JP2005233767A - Measurement device and measuring method - Google Patents

Measurement device and measuring method Download PDF

Info

Publication number
JP2005233767A
JP2005233767A JP2004043061A JP2004043061A JP2005233767A JP 2005233767 A JP2005233767 A JP 2005233767A JP 2004043061 A JP2004043061 A JP 2004043061A JP 2004043061 A JP2004043061 A JP 2004043061A JP 2005233767 A JP2005233767 A JP 2005233767A
Authority
JP
Japan
Prior art keywords
optical path
light
measurement
measured
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004043061A
Other languages
Japanese (ja)
Inventor
Eiki Okuyama
栄樹 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004043061A priority Critical patent/JP2005233767A/en
Publication of JP2005233767A publication Critical patent/JP2005233767A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure the shape of the surface to be measured with high accuracy, regardless of accuracy of form of the reference surface, when measuring a shape of a surface to be measured by utilizing light interference. <P>SOLUTION: An optical path B (optical path for a surface to be measured), in which an object to be measured W (a surface to be measured) is placed, is switched between an optical path (optical path for first measurement) in which light split by a first beam splitter 12 bypasses the object to be measured W and runs into a third beam splitter 15 and an optical path (optical path for second measurement), in which the split light runs into the object to be measured W and then into the third beam splitter 15 to measure. The shape of the object to be measured W is obtained, based on the measurement results obtained by interference of the light passing through an optical path A, in which the reference surface is placed and the optical path for first measurement, and the measurement results obtained by interference of the light passing through the optical path A and the optical path for second measurement. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光の干渉を利用して被測定面の形状を測定する測定装置、及び測定方法に関するものである。   The present invention relates to a measuring apparatus and a measuring method for measuring the shape of a surface to be measured using light interference.

従来、高精度なガラス部品などの形状を測定する方法として、参照面に当てられた光と被測定面に当てられた光とを干渉させて干渉縞を生じさせ、その干渉縞から参照面を基準とした被測定面の形状を測定する方法が知られている。この測定方法を実現する装置としては、マッハツェンダー式の干渉計が広く用いられている(例えば、非特許文献1参照)。マッハツェンダー式の干渉計は、光源から出射された光を分光して別々の光路を通らせ、その別々の光路を通った光を重ね合わせた時に生じる光の干渉を利用して、被測定面の形状を測定するものである。
末田 哲夫、「オプトロニクス活用のための光学部品の使い方と留意点(増補改訂版)」、株式会社オプトロニクス社、平成2年5月21日、p.292−294
Conventionally, as a method for measuring the shape of a glass component or the like with high accuracy, interference light is generated by interference between light applied to a reference surface and light applied to a surface to be measured. A method for measuring the shape of a measured surface as a reference is known. As an apparatus for realizing this measurement method, a Mach-Zehnder interferometer is widely used (for example, see Non-Patent Document 1). A Mach-Zehnder interferometer uses the light interference generated when light emitted from a light source is split and passed through separate optical paths, and the light passing through the separate optical paths is superimposed. Is to measure the shape.
Tetsuo Sueda, “How to use optical components for optronics and points to be noted (supplemented revised edition)”, Optronics Co., Ltd., May 21, 1990, p. 292-294

ところで、干渉計は、前述のように、参照面と被測定面とを比較し、参照面を基準として被測定面の形状を測定するものである。そのため、干渉計の測定精度は、参照面の形状精度に依存することとなり、参照面の形状精度以上の測定を行うことが出来ないという問題がある。即ち、参照面の形状精度が低ければ、測定精度も低くなってしまうことから、高精度な測定を行うためには、形状精度の高い参照面が必要とされる。   By the way, as described above, the interferometer compares the reference surface and the surface to be measured, and measures the shape of the surface to be measured using the reference surface as a reference. For this reason, the measurement accuracy of the interferometer depends on the shape accuracy of the reference surface, and there is a problem in that it is impossible to perform measurement that exceeds the shape accuracy of the reference surface. That is, if the shape accuracy of the reference surface is low, the measurement accuracy is also low. Therefore, a reference surface with high shape accuracy is required to perform high-precision measurement.

この発明は、このような従来の技術に存在する問題点に着目してなされたものであり、その目的は、参照面の形状精度に拘わらず、被測定面の形状を高精度に測定することができる測定装置、及び測定方法を提供することにある。   The present invention has been made paying attention to such problems existing in the prior art, and its purpose is to measure the shape of the surface to be measured with high accuracy regardless of the shape accuracy of the reference surface. It is an object of the present invention to provide a measuring apparatus and a measuring method capable of performing the above.

上記問題点を解決するために、請求項1に記載の発明は、光源から出射された光を分光手段で分光し、その分光された光を参照面が配置される参照面用光路と被測定面が配置される被測定面用光路を通らせた後に重合手段で再び重ね合わせ、前記光を重ね合わせた時に生じる光の干渉を利用して、前記被測定面の形状を測定する測定装置において、前記被測定面用光路を、前記分光手段で分光された光が前記被測定面を通ることなく前記重合手段に至る第1の光路と、前記分光手段で分光された光が前記被測定面を通った後に前記重合手段に至る第2の光路とに切り換える光路切換手段と、前記被測定面用光路が前記第1の光路の場合に、前記参照面用光路と前記被測定面用光路を通った光の干渉によって得られる測定結果と、前記被測定面用光路が前記第2の光路の場合に、前記参照面用光路と前記被測定面用光路を通った光の干渉によって得られる測定結果とに基づき、前記被測定面の形状を算出する演算手段とを備えたことを要旨とする。   In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that the light emitted from the light source is dispersed by the spectroscopic means, and the split light is optical path for the reference surface on which the reference surface is arranged and the measurement target. In the measuring apparatus for measuring the shape of the surface to be measured by using the light interference generated when the light is overlapped again after passing through the optical path for the surface to be measured on which the surface is arranged and overlapping the light A first optical path through which the light split by the spectroscopic means reaches the polymerization means without passing through the measured surface; and the light split by the spectroscopic means An optical path switching means for switching to a second optical path that passes through the superimposing means after passing through the optical path for the reference surface and the optical path for the measurement surface when the optical path for the measurement surface is the first optical path. Measurement results obtained by interference of light passing through, and the surface to be measured An arithmetic means for calculating the shape of the measured surface based on a measurement result obtained by interference of light passing through the optical path for the reference surface and the optical path for the measured surface when the optical path is the second optical path; The main point is that

請求項2に記載の発明は、請求項1に記載の測定装置において、前記光路切換手段は、入射した光を反射する反射面を有する光学部材であって、前記光学部材は、前記第1の光路において、前記分光手段で分光された光が前記重合手段に直接反射されるように配置され、前記第2の光路において、前記分光手段で分光された光が前記被測定面を通った後に前記重合手段に反射されるように配置され、前記光学部材は、前記第1の光路と第2の光路において、前記光を同一面にて反射させるように配置されることを要旨とする。   According to a second aspect of the present invention, in the measurement apparatus according to the first aspect, the optical path switching means is an optical member having a reflecting surface that reflects incident light, and the optical member is the first member. In the optical path, the light split by the spectroscopic means is arranged to be directly reflected by the superposition means, and in the second optical path, the light split by the spectroscopic means passes through the surface to be measured. The gist is that the optical member is arranged so as to be reflected by the superposition means, and the optical member is arranged so as to reflect the light on the same surface in the first optical path and the second optical path.

