JP2005233594A - Incineration system for high moisture combustible waste, and its device - Google Patents

Incineration system for high moisture combustible waste, and its device Download PDF

Info

Publication number
JP2005233594A
JP2005233594A JP2004077189A JP2004077189A JP2005233594A JP 2005233594 A JP2005233594 A JP 2005233594A JP 2004077189 A JP2004077189 A JP 2004077189A JP 2004077189 A JP2004077189 A JP 2004077189A JP 2005233594 A JP2005233594 A JP 2005233594A
Authority
JP
Japan
Prior art keywords
waste
steam
incinerator
boiler
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004077189A
Other languages
Japanese (ja)
Inventor
Tetsuo Yoshida
哲夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Parchitec Inc
Original Assignee
Parchitec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parchitec Inc filed Critical Parchitec Inc
Priority to JP2004077189A priority Critical patent/JP2005233594A/en
Publication of JP2005233594A publication Critical patent/JP2005233594A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high moisture combustible waste incineration system superior in odor generation prevention, waste heat effective utilization, and drying capacity in incineration of high moisture combustible waste such as poultry manure. <P>SOLUTION: The incineration system is provided with a boiler 30 collecting waste heat of an incinerator 20 to generate steam S1, and a steam turbine 40 driven by the steam S1. A drier 10 is composed such that the waste Wa is dried by carrying out indirect heat exchange with steam S2 exhausted from the steam turbine 40, and it is composed such that at least one part of air A for combustion directly contacts and passes through the waste Wa before being supplied to the incinerator 20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば鶏糞等の高水分可燃性廃棄物の焼却に当って、悪臭発生防止、廃熱有効利用及び乾燥能力の点で優れた高水分可燃性廃棄物焼却装置に関する。  The present invention relates to a high-moisture flammable waste incinerator excellent in terms of prevention of malodor generation, effective use of waste heat, and drying ability in incineration of high-moisture flammable waste such as chicken manure.

従来、例えば鶏糞の乾燥、焼却が行なわれる装置において、前記乾燥の工程で悪臭成分含有高温排ガスが発生し、その脱臭のため、その排ガスの高温又は低温での燃焼や吸着や洗浄が行なわれている。なお、単にその鶏糞の乾燥、焼却だけでなく、廃熱の有効利用の目的から給湯だけでなく、スチームの発生、それによる動力乃至発電まで行なわれているものもある。  Conventionally, for example, in an apparatus for drying and incinerating chicken manure, a high-temperature exhaust gas containing malodorous components is generated in the drying process, and the exhaust gas is burned, adsorbed or washed at a high or low temperature for the deodorization. Yes. In addition to drying and incineration of the chicken manure, not only hot water supply but also the generation of steam and the resulting power or power generation are performed for the purpose of effectively using waste heat.

しかしながら、そのうち、悪臭含有排ガスの高温燃焼は、その大量の排ガスの着火、燃焼維持のために、それぞれ火炎その他の着火源の準備、前記高温排ガスの昇温のための新たな可燃物(燃料)の補給が必要であり、また、排ガスの低温燃焼は、その大量の排ガスの低温における燃焼促進のための高価で劣化・閉塞し易い触媒を含む低温燃焼装置が必要であると言う問題点がある。  However, high-temperature combustion of malodorous exhaust gas is a new combustible material (fuel) for preparing flames and other ignition sources and for raising the temperature of the high-temperature exhaust gas in order to ignite and maintain the combustion of a large amount of exhaust gas. ), And low-temperature combustion of exhaust gas requires a low-temperature combustion device including an expensive, easy-to-degrade and clogged catalyst for promoting combustion of a large amount of exhaust gas at low temperature. is there.

また、吸着(例えば特許文献1)によるものは、その大量の排ガスの冷却、減温(例えば100℃未満)が必要であり、その冷却、減温が冷却水との直接熱交換、洗浄によって行なわれる場合は、それによって冷却水が蒸発することがあっても、それ以前に既に多量の水蒸気を含む排ガスへの水蒸気のさらなる増分は、吸着脱臭部の低い温度で飽和する程度の値までしか許されず、大半はその低い温度までの冷却水の昇温に依存せざるを得ず、後で汚水処理を必要とする、大量の冷却水の補給、又は別に設けられた冷水塔等による、昇温した冷却水の冷却、又は別途大量の熱を必要とする水分の蒸発による濃縮のいずれかの大きな負担を必要とすると言う問題点がある。なお、冷却水との間接熱交換も考えられるが、その昇温に依存する限りは上記と略同様の問題点がある。、  In addition, the adsorption (for example, Patent Document 1) requires cooling and temperature reduction (for example, less than 100 ° C.) of the large amount of exhaust gas, and the cooling and temperature reduction are performed by direct heat exchange and cleaning with cooling water. In this case, even if it causes the cooling water to evaporate, further increments of water vapor into the exhaust gas that already contains a large amount of water vapor are only allowed to saturate at the low temperature of the adsorption deodorization part. However, most of them have to rely on the temperature rise of the cooling water to the low temperature, and the temperature is raised by supplying a large amount of cooling water, which requires sewage treatment later, or by a separately provided chilled water tower, etc. There is a problem that a large burden of either cooling of the cooling water or concentration by evaporation of water that requires a large amount of heat is required. Although indirect heat exchange with cooling water is also conceivable, there are problems similar to the above as long as it depends on the temperature rise. ,

