JP2005233637A - Raman spectroscopic analysis by gold nanorod thin film - Google Patents

Raman spectroscopic analysis by gold nanorod thin film Download PDF

Info

Publication number
JP2005233637A
JP2005233637A JP2004039466A JP2004039466A JP2005233637A JP 2005233637 A JP2005233637 A JP 2005233637A JP 2004039466 A JP2004039466 A JP 2004039466A JP 2004039466 A JP2004039466 A JP 2004039466A JP 2005233637 A JP2005233637 A JP 2005233637A
Authority
JP
Japan
Prior art keywords
thin film
substrate
spectroscopic analysis
liquid
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004039466A
Other languages
Japanese (ja)
Inventor
Atsushi Yamada
淳 山田
Yasuro Niitome
康郎 新留
Mototsugu Suzuki
基嗣 鈴木
Minoru Kuwabara
桑原  穣
Tadashi Terasaki
正 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004039466A priority Critical patent/JP2005233637A/en
Publication of JP2005233637A publication Critical patent/JP2005233637A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new technology realizing simple and highly-sensitive Raman spectroscopic analysis based on surface enhanced Raman scattering (SERS) by utilizing gold nanorod. <P>SOLUTION: The gold nanorod immobilized in the single particle film state on a substrate b is used as a thin-film chip for a sample. The thin-film chip is manufactured by aggregating the gold nanorod on a liquid-liquid interface and transferring it to the substrate b surface. The simple and highly-sensitive Raman spectroscopic analysis having a great SERS effect can be realized by using the thin-film chip, by attaching the analysing sampleto the chip and irradiating it with laser beam in a near-infrared ray region. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、表面増強ラマン散乱を利用する分光分析の技術分野に属し、特に、金ナノロッド薄膜から成る試料用チップとその作製法に関する。   The present invention belongs to the technical field of spectroscopic analysis using surface-enhanced Raman scattering, and particularly relates to a sample chip composed of a gold nanorod thin film and a method for manufacturing the same.

ラマン散乱分光法は物質の振動モードを識別できる分光分析法であり、対象が有機物の場合には、化合物に含まれる官能基(芳香環、アミノ基、水酸基、カルボキシル基等)の存在を識別できる。官能基の組み合わせから化合物の構造を特定することが可能であり、夾雑物混在下でも、特別なマーカーを用いることなく、対象化合物の存在を検出できるという利点がある。ここで、凝集した金属ナノ粒子(ナノメーターサイズの超微粒子)に物質が吸着すると、その物質のラマン散乱効率(強度)の顕著な増強(表面増強ラマン散乱、Surface enhanced Raman scattering以下、SERSと略称することがある)が起こることが知られており、超高感度な振動分光分析法として検討されている。   Raman scattering spectroscopy is a spectroscopic method that can identify the vibration mode of a substance. When the target is an organic substance, it can identify the presence of a functional group (aromatic ring, amino group, hydroxyl group, carboxyl group, etc.) contained in the compound. . It is possible to specify the structure of a compound from a combination of functional groups, and there is an advantage that the presence of a target compound can be detected without using a special marker even in the presence of impurities. Here, when a substance is adsorbed on the aggregated metal nanoparticles (nanometer-sized ultrafine particles), the Raman scattering efficiency (intensity) of the substance is significantly enhanced (Surface enhanced Raman scattering, hereinafter abbreviated as SERS). It is known to occur) and is being studied as an ultrasensitive vibrational spectroscopic method.

しかし、水溶液中に分散した金属ナノ粒子の凝集体は構造が不安定であり、安定なSERS効果は得られにくい。実用的なSERSセンサーを作製するには金属ナノ粒子の基板(基材)表面への固定化(不動化)が不可欠である。   However, the aggregate of metal nanoparticles dispersed in an aqueous solution has an unstable structure, and it is difficult to obtain a stable SERS effect. In order to produce a practical SERS sensor, it is indispensable to immobilize (immobilize) metal nanoparticles on the substrate (base material) surface.

金属ナノ粒子を基板表面に固定するためには基板と金属ナノ粒子の間をつなぐ架橋分子やリンカー分子を用いる場合が多い。例えば、Natanらは、チオール基などを持つシランカップリング剤を利用して金属ナノ粒子を基板上に固定化する手法を案出し、これがSERS効果も奏すると提唱している(K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan, Anal. Chem.,
67, 735 (1995):非特許文献1、特表2003−511557号公報:特許文献1)。しかし、Natanらの手法は、「球状」の金属ナノ粒子を用いるものであり、銀ナノ粒子を基板に固定して大きなSERS効果を得るが金ナノ粒子を用いても十分なSERS効果が得られないことが報告されており、事実、このことは本発明者によっても確認されている(後述の実施例参照)。
In order to fix the metal nanoparticles to the substrate surface, a crosslinking molecule or a linker molecule that connects between the substrate and the metal nanoparticles is often used. Natan et al., For example, proposed a technique for immobilizing metal nanoparticles on a substrate using a silane coupling agent having a thiol group, etc., and proposed that this also has a SERS effect (KC Grabar, RG Freeman). , MB Hommer, MJ Natan, Anal. Chem.,
67, 735 (1995): Non-patent document 1, Japanese translations of PCT publication No. 2003-511557: Patent document 1). However, the method of Natan et al. Uses “spherical” metal nanoparticles, and obtains a large SERS effect by fixing silver nanoparticles to a substrate. However, even if gold nanoparticles are used, a sufficient SERS effect can be obtained. In fact, this has also been confirmed by the inventor (see Examples below).

形状が均一な「ロッド状(棒状)」の金ナノ粒子(金ナノロッド)は可視から近赤外の領域に表面プラズモン(SP)に由来する強い二本の吸収バンドを持つ。一つは金ナノロッドの短軸方向のSPバンドであり、可視域(520nm付近)に吸収ピークが存在する。もう一つは長軸方向のSPバンドであり、赤色から近赤外域(600〜1300nm)に吸収ピークを持つ。金ナノロッドの形状制御によって二つの吸収ピーク位置を変えることができる。理論計算によると、アスペクト比(長軸/短軸)の大きな金ナノロッドはSERSに適しており、球状の金ナノ粒子よりもSERS増強度が高いとされている(G. C. Schatz, Acc. Chem. Res., 17, 370 (1984):非特許文献2)。そして、ラマン分光用のレーザー波長が測定物質の吸収波長である場合、そのラマン散乱強度が増強されることが知られている(共鳴ラマン散乱)が増強度の高い表面増強ラマン散乱の測定では、レーザー波長に吸収を持つ測定物質が選択され、共鳴ラマン散乱との相乗効果も利用し得る。   The “rod-shaped” (gold-shaped) nanoparticle having a uniform shape (gold nanorod) has two strong absorption bands derived from surface plasmons (SP) in the visible to near-infrared region. One is an SP band in the short axis direction of the gold nanorod, and an absorption peak exists in the visible region (around 520 nm). The other is the SP band in the long axis direction, which has an absorption peak from red to the near infrared region (600 to 1300 nm). Two absorption peak positions can be changed by controlling the shape of the gold nanorods. According to theoretical calculations, gold nanorods with a large aspect ratio (long axis / short axis) are suitable for SERS and have a higher SERS enhancement strength than spherical gold nanoparticles (GC Schatz, Acc. Chem. Res ., 17, 370 (1984): Non-patent document 2). When the laser wavelength for Raman spectroscopy is the absorption wavelength of the measurement substance, it is known that the Raman scattering intensity is enhanced (resonance Raman scattering). A measurement substance having absorption at the laser wavelength is selected, and a synergistic effect with resonance Raman scattering can also be used.