請求項3に記載の発明は、光源から出射された光を分光手段で分光し、その分光された光を参照面が配置される参照面用光路と被測定面が配置される被測定面用光路を通らせた後に重合手段で再び重ね合わせ、前記光を重ね合わせた時に生じる光の干渉を利用して、前記被測定面の形状を測定する測定方法において、前記分光手段で分光された光が前記被測定面を通ることなく前記重合手段に至るように前記被測定面用光路を形成し、その被測定面用光路と前記参照面用光路を通った光の干渉を利用して測定を行う第1の測定ステップと、前記分光手段で分光された光が前記被測定面を通った後に前記重合手段に至るように前記被測定面用光路を形成し、その被測定面用光路と前記参照面用光路を通った光の干渉を利用して測定を行う第2の測定ステップと、前記第1の測定ステップで得られる測定結果と前記第2の測定ステップで得られる測定結果とに基づき、前記被測定面の形状を算出する演算ステップとを備えたことを要旨とする。   According to a third aspect of the present invention, the light emitted from the light source is dispersed by the spectroscopic means, and the dispersed light is used for the reference surface optical path on which the reference surface is arranged and the measurement surface on which the measurement surface is arranged. In the measuring method for measuring the shape of the surface to be measured by using the interference of light generated when the light is superimposed after being overlapped by the superimposing means after passing through the optical path, the light spectrally separated by the spectroscopic means The measurement surface optical path is formed so as to reach the superposition means without passing through the measurement surface, and measurement is performed using interference of light passing through the measurement surface optical path and the reference surface optical path. A first measurement step to be performed; and the light path for the measurement surface is formed so that the light dispersed by the spectroscopic means passes through the measurement surface and then reaches the polymerization means, and the measurement surface optical path and the measurement surface Second measurement is performed by using interference of light passing through the optical path for the reference plane. And a calculation step for calculating the shape of the surface to be measured based on the measurement result obtained in the first measurement step and the measurement result obtained in the second measurement step. To do.

本発明によれば、参照面の形状精度に拘わらず、被測定面の形状を高精度に測定することができる。   According to the present invention, the shape of the surface to be measured can be measured with high accuracy regardless of the shape accuracy of the reference surface.

(第1の実施形態)
以下、本発明を、光の干渉を利用して被測定物Wの平面形状(平面度)を測定する測定装置10に具体化した第1の実施形態を図1及び図2に基づき説明する。図1〜図4では、測定に用いる光の光路を実線矢印で示し、矢印の方向が光の進む方向を示している。
(First embodiment)
Hereinafter, a first embodiment in which the present invention is embodied in a measuring apparatus 10 that measures the planar shape (flatness) of an object W using light interference will be described with reference to FIGS. 1 and 2. 1 to 4, the optical path of light used for measurement is indicated by a solid arrow, and the direction of the arrow indicates the direction in which the light travels.

本実施形態の測定装置10は、光源11と、分光手段としての第1のビームスプリッタ12と、参照面とされる第2のビームスプリッタ13と、光路切換手段(光学部材)としての偏光ビームスプリッタ14と、重合手段としての第3のビームスプリッタ15とを備えている。また、測定装置10は、1/4波長板16と、受光素子17と、コンピュータ18とを備えている。本実施形態では、受光素子17とコンピュータ18によって演算手段が構成されている(各図において破線で囲む)。なお、以下の説明では、前記各ビームスプリッタ12〜15と、1/4波長板16を光学素子とも言う。   The measuring apparatus 10 of this embodiment includes a light source 11, a first beam splitter 12 as a spectroscopic unit, a second beam splitter 13 as a reference surface, and a polarizing beam splitter as an optical path switching unit (optical member). 14 and a third beam splitter 15 as a superposition means. The measuring apparatus 10 includes a quarter wavelength plate 16, a light receiving element 17, and a computer 18. In the present embodiment, the light receiving element 17 and the computer 18 constitute an arithmetic means (enclosed by a broken line in each figure). In the following description, the beam splitters 12 to 15 and the quarter wavelength plate 16 are also referred to as optical elements.

光源11は、ヘリウムネオンレーザ光(λ=632.8nm(ランダム偏光光又は直線偏光光))を出射する光源とされている。第1のビームスプリッタ12は、光源11から出射された光を入射するように配置されている。第1のビームスプリッタ12は、ハーフミラーとして機能するように薄膜(誘電体膜、金属膜、ハイブリッド膜など)が蒸着された反射透過面12aを有し、入射した光を反射光と透過光に分光(分離)するようになっている。本実施形態では、分光された反射光が参照面用光路としての光路Aを通る光となり、分光された透過光が被測定面用光路としての光路Bを通る光となる。   The light source 11 is a light source that emits helium neon laser light (λ = 632.8 nm (randomly polarized light or linearly polarized light)). The first beam splitter 12 is arranged so that light emitted from the light source 11 enters. The first beam splitter 12 has a reflection / transmission surface 12a on which a thin film (dielectric film, metal film, hybrid film, etc.) is deposited so as to function as a half mirror, and converts incident light into reflected light and transmitted light. Spectroscopic (separated). In the present embodiment, the reflected reflected light becomes light passing through the optical path A as the optical path for the reference surface, and the transmitted light that has been split becomes light passing through the optical path B as the optical path for the surface to be measured.

第2のビームスプリッタ13は、第1のビームスプリッタ12で反射された反射光を入射するように配置されている。第2のビームスプリッタ13は、第1のビームスプリッタ12と同様に反射透過面13aを有し、入射した光を反射光と透過光に分光するようになっている。本実施形態では、第2のビームスプリッタ13の反射透過面13aを参照面として測定を行うようになっている。   The second beam splitter 13 is arranged so that the reflected light reflected by the first beam splitter 12 enters. Similar to the first beam splitter 12, the second beam splitter 13 has a reflection / transmission surface 13a, and splits incident light into reflected light and transmitted light. In the present embodiment, the measurement is performed using the reflection / transmission surface 13a of the second beam splitter 13 as a reference surface.

偏光ビームスプリッタ14は、第1のビームスプリッタ12を透過した透過光を入射するように配置されている。偏光ビームスプリッタ14は、偏光分離機能を有する薄膜(誘電体多層膜など)が蒸着された反射面としての反射透過面14aを有し、入射した光をs偏光(水平方向に振動する光)の反射光とp偏光(垂直方向に振動する光)の透過光に分光するようになっている。1/4波長板16は、偏光ビームスプリッタ14と被測定物Wとの間であって、偏光ビームスプリッタ14を透過した透過光を入射するように配置されている。   The polarization beam splitter 14 is arranged so that the transmitted light that has passed through the first beam splitter 12 enters. The polarization beam splitter 14 has a reflection / transmission surface 14a as a reflection surface on which a thin film (dielectric multilayer film or the like) having a polarization separation function is deposited, and converts incident light into s-polarized light (light that vibrates in the horizontal direction). The light is split into reflected light and transmitted light of p-polarized light (light that vibrates in the vertical direction). The quarter-wave plate 16 is disposed between the polarization beam splitter 14 and the object W to be measured so that the transmitted light that has passed through the polarization beam splitter 14 enters.