以上のことから、発明者は、悪臭成分含有排ガスの発生抑制のため、廃棄物の間接加熱による乾燥や悪臭成分ガスの焼却炉での燃焼について調査検討している中で、間接加熱媒体として廃棄物の焼却排ガスの廃熱回収によるスチームが使用されることを知った(例えば特許文献2,3)。しかしながら、いずれもその目的からか、乾燥速度の向上、乾燥器の小型化、それらに対して重大な影響を与えると考えられる、廃棄物側の水蒸気分圧や焼却炉への導入前の燃焼用空気の活用については全く触れられていない。
特開平07−243626号公報(
In view of the above, the inventor is investigating the drying of waste by indirect heating and the combustion of malodorous component gases in an incinerator to suppress the generation of malodorous component-containing exhaust gas. I learned that steam from waste heat recovery from incineration waste gas is used (for example, Patent Documents 2 and 3). However, for either purpose, the improvement of drying speed, downsizing of the dryer, and the steam partial pressure on the waste side, which is considered to have a serious impact on them, and for combustion before introduction into the incinerator There is no mention of the use of air.
JP 07-243626 A (

請求項1Claim 1

乃至Thru

請求項3Claim 3

及び図2乃至4) 特開平09−273707号公報( And FIGS. 2 to 4) JP 09-273707 A (

請求項1Claim 1

,図1及び3) 特開平10−339416号公報( , Figures 1 and 3) JP-A-10-339416 (

請求項1Claim 1

請求項2Claim 2

及び図2)And Figure 2)

以上のことから、本発明は、上記した従来技術の欠点を除くために、例えば鶏糞等の高水分可燃性廃棄物の焼却に当って、悪臭発生防止、廃熱有効利用及び乾燥能力の点で優れた高水分可燃性廃棄物焼却装置を提供することにある。  From the above, the present invention eliminates the disadvantages of the prior art described above, for example, in terms of prevention of malodor generation, effective use of waste heat, and drying capacity in incineration of high moisture flammable waste such as chicken manure. It is to provide an excellent high moisture flammable waste incinerator.

上記の目的を達するために、請求項1の発明に係わる高水分可燃性廃棄物焼却装置は、焼却炉20の廃熱を回収してスチームS1を発生するボイラ30と,そのスチームS1によって駆動されるスチームタービン40と,を備えたものであって、
廃棄物Waが、前記スチームタービン40から排出されたスチームS2又は/及び前記ボイラ30の排ガスG1と間接熱交換することによって乾燥されるよう構成された廃棄物の乾燥器10,110,210を備えており、且つその乾燥器10,110,210は、燃焼用空気Aの少なくとも一部が前記焼却炉20へ供給されるに先立って廃棄物Waと直接接触し、通過するよう構成されている。
In order to achieve the above object, the high moisture flammable waste incinerator according to the invention of claim 1 is driven by the boiler 30 that recovers the waste heat of the incinerator 20 and generates the steam S1, and the steam S1. A steam turbine 40,
Waste dryers 10, 110, and 210 are configured such that the waste Wa is dried by indirect heat exchange with the steam S 2 discharged from the steam turbine 40 and / or the exhaust gas G 1 of the boiler 30. The dryers 10, 110, and 210 are configured to directly contact and pass through the waste Wa before at least a part of the combustion air A is supplied to the incinerator 20.

請求2に係わる高水分可燃性廃棄物焼却装置の発明は、焼却炉20の廃熱を回収してスチームS1を発生するボイラ30と,そのスチームS1によって駆動されるスチームタービン40と,を備えたものであって、
燃焼用空気Aの少なくとも一部が、前記スチームタービン40から排出されたスチームS2又は/及び前記ボイラ30の排ガスG1と間接熱交換するよう構成された空気加熱器50,150,250、及びその空気加熱器50,150,250で加熱された燃焼用空気A1が焼却炉20へ供給されるに先立って、廃棄物Waと直接熱交換し、その廃棄物Waを乾燥するよう構成された乾燥器310を備えている。
The invention of the high moisture flammable waste incinerator according to claim 2 includes a boiler 30 that recovers waste heat from the incinerator 20 and generates steam S1, and a steam turbine 40 driven by the steam S1. And
Air heaters 50, 150, 250 configured to indirectly exchange heat with at least part of the combustion air A with steam S2 discharged from the steam turbine 40 and / or exhaust gas G1 of the boiler 30, and the air Prior to the combustion air A1 heated by the heaters 50, 150, 250 being supplied to the incinerator 20, a dryer 310 configured to directly exchange heat with the waste Wa and to dry the waste Wa. It has.

請求項1の発明によれば、前記乾燥器10,110,210が間接熱交換式であるため、悪臭成分を含む排ガスが、加熱媒体である、スチームS2又は焼却炉20の排ガスG1と混合しないよう構成されていて、主として廃棄物Wa中の水分からの水蒸気と燃焼用空気Aとよりなるため、そのまま支障なく焼却炉20へ導入可能であり、しかも、悪臭成分は導入された焼却炉20で燃焼し、無臭化されるため、そのまま大気中へ放出可能である。  According to the invention of claim 1, since the dryers 10, 110, and 210 are of the indirect heat exchange type, the exhaust gas containing malodorous components does not mix with the steam S2 or the exhaust gas G1 of the incinerator 20 that is a heating medium. Since it consists mainly of water vapor from the water in the waste Wa and the combustion air A, it can be introduced as it is into the incinerator 20 without any trouble, and the malodorous component is introduced in the incinerator 20 introduced. Since it burns and is not brominated, it can be released into the atmosphere as it is.