しかしながら、溶液中の金ナノロッドをそのままラマン分光分析に用いると、粒子の凝集や使用できる溶媒が限れられるなどの問題があり実用的ではない。これに対して、金属ナノロッド粒子を基板表面へ薄膜状に固定化して試料用チップとし、これに被分析試料を付着させて所定の光を照射することにより高感度なSERS分光分析が可能であると考えられる。特に、金は生化学的に不活性であるとともに表面修飾が容易であり、金ナノロッド薄膜はSERS分光分析に適用されるのに高い機能を有するものと期待されるが、該薄膜を得るための簡便な技術は未だ確立されていない。   However, using gold nanorods in a solution as they are for Raman spectroscopic analysis is not practical because there are problems such as particle aggregation and limited solvents that can be used. In contrast, highly sensitive SERS spectroscopic analysis is possible by immobilizing the metal nanorod particles in a thin film on the substrate surface to form a sample chip, attaching the sample to be analyzed, and irradiating it with predetermined light. it is conceivable that. In particular, gold is biochemically inert and easy to modify the surface, and the gold nanorod thin film is expected to have a high function when applied to SERS spectroscopy. A simple technique has not yet been established.

金ナノロッドを用いたラマン分光法は学術論文として報告されている(B. Nikoobakht, J. Wang, M. A. El-Sayed, Chem. Phys. Lett., 366, 17
(2002):非特許文献3、B. Nikoobakht,
M. A. El-Sayed, J. Phys. Chem. A, 107, 3372 (2003):非特許文献4)。金ナノロッドなどの金属ナノ粒子の調製には、粒子の分散安定性を確保するために分散安定剤(界面活性剤)の添加が不可欠である。非特許文献3や非特許文献4の報告は1064nmのレーザー光を用いるフーリエ変換ラマン(FT-Raman)分光法による金ナノロッド表面の界面活性剤の分析が主たる目的であり、金ナノロッドによる表面増強については検討されていない。また、これらの報告では金ナノロッドはシリカの粉末に吸着しており、これを基板の表面に固定するという2段階の手法を用いている。さらに、これらの報告の手法で用いられているような1064nmのレーザーによるFT-Raman分光法では干渉計が必要であり、長時間の測定が必要となる。また、1064nmの光はわずかながら水に吸収されるという難点もある。
Raman spectroscopy using gold nanorods has been reported as an academic paper (B. Nikoobakht, J. Wang, MA El-Sayed, Chem. Phys. Lett., 366, 17
(2002): Non-Patent Document 3, B. Nikoobakht,
MA El-Sayed, J. Phys. Chem. A, 107, 3372 (2003): Non-patent document 4). For the preparation of metal nanoparticles such as gold nanorods, the addition of a dispersion stabilizer (surfactant) is indispensable to ensure the dispersion stability of the particles. The reports of Non-Patent Document 3 and Non-Patent Document 4 are mainly for the analysis of surfactants on the surface of gold nanorods by Fourier transform Raman (FT-Raman) spectroscopy using 1064 nm laser light. Has not been considered. In these reports, gold nanorods are adsorbed on silica powder, and a two-stage method is used in which the gold nanorods are fixed to the surface of the substrate. Furthermore, the FT-Raman spectroscopy using a 1064 nm laser as used in these reported methods requires an interferometer and requires a long time measurement. In addition, 1064nm light is slightly absorbed by water.

この他、金ナノ粒子固定基板を用いた表面増強赤外吸収分光法については幾つかの報告が見出される(Y. Niidome, H. Hisanabe, A. Hori, S. Yamada, Anal. Sci., 17, i1185
(2001):非特許文献5:久鍋秀幸、新留康郎、高橋宏信、山田淳、分析化学、661 (2003):非特許文献6)に報告されている。しかしながら、これらは赤外吸収分光法を対象とするものであり、ラマン散乱光を検出するための本発明とは物理的に異なる計測原理を用いるものであり、ナノ粒子の形状やその集合状態の信号増強度への寄与は全く異なったものになる。
特表2003−511557号公報 K. C. Grabar,R. G. Freeman, M. B. Hommer, M. J. Natan, Anal. Chem., 67, 735 (1995) G. C. Schatz,Acc. Chem. Res., 17, 370 (1984) B. Nikoobakht,J. Wang, M. A. El-Sayed, Chem. Phys. Lett., 366, 17 (2002) B.Nikoobakht, M. A. El-Sayed, J. Phys. Chem. A, 107, 3372 (2003) Y. Niidome,H. Hisanabe, A. Hori, S. Yamada, Anal. Sci., 17, i1185 (2001) 久鍋秀幸、新留康郎、高橋宏信、山田淳、分析化学、661 (2003)
In addition, several reports on surface-enhanced infrared absorption spectroscopy using gold nanoparticle-fixed substrates have been found (Y. Niidome, H. Hisanabe, A. Hori, S. Yamada, Anal. Sci., 17 , i1185
(2001): Non-Patent Document 5: Hideyuki Hisabe, Yasuro Shindome, Hironobu Takahashi, Jun Yamada, Analytical Chemistry, 661 (2003): Non-Patent Document 6). However, these are intended for infrared absorption spectroscopy, and use a measurement principle that is physically different from the present invention for detecting Raman scattered light. The contribution to signal enhancement is quite different.
Special table 2003-511557 gazette KC Grabar, RG Freeman, MB Hommer, MJ Natan, Anal.Chem., 67, 735 (1995) GC Schatz, Acc. Chem. Res., 17, 370 (1984) B. Nikoobakht, J. Wang, MA El-Sayed, Chem. Phys. Lett., 366, 17 (2002) B. Nikoobakht, MA El-Sayed, J. Phys. Chem. A, 107, 3372 (2003) Y. Niidome, H. Hisanabe, A. Hori, S. Yamada, Anal. Sci., 17, i1185 (2001) Hideyuki Hisabe, Yasuro Shindome, Hironobu Takahashi, Jun Yamada, Analytical Chemistry, 661 (2003)

本発明の目的は、金ナノロッドを利用して表面増強ラマン散乱に基づく高感度で簡便なラマン分光分析を可能にする新しい技術を開発することにある。   An object of the present invention is to develop a new technique that enables highly sensitive and simple Raman spectroscopic analysis based on surface-enhanced Raman scattering using gold nanorods.

