JP2005233531A - Multi-pipe once-through boiler apparatus - Google Patents

Multi-pipe once-through boiler apparatus Download PDF

Info

Publication number
JP2005233531A
JP2005233531A JP2004044592A JP2004044592A JP2005233531A JP 2005233531 A JP2005233531 A JP 2005233531A JP 2004044592 A JP2004044592 A JP 2004044592A JP 2004044592 A JP2004044592 A JP 2004044592A JP 2005233531 A JP2005233531 A JP 2005233531A
Authority
JP
Japan
Prior art keywords
steam
boiler
water
pipe
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004044592A
Other languages
Japanese (ja)
Other versions
JP4332851B2 (en
Inventor
Kosuke Shimura
幸祐 志村
Masaru Endo
優 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004044592A priority Critical patent/JP4332851B2/en
Publication of JP2005233531A publication Critical patent/JP2005233531A/en
Application granted granted Critical
Publication of JP4332851B2 publication Critical patent/JP4332851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-pipe once-through boiler apparatus manufacturable at low cost by simplifying the apparatus, saving space, and also saving a fuel in use to save energy. <P>SOLUTION: This multi-pipe once-through boiler apparatus comprises a plurality of multi-pipe once-through boilers 1 having steam separators 5, steam pipes 12 formed by collectively connecting steam-takeout pipes 11 to the steam separators 5, and wet component separators 13 installed in the steam pipes 12. Desirably, feed water to the boilers 1 is heated by a boiler water separated by the wet component separators 13. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、多管式貫流ボイラー装置に関し、詳しくは、複数基からなる多管式貫流ボイラー装置に関する。   The present invention relates to a multi-tube once-through boiler apparatus, and more particularly to a multi-tube multi-flow boiler apparatus.

水管群を加熱する多管式貫流ボイラーにおいては、水管を側面から加熱すると、バーナからの距離により熱負荷が異なり、バーナに近い水管ではボイラー水が持ち上げられ、該ボイラー水が蒸気とともにが取出される現象、いわゆるキャリーオーバー現象が生じるため水管内の水位を十分に高めることができない、という問題が残されていた。前記キャリーオーバー現象は、ボイラーの起動時や運転負荷に変動がある場合、あるいは蒸気要求量が蒸気発生量を上回る場合等にも生じることがあった。   In a multi-tube once-through boiler that heats the water tube group, when the water tube is heated from the side, the heat load varies depending on the distance from the burner, and the boiler water is lifted in the water tube close to the burner, and the boiler water is taken out together with the steam. The so-called carry-over phenomenon occurs, so that the water level in the water pipe cannot be raised sufficiently. The carry-over phenomenon may occur when the boiler starts up, when the operating load varies, or when the required steam amount exceeds the generated steam amount.

前記キャリーオーバー現象は、加湿のために蒸気を直接使用する場合には、ボイラー水がユースポイントへ移行するため安全性の面で好ましくなく、また、生産プロセスで蒸気を直接使用している場合にも前記ボイラー水が製品や生産設備等に悪影響を及ぼすおそれがあるため好ましくない。   The carry-over phenomenon is not preferable in the case of using steam directly for humidification because the boiler water moves to the point of use, which is not preferable in terms of safety, and when the steam is directly used in the production process. However, the boiler water is not preferable because it may adversely affect products and production facilities.

従来、前記キャリーオーバー現象の発生を防止するため、それぞれのボイラーに気水分離器が設けられている。さらに一つの気水分離器では気液分離が十分の行われず、キャリーオーバー現象が生じる可能性がある場合の対策として、ボイラーに前記気水分離器を二重に設けることが提案されている。
特開平8―49805号公報 特開2000−317213号公報
Conventionally, in order to prevent the occurrence of the carry-over phenomenon, each boiler is provided with a steam separator. Furthermore, as a countermeasure against a case where gas-liquid separation is not sufficiently performed in one gas-water separator and a carry-over phenomenon may occur, it has been proposed to provide the boiler with the gas-water separator twice.
JP-A-8-49805 JP 2000-317213 A

本発明は、個々のボイラーに気水分離器を二重に設けることなく、気液分離器を有する複数基の多管式貫流ボイラーの更なる気液分離を一つの湿り成分分離器にて行い、装置の簡素化及び省スペース化によるコストダウンを図った多管式貫流ボイラー装置を提供することを目的とする。   The present invention performs a further gas-liquid separation of a plurality of multi-tube once-through boilers having gas-liquid separators without using a double steam-water separator in each boiler with a single wet component separator. An object of the present invention is to provide a multi-tube type once-through boiler apparatus that achieves cost reduction by simplifying the apparatus and saving space.