そのうえ、受熱側の廃棄物Waの周囲は、それと直接接触し、通過する燃焼用空気Aの少なくとも一部によって発生した水蒸気が系外(焼却炉20)に持ち去られ、それによって水蒸気分圧が低減されるため、廃棄物Waの温度が高められなくても、乾燥推進力因子の一つである、廃棄物Waの表面の水蒸気圧との圧力差が増大し、燃焼用空気Aが導入されない場合に比較して乾燥速度が高い。従って、加熱側の条件が同等であれば、乾燥器10,110,210は小さくてよいか、又は乾燥の度合が増大し、焼却炉20における水分除去の負担が軽減され、ボイラ30への給熱量が増大し、スチームタービン40の出力が増大する。  In addition, the surroundings of the waste Wa on the heat receiving side are in direct contact with it, and water vapor generated by at least a part of the passing combustion air A is taken out of the system (incinerator 20), thereby reducing the water vapor partial pressure. Therefore, even if the temperature of the waste Wa is not increased, the pressure difference with the water vapor pressure on the surface of the waste Wa, which is one of the drying driving force factors, increases and the combustion air A is not introduced. The drying rate is high compared to Therefore, if the conditions on the heating side are the same, the dryers 10, 110, and 210 may be small, or the degree of drying increases, the burden of moisture removal in the incinerator 20 is reduced, and the supply to the boiler 30 is reduced. The amount of heat increases and the output of the steam turbine 40 increases.

なお、加熱媒体がスチームS2である場合、その分スチームタービン40の出力は若干減ずるが、復水器の負担が低減される。また、加熱媒体がボイラ排ガスG1であり、且つスチームタービン40の出力がそのまま保持される場合、廃棄物Waの乾燥に振り向けられるボイラ排ガスG1の温度が低くなり、そのうえスチームの凝縮伝熱に比較して、加熱側の伝熱係数がかなり低いため、乾燥器110の必要伝熱面積が大きくなるが、常圧であるため、構造が簡単であって、強度、シール等の制約は少ない。なお、乾燥器210の加熱媒体としてスチームS2、ボイラ排ガスG1の両者が併用される場合、両者の長所が生かされる。  When the heating medium is steam S2, the output of the steam turbine 40 is slightly reduced by that amount, but the burden on the condenser is reduced. Further, when the heating medium is the boiler exhaust gas G1 and the output of the steam turbine 40 is maintained as it is, the temperature of the boiler exhaust gas G1 directed to the drying of the waste Wa becomes lower, and compared with the condensation heat transfer of steam. In addition, since the heat transfer coefficient on the heating side is considerably low, the required heat transfer area of the dryer 110 is large, but since it is normal pressure, the structure is simple and there are few restrictions on strength, sealing, and the like. In addition, when both steam S2 and boiler exhaust gas G1 are used together as a heating medium of the dryer 210, both advantages are utilized.

請求項2の発明によれば、乾燥器310の構造が著しく簡単になると共に、廃棄物Waと直接接触する加熱媒体は、空気加熱器50,150,250で加熱された燃焼用空気A1の少なくとも一部に、主として廃棄物Wa中の水分からの水蒸気が加えられるだけであり、そのまま支障なく焼却炉20へ導入可能であり、しかも、それに含まれる悪臭成分は導入された焼却炉20で燃焼し、無臭化されるため、そのまま大気中に放出可能である。  According to the invention of claim 2, the structure of the dryer 310 is remarkably simplified, and the heating medium in direct contact with the waste Wa is at least the combustion air A1 heated by the air heaters 50, 150, 250. In part, water vapor is mainly added from the water in the waste Wa, and can be introduced as it is into the incinerator 20 without any trouble. Moreover, malodorous components contained therein are combusted in the introduced incinerator 20. Because it is not brominated, it can be released into the atmosphere as it is.

なお、空気加熱器50(加熱媒体がスチームS2)である場合、スチームタービン40の出力は若干減ずるが、復水器の負担が低減される。また、空気加熱器150(加熱媒体がボイラ排ガスG1)であり、且つスチームタービン40の出力がそのまま保持される場合、燃焼用空気Aの加熱に振り向けられるボイラ排ガスG1の温度が低くなり、また、スチームの凝縮伝熱に比較して、加熱側の伝熱係数がかなり低いため、空気加熱器50の必要伝熱面積が大きくなるが、常圧であるため、構造が簡単であって、強度、シール等の制約は少ない。それに対して、空気加熱器250の加熱媒体として、スチームS2、ボイラ排ガスG1の両者が併用される場合、両者が有効活用されると共に、両者の長所が生かされる。  When the air heater 50 (heating medium is steam S2), the output of the steam turbine 40 is slightly reduced, but the burden on the condenser is reduced. Further, when the air heater 150 (the heating medium is the boiler exhaust gas G1) and the output of the steam turbine 40 is maintained as it is, the temperature of the boiler exhaust gas G1 directed to the heating of the combustion air A becomes low, Compared to steam condensation heat transfer, the heat transfer coefficient on the heating side is considerably low, so the required heat transfer area of the air heater 50 is large, but because of normal pressure, the structure is simple, There are few restrictions such as seals. On the other hand, when both steam S2 and boiler exhaust gas G1 are used together as the heating medium of the air heater 250, both are effectively utilized and the advantages of both are utilized.