本発明者は、ラマン分光分析に際してSERS作用の優れた試料用薄膜チップを金ナノロッドから作製し得る手法を確立することにより上記の目的を達成したものである。
かくして、本発明に従えば、基板と、該基板上に単粒子膜状態で固定化された金ナノロッドとから構成されていることを特徴とする表面増強ラマン散乱を利用する分光分析における試料用薄膜チップが提供される。
The present inventor has achieved the above object by establishing a technique capable of producing a thin film chip for a sample excellent in SERS action from a gold nanorod in Raman spectroscopic analysis.
Thus, according to the present invention, a thin film for a sample in spectroscopic analysis using surface-enhanced Raman scattering, comprising a substrate and gold nanorods immobilized in a single particle film state on the substrate. A chip is provided.

さらに、本発明は、上記の分光分析試料用薄膜チップを作製する方法であって、(i)底に基板を収容し金ナノロッドが分散された純水の水溶液を調製する工程、(ii)前記純水水溶液に第1の有機溶媒を添加して、水相−有機相から成る液−液界面を形成する工程、(iii)前記液−液界面を有する溶液に、前記第1の有機溶媒よりも極性の大きな第2の有機溶媒を注入して、前記液−液界面に金ナノロッドを析出・凝集させる工程、および(iv)前記液−液界面に存在する金ナノロッドと前記基板とを接触させて、該基板に金ナノロッドの薄膜を移し取る工程を含むことを特徴とする方法を提供する。
また、本発明に従えば、上記の分光分析試料用薄膜チップを用いてラマン散乱分光分析を行なう方法であって、被分析試料を付着させた該チップに近赤外領域のレーザー光を照射することを特徴とする方法も提供される。
Further, the present invention is a method for producing the above-described thin film chip for a spectroscopic analysis sample, wherein (i) a step of preparing an aqueous solution of pure water in which a substrate is accommodated in the bottom and gold nanorods are dispersed, (ii) A step of adding a first organic solvent to a pure water aqueous solution to form a liquid-liquid interface comprising an aqueous phase-organic phase; (iii) a solution having the liquid-liquid interface from the first organic solvent; Injecting a second organic solvent having a high polarity to deposit and agglomerate gold nanorods at the liquid-liquid interface; and (iv) bringing the gold nanorods present at the liquid-liquid interface into contact with the substrate. And providing a method comprising transferring a thin film of gold nanorods to the substrate.
According to the present invention, there is also provided a method for performing Raman scattering spectroscopic analysis using the thin film chip for a spectroscopic analysis sample, wherein the chip to which the sample to be analyzed is attached is irradiated with laser light in the near infrared region. A method characterized by this is also provided.

本発明によれば、表面増強ラマン散乱を利用する分光分析に当たり以下のような効果が得られる。
(1) 金ナノロッド自身を薄膜状(単粒子膜状態)で直接基板上に固定化することにより、表面増強ラマン散乱の測定が簡素化される。
(2) 試料用チップとして薄膜状の固定化された金ナノロッド基板を用いるため、適当な溶媒で洗浄することが可能であり、再利用することができる。
(3) 照射光として近赤外領域のレーザー光(700〜900nm)を用いるため、金ナノロッド粒子の長軸方向の強いSP(表面プラズモン)吸収を選択的に励起することができ、効率よく表面増強ラマン散乱を測定することができる。
(4) 本発明で用いられる金ナノロッドは球状金ナノ粒子よりも表面増強効果が大きいので、測定物質の非共鳴ラマン条件下でも高感度にラマン散乱を測定できる。したがって、測定物質の吸収バンドにかかわらず、高感度のラマン散乱測定ができる。
According to the present invention, the following effects can be obtained in spectroscopic analysis using surface-enhanced Raman scattering.
(1) Measurement of surface enhanced Raman scattering is simplified by immobilizing gold nanorods themselves in a thin film (single particle film state) directly on the substrate.
(2) Since a thin film-shaped immobilized gold nanorod substrate is used as a sample chip, it can be washed with an appropriate solvent and can be reused.
(3) Since near-infrared laser light (700 to 900 nm) is used as the irradiation light, it is possible to selectively excite strong SP (surface plasmon) absorption in the long axis direction of the gold nanorod particles, and the surface efficiently. Enhanced Raman scattering can be measured.
(4) Since the gold nanorod used in the present invention has a larger surface enhancement effect than the spherical gold nanoparticle, Raman scattering can be measured with high sensitivity even under non-resonant Raman conditions of the measurement substance. Therefore, highly sensitive Raman scattering measurement can be performed regardless of the absorption band of the measurement substance.

金属ナノ粒子の水溶液に無機塩や有機溶媒を添加すると粒子の分散状態が不安定化して粒子の凝集が起こり、この際、粒子は溶液界面または固液界面に集まり易く、界面に局在した粒子がほぼ完全な単粒子薄膜を形成することが報告されている(K. C. Gordon, J. J. McGarvey, K. P. Taylor, J. Phys, Chem, 93, 6814
(1989):非特許文献7)。このような2次元的にパッキングされた単粒子薄膜は3次元的に粒子がスタックした薄膜よりも構造が安定であり、耐熱性などに優れている。
K. C. Gordon,J. J. McGarvey, K. P. Taylor, J. Phys, Chem, 93, 6814 (1989)
When an inorganic salt or organic solvent is added to an aqueous solution of metal nanoparticles, the dispersed state of the particles becomes unstable and the particles are aggregated. At this time, the particles tend to gather at the solution interface or solid-liquid interface, and the particles localized at the interface Have been reported to form nearly perfect single-particle thin films (KC Gordon, JJ McGarvey, KP Taylor, J. Phys, Chem, 93, 6814).
(1989): Non-patent document 7). Such a two-dimensionally packed single-particle thin film has a more stable structure than a thin film in which particles are stacked three-dimensionally, and is excellent in heat resistance.
KC Gordon, JJ McGarvey, KP Taylor, J. Phys, Chem, 93, 6814 (1989)

本発明者は、この現象に注目し、これを応用展開することにより、SERSを利用する分光分析に好適な試料用薄膜チップの作製法を案出した。以下、図1に沿って、本発明に従う薄膜チップの作製技術について説明する。   The present inventor has paid attention to this phenomenon and devised a method for producing a thin film chip for a sample suitable for spectroscopic analysis using SERS by applying this phenomenon. Hereinafter, the manufacturing technique of the thin film chip according to the present invention will be described with reference to FIG.