また、本発明は、前記湿り成分分離器で分離されたボイラー水(ドレン)の熱を回収してボイラーへの給水の加熱を行い、燃料の節減を図り、省エネルギーによるコストダウンを図った多管式貫流ボイラー装置を提供することを目的とする。   Further, the present invention provides a multi-tube which recovers heat of boiler water (drain) separated by the wet component separator and heats water supplied to the boiler to save fuel and reduce costs by saving energy. An object is to provide a cross-flow boiler device.

前記課題を解決するため、本発明に係る多管式貫流ボイラー装置は、気水分離器を有する複数基の多管式貫流ボイラーと、前記気水分離器のそれぞれ蒸気取出管が連結集合された蒸気配管と、該蒸気配管に設けられた湿り成分分離器と、からなることを特徴とする(請求項1)。   In order to solve the above-mentioned problems, a multi-tube once-through boiler apparatus according to the present invention includes a plurality of multi-tube once-through boilers having a steam separator, and steam outlet pipes of the steam / water separator connected to each other. It consists of steam piping and the wet component separator provided in this steam piping (Claim 1).

前記本発明の多管式貫流ボイラー装置は、複数基の多管式貫流ボイラーにそれぞれ設けられた気水分離器の蒸気取出管が一本の蒸気配管に連結集合させられ、該蒸気配管の適位置に湿り成分分離器が設けられる。なお、前記湿り成分分離器は、蒸気の用途、設置スペース等の事情に合わせて蒸気供給経路の任意の位置に設けられる。   In the multi-tube once-through boiler apparatus of the present invention, the steam take-out pipes of the steam separators provided respectively in a plurality of multi-tube once-through boilers are connected and assembled into a single steam pipe, and A wet component separator is provided at the location. In addition, the said wet component separator is provided in the arbitrary positions of a steam supply path according to circumstances, such as a use of steam, installation space.

また、前記本発明における前記湿り成分分離器は、サイクロン方式、フィルター方式等、気液を分離することができる任意の機器であってよい。なお、前記複数基とは二以上の任意の基数を意味する。   The wet component separator in the present invention may be any device capable of separating gas and liquid, such as a cyclone method and a filter method. The plurality of groups means an arbitrary number of two or more.

前記本発明によれば、個々のボイラーに二重に気水分離器を設ける必要がなく、複数の多管式貫流ボイラーから発生した蒸気中の湿り成分を集約して分離することができ、装置の簡素化、省スペース化によるコストダウンが可能である。   According to the present invention, it is not necessary to provide a double steam separator in each boiler, and the wet components in steam generated from a plurality of multi-tube once-through boilers can be collected and separated, The cost can be reduced through simplification and space saving.

本願の他の発明は、気水分離器を有する複数基の多管式貫流ボイラーと、前記気水分離器のそれぞれの蒸気取出管が連結集合させられた蒸気配管と、該蒸気配管に設けられた湿り成分分離器と、前記ボイラーへの給水タンク内を通過させられた前記湿り成分分離器のドレン管と、からなることを特徴とする(請求項2)。   Another invention of the present application is provided with a plurality of multi-tube type once-through boilers having a steam separator, a steam pipe in which steam outlet pipes of the steam separator are connected and assembled, and the steam pipe. A wet component separator and a drain pipe of the wet component separator passed through a water supply tank to the boiler (claim 2).

上記発明によれば、前記湿り成分分離器で分離されたボイラー水(ドレン)の熱を回収し、給水との熱交換によりボイラーへの給水を加熱することができ、使用燃料の節減を図り、省エネルギーによるコストダウンが可能である。なお、前記熱交換は、近年、脱ヒドラジン処理のために有機系防食剤や有機系脱酸素剤及び各種アミン等がボイラー水の処理に用いられた場合に有効である。すなわち、給水タンク内の温度の低い給水に、前記湿り成分分離器で分離されたボイラー水(ドレン)を供給した場合に、前記給水タンク内にスライムが生成されてストレーナや配管の閉塞を引き起こす懸念がある場合等に有効である。   According to the above invention, the heat of boiler water (drain) separated by the wet component separator can be recovered, and the feed water to the boiler can be heated by heat exchange with the feed water, thereby reducing the fuel used. Cost reduction by energy saving is possible. The heat exchange is effective in recent years when an organic anticorrosive, an organic oxygen scavenger, various amines, etc. are used for boiler water treatment for the dehydrazine treatment. That is, when boiler water (drain) separated by the wet component separator is supplied to water supply having a low temperature in the water supply tank, there is a concern that slime is generated in the water supply tank and the strainer or piping is blocked. It is effective when there is.