発明を実施するため最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明に係わる高水分可燃性廃棄物焼却装置を実施するための最良の形態について図1によって、先ず機器構成について説明すると、10はスチームによる間接熱交換式の、高水分可燃性廃棄物Wa(以下その乾燥品も含め、単に廃棄物と略称)の乾燥器、20はその乾燥器10で乾燥された廃棄物Waを焼却する焼却炉であって、その廃熱を回収してスチームS1を発生するボイラ30が付設されている。31はそのスチームS1を貯留し、その圧力・供給量を安定化するスチームアキュムレータ、40はそのスチームS1によって駆動されるスチームタービン、41はそのスチームタービン40によって駆動される発電機であるが、ポンプ・ファン等でもよい。42は復水器であって、乾燥器10で使用され、その一部が凝縮したスチームS2を完全に水に戻すものである。  The best mode for carrying out the high-moisture combustible waste incinerator according to the present invention will be described with reference to FIG. 1. First, the apparatus configuration will be described. Reference numeral 10 denotes an indirect heat exchange type high-moisture combustible waste Wa ( The dryer 20 is also abbreviated as “waste” including the dried product, and 20 is an incinerator for incinerating the waste Wa dried by the dryer 10, and the waste heat is recovered to generate steam S1. A boiler 30 is attached. A steam accumulator 31 stores the steam S1 and stabilizes its pressure and supply amount, 40 is a steam turbine driven by the steam S1, and 41 is a generator driven by the steam turbine 40. -A fan etc. may be sufficient. A condenser 42 is used in the dryer 10 to completely return the steam S2 partially condensed to water.

追記すると、Cyはボイラ30からの排ガスG1や乾燥器10からの排ガスG2に含まれるダストを分離するサイクロン、Fは排ガスG1,G2等を誘引するファン、Pは復水器42で凝縮された水Wを加圧し、ボイラ30へ供給するポンプである。なお、乾燥器10として、靜置式で廃棄物Waは内部に設けられた攪拌兼輸送機材によって他端へ送られるよう構成されたもの、ケーシンング全体が回転する回転式のもの等、また、焼却炉20として、傾斜火格子付き靜置式のもの、円筒形の回転炉等いずれでもよい。  In addition, Cy is a cyclone that separates dust contained in the exhaust gas G1 from the boiler 30 and the exhaust gas G2 from the dryer 10, F is a fan that attracts the exhaust gases G1, G2, etc., and P is condensed in the condenser 42 The pump pressurizes the water W and supplies it to the boiler 30. In addition, as the dryer 10, the waste type Wa is configured to be sent to the other end by an agitation / transport device provided inside, a rotary type in which the entire casing is rotated, and the incinerator. 20 may be any of a stationary type with an inclined grate, a cylindrical rotary furnace, or the like.

作用について説明すると、乾燥器10の一端に、例えば水分50%の鶏糞1t/h(低位発熱量3,900Kcal/kg)及び約250℃,4,000Nm/hの燃焼用空気Aの全てが導入されると共に、他方、それに並行して前記廃棄物Waと伝熱面を隔てた空間に、スチームタービン40で仕事をし、温度、圧力が低下した3Kg/cm,2.2t/hのスチームS2が導入される。前記廃棄物Waや燃焼用空気Aは乾燥器10を通過する間、スチームS2とは伝熱面で隔てられていて、混合はしないが、伝熱面を介して熱的に緊密に接触し、効果的な熱交換をしながら他端から排出される。その間、スチームS2が凝縮すると共に、廃棄物Waの加熱、乾燥が行なわれる。The action will be described. At one end of the dryer 10, for example, 1 t / h of chicken manure having a moisture content of 50% (low heating value 3,900 Kcal / kg) and about 250 ° C. and 4,000 Nm 3 / h of combustion air A are all present. On the other hand, in parallel to the space separating the waste Wa and the heat transfer surface, the steam turbine 40 worked, and the temperature and pressure were reduced to 3 kg / cm 2 and 2.2 t / h. Steam S2 is introduced. While the waste Wa and the combustion air A pass through the dryer 10, they are separated from the steam S2 by the heat transfer surface and do not mix, but are in close thermal contact with each other through the heat transfer surface, It is discharged from the other end while performing effective heat exchange. Meanwhile, the steam S2 condenses and the waste Wa is heated and dried.