第3のビームスプリッタ15は、第2のビームスプリッタ13で反射された反射光と偏光ビームスプリッタ14で反射された反射光とを入射するように配置されている。第3のビームスプリッタ15は、第1,第2のビームスプリッタ12,13と同様に反射透過面15aを有している。第3のビームスプリッタ15では、第2のビームスプリッタ13で反射された反射光が反射透過面15aで反射され、偏光ビームスプリッタ14で反射された反射光が反射透過面15aを透過し、前記両光が重ね合わされるようになっている。   The third beam splitter 15 is arranged so that the reflected light reflected by the second beam splitter 13 and the reflected light reflected by the polarization beam splitter 14 are incident thereon. Similar to the first and second beam splitters 12 and 13, the third beam splitter 15 has a reflection / transmission surface 15a. In the third beam splitter 15, the reflected light reflected by the second beam splitter 13 is reflected by the reflecting / transmitting surface 15a, and the reflected light reflected by the polarizing beam splitter 14 is transmitted through the reflecting / transmitting surface 15a. Light is superposed.

受光素子(例えば、CCDカメラ)17は、第3のビームスプリッタ15で重ね合わされた光を受光するように配置されている。受光素子17には、光路Aと光路Bを通った光の光路差に応じた干渉縞が捉えられるようになっている。また、受光素子17には、コンピュータ18が接続されている。受光素子17は、受光した光を電気信号に変換し、その電気信号がコンピュータ18に出力されるようになっている。コンピュータ18は、電気信号を入力し、受光素子17で捉えられた干渉縞を解析処理するようになっている。   The light receiving element (for example, CCD camera) 17 is disposed so as to receive the light superimposed by the third beam splitter 15. The light receiving element 17 can capture interference fringes according to the optical path difference of the light passing through the optical path A and the optical path B. A computer 18 is connected to the light receiving element 17. The light receiving element 17 converts the received light into an electric signal, and the electric signal is output to the computer 18. The computer 18 inputs an electrical signal and analyzes the interference fringes captured by the light receiving element 17.

そして、本実施形態の測定装置10では、偏光ビームスプリッタ14が、第1のビームスプリッタ12を透過した光の入射面を変更できるように回転テーブル(図示しない)上に配置されている。詳しく言えば、偏光ビームスプリッタ14は、図1に示す第1測定状態と図2に示す第2測定状態で光路B上に配置されるようになっている。第2測定状態(図2)で配置された偏光ビームスプリッタ14は、第1測定状態(図1)で配置された偏光ビームスプリッタ14を図1の紙面上、時計回り方向(右回転方向)に90度回転させた状態となっている。そして、偏光ビームスプリッタ14は、第1測定状態と第2測定状態において、第3のビームスプリッタ15に対して光を反射させる面が同一面となるように配置されている。なお、第2測定状態で配置された偏光ビームスプリッタ14は、第1測定状態で配置された偏光ビームスプリッタ14を図1の紙面上、反時計回り方向(左回転方向)に90度回転させた状態と同じである。しかしながら、このように配置した場合には、第3のビームスプリッタ15に対して光を反射させる面が相違することになる。   In the measurement apparatus 10 of the present embodiment, the polarization beam splitter 14 is disposed on a rotary table (not shown) so that the incident surface of the light transmitted through the first beam splitter 12 can be changed. Specifically, the polarization beam splitter 14 is arranged on the optical path B in the first measurement state shown in FIG. 1 and the second measurement state shown in FIG. The polarizing beam splitter 14 arranged in the second measurement state (FIG. 2) is arranged so that the polarizing beam splitter 14 arranged in the first measurement state (FIG. 1) rotates clockwise (in the clockwise direction) on the paper surface of FIG. It is in a state rotated 90 degrees. The polarization beam splitter 14 is arranged so that the surfaces that reflect light to the third beam splitter 15 are the same surface in the first measurement state and the second measurement state. The polarizing beam splitter 14 arranged in the second measurement state has rotated the polarizing beam splitter 14 arranged in the first measurement state 90 degrees counterclockwise (counterclockwise) on the paper surface of FIG. It is the same as the state. However, when arranged in this way, the surface that reflects light to the third beam splitter 15 is different.

以下、本実施形態の測定装置10において形成される光路Aと光路Bについて詳しく説明する。光路Aと光路Bは、第1のビームスプリッタ12で分光された光が第3のビームスプリッタ15に至り、重ね合わされる迄の光路を示す。   Hereinafter, the optical path A and the optical path B formed in the measuring apparatus 10 of the present embodiment will be described in detail. An optical path A and an optical path B indicate optical paths until the light split by the first beam splitter 12 reaches the third beam splitter 15 and is superposed.

光路Aは、第1のビームスプリッタ12と、第2のビームスプリッタ13と、第3のビームスプリッタ15とで形成されるようになっている。光路Aでは、第1のビームスプリッタ12で反射された反射光が、第2のビームスプリッタ13(参照面)で反射され、さらに第3のビームスプリッタ15で反射された後、受光素子17にて受光されるようになっている。   The optical path A is formed by the first beam splitter 12, the second beam splitter 13, and the third beam splitter 15. In the optical path A, the reflected light reflected by the first beam splitter 12 is reflected by the second beam splitter 13 (reference surface), further reflected by the third beam splitter 15, and then received by the light receiving element 17. Light is received.

光路Bは、偏光ビームスプリッタ14の配置に応じて、2つの異なる光路として形成されるようになっている。即ち、偏光ビームスプリッタ14を第1測定状態(図1)で配置した場合、光路Bは、第1のビームスプリッタ12と、偏光ビームスプリッタ14と、第3のビームスプリッタ15とで形成されるようになっている。以下、このように形成された光路Bを「第1測定用光路Ba」と示す。第1測定用光路Baでは、第1のビームスプリッタ12を透過した透過光が、偏光ビームスプリッタ14で反射され、第3のビームスプリッタ15を透過した後、受光素子17にて受光されるようになっている。   The optical path B is formed as two different optical paths according to the arrangement of the polarization beam splitter 14. That is, when the polarization beam splitter 14 is arranged in the first measurement state (FIG. 1), the optical path B is formed by the first beam splitter 12, the polarization beam splitter 14, and the third beam splitter 15. It has become. Hereinafter, the optical path B formed in this way is referred to as a “first measurement optical path Ba”. In the first measurement optical path Ba, the transmitted light that has passed through the first beam splitter 12 is reflected by the polarization beam splitter 14, passes through the third beam splitter 15, and then received by the light receiving element 17. It has become.

なお、第1測定用光路Baでは、偏光ビームスプリッタ14を透過した透過光が、被測定物W(被測定面)で反射され、偏光ビームスプリッタ14に再び入射することになるが、この光は1/4波長板16を2回通って振動方向が90度変更されている。そのため、被測定物Wで反射された光は、第3のビームスプリッタ15とは逆方向に反射され、偏光ビームスプリッタ14を透過しない(即ち、光源11への戻り光とならない)。第1測定用光路Baは、第1のビームスプリッタ12で分光された光が被測定面を通ることなく第3のビームスプリッタ15に至ることから第1の光路となる。   In the first measurement optical path Ba, the transmitted light transmitted through the polarization beam splitter 14 is reflected by the object to be measured W (measurement surface) and enters the polarization beam splitter 14 again. The vibration direction is changed 90 degrees through the quarter-wave plate 16 twice. Therefore, the light reflected by the object to be measured W is reflected in the opposite direction to the third beam splitter 15 and does not pass through the polarization beam splitter 14 (that is, does not become return light to the light source 11). The first measurement optical path Ba is the first optical path because the light split by the first beam splitter 12 reaches the third beam splitter 15 without passing through the surface to be measured.