原料となる金ナノロッドは、既知のようにカチオン性界面活性剤(例えば、ヘキサデシルトリメチルアンモニウムブロミド:CTAB)を含有する溶液中で合成される。合成の手法は、特に限定されるものではなく、例えば、金電極を用いる電解法(Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. C. Wang, J. Phys, Chem. B,
101, 6661 (1997):非特許文献8)、化学反応による合成法(N. R. Jana, L. Gearheart and C. J. Murphy, Adv. Mater., 2001, 13,
1389:非特許文献9)、光反応を用いる方法(F.
Kim, J. H. Song, P. Yang, J. Am. Chem. Soc., 2002, 124, 14316:非特許文献10、Y. Niidome, K. Nishioka, H. Kawasaki,
S. Yamada, Chem. Commun., 2003, 2376:非特許文献11)などが適用可能である。いずれの場合も、界面活性剤を含む溶液を用いる手法は金ナノロッドの生成効率が高く、大量の金ナノロッドを得ることができる。
Y. Y. Yu, S.S. Chang, C. L. Lee, C. R. C. Wang, J. Phys, Chem. B, 101, 6661 (1997) N. R. Jana,L. Gearheart and C. J. Murphy, Adv. Mater., 2001, 13, 1389 F. Kim, J.H. Song, P. Yang, J. Am. Chem. Soc., 2002, 124, 14316 Y. Niidome,K. Nishioka, H. Kawasaki, S. Yamada, Chem. Commun., 2003, 2376
As a known material, the gold nanorod as a raw material is synthesized in a solution containing a cationic surfactant (for example, hexadecyltrimethylammonium bromide: CTAB). The synthesis method is not particularly limited. For example, an electrolytic method using a gold electrode (YY Yu, SS Chang, CL Lee, CRC Wang, J. Phys, Chem. B,
101, 6661 (1997): Non-patent document 8), synthesis method by chemical reaction (NR Jana, L. Gearheart and CJ Murphy, Adv. Mater., 2001, 13,
1389: Non-Patent Document 9), a method using a photoreaction (F.
Kim, JH Song, P. Yang, J. Am. Chem. Soc., 2002, 124, 14316: Non-Patent Document 10, Y. Niidome, K. Nishioka, H. Kawasaki,
S. Yamada, Chem. Commun., 2003, 2376: Non-Patent Document 11) can be applied. In either case, the method using a solution containing a surfactant has high production efficiency of gold nanorods, and a large amount of gold nanorods can be obtained.
YY Yu, SS Chang, CL Lee, CRC Wang, J. Phys, Chem. B, 101, 6661 (1997) NR Jana, L. Gearheart and CJ Murphy, Adv. Mater., 2001, 13, 1389 F. Kim, JH Song, P. Yang, J. Am. Chem. Soc., 2002, 124, 14316 Y. Niidome, K. Nishioka, H. Kawasaki, S. Yamada, Chem. Commun., 2003, 2376

本発明に従う分光分析試料用薄膜チップを作製するには、先ず、図1のイに示されるように、適当な容器a中で底に基板bを収容し金ナノロッドが分散された純水の水溶液を調製する。すなわち、上に例示したような手法で得られた金ナノロッド分散液を遠心分離し、界面活性剤が多く含まれている上澄み液を取り除き、純水で再分散させる。
次に、上記のようにして得られた純水水溶液に、図1のロに示すように、水と相溶性のない第1の有機溶媒dを添加して、水相−有機相から成る液−液界面を形成する。
In order to produce a thin film chip for a spectroscopic analysis sample according to the present invention, first, as shown in FIG. 1A, an aqueous solution of pure water in which a substrate b is accommodated at the bottom in a suitable container a and gold nanorods are dispersed. To prepare. That is, the gold nanorod dispersion liquid obtained by the method exemplified above is centrifuged to remove the supernatant liquid containing a large amount of surfactant and redispersed with pure water.
Next, as shown in FIG. 1B, a first organic solvent d that is incompatible with water is added to the pure water aqueous solution obtained as described above to obtain a liquid comprising an aqueous phase-organic phase. -Forming a liquid interface;

このようにして得られた液−液界面が形成している溶液に、次の工程として、前の工程で添加した第1の有機溶媒よりも極性の大きな第2の有機溶媒eを勢いよく注入すると(図1のハ参照)、水相の金ナノロッド粒子が不安定化させられて、液−液界面に金ナノロッド(f)が析出・凝集する(図1のニ参照)。第1の有機溶媒/第2の有機溶媒の組み合わせは、特に限定されるものではないが、好ましい組み合わせとして、ヘキサン/アセトニトリル、ヘキサン/メタノール、トルエン/メタノールなどを例示することができる。   As a next step, the second organic solvent e having a polarity greater than that of the first organic solvent added in the previous step is vigorously injected into the solution formed by the liquid-liquid interface thus obtained. Then (see c of FIG. 1), the gold nanorod particles in the aqueous phase are destabilized, and gold nanorods (f) are precipitated and aggregated at the liquid-liquid interface (see d of FIG. 1). The combination of the first organic solvent / second organic solvent is not particularly limited, but preferred examples include hexane / acetonitrile, hexane / methanol, and toluene / methanol.

次に、上記のように析出・凝集することによって液−液界面(近傍)に存在している金ナノロッドを、底に収容されていた基板と接触させることにより、該基板に金ナノロッドの薄膜を移し取る。金ナノロッドを基板と接触させる具体的手段は、一般に、基板を液−液界面と平行になるように保ちながら下の層から上の層に移動させることである。例えば、実験室におけるような小規模の作製では、図1のホに示すように、ピンセットgで挟持しながら基板を移動させるが、規模が大きくなればロボットアームのような装置を用いて基板を移動させることもできる。この他に、下の層(水層)から液を静かに抜き出すことにより上の層を下方に移動させ、最後に金ナノロッドと基板を接触させることも可能である。   Next, the gold nanorods present at the liquid-liquid interface (near) by being precipitated and agglomerated as described above are brought into contact with the substrate accommodated in the bottom, whereby a thin film of gold nanorods is formed on the substrate. Transfer. A specific means of bringing the gold nanorods into contact with the substrate is generally to move the substrate from the lower layer to the upper layer while keeping the substrate parallel to the liquid-liquid interface. For example, in a small-scale production such as in a laboratory, as shown in FIG. 1E, the substrate is moved while being pinched by tweezers g. It can also be moved. In addition, it is possible to move the upper layer downward by gently extracting the liquid from the lower layer (water layer), and finally contact the gold nanorods with the substrate.

その後、自然乾燥することにより、金ナノロッド薄膜が基板に固定化された試料用薄膜チップが得られる(図1のヘ)。基板上に固定化された金ナノロッド薄膜は単粒子膜であり、このことは電子顕微鏡観察により確認されている(図2参照)。なお、基板としては、一般に、ガラスが用いられるが、この他に、ラマン散乱不活性な材料、たとえば金属板が利用可能である。さらに、ラマン散乱活性であっても基板由来のシグナル以外の部分で測定可能な材料、たとえば、シリコン基板、あるいはポリエチレンやポリプロピレンなどのプラスティック板も使用可能である。   Thereafter, the sample is naturally dried to obtain a thin film chip for a sample in which the gold nanorod thin film is fixed to the substrate (see FIG. 1). The gold nanorod thin film immobilized on the substrate is a single particle film, which has been confirmed by observation with an electron microscope (see FIG. 2). As the substrate, glass is generally used, but in addition to this, a material that is inactive to Raman scattering, such as a metal plate, can be used. Furthermore, a material that can be measured in a portion other than the signal derived from the substrate even with Raman scattering activity, for example, a silicon substrate or a plastic plate such as polyethylene or polypropylene can be used.