さらに、乾燥され、水分25%となった廃棄物Waは、重力又は適当な輸送機(図示省略)によって、また、約41Nm/hの水蒸気を加えた燃焼用空気は、ファンF、サイクロンCyを経て、それぞれ前記焼却炉20の一端に送られる。そのうち、廃棄物Waは、焼却炉20内を他端に向かって移動しながら、前記乾燥器10の主として空気よりなる排ガスG2に含まれる酸素の支援を受けて、燃焼し、灰Asとなって排出される。その際、前記排ガスG2に含まれていた悪臭成分も燃焼し、無臭化される。廃棄物Waの燃焼によって生じた約5,700Nm/hの燃焼ガスは、付設のボイラ30に送られ、それが持つ熱を水Wに与え、自らは降温することによって18.5Kg/cmスチームS1を発生させ、降温し、ボイラ排ガスG1となって、ファンF、サイクロンCyを経て大気中に放出される。Further, the waste Wa having a moisture content of 25% is dried by gravity or an appropriate transport device (not shown), and the combustion air to which water vapor of about 41 Nm 3 / h is added is the fan F, the cyclone Cy. And then sent to one end of the incinerator 20. Among them, the waste Wa burns with the support of oxygen contained in the exhaust gas G2 mainly composed of air of the dryer 10 while moving toward the other end in the incinerator 20, and becomes ash As. Discharged. At that time, the malodorous component contained in the exhaust gas G2 also burns and is not brominated. The combustion gas of about 5,700 Nm 3 / h generated by the combustion of the waste Wa is sent to the attached boiler 30, gives the heat it has to the water W, and cools itself by 18.5 Kg / cm steam. S1 is generated, the temperature is lowered, and the boiler exhaust gas G1 is discharged to the atmosphere through the fan F and the cyclone Cy.

なお、前記ボイラ30で発生したスチームS1は一旦スチームアキュムレータ31に貯留されたうえスチームタービン40に送られ、動力を発生し、低温低圧のスチームS2となって、前述のように乾燥器10へ送られる。さらに、乾燥器10で使用された凝縮水を含むスチームは前記復水器42に送られ、完全に水Wに戻されたうえ、ポンプPによって加圧され、再び前述のボイラ30へ戻される。その他、スチームタービン40によって発生した動力は発電機41で電力に変換されるか、図示は省略するが、そのままファンやポンプの駆動に使用される。  The steam S1 generated in the boiler 30 is temporarily stored in the steam accumulator 31 and then sent to the steam turbine 40 to generate power and become low-temperature and low-pressure steam S2, which is sent to the dryer 10 as described above. It is done. Further, the steam containing the condensed water used in the dryer 10 is sent to the condenser 42, completely returned to the water W, pressurized by the pump P, and returned to the boiler 30 again. In addition, the motive power generated by the steam turbine 40 is converted into electric power by the generator 41 or is not shown, but is used as it is for driving a fan or a pump.

効果について説明すると、前記乾燥器10から排出されるガスG2は、その成分が主として廃棄物Wa中の水分からの水蒸気と空気Aとであって、そのまま支障なく焼却炉20へ導入可能であり、しかも、それに含まれる悪臭成分は導入された焼却炉20で燃焼し、無臭化され、そのまま大気中へ放出可能である。加熱媒体であるスチームS2は、乾燥器10が間接熱交換式であるため、排ガスG2と混合することなく、復水器42によって完全に水に戻され、ボイラ30への給水として再使用される。  Explaining the effect, the gas G2 discharged from the dryer 10 is mainly composed of water vapor and air A from the water in the waste Wa, and can be directly introduced into the incinerator 20 without any trouble. In addition, the malodorous component contained therein is burned in the introduced incinerator 20, is not brominated, and can be released into the atmosphere as it is. Steam S2, which is a heating medium, is returned to water completely by the condenser 42 without being mixed with the exhaust gas G2 and reused as water supply to the boiler 30 because the dryer 10 is an indirect heat exchange type. .

そのうえ、受熱側の廃棄物Waの周囲は、それと直接接触し、通過する空気Aによって発生した水蒸気が系外(焼却炉20)に持ち去られ、それによって水蒸気分圧が低減されるため、廃棄物Waの温度が高められなくても、乾燥推進力因子の一つである、廃棄物Waの表面の水蒸気圧との圧力差が増大し、燃焼用空気Aが導入されない場合に比較して乾燥速度が高い。従って、加熱側の条件が同等であれば、乾燥器10は小さくてよいか、又は乾燥度合が増大し、焼却炉20における水分除去の負担が軽減され、ボイラ30への給熱量が増大し、スチームタービン40の出力が増大する。  In addition, the periphery of the waste Wa on the heat receiving side is in direct contact with it, and the water vapor generated by the passing air A is taken out of the system (incinerator 20), thereby reducing the partial pressure of the water vapor. Even if the temperature of Wa is not increased, the pressure difference with the water vapor pressure on the surface of waste Wa, which is one of the driving factors of drying, is increased, and the drying speed is compared with the case where combustion air A is not introduced. Is expensive. Therefore, if the conditions on the heating side are the same, the dryer 10 may be small, or the degree of drying increases, the burden of moisture removal in the incinerator 20 is reduced, and the amount of heat supplied to the boiler 30 increases. The output of the steam turbine 40 increases.

上述のものとは別の実施態様について図2により説明すると、廃棄物Waの乾燥器110が、その加熱媒体として、スチームタービン40の排スチームS2の代わりにボイラ30の排ガスG1が用いられるよう構成されていることを除いて、他の構成は前述のものと略同じである。なお、前述の乾燥器10ではスチームS2が凝縮するのに対して、この乾燥器110では排ガスG1が相変化せず、減温する。そのため、伝熱性その他の違いからその構成も前述のものと若干異なるが、基本原理に違いはなく、作用効果も前述のものと略同じである。  An embodiment different from the above will be described with reference to FIG. 2. The waste Wa dryer 110 is configured such that the exhaust gas G1 of the boiler 30 is used as the heating medium instead of the exhaust steam S2 of the steam turbine 40. Except for the above, the other configurations are substantially the same as those described above. Note that the steam S2 condenses in the above-described dryer 10, whereas the exhaust gas G1 does not change in phase in the dryer 110, and the temperature is reduced. For this reason, the structure is slightly different from the above-described ones due to differences in heat transfer properties and the like, but there is no difference in the basic principle, and the operational effects are substantially the same as those described above.