本願のさらに他の発明は、気水分離器を有する複数基の多管式貫流ボイラーと、前記気水分離器のそれぞれの蒸気取出管が連結集合させられた蒸気配管と、該蒸気配管に設けられた湿り成分分離器と、前記ボイラーへの給水タンクに連結された前記湿り成分分離器のドレン管と、からなることを特徴とする(請求項3)。   Still another invention of the present application is provided with a plurality of multi-tube type once-through boilers having a steam separator, steam pipes in which steam outlet pipes of the steam separators are connected and assembled, and the steam pipes. And a drain pipe of the wet component separator connected to a water supply tank to the boiler (Claim 3).

上記発明も、前記湿り成分分離器で分離されたボイラー水(ドレン)の熱を回収し、ボイラーへの給水を加熱することができ、使用燃料の節減を図り、省エネルギーによるコストダウンが可能である。なお、本発明は、前記湿り成分分離器で分離された前記ボイラー水(ドレン)を、直接前記ボイラーへの給水に混合するため、ボイラー水が無機系防食剤処理等されて、前記湿り成分分離器で分離されたボイラー水(ドレン)と混合した場合にもスライム生成のおそれがない場合に採用される。   Also in the above invention, the heat of the boiler water (drain) separated by the wet component separator can be recovered, the water supplied to the boiler can be heated, the fuel used can be reduced, and the cost can be reduced by saving energy. . In the present invention, since the boiler water (drain) separated by the wet component separator is directly mixed with the feed water to the boiler, the boiler water is treated with an inorganic anticorrosive agent, and the wet component separation is performed. It is used when there is no risk of slime formation even when mixed with boiler water (drain) separated by a vessel.

前記各発明の実施の一形態は、湿り成分分離器を蒸気配管が連結される一次蒸気ヘッダーの手前位置に設けたことを特徴とする(請求項4)。この実施の一形態によれば、複数基の多管式貫流ボイラーから発生し、前記蒸気配管を通って一次蒸気ヘッダーに至る全ての蒸気の湿り成分が、前記湿り成分分離器によって除去され、前記一次蒸気ヘッダーにおいて分岐された各系統には、全て湿り成分が除去された蒸気が供給される。   Each embodiment of the invention is characterized in that the wet component separator is provided at a position before the primary steam header to which the steam pipe is connected (Claim 4). According to one embodiment of this, all the wet components of steam generated from a plurality of multi-tube once-through boilers and reaching the primary steam header through the steam pipe are removed by the wet component separator, Each system branched in the primary steam header is supplied with steam from which all wet components have been removed.

前記各発明の他の実施の一形態は、湿り成分分離器を蒸気配管が連結された一次蒸気ヘッダーから分岐された系統管に設けたことを特徴とする(請求項5)。この実施の一形態によれば、前記一次蒸気ヘッダーに集められた蒸気のうち、高い純度が要求される系統管の湿り成分が前記湿り成分分離器によって除去され、高純度の蒸気を必要とする系統管に送ることができる。   In another embodiment of the invention, the wet component separator is provided in a system pipe branched from a primary steam header to which a steam pipe is connected (Claim 5). According to this embodiment, the wet component of the system pipe that requires high purity out of the vapor collected in the primary steam header is removed by the wet component separator, and high purity steam is required. Can be sent to the system pipe.

本願各発明によれば、装置の簡素化及び省スペース化によるコストダウン、さらには燃料の節減を図り、省エネルギーによるコストダウンが可能である。   According to each invention of the present application, it is possible to reduce costs by simplifying the apparatus and saving space, further reducing fuel consumption, and reducing costs by saving energy.

以下、添付図面を参照して、本発明を実施するための最良の形態について説明する。図1において、1は、それぞれ上部寄せ2と下部寄せ3間に水管群4が設けられた多管式貫流ボイラーである。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. In FIG. 1, reference numeral 1 denotes a multi-tube once-through boiler in which a water pipe group 4 is provided between an upper gather 2 and a lower gather 3.