以上のようにして作製した本発明の試料用薄膜チップを用いてラマン散乱分光分析を行なうには、被分析試料(測定物質)を付着させた該チップに所定の光を照射する。具体的には、基板上の金ナノロッド薄膜に測定物質を溶媒で溶かした液を滴下し、乾燥させ、これをサンプルとしてラマン散乱を測定する。ここで、本発明の特徴は、次にも説明するように、ラマン用光源として近赤外領域のレーザー光を用いることにある。   In order to perform Raman scattering spectroscopic analysis using the thin film chip for a sample of the present invention produced as described above, predetermined light is irradiated to the chip to which the sample to be analyzed (measurement substance) is attached. Specifically, a solution obtained by dissolving a measurement substance with a solvent is dropped onto a gold nanorod thin film on a substrate, dried, and this is used as a sample to measure Raman scattering. Here, as described below, the feature of the present invention resides in the use of near-infrared laser light as a Raman light source.

本発明において使用する金ナノロッドは、一般に、短軸の長さが5nm〜40nm、好ましくは15nm〜25nmであり、長軸の長さが50nm〜500nm、好ましくは100nm〜300nmのものである。このような金ナノロッドはその短軸方向に由来する520nm付近と長軸方向に由来する600〜1300nmの二つのプラズモン吸収バンド(表面プラズモンバンドの励起に対応するバンド)を示す。したがって、本発明においては、700〜900nm(好ましくは785nm)の近赤外領域のレーザー光を用いることにより金ナノロッドの長軸方向のSP(表面プラズモン)を励起することができ、高いSERS増強度が得られる。なお、その際、励起レーザー光の強度は金粒子が融合しない程度に調整することが必要である。   The gold nanorods used in the present invention generally have a short axis length of 5 nm to 40 nm, preferably 15 nm to 25 nm, and a long axis length of 50 nm to 500 nm, preferably 100 nm to 300 nm. Such a gold nanorod shows two plasmon absorption bands (bands corresponding to excitation of the surface plasmon band) of around 520 nm derived from the short axis direction and 600 to 1300 nm derived from the long axis direction. Therefore, in the present invention, SP (surface plasmon) in the long axis direction of the gold nanorod can be excited by using a laser beam in the near infrared region of 700 to 900 nm (preferably 785 nm), and the SERS enhancement intensity is high. Is obtained. At that time, it is necessary to adjust the intensity of the excitation laser beam to such an extent that the gold particles do not fuse.

本発明に従って用いられるような700〜900nmの光は水に吸収されないことに加えてポリペプチド、核酸などにもほぼ完全に透明であり、この点は測定対象物(被分析試料)に不要の熱や摂動を加えないという意味で大変有利である。さらに、本発明で用いる785nmのレーザー光は電子冷却CCDカメラで検出可能であり、FT−ラマン分光法におけるような干渉計を必要としない。   In addition to being not absorbed by water, 700-900 nm light as used in accordance with the present invention is almost completely transparent to polypeptides, nucleic acids, etc., which is an unnecessary heat for the measurement object (sample to be analyzed). It is very advantageous in that it does not add perturbation. Furthermore, the 785 nm laser light used in the present invention can be detected by an electronically cooled CCD camera, and does not require an interferometer as in FT-Raman spectroscopy.

使用後の試料用薄膜チップは、適当な溶媒、例えばアルコールやアセトンに基板を浸漬することにより、金ナノロッド薄膜に吸着している測定物質のみを取り除くことができ、これによって再利用が可能である。
以下、本発明の実施例を示すが、この実施例は本発明の特徴をさらに具体的に例示するためのものであり、本発明を限定するものではない。
After use, the sample thin film chip can be reused by removing only the measurement substance adsorbed on the gold nanorod thin film by immersing the substrate in an appropriate solvent such as alcohol or acetone. .
EXAMPLES Examples of the present invention will be described below, but these examples are for specifically illustrating the features of the present invention, and do not limit the present invention.

薄膜チップの作製
図1に示す手順に従い、基板上に金ナノロッド薄膜が固定化された試料用薄膜チップを作製した。あらかじめ内径32mmのサンプル管の底に1cm角のガラス基板を置き、電解法によって作製した金ナノロッド(以下AuNRと記すことがある)分散液(非特許文献8)を20mL入れた。その後、ヘキサンを10mL静かに加えた。5〜10mLのアセトニトリルを勢いよく注入すると、数十秒後にはコロイド水溶液−ヘキサン界面にAuNR粒子膜が生成した。サンプル管の底のガラス基板をその平面が界面とほぼ平行になるように引き上げ、AuNR薄膜をガラス基板上に移し取った。その後、自然乾燥することにより、金ナノロッド薄膜が基板に固定化された薄膜チップを得た。また、比較サンプルとして、クエン酸還元による球状の金ナノ粒子(以下AuNSと記すことがある)分散液を用いて、上記と同様の方法でAuNS薄膜を作製した。図2に示す走査型電子顕微鏡像から、基板上に固定化されたAuNRは、単粒子膜を形成していることがわかった。
Production of Thin Film Chip A thin film chip for a sample in which a gold nanorod thin film was immobilized on a substrate was produced according to the procedure shown in FIG. A 1 cm square glass substrate was previously placed on the bottom of a sample tube having an inner diameter of 32 mm, and 20 mL of a gold nanorod (hereinafter sometimes referred to as AuNR) dispersion (non-patent document 8) prepared by an electrolytic method was added. Thereafter, 10 mL of hexane was gently added. When 5 to 10 mL of acetonitrile was vigorously injected, an AuNR particle film was formed at the colloidal aqueous solution-hexane interface after several tens of seconds. The glass substrate at the bottom of the sample tube was pulled up so that its plane was almost parallel to the interface, and the AuNR thin film was transferred onto the glass substrate. Thereafter, the film was naturally dried to obtain a thin film chip in which the gold nanorod thin film was fixed to the substrate. As a comparative sample, an AuNS thin film was prepared in the same manner as described above using a dispersion liquid of spherical gold nanoparticles (hereinafter also referred to as AuNS) by citrate reduction. From the scanning electron microscope image shown in FIG. 2, it was found that the AuNR immobilized on the substrate forms a single particle film.