違いを揚げれば、加熱媒体がスチームS2である場合、その分スチームタービン40の出力は若干減じ、復水器の負担が低減されるのに対して、加熱媒体がボイラ排ガスG1である場合、スチームタービン40の出力がそのまま保持されるとすれば、廃棄物Waの乾燥に振り向けられるボイラ排ガスG1の温度が低く、そのうえ、スチームの凝縮伝熱に比較して、加熱側の伝熱係数がかなり低いため、乾燥器110の必要伝熱面積が大きくなる。しかし、常圧であるため、構造が簡単であって、強度、シール等の制約は少ないという利点がある。  If the difference is raised, when the heating medium is steam S2, the output of the steam turbine 40 is slightly reduced and the burden on the condenser is reduced, whereas when the heating medium is the boiler exhaust gas G1, If the output of the steam turbine 40 is maintained as it is, the temperature of the boiler exhaust gas G1 directed to drying the waste Wa is low, and the heat transfer coefficient on the heating side is considerably higher than the condensation heat transfer of steam. Since it is low, the required heat transfer area of the dryer 110 becomes large. However, since it is a normal pressure, there is an advantage that the structure is simple and there are few restrictions such as strength and seal.

さらに、以上二つの態様の折衷されたものについて図3について説明する。すなわち、乾燥器210は、廃棄物Waについて上流側はボイラ30の排ガスG1が、また、下流側はスチームタービン40の排スチームS2がそれぞれ供給されているよう、その加熱媒体供給帯域が2分されている。それを除く残りの構成は以上2つの態様のそれと同じであり、従って基本原理に違いはなく、作用効果も略同じである。、  Further, FIG. 3 will be described with respect to the compromise of the above two aspects. That is, in the dryer 210, the heating medium supply zone is divided into two so that the waste gas Wa is supplied with the exhaust gas G1 of the boiler 30 on the upstream side and the exhaust steam S2 of the steam turbine 40 on the downstream side. ing. The rest of the configuration other than that is the same as that of the above two embodiments, so there is no difference in the basic principle, and the operational effects are also substantially the same. ,

違いを揚げると、(1)廃棄物Waの水分が高く、乾燥が容易な帯域では、伝熱性の低いボイラ30の排ガスG1が用いられ,また、廃棄物Waの水分が低く、乾燥し難い帯域では、伝熱性の高いスチームS2が用いられることによって、各帯域の廃棄物Waの乾燥速度が出来るだけ高くなるようなされているため、乾燥器210の伝熱面積が比較的小さいこと、(2)そのまま大気中へ廃棄され兼ねない、低温度レベルの、ボイラ30の排ガスG1の廃熱が有効利用され、その分スチームS2の使用が節約され、スチームタービン40の出力の低下が抑制されていることである。  When the difference is raised, (1) In the zone where the water content of the waste Wa is high and easy to dry, the exhaust gas G1 of the boiler 30 having low heat conductivity is used, and the water content of the waste Wa is low and difficult to dry. Then, by using steam S2 with high heat conductivity, the drying rate of the waste Wa in each zone is made as high as possible, so that the heat transfer area of the dryer 210 is relatively small, (2) The waste heat of the exhaust gas G1 of the boiler 30, which can be discarded as it is into the atmosphere, is effectively used, and the use of the steam S2 is saved correspondingly, and the reduction in the output of the steam turbine 40 is suppressed. It is.

次に本発明に係わる高水分可燃性廃棄物焼却装置を実施するための他の最良の形態について先ず図4により説明する。上述の実施の形態例とは異なる機器を揚げると、50はボイラ30の排ガスG1による間接熱交換式空気加熱器、310はその空気加熱器50によって加熱された燃焼用空気A1による直接熱交換式の乾燥器である。なお、スチームタービン40の排スチームS2が廃棄物Waの乾燥に使用されないため、スチームS1の持つエネルギは図示されない給湯その他の加熱用を除き、最大限動力に変換される。  Next, another best mode for carrying out the high moisture flammable waste incinerator according to the present invention will be described with reference to FIG. When a device different from the above-described embodiment is lifted, 50 is an indirect heat exchange type air heater by the exhaust gas G1 of the boiler 30, and 310 is a direct heat exchange type by the combustion air A1 heated by the air heater 50. It is a dryer. Since the exhaust steam S2 of the steam turbine 40 is not used for drying the waste Wa, the energy of the steam S1 is converted to maximum power except for hot water supply and other heating not shown.

作用について説明すると、間接熱交換式空気加熱器50を別に必要とするが、既存技術に基くものであって、実用上特に問題もなく、それによってボイラ30の排ガスG1の持つ顕熱が燃焼用空気Aの少なくとも一部に効果的に伝えられ、それによって加熱された燃焼空気A1が加熱媒体として、これも既存技術に基き、実用上特に問題もない直接熱交換式乾燥器310に導入され、廃棄物Waと直接接触し、それを効果的に乾燥する。  To explain the operation, an indirect heat exchange type air heater 50 is separately required, but it is based on the existing technology and has no practical problem, so that the sensible heat of the exhaust gas G1 of the boiler 30 is used for combustion. Combustion air A1 that is effectively transmitted to and heated by at least a part of the air A is introduced as a heating medium into the direct heat exchange dryer 310, which is also based on existing technology and has no practical problems, Direct contact with waste Wa and effectively dry it.