一方、偏光ビームスプリッタ14を第2測定状態(図2)で配置した場合、光路Bは、第1のビームスプリッタ12と、偏光ビームスプリッタ14と、1/4波長板16と、被測定物Wと、第3のビームスプリッタ15とで形成されるようになっている。以下、このように形成された光路Bを「第2測定用光路Bb」と示す。第2測定用光路Bbでは、第1のビームスプリッタ12を透過した透過光が、偏光ビームスプリッタ14を透過し、1/4波長板16を通って被測定物W(被測定面)で反射された後、再び1/4波長板16を通って偏光ビームスプリッタ14に入射される。そして、偏光ビームスプリッタ14に入射された光は、1/4波長板16を2回通って振動方向が90度変更されているため、偏光ビームスプリッタ14で反射され、第3のビームスプリッタ15を透過した後、受光素子17にて受光されるようになっている。第2測定用光路Bbでは、第1のビームスプリッタ12で分光された光が被測定面を通った後に第3のビームスプリッタ15に至ることから第2の光路となる。   On the other hand, when the polarization beam splitter 14 is arranged in the second measurement state (FIG. 2), the optical path B is the first beam splitter 12, the polarization beam splitter 14, the quarter wavelength plate 16, and the object W to be measured. And the third beam splitter 15. Hereinafter, the optical path B thus formed is referred to as a “second measurement optical path Bb”. In the second measurement optical path Bb, the transmitted light that has passed through the first beam splitter 12 passes through the polarization beam splitter 14, passes through the quarter-wave plate 16, and is reflected by the measurement object W (measurement surface). After that, the light is again incident on the polarization beam splitter 14 through the quarter-wave plate 16. The light incident on the polarization beam splitter 14 passes through the quarter wavelength plate 16 twice and the vibration direction is changed by 90 degrees, so that it is reflected by the polarization beam splitter 14 and passes through the third beam splitter 15. After being transmitted, the light receiving element 17 receives the light. In the second measurement optical path Bb, the light split by the first beam splitter 12 reaches the third beam splitter 15 after passing through the surface to be measured, so that it becomes the second optical path.

このように構成された本実施形態の測定装置10では、まず、光路Aと第1測定用光路Baによる測定1(第1の測定ステップ)と、光路Aと第2測定用光路Bbによる測定2(第2の測定ステップ)が行われるようになっている。その後に、測定1の測定結果と測定2の測定結果から被測定物W(被測定面)の平面形状が算出されるようになっている(演算ステップ)。なお、測定1と測定2は、どちらを先に行っても良い。   In the measurement apparatus 10 of the present embodiment configured as described above, first, measurement 1 using the optical path A and the first measurement optical path Ba (first measurement step), and measurement 2 using the optical path A and the second measurement optical path Bb. (Second measurement step) is performed. Thereafter, the planar shape of the workpiece W (surface to be measured) is calculated from the measurement result of measurement 1 and the measurement result of measurement 2 (calculation step). Either measurement 1 or measurement 2 may be performed first.

測定1では、偏光ビームスプリッタ14を第1測定状態(図1)に配置して第1測定用光路Baを形成し、光路Aと第1測定用光路Baを通った光の光路差(測定結果)を得ることができる。この測定1では、参照面(第2のビームスプリッタ13の反射透過面13a)を基準とし、偏光ビームスプリッタ14の反射透過面14aの形状を測定していることとなる。一方、測定2では、偏光ビームスプリッタ14を第2測定状態(図2)に配置して第2測定用光路Bbを形成し、光路Aと第2測定用光路Bbを通った光の光路差(測定結果)を得ることができる。この測定2では、参照面(第2のビームスプリッタ13の反射透過面13a)を基準とし、偏光ビームスプリッタ14の反射透過面14aの形状に加えて、被測定物Wの形状を測定していることとなる。   In measurement 1, the polarizing beam splitter 14 is placed in the first measurement state (FIG. 1) to form the first measurement optical path Ba, and the optical path difference between the optical path A and the first measurement optical path Ba (measurement result) ) Can be obtained. In this measurement 1, the shape of the reflection / transmission surface 14a of the polarization beam splitter 14 is measured using the reference surface (the reflection / transmission surface 13a of the second beam splitter 13) as a reference. On the other hand, in the measurement 2, the polarizing beam splitter 14 is arranged in the second measurement state (FIG. 2) to form the second measurement optical path Bb, and the optical path difference between the light passing through the optical path A and the second measurement optical path Bb ( Measurement result). In this measurement 2, the shape of the object to be measured W is measured in addition to the shape of the reflection / transmission surface 14a of the polarization beam splitter 14 with the reference surface (the reflection / transmission surface 13a of the second beam splitter 13) as a reference. It will be.

従って、測定1の測定結果と測定2の測定結果との差を求めることによって、参照面の形状精度の影響を受けずに、被測定物W(被測定面)の平面形状を算出することが可能となる。即ち、測定1と測定2の各測定結果には、前記各ビームスプリッタ12〜15の各反射透過面12a〜15aの形状誤差も含まれている。そのため、測定1の測定結果と測定2の測定結果の差を求めれば、各測定結果に含まれる各反射透過面12a〜15aの形状誤差分がキャンセルされることになり、その結果、被測定物W(被測定面)の形状のみを算出できる。   Therefore, by calculating the difference between the measurement result of measurement 1 and the measurement result of measurement 2, the planar shape of the workpiece W (measurement surface) can be calculated without being affected by the shape accuracy of the reference surface. It becomes possible. That is, the measurement results of measurement 1 and measurement 2 include shape errors of the reflection / transmission surfaces 12a to 15a of the beam splitters 12 to 15, respectively. Therefore, if the difference between the measurement result of measurement 1 and the measurement result of measurement 2 is obtained, the shape error of each of the reflection / transmission surfaces 12a to 15a included in each measurement result is canceled, and as a result, the object to be measured Only the shape of W (surface to be measured) can be calculated.

以下、測定1の測定結果と測定2の測定結果をさらに詳しく説明する。
以下の説明では、第1のビームスプリッタ12、第2のビームスプリッタ13(参照面)、偏光ビームスプリッタ14、第3のビームスプリッタ15、及び被測定面の各面形状(光を反射する面の形状)を順に「F12」、「F13」、「F14」、「F15」、「T」と示す。なお、各面形状は、2価の関数にて表される。従って、面形状が理想的な完全平面形状でなく、その面に対して光を斜めから入射して反射させる場合、反射された光は、入射した光(平面波)に対して、√2×(面形状)だけずれることとなる。なお、「√2」は「ルート2」を示す。また、面形状が理想的な完全平面形状でなく、その面に対して光を垂直に入射して反射させる場合、反射された光は、入射した光(平面波)に対して、2×(面形状)だけずれることとなる。そして、平面波に対するずれ量は、入射した光が、完全平面で反射した時と実際の面で反射した時の光の光路差から算出される。
Hereinafter, the measurement result of measurement 1 and the measurement result of measurement 2 will be described in more detail.
In the following description, each surface shape of the first beam splitter 12, the second beam splitter 13 (reference surface), the polarization beam splitter 14, the third beam splitter 15, and the surface to be measured (the surface that reflects the light) (Shape) are sequentially indicated as “F12”, “F13”, “F14”, “F15”, and “T”. Each surface shape is represented by a bivalent function. Therefore, when the surface shape is not an ideal perfect plane shape and light is incident on the surface and reflected from an oblique direction, the reflected light is √2 × (with respect to the incident light (plane wave). (Surface shape). “√2” indicates “Route 2”. In addition, when the surface shape is not an ideal perfect plane shape and light is incident perpendicularly to the surface to be reflected, the reflected light is 2 × (surface with respect to the incident light (plane wave). (Shape). The amount of deviation with respect to the plane wave is calculated from the optical path difference between the incident light when it is reflected by the perfect plane and when it is reflected by the actual surface.