ラマン散乱測定
実施例1で作製したAuNRおよびAuNS薄膜のそれぞれに、測定物質(被分析試料)としてローダミン6G(以下、R6Gと記すことがある)のエタノール溶液(3.5×10−6M)を50μL滴下し、自然乾燥させた。また、参照用としてガラス基板のみに同量のR6Gをキャスト(付着)したサンプルも作製した。
以上の各サンプルについてラマン散乱分光測定を行なった。ラマン分光用の励起光源の波長は785nm、レーザー強度は30mWであり、この強度では金ナノロッド薄膜の熱的な溶解は起きなかった。R6Gは近赤外領域には吸収を持たないため、本測定条件ではR6Gの共鳴ラマン散乱はない。
Raman scattering measurement In each of the AuNR and AuNS thin films prepared in Example 1, 50 μL of an ethanol solution (3.5 × 10 −6 M) of rhodamine 6G (hereinafter sometimes referred to as R6G) as a measurement substance (analyte sample) is used. It was dripped and allowed to air dry. Moreover, the sample which casted (attached) the same amount of R6G only to the glass substrate for reference was also produced.
The Raman scattering spectroscopic measurement was performed on each of the above samples. The wavelength of the excitation light source for Raman spectroscopy was 785 nm, and the laser intensity was 30 mW. At this intensity, the gold nanorod thin film did not melt thermally. Since R6G has no absorption in the near-infrared region, there is no resonance Raman scattering of R6G under this measurement condition.

図3にR6GをキャストしたAuNR薄膜、AuNS薄膜、R6Gをキャストしたガラス基板、R6G粉末のラマン散乱スペクトルを示す。本発明に従いR6GをキャストしたAuNR薄膜のスペクトル(図3の最上部に示す)は、R6G粉末のスペクトル(図3の最下部)とピークバンドが一致すること、そしてR6Gをキャストしたガラス基板ではガラス基板由来の散乱しか観測されなかったことから、AuNR薄膜を用いることにより、R6Gのラマン散乱が増強したことが確認された。一方、AuNS薄膜ではガラス基板由来の散乱しか観測されない。このように、AuNR薄膜の表面増強効果は、AuNS薄膜(非特許文献1に相当するもの)に比較して、少なくとも100倍の効果があることを確認できた。本発明に従いAuNR薄膜を用いたSERSの増強度はAuNRの表面効果のみを反映したものであり、その形状が重要であることが明らかとなった。   FIG. 3 shows Raman scattering spectra of an AuNR thin film casted with R6G, an AuNS thin film, a glass substrate cast with R6G, and R6G powder. The spectrum of the AuNR thin film cast with R6G according to the present invention (shown at the top of FIG. 3) matches the spectrum of the R6G powder (bottom of FIG. 3) with the peak band. Since only substrate-derived scattering was observed, it was confirmed that the R6G Raman scattering was enhanced by using the AuNR thin film. On the other hand, only the scattering from the glass substrate is observed in the AuNS thin film. Thus, it was confirmed that the surface enhancement effect of the AuNR thin film is at least 100 times as effective as that of the AuNS thin film (corresponding to Non-Patent Document 1). The enhancement of SERS using an AuNR thin film according to the present invention reflects only the surface effect of AuNR, and it has become clear that its shape is important.

以上の記述から明らかなように、本発明に従い金ナノロッド薄膜を用いれば、産業のいろいろな分野における物質測定に利用できる高感度で簡便なSERSに因るラマン散乱分光分析が実現される。   As is clear from the above description, if a gold nanorod thin film is used in accordance with the present invention, Raman scattering spectroscopic analysis based on SERS that can be used for material measurement in various fields of industry can be realized.

本発明に従い、基板に金ナノロッド薄膜が固定化された試料用薄膜チップを作製する方法を模式的に示す。A method for producing a thin film chip for a sample in which a gold nanorod thin film is immobilized on a substrate according to the present invention is schematically shown. 本発明に従って作製された金ナノロッド薄膜の走査型電子顕微鏡像を示す。2 shows a scanning electron microscope image of a gold nanorod thin film prepared according to the present invention. 本発明の特徴を示す一例として、R6Gをキャストした金ナノロッド薄膜、球状金粒子薄膜、ガラス基板およびR6G粉末のラマン散乱スペクトルを示す。As an example showing the characteristics of the present invention, a Raman scattering spectrum of a gold nanorod thin film, spherical gold particle thin film, glass substrate and R6G powder cast with R6G is shown.

符号の説明Explanation of symbols

b 基板
c 金ナノロッド分散液
d 第1の有機溶媒
e 第2の有機溶媒
f 金ナノロッド薄膜
b Substrate c Gold nanorod dispersion d First organic solvent e Second organic solvent f Gold nanorod thin film

Claims (3)

基板と、該基板上に単粒子膜状態で固定化された金ナノロッドとから構成されていることを特徴とする表面増強ラマン散乱を利用する分光分析における試料用薄膜チップ。   A thin film chip for a sample in spectroscopic analysis using surface-enhanced Raman scattering, comprising a substrate and gold nanorods immobilized on the substrate in a single particle film state. 請求項1の分光分析試料用薄膜チップを作製する方法であって、(i)底に基板を収容し金ナノロッドが分散された純水の水溶液を調製する工程、(ii)前記純水水溶液に第1の有機溶媒を添加して、水相−有機相から成る液−液界面を形成する工程、(iii)前記液−液界面を有する溶液に、前記第1の有機溶媒よりも極性の大きな第2の有機溶媒を注入して、前記液−液界面に金ナノロッドを析出・凝集させる工程、および(iv)前記液−液界面に存在する金ナノロッドと前記基板とを接触させて、該基板に金ナノロッドの薄膜を移し取る工程を含むことを特徴とする方法。   A method for producing a thin film chip for a spectroscopic analysis sample according to claim 1, wherein (i) a step of preparing an aqueous solution of pure water in which a substrate is accommodated in the bottom and gold nanorods are dispersed, (ii) A step of adding a first organic solvent to form a liquid-liquid interface comprising an aqueous phase-organic phase; (iii) a solution having the liquid-liquid interface having a polarity greater than that of the first organic solvent Injecting a second organic solvent to deposit and agglomerate gold nanorods at the liquid-liquid interface; and (iv) bringing the gold nanorods present at the liquid-liquid interface into contact with the substrate, And a step of transferring a thin film of gold nanorods to the substrate. 請求項1の分光分析試料用薄膜チップを用いてラマン散乱分光分析を行なう方法であって、被分析試料を付着させた該チップに近赤外領域のレーザー光を照射することを特徴とする方法。
A method for performing Raman scattering spectroscopic analysis using the thin film chip for a spectroscopic analysis sample according to claim 1, wherein the chip to which the sample to be analyzed is attached is irradiated with laser light in the near infrared region. .
JP2004039466A 2004-02-17 2004-02-17 Raman spectroscopic analysis by gold nanorod thin film Pending JP2005233637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004039466A JP2005233637A (en) 2004-02-17 2004-02-17 Raman spectroscopic analysis by gold nanorod thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004039466A JP2005233637A (en) 2004-02-17 2004-02-17 Raman spectroscopic analysis by gold nanorod thin film