前記それぞれの多管式貫流ボイラー1の側部には、それぞれ気水分離器5が設けられており、該気水分離器5は、連結管6によって前記上部寄せ2と連結され、さらに降水管7によって前記下部寄せ3と結結されている。さらに前記下部寄せ3には給水タンク8から導かれた給水管9が連結されている。図中、10は前記水管群4を側面から加熱するバーナである。   A steam / water separator 5 is provided at each side of each multi-tube once-through boiler 1, and the steam / water separator 5 is connected to the top shifter 2 by a connecting pipe 6, and further, a downcomer pipe 7 is connected to the lower alignment 3. Further, a water supply pipe 9 led from a water supply tank 8 is connected to the lower gather 3. In the figure, 10 is a burner for heating the water tube group 4 from the side.

本発明では、前記それぞれの多管式貫流ボイラー1にそれぞれ設けられた気水分離器5の蒸気取出管11が、一本の蒸気配管12に連結集合させられ、該蒸気配管12に湿り成分分離器13が設けられる。そして、前記湿り成分分離器13によって湿り気を除去された蒸気が配管14を介して一次蒸気ヘッダー15へ供給される。   In the present invention, the steam extraction pipes 11 of the steam separator 5 provided in each of the multi-tube once-through boilers 1 are connected and assembled to a single steam pipe 12, and wet component separation is performed in the steam pipe 12. A vessel 13 is provided. Then, the steam from which the moisture is removed by the wet component separator 13 is supplied to the primary steam header 15 through the pipe 14.

さらに、前記湿り成分分離器13にドレン管16が設けられ、該ドレン管16が、前記給水タンク8内を通過させられて該給水タンク8内の水を加熱する熱交換器17に形成されている。   Furthermore, a drain pipe 16 is provided in the wet component separator 13, and the drain pipe 16 is formed in a heat exchanger 17 that passes through the water supply tank 8 and heats the water in the water supply tank 8. Yes.

前記構成の多管式貫流ボイラー装置では、前記給水タンク8から前記下部寄せ3に供給された水は、前記バーナ10によって前記水管群4が加熱されることにより、ボイラー水に含まれた水気液混合水となって前記上部寄せ2、前記連絡管6を通り、前記気水分離器5へ送られる。そして、前記気水分離器5により気液分離が行われ、分離されたボイラー水は降水管7を通って前記下部寄せ3に戻される。   In the multi-tube type once-through boiler apparatus having the above-described configuration, the water supplied from the water supply tank 8 to the lower header 3 is heated by the water tube group 4 by the burner 10, so that the water-gas liquid contained in the boiler water. It becomes mixed water, passes through the upper header 2 and the connecting pipe 6 and is sent to the steam separator 5. Gas-liquid separation is performed by the gas-water separator 5, and the separated boiler water is returned to the lower gather 3 through the downcomer 7.

前記多管式貫流ボイラー1に負荷変動がある場合などに、前記気水分離器5によって、気液分離が十分に行われず、蒸気と分離しきれないボイラー水が蒸気とともに前記蒸気取出管11から前記蒸気配管12に供給されると、前記湿り成分分離器13に至り、該湿り成分分離器13において気液分離が行われ、純度の高い蒸気が前記配管14を通り、前記一次蒸気ヘッダー15へ送られて必要とする系統に分岐させられてユースポイント(図示せず)へ送られる。   When there is a load fluctuation in the multi-tube once-through boiler 1, the steam-water separator 5 does not sufficiently perform gas-liquid separation, and the boiler water that cannot be separated from the steam is discharged from the steam outlet pipe 11 together with the steam. When supplied to the steam pipe 12, the wet component separator 13 is reached, gas-liquid separation is performed in the wet component separator 13, and high-purity steam passes through the pipe 14 to the primary steam header 15. It is sent to a necessary system and sent to a use point (not shown).

一方、前記湿り成分分離器13で分離されたボイラー水(ドレン)は、前記ドレン管16から排出されるが、該ドレン管16が前記給水タンク8内を通過させられて熱交換器17に形成されていることから、前記給水タンク8内の給水との熱交換が行われ、給水タンク8内の給水が加熱される。   On the other hand, the boiler water (drain) separated by the wet component separator 13 is discharged from the drain pipe 16, and the drain pipe 16 is passed through the water supply tank 8 and formed in the heat exchanger 17. Therefore, heat exchange with the water supply in the water supply tank 8 is performed, and the water supply in the water supply tank 8 is heated.