そのうえ、廃棄物Waと直接接触する加熱媒体は、空気加熱器50で加熱された空気A1であって、乾燥器310で、主として廃棄物Waからの水蒸気が加えられるだけで、そのまま支障なく燃焼用空気として焼却炉20へ導入可能であり、しかも、それに含まれる悪臭成分も導入された焼却炉20で燃焼し、無臭化され、大気中放出される。この乾燥器310は前述のように、既存技術に基くものであって、直接熱交換式であるため、構造が著しく簡単、且つ小さく、安価である。  In addition, the heating medium in direct contact with the waste Wa is the air A1 heated by the air heater 50, and only the water vapor from the waste Wa is mainly added to the dryer 310 by the dryer 310. It can be introduced into the incinerator 20 as air, and it burns in the incinerator 20 into which malodorous components contained therein are introduced, is not brominated, and is released into the atmosphere. As described above, the dryer 310 is based on the existing technology and is a direct heat exchange type, so that the structure is remarkably simple, small, and inexpensive.

次に他の実施態様について図5により説明すると、前述の空気加熱器50に代えて、スチームS2との間接熱交換式空気加熱器150が使用されていることを除き、他の構成は前述のものと略同じである。それによれば、空気加熱器150の加熱媒体の伝熱が、スチームの凝縮によるため、伝熱性に著しく優れていて、その伝熱面積が小さくなる。しかし、その分スチームタービン40の出力が低下すると共に、スチームS2の温度レベルが比較的低く、高い温度の空気が得られないと言う問題点はある。  Next, another embodiment will be described with reference to FIG. 5, except that the indirect heat exchange type air heater 150 with the steam S <b> 2 is used in place of the air heater 50 described above, the other configurations are the same as those described above. It is almost the same as the thing. According to this, since the heat transfer of the heating medium of the air heater 150 is due to the condensation of steam, the heat transfer property is remarkably excellent, and the heat transfer area is reduced. However, there is a problem that the output of the steam turbine 40 is reduced correspondingly, the temperature level of the steam S2 is relatively low, and high-temperature air cannot be obtained.

3番目の態様について図6により説明すると、空気加熱器250は、その加熱媒体として、ボイラ30の排ガスG1とスチームタービン40の排スチームS2とが併用されるよう構成されている。それによれば、空気の温度がまだ低い前半の低温域はスチームS2により、後半の高温域はボイラ排ガスG1により加熱されるよう構成されていて、図5に示すものに比較して、伝熱面積が若干増大するが、スチームタービン40の出力低下や高い温度の空気が得られないと言う前述の問題点がかなり改善される。  The third aspect will be described with reference to FIG. 6. The air heater 250 is configured so that the exhaust gas G1 of the boiler 30 and the exhaust steam S2 of the steam turbine 40 are used in combination as the heating medium. According to this, the first low temperature region where the temperature of the air is still low is configured to be heated by steam S2, and the second high temperature region is heated by the boiler exhaust gas G1, and compared with that shown in FIG. However, the above-mentioned problem that the output of the steam turbine 40 is reduced and high-temperature air cannot be obtained is considerably improved.

本発明の装置の最良の形態を示す系統図である。It is a systematic diagram which shows the best form of the apparatus of this invention. 図1の別の実施態様を示す系統図である。It is a systematic diagram which shows another embodiment of FIG. 図1の3番目の実施態様を示す系統図である。It is a systematic diagram which shows the 3rd embodiment of FIG. 本発明の装置の最良の形態の他の例を示す系統図である。It is a systematic diagram which shows the other example of the best form of the apparatus of this invention. 図4の別の実施態様を示す系統図である。It is a systematic diagram which shows another embodiment of FIG. 図4の3番目の実施態様を示す系統図である。It is a systematic diagram which shows the 3rd embodiment of FIG.

符号の説明Explanation of symbols

10 乾燥器
110 乾燥器
210 乾燥器
310 乾燥器
20 焼却炉
30 ボイラ
31 スチームアキュムレータ
40 スチームタービン
41 発電機
42 復水器
50 空気加熱器
150 空気加熱器
250 空気加熱器
A 空気
A1 加熱された空気
As 灰
Cy サイクロン
F ファン
G1 排ガス
G2 排ガス
P ポンプ
S1 スチーム
S2 スチーム
W 水
Wa 廃棄物
DESCRIPTION OF SYMBOLS 10 Dryer 110 Dryer 210 Dryer 310 Dryer 20 Incinerator 30 Boiler 31 Steam accumulator 40 Steam turbine 41 Generator 42 Condenser 50 Air heater 150 Air heater 250 Air heater A Air A1 Heated air As Ash Cy Cyclone F Fan G1 Exhaust gas G2 Exhaust gas P Pump S1 Steam S2 Steam W Water Wa Waste

Claims (2)