Publications (1)

Publication Number Publication Date
JP2005233637A true JP2005233637A (en) 2005-09-02

Family

ID=35016773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004039466A Pending JP2005233637A (en) 2004-02-17 2004-02-17 Raman spectroscopic analysis by gold nanorod thin film

Country Status (1)

Country Link
JP (1) JP2005233637A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192398A (en) * 2005-01-17 2006-07-27 Yasuro Niitome Production method of nano-particle oriented thin film
JP2007139612A (en) * 2005-11-18 2007-06-07 Fujifilm Corp Microstructure, method of manufacturing same, raman spectroscopy and raman spectroscopic device
JP2008055570A (en) * 2006-09-01 2008-03-13 Ricoh Co Ltd Compound metal nano-particle, multiphoton absorption reaction material containing compound metal nano-particle and reaction product, and multiphoton absorption reaction auxiliary agent containing compound metal nano-particle
JP2011081001A (en) * 2009-10-12 2011-04-21 Korea Advanced Inst Of Sci Technol Detection method of biochemical substance using surface enhanced raman scattering
WO2011158829A1 (en) 2010-06-15 2011-12-22 日産化学工業株式会社 Metal particles for surface-enhanced raman scattering and molecular sensing
JP2012002510A (en) * 2010-06-14 2012-01-05 Nara Institute Of Science & Technology Selective arranging method of metal nanoparticle
JP2013517123A (en) * 2010-01-14 2013-05-16 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア General purpose solution for growing thin films of electrically conductive nanostructures
CN103217410A (en) * 2013-04-02 2013-07-24 南京理工大学 Preparation method of surface enhanced raman spectrum substrate of gold nanoparticle embellished diamond film
KR101339731B1 (en) 2012-01-20 2014-01-10 서강대학교산학협력단 Assay method using SERS active particles at a liquid-liquid interface
CN103674928A (en) * 2013-12-23 2014-03-26 中国科学院合肥物质科学研究院 SERS (surface enhanced Raman scattering) device, as well as preparing method and application thereof
US9304086B2 (en) 2011-05-17 2016-04-05 Fujifilm Corporation Raman spectrometry method and Raman spectrometry apparatus
WO2016136851A1 (en) * 2015-02-25 2016-09-01 国立大学法人 岡山大学 Method for manufacturing substrate for surface enhanced raman spectroscopy, and substrate manufactured by said method
JP2017521265A (en) * 2014-04-29 2017-08-03 ソル ヴォルテイックス エービーSol Voltaics Ab Method for collecting and aligning nanowire assemblies
JP2017156104A (en) * 2016-02-29 2017-09-07 西松建設株式会社 Light enhancement element, manufacturing method of the same, and spectroanalysis kit and spectroanalysis method
WO2017221981A1 (en) 2016-06-21 2017-12-28 日産化学工業株式会社 Simple sensing method employing raman scattering
KR20180099243A (en) * 2017-02-28 2018-09-05 고려대학교 산학협력단 Method for forming nanopore
US10265662B2 (en) 2012-10-12 2019-04-23 The Regents Of The University Of California Polyaniline membranes, uses, and methods thereto
CN109813697A (en) * 2018-12-29 2019-05-28 安徽中科赛飞尔科技有限公司 The spacial hot spots Raman spectrum method for detecting surface reinforcement of liquid regulation nano gap
US10456755B2 (en) 2013-05-15 2019-10-29 The Regents Of The University Of California Polyaniline membranes formed by phase inversion for forward osmosis applications
US10532328B2 (en) 2014-04-08 2020-01-14 The Regents Of The University Of California Polyaniline-based chlorine resistant hydrophilic filtration membranes
CN111198175A (en) * 2018-11-19 2020-05-26 中国科学院宁波材料技术与工程研究所 Macroscopic large-area nano gold rod two-dimensional array with controllable distribution of hot spots and application
WO2020197305A1 (en) * 2019-03-27 2020-10-01 주식회사 엑소퍼트 Method for manufacturing surface-enhanced raman scattering-based substrate for detecting target substance, substrate manufactured thereby for detecting target substance, and method for detecting target substance by using same substrate
JP7506395B2 (en) 2020-05-25 2024-06-26 公立大学法人 滋賀県立大学 Method for producing silver nanoparticle thin film