以上のことから、光路Aにおいて光源11から出射されたレーザー光(位相の揃った平面波)は、第1〜第3のビームスプリッタ12,13,15の各面形状の影響を受けて、√2×(F12+F13+F15)だけ平面波からずれた光として受光素子17に到達する。一方、第1測定用光路Ba(図1)においてレーザー光は、偏光ビームスプリッタ14の面形状の影響を受けて、√2×(F14)だけ平面波からずれた光として受光素子17に到達する。従って、測定1において、光路Aと第1測定用光路Baを通った光の光路差は、式(1)に示すようになる。
√2×(F14)−√2×(F12+F13+F15)…(1)
一方、第2測定用光路Bb(図2)においてレーザー光は、偏光ビームスプリッタ14の面形状と、被測定物Wの面形状の影響を受けて、√2×(F14)+2×Tだけ平面波からずれた光として受光素子17に到達する。従って、測定2において、光路Aと第2測定用光路Bbを通った光の光路差は、式(2)に示すようになる。
√2×(F14)+2×T−√2×(F12+F13+F15)…(2)
そして、測定1の測定結果(式(1))と測定2の測定結果(式(2))の差を求めると、2×Tのみが算出されることとなる。これは、各ビームスプリッタ12〜15の各面形状(本実施形態では参照面の面形状も含む)による影響を受けずに、被測定物W(被測定面)の形状のみが算出されることを示している。
From the above, the laser light (plane wave having the same phase) emitted from the light source 11 in the optical path A is affected by the shape of each surface of the first to third beam splitters 12, 13, and √2. X (F12 + F13 + F15) reaches the light receiving element 17 as light shifted from the plane wave. On the other hand, in the first measurement optical path Ba (FIG. 1), the laser light reaches the light receiving element 17 as light shifted from the plane wave by √2 × (F14) due to the influence of the surface shape of the polarization beam splitter 14. Therefore, in the measurement 1, the optical path difference of the light passing through the optical path A and the first measurement optical path Ba is as shown in the equation (1).
√2 × (F14) −√2 × (F12 + F13 + F15) (1)
On the other hand, in the second measurement optical path Bb (FIG. 2), the laser beam is influenced by the surface shape of the polarization beam splitter 14 and the surface shape of the object W to be measured, and is a plane wave by √2 × (F14) + 2 × T. The light reaches the light receiving element 17 as light deviated from the above. Therefore, in the measurement 2, the optical path difference of the light passing through the optical path A and the second measurement optical path Bb is as shown in the equation (2).
√2 × (F14) + 2 × T−√2 × (F12 + F13 + F15) (2)
When the difference between the measurement result of measurement 1 (formula (1)) and the measurement result of measurement 2 (formula (2)) is obtained, only 2 × T is calculated. This means that only the shape of the object to be measured W (surface to be measured) is calculated without being affected by the surface shapes of the beam splitters 12 to 15 (including the surface shape of the reference surface in this embodiment). Is shown.

従って、本実施形態によれば、以下に示す効果を得ることができる。
(1)偏光ビームスプリッタ14を第1測定状態と第2測定状態に配置し、光路Bを第1測定用光路Baと第2測定用光路Bbに切り換えて測定1と測定2を行い、両測定結果から被測定物W(被測定面)の平面形状を算出するようにした。測定1では、光路Aと光路B(第1測定用光路Ba)上に配置された各光学素子の形状誤差を含む測定結果が得られ、測定2では、光路Aと光路B(第1測定用光路Ba)上に配置された各光学素子の形状誤差に加えて被測定物W(被測定面)の形状誤差を含む測定結果が得られることとなる。そのため、測定1と測定2の測定結果の差を求めることによって、被測定物W(被測定面)の形状のみを算出することができる。従って、参照面の形状精度に拘わらず、被測定面の形状を高精度に測定することができる。加えて、各光学素子の形状誤差も取り除くことができるので、被測定面の形状をさらに高精度に測定することができる。
Therefore, according to the present embodiment, the following effects can be obtained.
(1) The polarization beam splitter 14 is arranged in the first measurement state and the second measurement state, the optical path B is switched to the first measurement optical path Ba and the second measurement optical path Bb, and measurement 1 and measurement 2 are performed. The planar shape of the object to be measured W (surface to be measured) was calculated from the result. In the measurement 1, a measurement result including the shape error of each optical element arranged on the optical path A and the optical path B (first measurement optical path Ba) is obtained. In the measurement 2, the optical path A and the optical path B (first measurement use) In addition to the shape error of each optical element arranged on the optical path Ba), a measurement result including the shape error of the object to be measured W (surface to be measured) is obtained. Therefore, by calculating the difference between the measurement results of measurement 1 and measurement 2, only the shape of the object to be measured W (surface to be measured) can be calculated. Therefore, the shape of the surface to be measured can be measured with high accuracy regardless of the shape accuracy of the reference surface. In addition, since the shape error of each optical element can be removed, the shape of the surface to be measured can be measured with higher accuracy.

(2)第1測定状態と第2測定状態では、入射した光を同一面にて反射させるように偏光ビームスプリッタ14を配置した。そのため、測定1と測定2の各測定結果には、偏光ビームスプリッタ14にて光が反射される時の形状誤差分として同一量を含ませることができる。従って、被測定面の形状をさらに高精度に測定することができる。   (2) In the first measurement state and the second measurement state, the polarization beam splitter 14 is arranged so as to reflect the incident light on the same surface. Therefore, each measurement result of measurement 1 and measurement 2 can include the same amount as a shape error when light is reflected by the polarization beam splitter 14. Therefore, the shape of the surface to be measured can be measured with higher accuracy.

(3)偏光ビームスプリッタ14と被測定物Wとの間に1/4波長板16を配置した。そのため、測定1と測定2において、被測定物W(被測定面)で反射された光は、偏光ビームスプリッタ14を透過することなく、第3のビームスプリッタ15へ向かう方向、又はその方向とは反対方向へ反射されることとなる。従って、光源11への戻り光を排除することができる。また、受光素子17にて捉えられる干渉縞のコントラストを良好に維持できる。   (3) A quarter wavelength plate 16 is disposed between the polarizing beam splitter 14 and the object W to be measured. Therefore, in measurement 1 and measurement 2, the light reflected by the object to be measured W (surface to be measured) does not pass through the polarization beam splitter 14 and is directed to the third beam splitter 15 or the direction thereof. Reflected in the opposite direction. Therefore, the return light to the light source 11 can be eliminated. Further, the contrast of the interference fringes captured by the light receiving element 17 can be favorably maintained.

(第2の実施形態)
次に、本発明の第2の実施形態を図3及び図4に基づき説明する。なお、以下に説明する実施形態では、既に説明した実施形態と同一構成については同一符号を付すなどして、その重複する説明を省略又は簡略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. In the embodiments described below, the same components as those in the embodiments already described are denoted by the same reference numerals, and the redundant description thereof is omitted or simplified.