前記のごとく、本発明によれば、負荷変動などにより多量のボイラー水がキャリーオーバーした場合にも、前記湿り成分分離装置13によりキャリーオーバーしたボイラー水を分離することができ、ボイラー水を含まない純度の高い蒸気を安定供給することができとともに、前記湿り成分分離装置13により分離したボイラー水(ドレン)を給水タンク8内において、給水と熱交換することにより熱回収を行い熱損失を低減することができる。   As described above, according to the present invention, even when a large amount of boiler water is carried over due to load fluctuation or the like, the boiler water carried over by the wet component separator 13 can be separated and does not include boiler water. Steam of high purity can be stably supplied, and boiler water (drain) separated by the wet component separator 13 is heat-exchanged with the feed water in the feed water tank 8 to recover heat and reduce heat loss. be able to.

以下に、図1を参考に具体的実施例について述べる。   A specific embodiment will be described below with reference to FIG.

ボイラー:最大蒸発量 2.0t/h × 4基
給水量 :1〜8t/h
総給水量:3460t/month
ブロー率:10%
燃料 :A重油
ボイラー効率:90%
運転方式:自動台数制御
常用圧力:0.5〜0.7MPa
前記多管式貫流ボイラー装置において、キャリーオーバーしたボイラー水流量を実測したところ、常時、100L/h以上のキャリーオーバーが確認された(キャリーオーバー率は平均6%)。
Boiler: Maximum evaporation 2.0t / h x 4 units Water supply: 1-8t / h
Total water supply: 3460t / month
Blow rate: 10%
Fuel: Heavy oil A Boiler efficiency: 90%
Operation method: Automatic number control Normal pressure: 0.5-0.7MPa
In the multi-tube once-through boiler apparatus, when the carry-over boiler water flow rate was measured, a carry-over of 100 L / h or more was always confirmed (carry-over rate was 6% on average).

図1に示すように、湿り成分分離器13を、前記一次蒸気ヘッダー15より手前位置の配管14に設置し、キャリーオーバーしたボイラー水を分離した結果、キャリーオーバーしたボイラー水の96%以上を、湿り成分分離器13によって分離することが確認された。なお、前記湿り成分分離器13はサイクロン式を採用した。   As shown in FIG. 1, the wet component separator 13 is installed in the pipe 14 in front of the primary steam header 15 and the boiler water that has been carried over is separated. As a result, 96% or more of the boiler water that has carried over is obtained. Separation by the wet component separator 13 was confirmed. The wet component separator 13 employs a cyclone type.

なお、分離したボイラー水は、有機系防食剤による水処理であり、給水温度が60℃未満であり、スライム生成のおそれがあったため、熱交換器17によりボイラー水と給水間の熱交換を行って熱回収を図った。その結果、ボイラー水の温度は約100℃低下し、交換した熱量から使用燃料の節約量を計算すると下記の通りであった。   The separated boiler water is a water treatment with an organic anticorrosive agent, and the feed water temperature is less than 60 ° C., which may cause slime formation. Therefore, heat exchange between the boiler water and the feed water is performed by the heat exchanger 17. Heat recovery. As a result, the temperature of the boiler water decreased by about 100 ° C., and the amount of fuel used was calculated from the amount of heat exchanged as follows.

100×3460×0.9×0.06×0.96÷(90/100×10000)=2.0t/month………(式1)
上記式1において、100=低下温度、3460=総給水量(/h)×分離器効率(96%)、0.9=1−(ブロー率/100)、0.06=キャリーオーバー率、0.96=分離効率、90/100=燃焼効率、10000=燃料の低発熱量である。
100 × 3460 × 0.9 × 0.06 × 0.96 ÷ (90/100 × 10000) = 2.0 t / month (Equation 1)
In the above formula 1, 100 = reduction temperature, 3460 = total water supply amount (/ h) × separator efficiency (96%), 0.9 = 1− (blow rate / 100), 0.06 = carry over rate, 0 .96 = separation efficiency, 90/100 = combustion efficiency, 10000 = low heating value of fuel.