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623440B2 (en) * 2005-01-17 2011-02-02 康郎 新留 Method for producing nanoparticle oriented thin film
JP2006192398A (en) * 2005-01-17 2006-07-27 Yasuro Niitome Production method of nano-particle oriented thin film
JP2007139612A (en) * 2005-11-18 2007-06-07 Fujifilm Corp Microstructure, method of manufacturing same, raman spectroscopy and raman spectroscopic device
US7967910B2 (en) 2005-11-18 2011-06-28 Fujifilm Corporation Fine structure body, process for producing the same, and Raman spectroscopic method and apparatus
JP2008055570A (en) * 2006-09-01 2008-03-13 Ricoh Co Ltd Compound metal nano-particle, multiphoton absorption reaction material containing compound metal nano-particle and reaction product, and multiphoton absorption reaction auxiliary agent containing compound metal nano-particle
JP2011081001A (en) * 2009-10-12 2011-04-21 Korea Advanced Inst Of Sci Technol Detection method of biochemical substance using surface enhanced raman scattering
US9017773B2 (en) 2010-01-14 2015-04-28 The Regents Of The University Of California Universal solution for growing thin films of electrically conductive nanostructures
JP2013517123A (en) * 2010-01-14 2013-05-16 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア General purpose solution for growing thin films of electrically conductive nanostructures
JP2012002510A (en) * 2010-06-14 2012-01-05 Nara Institute Of Science & Technology Selective arranging method of metal nanoparticle
KR20130095718A (en) 2010-06-15 2013-08-28 닛산 가가쿠 고교 가부시키 가이샤 Metal particles for surface-enhanced raman scattering and molecular sensing
US8896829B2 (en) 2010-06-15 2014-11-25 Nissan Chemical Industries, Ltd. Metal particles for surface-enhanced raman scattering and molecular sensing
WO2011158829A1 (en) 2010-06-15 2011-12-22 日産化学工業株式会社 Metal particles for surface-enhanced raman scattering and molecular sensing
US9304086B2 (en) 2011-05-17 2016-04-05 Fujifilm Corporation Raman spectrometry method and Raman spectrometry apparatus
KR101339731B1 (en) 2012-01-20 2014-01-10 서강대학교산학협력단 Assay method using SERS active particles at a liquid-liquid interface
US10265662B2 (en) 2012-10-12 2019-04-23 The Regents Of The University Of California Polyaniline membranes, uses, and methods thereto
US10780404B2 (en) 2012-10-12 2020-09-22 The Regents Of The University Of California Polyaniline membranes, uses, and methods thereto
CN103217410A (en) * 2013-04-02 2013-07-24 南京理工大学 Preparation method of surface enhanced raman spectrum substrate of gold nanoparticle embellished diamond film
US10456755B2 (en) 2013-05-15 2019-10-29 The Regents Of The University Of California Polyaniline membranes formed by phase inversion for forward osmosis applications
CN103674928A (en) * 2013-12-23 2014-03-26 中国科学院合肥物质科学研究院 SERS (surface enhanced Raman scattering) device, as well as preparing method and application thereof
US10532328B2 (en) 2014-04-08 2020-01-14 The Regents Of The University Of California Polyaniline-based chlorine resistant hydrophilic filtration membranes
JP2017521265A (en) * 2014-04-29 2017-08-03 ソル ヴォルテイックス エービーSol Voltaics Ab Method for collecting and aligning nanowire assemblies
WO2016136851A1 (en) * 2015-02-25 2016-09-01 国立大学法人 岡山大学 Method for manufacturing substrate for surface enhanced raman spectroscopy, and substrate manufactured by said method
JPWO2016136851A1 (en) * 2015-02-25 2017-12-07 国立大学法人 岡山大学 Method for producing surface-enhanced Raman spectroscopy substrate and substrate produced by this method
JP2017156104A (en) * 2016-02-29 2017-09-07 西松建設株式会社 Light enhancement element, manufacturing method of the same, and spectroanalysis kit and spectroanalysis method
WO2017221981A1 (en) 2016-06-21 2017-12-28 日産化学工業株式会社 Simple sensing method employing raman scattering
US10801779B2 (en) 2017-02-28 2020-10-13 Korea University Research And Business Foundation Method for forming nanopores
KR101977457B1 (en) * 2017-02-28 2019-05-10 고려대학교 산학협력단 Method for forming nanopore
KR20180099243A (en) * 2017-02-28 2018-09-05 고려대학교 산학협력단 Method for forming nanopore
CN111198175A (en) * 2018-11-19 2020-05-26 中国科学院宁波材料技术与工程研究所 Macroscopic large-area nano gold rod two-dimensional array with controllable distribution of hot spots and application
CN111198175B (en) * 2018-11-19 2022-09-27 中国科学院宁波材料技术与工程研究所 Macroscopic large-area nano gold rod two-dimensional array with controllable distribution of hot spots and application
CN109813697B (en) * 2018-12-29 2021-06-08 安徽中科赛飞尔科技有限公司 Liquid regulation nanogap space hotspot surface enhanced Raman spectroscopy detection method
CN109813697A (en) * 2018-12-29 2019-05-28 安徽中科赛飞尔科技有限公司 The spacial hot spots Raman spectrum method for detecting surface reinforcement of liquid regulation nano gap
KR20200115840A (en) * 2019-03-27 2020-10-08 주식회사 엑소퍼트 A Method of manufacturing a substrate for detecting a target substance based on a surface-enhanced raman scattering, the substrate manufactured by the method and method for detecting target substance using the same
KR102225542B1 (en) * 2019-03-27 2021-03-11 주식회사 엑소퍼트 A Method of manufacturing a substrate for detecting a target substance based on a surface-enhanced raman scattering, the substrate manufactured by the method and method for detecting target substance using the same
CN113302474A (en) * 2019-03-27 2021-08-24 艾索波特株式会社 Method for producing substrate for detecting target substance by surface-enhanced Raman scattering, substrate for detecting target substance by the same, and method for detecting target substance by the same
WO2020197305A1 (en) * 2019-03-27 2020-10-01 주식회사 엑소퍼트 Method for manufacturing surface-enhanced raman scattering-based substrate for detecting target substance, substrate manufactured thereby for detecting target substance, and method for detecting target substance by using same substrate
JP7506395B2 (en) 2020-05-25 2024-06-26 公立大学法人 滋賀県立大学 Method for producing silver nanoparticle thin film

Similar Documents

Publication Publication Date Title
JP2005233637A (en) Raman spectroscopic analysis by gold nanorod thin film
López-Lorente Recent developments on gold nanostructures for surface enhanced Raman spectroscopy: Particle shape, substrates and analytical applications. A review
CN103403546B (en) Single nanoparticle having a nanogap between a core material and a shell material, and manufacturing method thereof
Langer et al. Sensing using plasmonic nanostructures and nanoparticles
Israelsen et al. Nanoparticle Properties and Synthesis Effects on Surface‐Enhanced Raman Scattering Enhancement Factor: An Introduction
Hamon et al. Colloidal design of plasmonic sensors based on surface enhanced Raman scattering
Abalde-Cela et al. Recent progress on colloidal metal nanoparticles as signal enhancers in nanosensing
Hossain et al. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods
Shen et al. Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification
JP4806411B2 (en) Optical sensor for use with a visible light laser excitation beam and a Raman spectroscopic detector and method for detecting chemical groups in an analyte
Zhang et al. Graphene oxide-wrapped flower-like sliver particles for surface-enhanced Raman spectroscopy and their applications in polychlorinated biphenyls detection
US10717647B2 (en) Sorting process of nanoparticles and applications of same
Jiang et al. The construction of silver aggregate with inbuilt Raman molecule and gold nanowire forest in SERS-based immunoassay for cancer biomarker detection
Zhu et al. Silver nanocubes/graphene oxide hybrid film on a hydrophobic surface for effective molecule concentration and sensitive SERS detection
Gu et al. Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering
Zhu et al. Surface-enhanced Raman scattering of 4-mercaptobenzoic acid and hemoglobin adsorbed on self-assembled Ag monolayer films with different shapes
Puente et al. Silver-chitosan and gold-chitosan substrates for surface-enhanced Raman spectroscopy (SERS): Effect of nanoparticle morphology on SERS performance
Philip et al. Polyethylenimine-assisted seed-mediated synthesis of gold nanoparticles for surface-enhanced Raman scattering studies
Jia et al. Giant vesicles with anchored tiny gold nanowires: fabrication and surface-enhanced Raman scattering
Zhou et al. Controlling the shrinkage of 3D hot spot droplets as a microreactor for quantitative SERS detection of anticancer drugs in serum using a handheld Raman spectrometer
Dong et al. Preparation of a three-dimensional composite structure based on a periodic Au@ Ag core–shell nanocube with ultrasensitive surface-enhanced Raman scattering for rapid detection
Zhao et al. Hybrid structures of Fe3O4 and Ag nanoparticles on Si nanopillar arrays substrate for SERS applications
Das et al. Highly stable In@ SiO2 core-shell nanostructures for ultraviolet surface-enhanced Raman spectroscopy
Xu et al. Liquid–liquid interfacial self-assembled triangular Ag nanoplate-based high-density and ordered SERS-active arrays for the sensitive detection of dibutyl phthalate (DBP) in edible oils
Anju et al. Optimally distributed Ag over SiO2 nanoparticles as colloidal SERS substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A02 Decision of refusal

Effective date: 20080617

Free format text: JAPANESE INTERMEDIATE CODE: A02