative spectrum obtained at a wavelength of 1100 to 1350 nm, it was possible to create a calibration curve with a high correlation coefficient.

卵白液は、400〜700nmの波長で得られた二次微分スペクトルを用いて解析した結果、相関係数の高い検量線を作成することが可能であった。   As a result of analyzing the egg white liquid using the second derivative spectrum obtained at a wavelength of 400 to 700 nm, it was possible to create a calibration curve with a high correlation coefficient.

Figure 2005233824
Figure 2005233824

実施例2 実測値と予想値の関係
全卵液を30ml容量試験管に20ml充填し、60℃の湯浴中で1.5、2.5、3.0、3.5、4.0、4.5および5.5分間加熱し、水冷後、未加熱品と共にスペクトル測定用サンプルを調製した(n=8)。
Example 2 Relationship between Measured Value and Expected Value 20 ml of whole egg liquid was filled in a 30 ml test tube, and 1.5, 2.5, 3.0, 3.5, 4.0, After heating for 4.5 and 5.5 minutes and cooling with water, a sample for spectrum measurement was prepared together with an unheated product (n = 8).

各加熱時間で調製したサンプルのうち、1、3、5および7番目のサンプルならびに未加熱サンプルを20℃水浴中で10分間放置した後、分散型分光機器(NIRsystems社製Model6500)を用いて700〜1100nm(2nm間隔)の波長で透過法によりスペクトルを測定した。波長スキャン回数は32回とし、リファレンスには空気を用いた。また、リファレンスは1サンプル毎に測定した。   Among the samples prepared at each heating time, the first, third, fifth and seventh samples and the unheated sample were left in a 20 ° C. water bath for 10 minutes, and then 700 using a dispersive spectroscopic instrument (Model 6500 manufactured by NIRsystems). The spectrum was measured by the transmission method at a wavelength of ˜1100 nm (2 nm interval). The number of wavelength scans was 32, and air was used as a reference. The reference was measured for each sample.

上記で得られた各サンプルの平滑化した原スペクトルおよび二次微分スペクトルを用い、成分値を加熱時間としてFull cross validationによりFactor16までPLS回帰分析を行い、検量線を作成した。   Using the smoothed original spectrum and second derivative spectrum of each sample obtained above, PLS regression analysis was performed up to Factor 16 by full cross validation using the component values as heating time, and a calibration curve was created.

次に、各加熱時間で調製したサンプルのうち、2、4、6および8番目のサンプルならびに未加熱サンプルを20℃水浴中で10分間放置した後、分散型分光機器(NIRsystems社製Model6500)を用いて700〜1100nm(2nm間隔)の波長で透過法によりスペクトルを測定した。波長スキャン回数は32回とし、リファレンスには空気を用いた。また、リファレンスは1サンプル毎に測定した。   Next, among the samples prepared at each heating time, the second, fourth, sixth and eighth samples and the unheated sample were left in a 20 ° C. water bath for 10 minutes, and then a dispersive spectrometer (Model 6500 manufactured by NIRsystems) was attached. The spectrum was measured by the transmission method at a wavelength of 700 to 1100 nm (2 nm interval). The number of wavelength scans was 32, and air was used as a reference. The reference was measured for each sample.

上記で得られた各サンプルの平滑化した原スペクトルおよび二次微分スペクトルを用い、成分値を加熱時間としてFull cross validationによりFactor16までPLS回帰分析を行い、上記で作成した検量線に当てはめた。   Using the smoothed original spectrum and second-order derivative spectrum of each sample obtained above, PLS regression analysis was performed up to Factor 16 by full cross validation using the component values as heating time, and applied to the calibration curve created above.

Figure 2005233824
Figure 2005233824

表2より、作成した検量線より得られる予想値と実測値は近い値を示し、t検定の結果、危険率5%で両者に有意差はなかった。   From Table 2, the expected value and the actual measurement value obtained from the prepared calibration curve are close to each other. As a result of the t-test, there is no significant difference between the two at a risk rate of 5%.

実施例3 実測値と予想値の関係
PLS回帰分析をする代わりに、平滑化した原スペクトルを用いて第四波長まで重回帰分析を行う以外は実施例2と同様に検量線を作成し、有意差を確認した。
Example 3 Relationship between measured values and predicted values
A calibration curve was created in the same manner as in Example 2 except that multiple regression analysis was performed up to the fourth wavelength using the smoothed original spectrum instead of PLS regression analysis, and a significant difference was confirmed.

Figure 2005233824
Figure 2005233824

表3より、作成した検量線より得られる予想値と実測値は近い値を示し、t検定の結果、危険率5%で両者に有意差はなかった。   From Table 3, the expected value and the actual measurement value obtained from the prepared calibration curve showed close values. As a result of the t-test, the risk rate was 5% and there was no significant difference between the two.

従って、可視光線および/または近赤外線を照射して得られる可視および/または近赤外スペクトルを解析することにより、食品の品質検査が可能であることがわかる。   Therefore, it is understood that the quality inspection of food can be performed by analyzing the visible and / or near infrared spectrum obtained by irradiating visible light and / or near infrared light.

本発明は、食品製造における加熱状態を確認する試験に利用できる。   The present invention can be used for a test for confirming a heating state in food production.