本実施形態の測定装置20は、光路B上に、光路切換手段としての第4のビームスプリッタ21が配置されている。第4のビームスプリッタ21は、第1〜第3のビームスプリッタ12,13,15と同様に反射透過面21aを有し、第1の実施形態における偏光ビームスプリッタ14と同様に回転テーブル(図示しない)上に配置されている。そして、第4のビームスプリッタ21は、図3に示す第1測定状態と、図4に示す第2測定状態で配置されるようになっている。第4のビームスプリッタ21は、第1測定状態と第2測定状態において、第3のビームスプリッタ15に対して光を反射させる面が同一面となるように配置されている。本実施形態において、光源11から出射される光は、ランダム偏光光、直線偏光光、又は円偏光光でも良い。   In the measuring apparatus 20 of the present embodiment, a fourth beam splitter 21 as an optical path switching unit is disposed on the optical path B. The fourth beam splitter 21 has a reflection / transmission surface 21a similarly to the first to third beam splitters 12, 13, and 15, and similarly to the polarization beam splitter 14 in the first embodiment, a rotary table (not shown). ) Is placed on top. The fourth beam splitter 21 is arranged in the first measurement state shown in FIG. 3 and the second measurement state shown in FIG. The fourth beam splitter 21 is arranged so that the surfaces that reflect light to the third beam splitter 15 are the same surface in the first measurement state and the second measurement state. In the present embodiment, the light emitted from the light source 11 may be randomly polarized light, linearly polarized light, or circularly polarized light.

以下、測定装置20で形成される光路Bについて詳しく説明する。なお、光路Aは、第1の実施形態と同様に形成されるので、その説明は省略する。
光路Bは、第4のビームスプリッタ21の配置に応じて、2つの異なる光路(第1測定用光路Baと第2測定用光路Bb)として形成されるようになっている。即ち、第4のビームスプリッタ21を第1測定状態で配置した場合、光路B(第1測定用光路Ba)は、第1のビームスプリッタ12と、第4のビームスプリッタ21と、第3のビームスプリッタ15とで形成されるようになっている。第1測定用光路Baでは、第1のビームスプリッタ12を透過した透過光が、第4のビームスプリッタ21で反射され、第3のビームスプリッタ15を透過した後、受光素子17にて受光されるようになっている。第1測定用光路Baは、第1のビームスプリッタ12で分光された光が被測定面を通ることなく第3のビームスプリッタ15に至ることから第1の光路となる。
Hereinafter, the optical path B formed by the measuring device 20 will be described in detail. In addition, since the optical path A is formed similarly to 1st Embodiment, the description is abbreviate | omitted.
The optical path B is formed as two different optical paths (first measurement optical path Ba and second measurement optical path Bb) according to the arrangement of the fourth beam splitter 21. That is, when the fourth beam splitter 21 is arranged in the first measurement state, the optical path B (first measurement optical path Ba) is the first beam splitter 12, the fourth beam splitter 21, and the third beam. It is formed by the splitter 15. In the first measurement optical path Ba, the transmitted light that has passed through the first beam splitter 12 is reflected by the fourth beam splitter 21, passes through the third beam splitter 15, and then is received by the light receiving element 17. It is like that. The first measurement optical path Ba is the first optical path because the light split by the first beam splitter 12 reaches the third beam splitter 15 without passing through the surface to be measured.

一方、第4のビームスプリッタ21を第2測定状態で配置した場合、光路B(第2測定用光路Bb)は、第1のビームスプリッタ12と、第4のビームスプリッタ21と、被測定物Wと、第3のビームスプリッタ15とで形成されるようになっている。第2測定用光路Bbでは、第1のビームスプリッタ12を透過した光が、第4のビームスプリッタ21を透過し、被測定物W(被測定面)で反射された後、第4のビームスプリッタ21に入射される。そして、第4のビームスプリッタ21に入射された光は、当該第4のビームスプリッタ21で反射され、第3のビームスプリッタ15を透過した後、受光素子17にて受光されるようになっている。第2測定用光路Bbでは、第1のビームスプリッタ12で分光された光が被測定面を通った後に第3のビームスプリッタ15に至ることから第2の光路となる。   On the other hand, when the fourth beam splitter 21 is arranged in the second measurement state, the optical path B (second measurement optical path Bb) includes the first beam splitter 12, the fourth beam splitter 21, and the object W to be measured. And the third beam splitter 15. In the second measurement optical path Bb, the light transmitted through the first beam splitter 12 passes through the fourth beam splitter 21 and is reflected by the object to be measured W (surface to be measured), and then the fourth beam splitter. 21 is incident. The light incident on the fourth beam splitter 21 is reflected by the fourth beam splitter 21, passes through the third beam splitter 15, and then received by the light receiving element 17. . In the second measurement optical path Bb, the light split by the first beam splitter 12 reaches the third beam splitter 15 after passing through the surface to be measured, so that it becomes the second optical path.

このように構成された本実施形態の測定装置20では、第1の実施形態と同様に、光路Aと第1測定用光路Baによる測定1と、光路Aと第2測定用光路Bbによる測定2を行った後、測定1の測定結果と測定2の測定結果から被測定物W(被測定面)の平面形状が算出されるようになっている。そして、本実施形態の測定装置20においても、測定1の測定結果を前述した式(1)で表すことができると共に、測定2の測定結果を前述した式(2)で表すことができる。従って、測定1の測定結果と測定2の測定結果との差を求めることによって、参照面の形状精度の影響を受けずに、被測定物W(被測定面)の平面形状を算出することが可能となる。   In the measurement apparatus 20 of the present embodiment configured as described above, the measurement 1 using the optical path A and the first measurement optical path Ba, and the measurement 2 using the optical path A and the second measurement optical path Bb, as in the first embodiment. After the measurement, the planar shape of the workpiece W (surface to be measured) is calculated from the measurement result of measurement 1 and the measurement result of measurement 2. And also in the measuring apparatus 20 of this embodiment, while the measurement result of the measurement 1 can be represented by the above-mentioned formula (1), the measurement result of the measurement 2 can be represented by the above-described formula (2). Therefore, by calculating the difference between the measurement result of measurement 1 and the measurement result of measurement 2, the planar shape of the workpiece W (measurement surface) can be calculated without being affected by the shape accuracy of the reference surface. It becomes possible.

従って、本実施形態によれば、第1の実施形態の効果(1),(2)と同様の効果に加えて、以下に示す効果を得ることができる。
(4)光路Bを第1測定用光路Baと第2測定用光路Bbに切り換えるための光路切換手段として第4のビームスプリッタ21を配置した。そのため、光学素子の部品点数を削減でき、測定装置20の構造を簡素化することができると共に、製造コストの削減に貢献することができる。
Therefore, according to the present embodiment, the following effects can be obtained in addition to the effects (1) and (2) of the first embodiment.
(4) The fourth beam splitter 21 is disposed as an optical path switching means for switching the optical path B to the first measurement optical path Ba and the second measurement optical path Bb. Therefore, the number of parts of the optical element can be reduced, the structure of the measuring device 20 can be simplified, and the manufacturing cost can be reduced.

なお、各実施形態は以下のように変更してもよい。
・前記各実施形態において、第2のビームスプリッタ13を、反射鏡(ミラー)に変更しても良い。また、第1〜第4のビームスプリッタ12,13,15,21をハーフミラーに変更しても良い。
Each embodiment may be changed as follows.
In each of the above embodiments, the second beam splitter 13 may be changed to a reflecting mirror (mirror). Further, the first to fourth beam splitters 12, 13, 15, and 21 may be changed to half mirrors.