焼却炉(20)の廃熱を回収してスチーム(S1)を発生するボイラ(30)と,そのスチーム(S1)によって駆動されるスチームタービン(40)と,を備えた高水分可燃性廃棄物の焼却装置であって、
廃棄物(Wa)が、前記スチームタービン(40)から排出されたスチーム(S2)又は/及び前記ボイラ(30)の排ガス(G1)と間接熱交換することによって乾燥されるよう構成された乾燥器(10,110,210)を備えており、且つその乾燥器(10,110,210)は、燃焼用空気(A)の少なくとも一部が、前記焼却炉(20)へ供給されるに先立って廃棄物(Wa)と直接接触し、通過するよう構成されている
ことを特徴とする高水分可燃性廃棄物の焼却装置。
High moisture flammable waste comprising a boiler (30) that recovers waste heat from an incinerator (20) and generates steam (S1), and a steam turbine (40) driven by the steam (S1) Incinerator of
A dryer configured to dry waste (Wa) by indirect heat exchange with steam (S2) discharged from the steam turbine (40) and / or exhaust gas (G1) of the boiler (30). (10, 110, 210), and the dryer (10, 110, 210) includes at least a part of the combustion air (A) before being supplied to the incinerator (20). An incinerator for high moisture flammable waste, characterized in that it is configured to directly contact and pass through waste (Wa).
焼却炉(20)の廃熱を回収してスチーム(S1)を発生するボイラ(30)と,そのスチーム(S1)によって駆動されるスチームタービン(40)と,を備えた高水分可燃性廃棄物の焼却装置であって、
燃焼用空気(A)の少なくとも一部が、前記スチームタービン(40)から排出されたスチーム(S2)又は/及び前記ボイラ(30)の排ガス(G1)と間接熱交換するよう構成された空気加熱器(50,150,250)、及びその空気加熱器(50,150,250)で加熱された空気(A1)が、前記焼却炉(20)へ供給されるに先立って、廃棄物(Wa)と直接熱交換し、その廃棄物(Wa)を乾燥するよう構成された乾燥器(310)を備えている
ことを特徴とする高水分可燃性廃棄物の焼却装置。
High moisture flammable waste comprising a boiler (30) that recovers waste heat from an incinerator (20) and generates steam (S1), and a steam turbine (40) driven by the steam (S1) Incinerator of
Air heating configured so that at least part of the combustion air (A) indirectly exchanges heat with the steam (S2) discharged from the steam turbine (40) and / or the exhaust gas (G1) of the boiler (30). Prior to supplying the incinerator (20) with the air (A1) heated by the vessel (50, 150, 250) and the air heater (50, 150, 250), the waste (Wa) A high-moisture flammable waste incinerator comprising a dryer (310) configured to directly heat-exchange and dry the waste (Wa).
JP2004077189A 2004-02-18 2004-02-18 Incineration system for high moisture combustible waste, and its device Pending JP2005233594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004077189A JP2005233594A (en) 2004-02-18 2004-02-18 Incineration system for high moisture combustible waste, and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004077189A JP2005233594A (en) 2004-02-18 2004-02-18 Incineration system for high moisture combustible waste, and its device

Publications (1)

Publication Number Publication Date
JP2005233594A true JP2005233594A (en) 2005-09-02

Family

ID=35016737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077189A Pending JP2005233594A (en) 2004-02-18 2004-02-18 Incineration system for high moisture combustible waste, and its device

Country Status (1)

Country Link
JP (1) JP2005233594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527433A (en) * 2007-05-18 2010-08-12 シゲルゴク,ハッサン Method and plant for preheating waste to incinerate waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527433A (en) * 2007-05-18 2010-08-12 シゲルゴク,ハッサン Method and plant for preheating waste to incinerate waste
EP2167877B1 (en) * 2007-05-18 2019-10-30 Hasan Sigergok Plant for incinerating waste with preheating of the latter

Similar Documents

Publication Publication Date Title
TWI381143B (en) Material Heat Treatment Separation and Energy Recovery System
JP2006218383A (en) High water content organic waste treatment system
JP2008201964A (en) Process and system for producing solid fuel
JP5148809B2 (en) Method and apparatus for converting sludge into fuel
JP4155898B2 (en) High moisture waste incineration facility equipped with gas turbine
JP5502698B2 (en) Heat treatment equipment and method
JP2005098552A5 (en)
JP5893964B2 (en) Sludge drying system
JP2005321131A (en) Sludge incinerating system
JP4961156B2 (en) Effective use of waste heat from incineration
JP2004309079A (en) White smoke preventing device for combustion facility
JPS6261861B2 (en)
RU2169889C2 (en) Method of treatment of moisture-laden fuel and device for realization of this method
JP2009228958A (en) Gasification power generating device
JP2005233594A (en) Incineration system for high moisture combustible waste, and its device
JP2006207960A (en) Highly wet object treating device and method
JP2005200522A (en) Method and system for carbonizing treatment of highly hydrous organic material and method for preventing white smoke
JP5734001B2 (en) Sewage sludge dry gasifier
CN209989236U (en) Sludge drying treatment system
JP4241578B2 (en) Method and apparatus for burning hydrous waste
JP5591268B2 (en) Heat treatment equipment and method
JP7102163B2 (en) Plant, biomass fuel production system and biomass power generation equipment, plant operation method and biomass fuel production method
JP2007238946A (en) Carbonization treatment apparatus for high water content organic material
JPH11200882A (en) Sludge power generation equipment
JP4449704B2 (en) Combustion method and apparatus