Claims (5)

食品に可視光線および/または近赤外線を照射して得られる可視および/または近赤外スペクトルに基づいて判定する、食品の品質検査方法。   A food quality inspection method for determining a food based on a visible and / or near infrared spectrum obtained by irradiating the food with visible light and / or near infrared light. 食品の加熱状態を判定する、請求項1記載の検査方法。   The inspection method according to claim 1, wherein the heating state of the food is determined. 食品の殺菌状態を判定する、請求項1記載の検査方法。   The inspection method according to claim 1, wherein the sterilization state of the food is determined. 食品に可視光線および/または近赤外線を照射して可視および/または近赤外スペクトルを得る工程、該スペクトルをケモメトリクスによって解析する工程、および得られた解析結果に基づき食品の品質を判定する工程を含む、請求項1〜3いずれか記載の検査方法。   A step of obtaining a visible and / or near-infrared spectrum by irradiating the food with visible light and / or near infrared, a step of analyzing the spectrum by chemometrics, and a step of determining the quality of the food based on the obtained analysis result The test | inspection method in any one of Claims 1-3 containing. 可視および/または近赤外スペクトルの波長が400〜2500nmである、請求項1〜4いずれか記載の検査方法。   The inspection method according to claim 1, wherein the wavelength of the visible and / or near-infrared spectrum is 400 to 2500 nm.
JP2004044618A 2004-02-20 2004-02-20 Food quality inspection method Pending JP2005233824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004044618A JP2005233824A (en) 2004-02-20 2004-02-20 Food quality inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004044618A JP2005233824A (en) 2004-02-20 2004-02-20 Food quality inspection method

Publications (1)

Publication Number Publication Date
JP2005233824A true JP2005233824A (en) 2005-09-02

Family

ID=35016933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004044618A Pending JP2005233824A (en) 2004-02-20 2004-02-20 Food quality inspection method

Country Status (1)

Country Link
JP (1) JP2005233824A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590128A (en) * 2012-01-10 2012-07-18 上海市兽药饲料检测所 Method for discriminating adulterated raw and fresh milk by using near infrared spectrum
US8546758B2 (en) 2008-09-22 2013-10-01 Sumitomo Electric Industries, Ltd. Food quality examination device, food component examination device, foreign matter component examination device, taste examination device, and changed state examination device
KR102394422B1 (en) * 2021-11-15 2022-05-06 주식회사 시스템알앤디 Food surface foreign material inspection optical device using near infrared spectral imaging technology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546758B2 (en) 2008-09-22 2013-10-01 Sumitomo Electric Industries, Ltd. Food quality examination device, food component examination device, foreign matter component examination device, taste examination device, and changed state examination device
CN102590128A (en) * 2012-01-10 2012-07-18 上海市兽药饲料检测所 Method for discriminating adulterated raw and fresh milk by using near infrared spectrum
CN102590128B (en) * 2012-01-10 2014-03-19 上海市兽药饲料检测所 Method for discriminating adulterated raw and fresh milk by using near infrared spectrum
KR102394422B1 (en) * 2021-11-15 2022-05-06 주식회사 시스템알앤디 Food surface foreign material inspection optical device using near infrared spectral imaging technology

Similar Documents

Publication Publication Date Title
Büning-Pfaue Analysis of water in food by near infrared spectroscopy
El-Abassy et al. Fast determination of milk fat content using Raman spectroscopy
JP2002122538A (en) Liquid sample analyzing method and device using near- infrared spectroscopic method
An et al. Effect of spectral pretreatment on qualitative identification of adulterated bovine colostrum by near-infrared spectroscopy
Woo et al. Development of a new measurement unit (MilkSpec-1) for rapid determination of fat, lactose, and protein in raw milk using near-infrared transmittance spectroscopy
Kapoor et al. Real-time moisture monitoring of edible coated apple chips during hot air drying using miniature NIR spectroscopy and chemometrics
Jha et al. Detection of adulterants in milk using near infrared spectroscopy
Dixit et al. Challenges in Model Development for Meat Composition Using Multipoint NIR Spectroscopy from At‐Line to In‐Line Monitoring
Craig et al. Vibrational spectroscopy for food quality and safety screening
Tian et al. Quantitative analysis and visualization of moisture and anthocyanins content in purple sweet potato by Vis–NIR hyperspectral imaging
Risoluti et al. Assessing the quality of milk using a multicomponent analytical platform MicroNIR/chemometric
Li et al. A novel method to determine total sugar of Goji berry using FT-NIR spectroscopy with effective wavelength selection
US20190250099A1 (en) Determination of a constituent related property of a multi-constituent sample
Belyakov et al. Control of powdery contents and mass rates of the extract in the dry substance of barley malt by photoluminescent method
CN110672578A (en) Model universality and stability verification method for polar component detection of frying oil
JP2016045091A (en) Nondestructive measurement device and nondestructive measurement method of anthocyanin content in fruit and vegetable
WO2015040626A1 (en) Quantitative analysis of milk components
CN113324940A (en) Spectrum grading method for super-high-quality milk, high-protein special milk, high-milk-fat special milk and common milk
Peng et al. Application of near-infrared spectroscopy for assessing meat quality and safety
JP2005233824A (en) Food quality inspection method
Shen et al. Evaluation of near‐infrared and mid‐infrared spectroscopy for the determination of routine parameters in Chinese rice wine
KR100859131B1 (en) Analyzer for estimating milk freshness by using NIR
Kokawa et al. Measuring cheese maturation with the fluorescence fingerprint
Dong et al. Nondestructive method for analysis of the soybean quality
Xie et al. Nondestructive determination of soluble solids content and pH in tomato juice using NIR transmittance spectroscopy