・前記各実施形態の測定装置10、20は、被測定物Wの平面形状を測定する装置に具体化したが、被測定物が曲面形状である場合に、その曲面形状を測定する装置に具体化しても良い。この場合、例えば、第2の実施形態の測定装置20では、第4のビームスプリッタ21と被測定物Wとの間に、透過球面体とレンズを配置し、測定1と測定2の測定結果から曲面形状を算出すれば良い。   The measurement devices 10 and 20 of the above embodiments are embodied as devices that measure the planar shape of the object W to be measured. However, when the object to be measured has a curved surface shape, the measurement devices 10 and 20 are specifically exemplified as devices that measure the curved surface shape. May be used. In this case, for example, in the measurement apparatus 20 of the second embodiment, a transmission spherical body and a lens are arranged between the fourth beam splitter 21 and the object W to be measured, and the measurement results of the measurement 1 and the measurement 2 are used. The curved surface shape may be calculated.

・前記各実施形態において、光学素子の形状誤差が測定に与える影響をさらに小さくするために、光学素子を、当該光学素子の屈折率に近い屈折率を持つ液体中に配置し、測定を行うようにしても良い。図1及び図2には、偏光ビームスプリッタ14と、1/4波長板16と、被測定物Wを液体Lが満たされた液体槽22(二点鎖線で示す)に配置した状態が示されている。光の干渉を利用した測定では、光学素子の形状誤差に対して光学素子の屈折率と周囲の媒体の屈折率の差を乗じたものが透過する光の波面精度を決定することとなる。そのため、光学素子の周囲を、その光学素子の屈折率に近い屈折率となる媒体(液体L)で満たせば、光学素子の形状誤差の影響をさらに小さくした測定結果を得ることができる。例えば、光学素子が、波長632.8nmの光に対して屈折率1.5151となるものであれば、温度20度のときに波長589.3nmの光に対して屈折率1.516となるセダ油を用いる。このとき、光学素子の形状誤差の影響は、0.001倍(1.516−1.5151=0.001)となる。因みに、光学部材を液体Lで満たさない場合、空気の屈折率が1であることから、光学素子の形状誤差の影響は、0.5倍(1.5151−1=0.5)となる。   In each of the embodiments, in order to further reduce the influence of the shape error of the optical element on the measurement, the optical element is placed in a liquid having a refractive index close to the refractive index of the optical element to perform measurement. Anyway. 1 and 2 show a state in which the polarizing beam splitter 14, the quarter wavelength plate 16, and the object W to be measured are arranged in a liquid tank 22 (shown by a two-dot chain line) filled with the liquid L. ing. In the measurement using light interference, the wavefront accuracy of light transmitted by multiplying the shape error of the optical element by the difference between the refractive index of the optical element and the refractive index of the surrounding medium is determined. Therefore, if the periphery of the optical element is filled with a medium (liquid L) having a refractive index close to the refractive index of the optical element, a measurement result in which the influence of the shape error of the optical element is further reduced can be obtained. For example, if the optical element has a refractive index of 1.5151 with respect to light having a wavelength of 632.8 nm, a seda having a refractive index of 1.516 with respect to light having a wavelength of 589.3 nm when the temperature is 20 degrees. Use oil. At this time, the influence of the shape error of the optical element is 0.001 (1.516−1.5151 = 0.001). Incidentally, when the optical member is not filled with the liquid L, since the refractive index of air is 1, the influence of the shape error of the optical element is 0.5 times (1.5151-1 = 0.5).

・前記各実施形態において、光源11と第1のビームスプリッタ12との間、及び第3のビームスプリッタ15と受光素子17との間に、コリメータレンズを配置し、測定装置10,20を構成しても良い。   In each of the above embodiments, a collimator lens is arranged between the light source 11 and the first beam splitter 12 and between the third beam splitter 15 and the light receiving element 17 to constitute the measuring devices 10 and 20. May be.

・前記各実施形態の測定装置10,20を用いて、光を透過する被測定物Wを測定する場合には、次のように変更しても良い。即ち、測定1では、被測定物Wを光路B上に配置させずに測定を行い、測定2では、被測定物Wを第1のビームスプリッタ12と偏光ビームスプリッタ14(又は第4のビームスプリッタ21)との間に配置し、測定を行う。そして、測定1の測定結果と測定2の測定結果から被測定物Wを光が透過した時の波面収差を算出する。この場合、偏光ビームスプリッタ14(又は第4のビームスプリッタ21)は、図1(又は図3)の状態で配置され、光路Bは、被測定物Wが光路B上に配置された場合と配置されない場合とで異なる光路として形成される。従って、被測定物Wを光路B上に配置した状態と配置していない状態とに切り換える手段が光路切換手段となる。   -When measuring the to-be-measured object W which permeate | transmits light using the measuring apparatuses 10 and 20 of each said embodiment, you may change as follows. That is, in measurement 1, the measurement object W is measured without being placed on the optical path B, and in measurement 2, the measurement object W is measured with the first beam splitter 12 and the polarization beam splitter 14 (or the fourth beam splitter). 21) and perform measurement. Then, from the measurement result of measurement 1 and the measurement result of measurement 2, the wavefront aberration when light passes through the workpiece W is calculated. In this case, the polarization beam splitter 14 (or the fourth beam splitter 21) is arranged in the state of FIG. 1 (or FIG. 3), and the optical path B is arranged as in the case where the object W to be measured is arranged on the optical path B. It is formed as a different optical path from the case where it is not performed. Accordingly, the means for switching the object to be measured W between the state where it is placed on the optical path B and the state where it is not placed becomes the optical path switching means.

次に、前記実施形態及び別例から把握できる技術的思想を以下に追記する。
(イ)前記光学部材は、偏光ビームスプリッタであり、当該偏光ビームスプリッタと前記被測定面との間には、1/4波長板が配置されていることを特徴とする請求項2に記載の測定装置。
Next, a technical idea that can be grasped from the embodiment and another example will be added below.
(A) The optical member is a polarizing beam splitter, and a quarter-wave plate is disposed between the polarizing beam splitter and the surface to be measured. measuring device.

(ロ)前記演算手段は、前記参照面用光路と前記第1の光路を通った光の光路差と、前記参照面用光路と前記第2の光路を通った光の光路差の差を求めることにより、前記被測定面の形状を算出することを特徴とする請求項1又は請求項2に記載の測定装置。   (B) The calculation means obtains a difference between an optical path difference of the light passing through the reference surface optical path and the first optical path and a difference of an optical path difference of the light passing through the reference surface optical path and the second optical path. The measuring apparatus according to claim 1, wherein the shape of the surface to be measured is calculated.

第1の実施形態の測定装置を示す概略図。Schematic which shows the measuring apparatus of 1st Embodiment. 同じく、概略図。Similarly, schematic. 第2の実施形態の測定装置を示す概略図。Schematic which shows the measuring apparatus of 2nd Embodiment. 同じく、概略図。Similarly, schematic.

符号の説明Explanation of symbols

10,20…測定装置、11…光源、12…ビームスプリッタ(分光手段)、14…偏光ビームスプリッタ(光路切換手段)、15…ビームスプリッタ(重合手段)、21…ビームスプリッタ(光路切換手段)、17…受光素子(演算手段)、18…コンピュータ(演算手段)。   DESCRIPTION OF SYMBOLS 10,20 ... Measuring apparatus, 11 ... Light source, 12 ... Beam splitter (spectral means), 14 ... Polarizing beam splitter (optical path switching means), 15 ... Beam splitter (polymerization means), 21 ... Beam splitter (optical path switching means), 17: light receiving element (calculation means), 18: computer (calculation means).

Claims (3)

光源から出射された光を分光手段で分光し、その分光された光を参照面が配置される参照面用光路と被測定面が配置される被測定面用光路を通らせた後に重合手段で再び重ね合わせ、前記光を重ね合わせた時に生じる光の干渉を利用して、前記被測定面の形状を測定する測定装置において、
前記被測定面用光路を、前記分光手段で分光された光が前記被測定面を通ることなく前記重合手段に至る第1の光路と、前記分光手段で分光された光が前記被測定面を通った後に前記重合手段に至る第2の光路とに切り換える光路切換手段と、
前記被測定面用光路が前記第1の光路の場合に、前記参照面用光路と前記被測定面用光路を通った光の干渉によって得られる測定結果と、前記被測定面用光路が前記第2の光路の場合に、前記参照面用光路と前記被測定面用光路を通った光の干渉によって得られる測定結果とに基づき、前記被測定面の形状を算出する演算手段とを備えたことを特徴とする測定装置。
The light emitted from the light source is dispersed by the spectroscopic means, and the split light is passed through the reference surface optical path on which the reference surface is arranged and the measurement surface optical path on which the measurement surface is arranged, and then the polymerization means In the measuring apparatus that measures the shape of the surface to be measured by using the interference of light generated when the light is superimposed again,
A first optical path through which the light split by the spectroscopic means reaches the polymerization means without passing through the measured surface; and the light split by the spectroscopic means passes through the optical path for the measured surface Optical path switching means for switching to a second optical path after passing through to the polymerization means;
When the optical path for measured surface is the first optical path, a measurement result obtained by interference of light passing through the optical path for reference surface and the optical path for measured surface, and the optical path for measured surface are the first optical path. In the case of two optical paths, an arithmetic means for calculating the shape of the surface to be measured is provided based on the measurement result obtained by interference of the light that has passed through the optical path for the reference surface and the optical path for the surface to be measured. Measuring device characterized by.
前記光路切換手段は、入射した光を反射する反射面を有する光学部材であって、
前記光学部材は、前記第1の光路において、前記分光手段で分光された光が前記重合手段に直接反射されるように配置され、前記第2の光路において、前記分光手段で分光された光が前記被測定面を通った後に前記重合手段に反射されるように配置され、
前記光学部材は、前記第1の光路と第2の光路において、前記光を同一面にて反射させるように配置されることを特徴とする請求項1に記載の測定装置。
The optical path switching means is an optical member having a reflecting surface for reflecting incident light,
The optical member is disposed in the first optical path so that the light split by the spectroscopic means is directly reflected by the superposition means, and the light split by the spectroscopic means in the second optical path. Arranged to be reflected by the superposition means after passing through the surface to be measured,
The measuring apparatus according to claim 1, wherein the optical member is arranged so as to reflect the light on the same surface in the first optical path and the second optical path.
光源から出射された光を分光手段で分光し、その分光された光を参照面が配置される参照面用光路と被測定面が配置される被測定面用光路を通らせた後に重合手段で再び重ね合わせ、前記光を重ね合わせた時に生じる光の干渉を利用して、前記被測定面の形状を測定する測定方法において、
前記分光手段で分光された光が前記被測定面を通ることなく前記重合手段に至るように前記被測定面用光路を形成し、その被測定面用光路と前記参照面用光路を通った光の干渉を利用して測定を行う第1の測定ステップと、
前記分光手段で分光された光が前記被測定面を通った後に前記重合手段に至るように前記被測定面用光路を形成し、その被測定面用光路と前記参照面用光路を通った光の干渉を利用して測定を行う第2の測定ステップと、
前記第1の測定ステップで得られる測定結果と前記第2の測定ステップで得られる測定結果とに基づき、前記被測定面の形状を算出する演算ステップとを備えたことを特徴とする測定方法。
The light emitted from the light source is dispersed by the spectroscopic means, and the split light is passed through the reference surface optical path on which the reference surface is arranged and the measurement surface optical path on which the measurement surface is arranged, and then the polymerization means In the measurement method for measuring the shape of the surface to be measured by using the interference of the light generated when the light is overlapped again and the light is overlapped,
The light for the surface to be measured is formed so that the light dispersed by the spectroscopic means reaches the superposition means without passing through the surface to be measured, and the light that has passed through the optical path for the surface to be measured and the optical path for the reference surface A first measurement step for measuring using interference of
The light for the surface to be measured is formed so that the light split by the spectroscopic means passes through the surface to be measured and then reaches the superposition means, and the light that has passed through the optical path for the surface to be measured and the optical path for the reference surface A second measurement step for measuring using interference of
A measurement method comprising: an operation step of calculating a shape of the surface to be measured based on a measurement result obtained in the first measurement step and a measurement result obtained in the second measurement step.
JP2004043061A 2004-02-19 2004-02-19 Measurement device and measuring method Pending JP2005233767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043061A JP2005233767A (en) 2004-02-19 2004-02-19 Measurement device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043061A JP2005233767A (en) 2004-02-19 2004-02-19 Measurement device and measuring method

Publications (1)

Publication Number Publication Date
JP2005233767A true JP2005233767A (en) 2005-09-02

Family

ID=35016887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043061A Pending JP2005233767A (en) 2004-02-19 2004-02-19 Measurement device and measuring method

Country Status (1)

Country Link
JP (1) JP2005233767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130033612A (en) * 2011-09-27 2013-04-04 광주과학기술원 Optical system and interferometer having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130033612A (en) * 2011-09-27 2013-04-04 광주과학기술원 Optical system and interferometer having the same
KR101870989B1 (en) * 2011-09-27 2018-08-02 광주과학기술원 Optical system and interferometer having the same

Similar Documents

Publication Publication Date Title
US7355719B2 (en) Interferometer for measuring perpendicular translations
JP2005338075A (en) Heterodyne laser interferometer for measuring parallel displacement of wafer stage
US7675628B2 (en) Synchronous frequency-shift mechanism in Fizeau interferometer
JP2003527564A (en) Interferometer system with dynamic beam steering assembly for measuring angles and distances
JP2006275531A (en) Displacement measuring method and its devise
JP2009300263A (en) Two-wavelength laser interferometer and method of adjusting optical axis in the same
EP2284479B1 (en) Grazing incidence interferometer
US8345258B2 (en) Synchronous frequency-shift mechanism in fizeau interferometer
JP2007263748A (en) Optical interferometer
TW200424789A (en) Lithographic apparatus and device manufacturing method
JP2007147618A (en) Monolithic displacement measuring interferometer
JP5348224B2 (en) Displacement measuring method and apparatus
JPH11183116A (en) Method and device for light wave interference measurement
JP2006322835A (en) Interference measuring device and linear encoder
JP2005233767A (en) Measurement device and measuring method
JP2006349382A (en) Phase shift interferometer
JPH11337321A (en) Method and device for simultaneously measuring phase shift interference fringe
JP2005521029A (en) Multi-axis interferometer
JP2011112358A (en) Interferometer, aberration measurement method, and aberration measuring system
JP2007309758A (en) Light source device, spectrum modulator, and spectrum measuring apparatus
JP2002214070A (en) Instrument and method for eccentricity measurement and projection lens incorporating optical element measured for eccentricity by using them
JP6169420B2 (en) Optical interferometer
JPH095018A (en) Device for measuring moving quantity
US20240011762A1 (en) Compact dual pass interferometer for a plane mirror interferometer
JP5093220B2 (en) Displacement measuring method and apparatus