図2に、他の実施の一形態が示されている。この実施の一形態が、前記図1の実施の一形態と異なるところは、前記湿り成分分離器13を、前記一次蒸気ヘッダー15から分岐された系統管18に設けた点である。なお、その他の部分には、図1と同様の符号を付してある。この実施の一形態によれば、一次蒸気ヘッダー15から、特に高い蒸気純度が要求される系統に集中して湿り成分が除去され、ボイラー水を含まない純度の高い蒸気を送ることができる。   FIG. 2 shows another embodiment. This embodiment is different from the embodiment of FIG. 1 in that the wet component separator 13 is provided in a system pipe 18 branched from the primary steam header 15. The other parts are denoted by the same reference numerals as in FIG. According to this embodiment, the wet components are removed from the primary steam header 15 in a system that requires particularly high steam purity, and steam with high purity that does not contain boiler water can be sent.

図3に、さらに他の実施の一形態が示されている。この実施の一形態が、前記図1及び図2の実施の一形態と異なるところは、前記湿り成分分離器13の前記ドレン管16を前記給水タンク8に連結し、前記湿り成分分離器13で分離されたボイラー水(ドレン)を、前記給水タンク8内の給水に直接供給及び混合して熱及び水を回収する構成である。その他の部分には、図1及び図2と同様の符号を付してある。なお、この実施の一形態は、ボイラー水が無機系防食処理等されて、前記湿り成分分離器で分離されたボイラー水(ドレン)と混合した場合にもスライム生成のおそれがない場合に採用される。   FIG. 3 shows still another embodiment. The embodiment differs from the embodiment of FIGS. 1 and 2 in that the drain pipe 16 of the wet component separator 13 is connected to the water supply tank 8, and the wet component separator 13 The separated boiler water (drain) is directly supplied to and mixed with the feed water in the feed water tank 8 to recover heat and water. Other parts are denoted by the same reference numerals as those in FIGS. One embodiment of this embodiment is adopted when the boiler water is subjected to an inorganic anticorrosion treatment and mixed with the boiler water (drain) separated by the wet component separator, and there is no risk of slime formation. The

なお、前記図3の実施の一形態においても、前記図2の実施の一形態と同様に、前記湿り成分分離器13を、前記一次蒸気ヘッダー15からの分岐された系統管に設けることができる。   In the embodiment of FIG. 3 as well, the wet component separator 13 can be provided in a branched system pipe from the primary steam header 15 as in the embodiment of FIG. .

本発明の実施の一形態にかかる多管式貫流ボイラー装置の概略図である。1 is a schematic view of a multitubular once-through boiler apparatus according to an embodiment of the present invention. 本願発明の他の実施の一形態を示す概略図である。It is the schematic which shows other one Embodiment of this invention. さらに他の実施の一形態を示す概略図である。It is the schematic which shows other one Embodiment.

符号の説明Explanation of symbols

1 多管式貫流ボイラー
5 気水分離器
8 給水タンク
11 蒸気取出管
12 蒸気配管
13 湿り成分分離器
15 一次蒸気ヘッダー
16 ドレン管
DESCRIPTION OF SYMBOLS 1 Multi-tube type once-through boiler 5 Steam-water separator 8 Water supply tank 11 Steam extraction pipe 12 Steam piping 13 Wet component separator 15 Primary steam header 16 Drain pipe

Claims (5)

気水分離器を有する複数基の多管式貫流ボイラーと、前記気水分離器のそれぞれの蒸気取出管が連結集合させられた蒸気配管と、該蒸気配管に設けられた湿り成分分離器と、からなることを特徴とする多管式貫流ボイラー装置。 A plurality of multi-tube once-through boilers having a steam / water separator, a steam pipe in which steam outlet pipes of the steam / water separator are connected and assembled, a wet component separator provided in the steam pipe, A multi-tube type once-through boiler device comprising: 気水分離器を有する複数基の多管式貫流ボイラーと、前記気水分離器のそれぞれの蒸気取出管が連結集合させられた蒸気配管と、該蒸気配管に設けられた湿り成分分離器と、前記ボイラーへの給水タンク内を通過させられた前記湿り成分分離器のドレン管と、からなることを特徴とする多管式貫流ボイラー装置。 A plurality of multi-tube once-through boilers having a steam / water separator, a steam pipe in which steam outlet pipes of the steam / water separator are connected and assembled, a wet component separator provided in the steam pipe, A multi-tube type once-through boiler apparatus comprising: a drain pipe of the wet component separator passed through a water supply tank to the boiler. 気水分離器を有する複数基の多管式貫流ボイラーと、前記気水分離器のそれぞれの蒸気取出管が連結集合させられた蒸気配管と、該蒸気配管に設けられた湿り成分分離器と、前記ボイラーへの給水タンクに連結された前記湿り成分分離器のドレン管と、からなることを特徴とする多管式貫流ボイラー装置。 A plurality of multi-tube once-through boilers having a steam / water separator, a steam pipe in which steam outlet pipes of the steam / water separator are connected and assembled, a wet component separator provided in the steam pipe, A multi-tube type once-through boiler device comprising: a drain pipe of the wet component separator connected to a water supply tank to the boiler. 湿り成分分離器を蒸気配管が連結される一次蒸気ヘッダーの手前位置に設けたことを特徴とする請求項1、2又は3に記載の多管式貫流ボイラー装置。 The multi-tube type once-through boiler apparatus according to claim 1, 2 or 3, wherein the wet component separator is provided at a position before the primary steam header to which the steam pipe is connected. 湿り成分分離器を蒸気配管が連結された一次蒸気ヘッダーから分岐された系統管に設けたことを特徴とする請求項1、2又は3に記載の多管式貫流ボイラー装置。 The multi-tube type once-through boiler apparatus according to claim 1, 2 or 3, wherein the wet component separator is provided in a system pipe branched from a primary steam header to which a steam pipe is connected.
JP2004044592A 2004-02-20 2004-02-20 Multi-tube once-through boiler Expired - Fee Related JP4332851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004044592A JP4332851B2 (en) 2004-02-20 2004-02-20 Multi-tube once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004044592A JP4332851B2 (en) 2004-02-20 2004-02-20 Multi-tube once-through boiler

Publications (2)

Publication Number Publication Date
JP2005233531A true JP2005233531A (en) 2005-09-02
JP4332851B2 JP4332851B2 (en) 2009-09-16

Family

ID=35016676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004044592A Expired - Fee Related JP4332851B2 (en) 2004-02-20 2004-02-20 Multi-tube once-through boiler

Country Status (1)

Country Link
JP (1) JP4332851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593563B2 (en) 2011-10-05 2017-03-14 Statoil Petroleum As Method and apparatus for generating steam for the recovery of hydrocarbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593563B2 (en) 2011-10-05 2017-03-14 Statoil Petroleum As Method and apparatus for generating steam for the recovery of hydrocarbon

Also Published As

Publication number Publication date
JP4332851B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
CN104713058B (en) Self-deoxidization waste heat boiler suitable for sulfur-containing fuel
US9476583B2 (en) Recovery system of waste heat from flue gas
EP1728919B1 (en) Arrangement in recovery boiler
JP2009008365A (en) Steam power plant
KR20130143721A (en) Method and configuration to reduce fatigue in steam drums
TW201610366A (en) Coal fired oxy plant with heat integration
US5878675A (en) Flue gas desulfurizer, boiler equipment and thermal electric power generation equipment
RU2403522C2 (en) Method for heating and/or evaporation of organic medium and heat exchanging unit for extraction of heat from flow of hot gas
KR100776332B1 (en) collecting exhaust heat system of Steam boiler
CN105648141A (en) System and process for recycling converter low-temperature section flue gas waste heat
JP2006275410A (en) Boiler device
CN201429062Y (en) Continuous pollution discharge energy-saving device for industrial boiler
JP4332851B2 (en) Multi-tube once-through boiler
WO2012042107A2 (en) Flue gas heat recovery system and method
CN203744201U (en) Self-deoxygenization waste heat boiler suitable for sulfur-containing fuel heating furnace
CN109562939B (en) Process for producing sulfur trioxide
CN211060085U (en) Exhaust-heat boiler blowdown system
CN205261499U (en) Vertical fire tube boiler of high temperature
CN101627276A (en) Steam condenser
CN1039574C (en) Multi-cell heating system
EP3039337B1 (en) A shell-and-tube apparatus for heat recovery from a hot process stream
CN202869322U (en) Chimney with heat energy recovery device
CN106362428A (en) Steam stripping method of low temperature shift process condensate
JP2005233541A (en) Wet component separator unit for multi-pipe once-through boiler
CN205079626U (en) Flue gas exhaust -heat boiler device of large -scale sulphuric acid production line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140703

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees