JP2005233511A - 空調機 - Google Patents

空調機 Download PDF

Info

Publication number
JP2005233511A
JP2005233511A JP2004043203A JP2004043203A JP2005233511A JP 2005233511 A JP2005233511 A JP 2005233511A JP 2004043203 A JP2004043203 A JP 2004043203A JP 2004043203 A JP2004043203 A JP 2004043203A JP 2005233511 A JP2005233511 A JP 2005233511A
Authority
JP
Japan
Prior art keywords
heat
hygroscopic liquid
evaporator
air
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004043203A
Other languages
English (en)
Inventor
Masao Hattori
雅夫 服部
Hiroki Yoshikawa
博樹 吉川
Hikoo Miyauchi
彦夫 宮内
Masahiro Miyauchi
正裕 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DYNA AIR KK
Toho Gas Co Ltd
Original Assignee
DYNA AIR KK
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DYNA AIR KK, Toho Gas Co Ltd filed Critical DYNA AIR KK
Priority to JP2004043203A priority Critical patent/JP2005233511A/ja
Publication of JP2005233511A publication Critical patent/JP2005233511A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants

Abstract

【課題】 ヒートポンプを構成する空調サイクルに、吸湿性液体を循環する管路を介在させ、かつ、ヒートポンプの圧縮機を駆動するガスエンジンの排熱も合わせて有効利用を図ることである。
【解決手段】 ガスエンジン駆動のヒートポンプからなる室外機と、室内機とを有する空調機において、蒸発器に吸湿液循環管路を設け、この吸湿液循環管路の出口側を熱交換後の吸湿性液体を外気と接触し、熱交換する室内機としてのエアコンタクタの入口側に連結し、このエアコンタクタの出口側の循環管路を、熱交換器を介して凝縮器の入口側の供給管路に連結し、この供給管路の出口側を吸湿性液体を噴射して外気と熱交換し、外気から吸湿する室外機用再生コンタクタに連結し、この再生コンタクタの出口管路を、熱交換器を介して蒸発器の入口側に連結し、再生コンタクタに外部熱と熱交換する外部熱管路を設け、この外部熱管路にガスエンジンの排熱管路を連結したものである。
【選択図】 図1

Description

本発明は、ヒートポンプを構成する空調サイクルの凝縮器と蒸発器の少なくともいずれか一方に、吸湿性液体を循環する管路を介在させ、この吸湿性液体に、圧縮機用駆動源であるガスエンジンの排熱を熱交換してエネルギーの有効利用を図るようにした空調機に関するものである。
排熱源とその排熱利用技術の形態を、熱エネルギーの段階的利用の観点から述べると、以下のようになる。
(1)熱利用
これは、気体又は液体による排熱を、熱交換器を介して利用されやすい流体に熱交換して利用するもので、高温度域の排熱を利用する排熱ボイラーのような最も基本的な方法である。
(2)動力回収
排熱を熱の形で利用しないで、動力に変換して利用する方法で、例えば、ランキングサイクルと呼ばれる高低の温度差で作動する熱機関の熱源として排熱を利用し、直接動力を利用したり、発電機を駆動させて電気エネルギーを利用する形態である。
(3)ヒートポンプ
これは、排熱源より熱を汲み上げ、さらに高い温度又は中低温度の熱エネルギーに変換して利用する方法である。利用できない低温度レベルの排熱を、利用できる高い温度レベルの熱エネルギーに移動させる際、その移動熱量がヒートポンプへ投入する駆動動力の数倍となるきわめて有効な熱エネルギーに変換する方法である。
(4)直接利用
排熱を温水などの熱媒を通じて断熱したまま利用目的地まで移動させ、有効利用する最も基本的な方法である。コージェネレーション設備による地域冷暖房、原子力又は火力発電所からの温排水による魚介類の養殖、海水の淡水化など多数の実例がある。
これらの方法のうち、特に、ヒートポンプによる方法は、河川、海洋大規模熱源とヒートポンプを組み合わせた地域冷暖房システム、夜間電力と地区熱装置などを組み合わせた高効率熱利用システムの実現が期待されている(非特許文献1)。
蓄熱工学2[応用編]第46〜48頁、第59頁 関 信弘 編集 1995年12月25日 森北出版株式会社発行。
従来、蒸発器、圧縮機、凝縮器、減圧器を冷媒管路で連結したヒートポンプにおいて、熱から冷房冷熱を製造するには、少なくとも85℃以上の熱媒を用意しなければならなかった。これは暖房用や給湯用よりも高い温度レベルを要求していた。日本を含め温帯、熱帯に属する多くの地域では温熱需要より冷熱需要の方が大きいが、85℃以下の熱からは冷熱を製造することが困難だったため、それ以下の温度の排熱は無駄になることが多かった。また従来の冷房空調は、10℃以下の冷却物体に空気を接触させる仕組みであることから、冷房装置に組み込まれたヒートポンプは、10℃以下の低温から外気温よりも高い温度まで、大温度差間で熱の汲み上げを行う必要があり、ヒートポンプの効率、成績係数(COP)を低下させていた。
解決しようとする問題点は、ヒートポンプを構成する空調サイクルに、吸湿性液体を循環する管路を介在させた空調機において、ガスエンジンの排熱の有効利用を図り、高い効率、高い成績係数での運転が可能になるものを得る点にある。
本発明は、蒸発器16、圧縮機12、凝縮器14、減圧器15の経路を冷媒管路17で連結したヒートポンプからなる室外機10と、前記圧縮機12を駆動するガスエンジン31と、前記室外機10の熱エネルギーを外気と熱交換して処理済みの冷却した空気として出力する室内機とを有し、除湿冷房・外気加湿モードで動作する空調機において、前記蒸発器16に、吸湿性液体を循環する吸湿液循環管路44を設け、この吸湿液循環管路44の前記蒸発器16における出口側を、前記蒸発器16での熱交換後の吸湿性液体を噴射して外気と接触し、熱交換する室内機としてのエアコンタクタ11の入口側に連結し、このエアコンタクタ11の出口側に連結された吸湿性液体を循環する循環管路52を、熱交換器21を介して前記凝縮器14の入口側の供給管路54に連結し、この供給管路54の前記凝縮器14における出口側を、前記吸湿性液体を噴射して外気と接触し、熱交換するとともに、外気から吸湿する室外機用再生コンタクタ19に連結し、この再生コンタクタ19の出口管路57を、前記熱交換器21を介して前記蒸発器16の入口側に連結し、前記再生コンタクタ19に外部熱と熱交換する外部熱管路70を設け、この外部熱管路70に、前記ガスエンジン31に結合された排熱管路78を連結したことを特徴とする空調機である。
請求項1記載の発明によれば、除湿冷房・外気加湿モードにおいて、蒸発器16に、吸湿性液体を循環する吸湿液循環管路44を設け、この吸湿液循環管路44の蒸発器16における出口側を、蒸発器16での熱交換後の吸湿性液体を噴射して外気と接触し、熱交換する室内機としてのエアコンタクタ11の入口側に連結し、このエアコンタクタ11の出口側に連結された吸湿性液体を循環する循環管路52を、熱交換器21を介して凝縮器14の入口側の供給管路54に連結し、この供給管路54の凝縮器14における出口側を、吸湿性液体を噴射して外気と接触し、熱交換するとともに、外気から吸湿する室外機用再生コンタクタ19に連結し、この再生コンタクタ19の出口管路57を、熱交換器21を介して蒸発器16の入口側に連結し、再生コンタクタ19に外部熱と熱交換する外部熱管路70を設け、この外部熱管路70に、前記ガスエンジン31に結合された排熱管路78を連結したので、室内機11では、除湿をしつつ冷房することで、冷房効果がより効率的に行なわれる。また、除湿動作を行なった吸湿性液体は、室外機用再生コンタクタ19で外気と接触して吸入した空気を加湿し、除湿されてもとへ戻されるが、室外機用再生コンタクタ19でガスエンジン31の排熱が吸湿性液体の吸湿作用を再生させる加熱・濃縮操作に有効利用できるため、ガスエンジン31の総合効率を大幅に向上できる。ちなみに、実験結果によれば、エンジン効率25%の場合、その排熱も同時に利用し、エンジンが消費した燃料の持つ熱量の75%を除湿冷房に有効利用できた。
また、ガスエンジン31の排気を、外気と熱交換するコンタクタに投入して吸湿性液体と直接接触させることにより、吸湿性液体の加熱・濃縮に有効利用できる。さらに、吸湿性液体は、食塩水、塩化リチウムなど潮解性を有する塩の溶液の他、グリセリン、エチレングリコール、プロピレングリコールなどの吸湿性の高い多価アルコール、その他の吸湿性を有する安価な液体であって、廃液は希釈して下水に流しても公害にならないものを用いることができる。温度差を操作するヒートポンプ部分の汲み上げ温度差が低く、COPが5以上と、効率に優れている。高濃度の塩の水溶液や多価アルコールに空気を接触させる湿式であるから、常に、除塵、除菌などの作用を有する。
請求項2記載の発明によれば、加湿暖房・補給水ありモードで動作させるために、凝縮器14に、吸湿性液体を循環する吸湿液循環管路44を設け、この吸湿液循環管路44の蒸発器16における出口側を、熱交換器20を介して凝縮器14での熱交換後の吸湿性液体を噴射して外気と接触し、熱交換する室内機としてのエアコンタクタ11の入口側に連結し、このエアコンタクタ11の出口側に連結された吸湿性液体を循環する循環管路52を、凝縮器14の入口側に連結し、熱交換器20に外部熱と熱交換する外部熱管路71を設け、この外部熱管路71に、前記ガスエンジン31に結合された排熱管路78を連結し、吸湿液循環管路44の途中に、補給水導入部64を連結し、蒸発器16に、吸湿性液体を循環する供給管路54を設け、この供給管路54の蒸発器16における出口側を、吸湿性液体を噴射して外気と接触し、熱交換するとともに、外気から吸湿する室外機用再生コンタクタ19に連結し、この再生コンタクタ19の出口管路57を、供給管路54の前記蒸発器16における入口側に連結したので、ガスエンジン31の排熱を、凝縮器14に連結した熱交換器20内の外部熱管路71に投入でき、すぐれた加湿暖房ができる。また、暖房モードにおける吸湿処理部と濃縮再生部とを別々に独立して構成でき、それぞれのユニットを別々にして自由な配置が可能になる。
請求項3記載の発明によれば、加湿暖房・外気吸湿モードで動作させるために、凝縮器14に、吸湿性液体を循環する吸湿液循環管路44を設け、この吸湿液循環管路44の蒸発器16における出口側を、熱交換器20を介して凝縮器14での熱交換後の吸湿性液体を噴射して外気と接触し、熱交換する室内機としてのエアコンタクタ11の入口側に連結し、このエアコンタクタ11の出口側に連結された吸湿性液体を循環する循環管路52を、熱交換器21を介して蒸発器16の入口側の供給管路54に連結し、この供給管路54の蒸発器16における出口側を、吸湿性液体を噴射して外気と接触し、熱交換するとともに、外気から吸湿する室外機用再生コンタクタ19に連結し、この再生コンタクタ19の出口管路57を、熱交換器21を介して凝縮器14の入口側に連結し、熱交換器20に外部熱と熱交換する外部熱管路71を設け、この外部熱管路71に、ガスエンジン31に結合された排熱管路78を連結したので、ガスエンジン31の排熱を室外機用再生コンタクタ19に投入することで、加湿暖房としてすぐれた性能が得られる。
請求項4記載の発明によれば、冷房時における蒸発器16又は暖房時における凝縮器14に設けられた吸湿液循環管路44に、熱の余剰時に濃度の高い吸湿性液体を貯め込むための吸湿液リザーバタンク22を連結したので、吸湿液リザーバタンク22に、高密度冷熱蓄積ができる。例えば、夏季の明け方や夜間など、運転しても熱が余剰になる時間帯には、吸湿性溶液を加熱・濃縮して吸湿液リザーバタンク22に貯めておき、冷熱負荷が高くなる日中に処理側へ投入することで、再生用エネルギー投入を増加させずに安定した除湿空調が可能である。
本発明は、蒸発器16、圧縮機12、凝縮器14、減圧器15の経路を冷媒管路17で連結したヒートポンプからなる室外機10と、前記圧縮機12を駆動するガスエンジン31と、前記室外機10の熱エネルギーを外気と熱交換して処理済みの冷却した空気として出力する室内機とを有し、除湿冷房・外気加湿モードで動作する空調機において、前記蒸発器16に、吸湿性液体を循環する吸湿液循環管路44を設け、この吸湿液循環管路44の前記蒸発器16における出口側を、前記蒸発器16での熱交換後の吸湿性液体を噴射して外気と接触し、熱交換する室内機としてのエアコンタクタ11の入口側に連結し、このエアコンタクタ11の出口側に連結された吸湿性液体を循環する循環管路52を、熱交換器21を介して前記凝縮器14の入口側の供給管路54に連結し、この供給管路54の前記凝縮器14における出口側を、前記吸湿性液体を噴射して外気と接触し、熱交換するとともに、外気から吸湿する室外機用再生コンタクタ19に連結し、この再生コンタクタ19の出口管路57を、前記熱交換器21を介して前記蒸発器16の入口側に連結し、前記再生コンタクタ19に外部熱と熱交換する外部熱管路70を設け、この外部熱管路70に、前記ガスエンジン31に結合された排熱管路78を連結したことを特徴とする空調機である。
また、本発明は、蒸発器16、圧縮機12、凝縮器14、減圧器15の経路を冷媒管路17で連結したヒートポンプからなる室外機10と、前記圧縮機12を駆動するガスエンジン31と、前記室外機10の熱エネルギーを外気と熱交換して処理済みの加温した空気として出力する室内機とを有し、加湿暖房・外気吸湿モードで動作する空調機において、前記凝縮器14に、吸湿性液体を循環する吸湿液循環管路44を設け、この吸湿液循環管路44の前記蒸発器16における出口側を、熱交換器20を介して前記凝縮器14での熱交換後の吸湿性液体を噴射して外気と接触し、熱交換する室内機としてのエアコンタクタ11の入口側に連結し、このエアコンタクタ11の出口側に連結された吸湿性液体を循環する循環管路52を、熱交換器21を介して前記蒸発器16の入口側の供給管路54に連結し、この供給管路54の前記蒸発器16における出口側を、前記吸湿性液体を噴射して外気と接触し、熱交換するとともに、外気から吸湿する室外機用再生コンタクタ19に連結し、この再生コンタクタ19の出口管路57を、前記熱交換器21を介して前記凝縮器14の入口側に連結し、前記熱交換器20に外部熱と熱交換する外部熱管路71を設け、この外部熱管路71に、前記ガスエンジン31に結合された排熱管路78を連結したことを特徴とする空調機である。
本発明の実施例を図1に基づき説明する。
図1において、点線を境にして、右側が室外機10で、左側が室内機としてのエアコンタクタ11である。
前記室外機10は、ヒートポンプ機能の冷凍機18に、吸湿性液体を循環する管路を組み込んだものである。
前記吸湿性液体には、食塩水、塩化リチウムなど潮解性を有する塩の溶液の他、グリセリン、エチレングリコール、プロピレングリコールなどの吸湿性の高い多価アルコール、その他の吸湿性を有する安価な液体であって、廃液は希釈して下水に流しても公害にならないものが用いられる。
前記冷凍機18は、圧縮機12、熱交換器としての凝縮器14、(膨張弁、キャピラリーチューブなどの)減圧器15、熱交換器としての蒸発器16が冷媒管路17により順次閉回路として連結され、ヒートポンプを構成している。この閉回路において、4方弁13が冷房運転(図1又は図2のように右側のバルブに切り替わっている)の場合には、図中右側の熱交換器が凝縮器14として作用し、左側の熱交換器が蒸発器16として作用し、また、4方弁13が暖房運転(図3又は図4のように左側のバルブに切り替わっている)の場合には、図中左側の熱交換器が凝縮器14として作用し、右側の熱交換器が蒸発器16として作用する。
前記圧縮機12には、駆動源としてガスエンジン31が使用されている。
前記図1中、左側の熱交換器としての蒸発器16(図2に示すように4方弁13が右側の弁に切り換っている冷房運転時のときの蒸発器16を指す。ただし、図3又は図4に示すように4方弁13が左側の弁に切り換っている暖房運転時のときは、図1中、左側の凝縮器14を指す。)には、吸湿液を循環する吸湿液循環管路44を介して熱交換器20が臨ませて設けられている。この熱交換器20の内部には、前記吸湿液循環管路44が設けられているとともに、外部熱導入部33から前記ガスエンジン31、その他太陽熱温排水などの外部排熱を導入する外部熱管路71が設けられている。
また、前記図1中、右側の熱交換器としての凝縮器14(図2に示すように4方弁13が右側の弁に切り換っている冷房運転時のときの凝縮器14を指す。ただし、図3又は図4に示すように4方弁13が左側の弁に切り換っている暖房運転時のときは、図1中、右側の蒸発器16を指す。)には、再生コンタクタ19が連結されている。この再生コンタクタ19は、コンタクタ筐体23の内部に充填材24を充填したものである。この充填材24は、気液接触による吸湿を行なうためのもので、例えば、300〜4000m/m(充填容積)という大きな表面積を有するものからなる。前記コンタクタ筐体23の上端部には、再生用空気66を吸入し、かつ、排出するためのファン26が取り付けられ、下端部には、受液タンク25が設けられているとともに、再生用空気66を導入する底部28が設けられている。この再生コンタクタ19の側部であって、前記ファン26による排気67側には、ドレン30付きの熱交換器29が設けられ、この熱交換器29は、通風路27を経て底部28からコンタクタ筐体23の内部に連通している。前記底部28には、また、ダンパー75の付いた排熱供給口74が設けられ、前記ガスエンジン31とは異なるガスタービン排気などの排温風その他の外部熱源76を導入する。
前記蒸発器16における吸湿液循環管路44の入口側には、ポンプ45が連結され、このポンプ45には、補給水導入部64、吸湿液リザーバタンク22に吸湿液を出入りする吸湿液出入管42のバルブ43、バルブ63、65が連結されている。前記蒸発器16における吸湿液循環管路44の出口側は、前記熱交換器20の内部を通り、ポンプ46を経て各室内機としてのエアコンタクタ11の噴射ノズル47に連結されている。
前記エアコンタクタ11からの入口側に連結された循環管路52は、バルブ65を介して前記ポンプ45等に連結されるとともに、バルブ53を介して熱交換器21を通り、供給管路54とバルブ55に連結されている。この供給管路54は、前記凝縮器14の内部、切り替え弁77を経て再生コンタクタ19の噴射ノズル56に連結されている。前記受液タンク25には、出口管路57が連結され、この出口管路57は、ポンプ58を介して戻し管路59と、バルブ55と循環管路62に連結されている。前記戻し管路59は、バルブ60、切り替え弁77を介して再生コンタクタ19内の噴射ノズル61に連結され、また、前記循環管路62は、前記熱交換器21を通り前記バルブ63に連結されている。
前記ガスエンジン31には、排熱利用のための排熱管路78を結合し、この排熱管路78をバルブ72を介して外部熱導入部33に結合するとともに、バルブ73を介して外部熱導入部32に結合する。
前記室内機としてのエアコンタクタ11は、上下端が開口したコンタクタ筐体34の内部に前記充填材24と同様の充填材35を充填したもので、上端開口部には、吸気と処理済空気69を吐出するためのファン37が取り付けられ、下端開口部には、受液タンク36が設けられているとともに、吸入空気68の吸気口が設けられている。この室内機としてのエアコンタクタ11の側部には、ヒートパイプ熱交換器38が設けられ、このヒートパイプ熱交換器38の蒸発部39が前記吸入空気68の吸気口に臨ませられ、前記ヒートパイプ熱交換器38の凝縮部40が前記処理済空気69の吐出口に臨ませられ、これら蒸発部39と凝縮部40の間をヒートパイプ41で連結している。
この室内機としてのエアコンタクタ11は、必要に応じて複数台11a、11b、…が並列に取り付けられる。
以下、本発明の作用を図2、図3、図4に基づきモード別に説明する。
(1)除湿冷房・外気加湿モード(図2)
4方弁13は、右側のバルブに切り替わっており、また、バルブ43、バルブ53、バルブ60、バルブ63、バルブ73は、開放し、バルブ55、バルブ65、バルブ72は、閉鎖している。
まず、一般的な上記圧縮式ヒートポンプの動作を説明すると、蒸発器16では、冷媒が低圧の状態にあるから、冷媒管路17内の冷媒(例えば、R−22)は、その低圧低温の飽和温度(例えば+10℃)になるまで周りから吸熱して蒸発し、冷凍効果を得る。蒸発した冷媒は、圧縮機12に送られて高圧(例えば20気圧)下におかれることにより、高温(例えば、50℃)の飽和温度になる。この冷媒は、凝縮器14に送られて周囲が高温(例えば、45℃)になるまで放熱凝縮して液化が進む。液化した高圧冷媒は、キャピラリーチューブ、膨張弁等の減圧器15において圧力降下して低圧冷媒となり、蒸発器16へ戻り、冷凍サイクル動作をする。
次に、吸湿液リザーバタンク22からバルブ43を介して供給された吸湿性液体は、ポンプ45により蒸発器16に送られ、入力時に34.2℃であった吸湿性液体が吸熱され、出力時の点aでは27℃となり、7.18Kだけ冷却される。この蒸発器16では、熱の汲み上げ温度差が20.9度という低い温度差で動作するので極めて効率がよい。ちなみに、一般的な空調機では、40度以上の汲み上げ温度差を必要とする。以下、一つの実施例としてヒートポンプ圧縮機駆動動力3.7kw機を想定する。
蒸発器16から熱交換器20へ送られるが、この熱交換器20では、ガスエンジン31の排熱は、バルブ72が閉鎖しているので、熱交換することなく、点bでも27℃(流量42.0L/min)である。この27℃の吸湿性液体は、ポンプ46によって、各エアコンタクタ11(11a、11b、…)に送られる。これらのエアコンタクタ11では、吸湿性液体が噴射ノズル47でコンタクタ筐体34内の充填材35に噴射し、ファン37の吸引により蒸発部39を通って入ってきた吸入空気68を冷却する。この冷却された処理済空気69は、凝縮部40を経て吐出して室内を冷房する。受液タンク36内に貯まった吸湿性液体は、出口管路48からその一部をポンプ51により戻し管路49へ循環し、噴射ノズル50で噴霧して同様に吸入空気68を冷却して処理済空気69を吐出する。このようにして例えば、34.3℃(吸気風量1500m/h、絶対湿度19.40g/kg)の吸入空気68は、エアコンタクタ11aのように、ヒートパイプ熱交換器38がない場合、30.0℃(処理後風量1430m/h、絶対湿度6.40g/kg)の除湿処理済空気69として吐出される。
エアコンタクタ11bのように、ヒートパイプ熱交換器38が取り付けられている場合、蒸発部39からヒートパイプ41を経て凝縮部40に顕熱移動することにより、効率改善と過冷却改善を行なわれ、32.2℃の処理済空気69として吐出される。
各室内機としてのエアコンタクタ11から室外機10の循環管路52に戻された吸湿性液体は、点cで32.2℃(流量42.4L/min)となり、バルブ53、熱交換器21を通り、逆方向の吸湿性液体と熱交換して点dで36.8℃となり、供給管路54を介して凝縮器14に送られる。この凝縮器14では、冷媒の放熱により加熱され、点eで43.9℃となり7.12度だけ加熱され、切り替え弁77を介して噴射ノズル56(又は点eの温度がgより低い時は切り替え弁77で噴射ノズル61に切り換えて)で再生コンタクタ19内の充填材24に噴射し、この噴射した吸湿性液体は、ファン26の吸引により、吸気予熱用熱交換器29、通風路27、底部28を経て入ってきた再生用空気66(吸気温度34.3℃、吸気風量2004m/h、絶対湿度19.40g/kg)によって冷却される。受液タンク25内に溜まった吸湿性液体は、出口管路57からその一部をポンプ58により戻し管路59へ循環し、噴射ノズル61(又は点gの温度がeより高い時は切り替え弁77で噴射ノズル56に切り換えて)で噴霧して同様に再生用空気66によって冷却される。受液タンク25から吐出した吸湿性液体の点fでの温度は、38.8℃に下降する。また、ポンプ58で吐出した点fでの量が57.0L/minとすると、戻し管路59には15.0L/minを循環し、循環管路62には42.0L/minを送る。
ここで、ガスエンジン31は、エンジン効率25%程度と考えられるが、60.0℃、7.4kwの排熱を排熱管路78、バルブ73を介して外部熱導入部32へ投入することにより、出温度は、43.8℃となり、総合効率75%が期待できる。
外部熱源76としてガスエンジン31と関係ないガスタービン排気など排気温度150℃の排熱が質量流量0.6kg/secで導入されるようにすることもできる。
このようにして例えば、名古屋市内、夏季日中標準外気条件として、34.3℃(吸気風量2004m/h、絶対湿度19.40g/kg)の再生用空気66は、37.3℃(吸気風量2076m/h、絶対湿度36.76g/kg)の高温多湿の排気67として排気される。
このとき、熱交換器29にて、導入された再生用空気66と、再生コンタクタ19内で処理された排気67とで吸気予熱用熱交換して顕熱回収を行なう。
前記ポンプ58による点fでの吸湿性液体の吐出量57.0L/minのうち、循環管路62には42.0L/minを送り、点hで38.8℃の吸湿性液体が熱交換器21を通り、逆方向の吸湿性液体と熱交換して点iで34.2℃となり、吸湿液循環管路44に戻される。
なお、夏季の冷房を必要とする時季であって、明け方や夜間などの熱が余剰になる時間帯には、バルブ43から吸湿液出入管42を通して吸湿液リザーバタンク22に吸湿性液体を貯め込み、飽和に近いところまでに濃度を上げておき、日中に処理側へ投入する。
以上の動作を繰り返して、除湿冷房・外気加湿が行なわれる。
(2)加湿暖房・補給水ありモード(図3)
4方弁13は、左側のバルブに切り替わっており、また、バルブ43、バルブ55、バルブ65、バルブ72は、開放し、バルブ53、バルブ60、バルブ63、バルブ73は、閉鎖している。
したがって、このモードでは、蒸発器16と再生コンタクタ19側の吸湿性液体の循環路と、凝縮器14とエアコンタクタ11側の吸湿性液体の循環路とは、それぞれ分離独立している。
まず、一般的な上記圧縮式ヒートポンプの動作を説明すると、蒸発器16では、冷媒が低圧の状態にあるから、冷媒管路17内の冷媒(例えば、R−22)は、その低圧低温の飽和温度(例えば−15℃)になるまで周りから吸熱して蒸発し、冷凍効果を得る。蒸発した冷媒は、圧縮機12に送られて高圧(例えば16気圧)下におかれることにより、高温(例えば、35℃)の飽和温度になる。この冷媒は、凝縮器14に送られて周囲が高温(例えば、30℃)になるまで放熱凝縮して液化が進む。液化した高圧冷媒は、減圧器15において圧力降下して低圧冷媒となり、蒸発器16へ戻る。
次に、凝縮器14とエアコンタクタ11側の吸湿性液体の循環路において、吸湿液循環管路44の吸湿性液体は、ポンプ45により凝縮器14に送られる。この凝縮器14では、入力時に19.8℃(59.4L/min)であった吸湿性液体が加熱され、外部から約0.6L/minの補給水を得て、出力時の点aでは27℃(60.0L/min)に上昇する。吸湿性液体は希釈加熱され、その吸湿能力は低下し、加湿能力が増加する。この25℃の低吸湿性液体は、ポンプ46によって、熱交換器20、点bを経て各エアコンタクタ11(11a、11b、…)に送られる。また、ガスエンジン31の排熱は、バルブ72を介して外部熱導入部33から熱交換器20に導入されて、熱交換する。
これらのエアコンタクタ11では、噴射ノズル47でコンタクタ筐体34内の充填材35に噴射し、ファン37の吸引により蒸発部39を通って入ってきた吸入空気68を加熱して処理済空気69を吐出して室内を暖房する。受液タンク36内に貯まった吸湿性液体は、出口管路48からその一部をポンプ51により戻し管路49へ循環し、噴射ノズル50で噴霧して同様に吸入空気68を冷却して加湿処理済空気69を吐出する。このようにして例えば、15℃(2551m/h)の吸入空気68は、25℃(3000m/h)の処理済空気69として吐出される。
このとき、ヒートパイプ熱交換器38の蒸発部39からヒートパイプ41を経て凝縮部40に顕熱移動することにより、効率改善を行なう。
各エアコンタクタ11から室外機10の循環管路52に戻された吸湿性液体は、僅かに濃縮され、点cで19.8℃(59.4L/min)となり、バルブ65を経て吸湿液循環管路44に戻され、以下、循環を繰り返す。再生コンタクタ19側のエアコンタクタ11側とは、それぞれ分離独立しており、再生コンタクタ19側で吸湿されないので、補給水導入部64からは、各室内機としてのエアコンタクタ11の受液タンク36における水位を見ながら、36.5L/h程度の水を補給する。
次に、蒸発器16と再生コンタクタ19側の吸湿性液体の循環路において、蒸発器16への入力時に13.0℃(59.4L/min)であった吸湿性液体は、蒸発器16での冷媒の吸熱により冷却され、点eで7.3℃に降下し、切り替え弁77を経て再生コンタクタ19内で噴射ノズル56から充填材24に噴射する。ガスエンジン31に連結された排熱管路78にバルブ73が設けられているが、このバルブ73は閉じており、排熱が外部熱導入部32に送られてくることはない。
再生コンタクタ19の内部で熱交換、温度上昇して受液タンク25内に溜まった吸湿性液体は、出口管路57からポンプ58により供給管路54へ循環する。このとき、点fでの13.0℃(59.4L/min)の吸湿性液体は、バルブ60が閉鎖しているので戻し管路59を循環することはなく、すべて再び供給管路54を経て、蒸発器16に熱を与え、噴射ノズル56へ送られる。
このようにして、エンジン31の排熱と再生用空気66の熱、その合計が低吸湿性液体に熱交換されて蒸発器16で有効に利用される。
以上の動作を繰り返して、加湿暖房が行なわれる。
(3)加湿暖房・外気吸湿・補給水なしモード(図4)
4方弁13は、左側のバルブに切り替わっており、また、バルブ43、バルブ53、バルブ60、バルブ63、バルブ72は、開放し、バルブ55、バルブ65、バルブ73は、閉鎖している。
したがって、このモードでは、蒸発器16と再生コンタクタ19側の吸湿性液体の循環路と、凝縮器14と室内機としてのエアコンタクタ11側の吸湿性液体の循環路とは、互いに連通して一つの循環路を形成している。
まず、一般的な上記圧縮式ヒートポンプの動作を説明すると、蒸発器16では、冷媒が低圧の状態にあるから、冷媒管路17内の冷媒(例えば、R−22)は、その低圧低温の飽和温度(例えば−15℃)になるまで周りから吸熱して蒸発し、冷凍効果を得る。蒸発した冷媒は、圧縮機12に送られて高圧(例えば16気圧)下におかれることにより、高温(例えば、35℃)の飽和温度になる。この冷媒は、凝縮器14に送られて周囲が高温(例えば、30℃)になるまで放熱凝縮して液化が進む。液化した高圧冷媒は、減圧器15において圧力降下して低圧冷媒となり、蒸発器16へ戻る。
次に、熱交換器20に入力する直前の低吸湿性液体が20℃あったものとすると、この吸湿性液体は、ポンプ45により凝縮器14に送られて加熱された後、出力時の点aでは25℃(60.0L/min)に上昇する。さらに熱交換器20へ送られ、エンジン31からバルブ72を経て4方弁13に送られてきた排熱により加熱され、出力時の点bでは27℃(60.0L/min)に上昇する。この27℃の低吸湿性液体は、ポンプ46によって、各エアコンタクタ11a、11b、…に送られる。これらのエアコンタクタ11では、噴射ノズル47でコンタクタ筐体34内の充填材35に噴射し、ファン37の吸引により蒸発部39を通って入ってきた吸入空気68を加湿・加熱して処理済空気69を吐出して室内を暖房する。受液タンク36内に貯まった低吸湿性液体は、出口管路48からその一部をポンプ51により戻し管路49へ循環し、噴射ノズル50で噴霧して同様に吸入空気68を加湿・加熱して処理済空気69を吐出する。このようにして例えば、15℃(1152m/h)の吸入空気68は、25℃(1200m/h)の処理済空気69として吐出される。
このとき、ヒートパイプ熱交換器38の蒸発部39からヒートパイプ41を経て凝縮部40に顕熱移動することにより、効率改善を行なう。
次に、各エアコンタクタ11から室外機10の循環管路52に戻された吸湿性液体は、点cで20℃(59.4L/min)となり、バルブ53を経て熱交換器21内で逆方向からの吸湿性液体と熱交換して、点dで8℃(59.4L/min)となり、供給管路54を経て蒸発器16の吸熱作用によりさらに点eで3℃(59.4L/min)に降下する。この吸湿性液体は、切り替え弁77を介して再生コンタクタ19におけるコンタクタ筐体23内の噴射ノズル56から充填材24に噴射する。すると、ファン26により吸入された10℃(1900m/h)の再生用空気66と熱交換する。熱交換した再生用空気66は、コンタクタ筐体23内から交換機29を経て−5℃(1812m/h)となって排気される。
受液タンク25内に貯まった吸湿性液体は、出口管路57からポンプ58により一部(約15L/min)を戻し管路59へ戻し、バルブ60から噴射ノズル61で噴射する。
吸湿性液体は、外気から吸湿しつつ、−3℃(60.0L/min)まで加熱され、出口管路57に出力しポンプ58で点fから点hを経て熱交換器21へ送られ、ここで、逆方向の吸湿性液体と熱交換し、点iで20℃(60.0L/min)まで加熱されてもとの吸湿液循環管路44へ戻る。
このようにして例えば、ガスエンジン31の排熱は、熱交換器20にて吸湿性液体に熱交換されて有効に利用され、かつ、以上の動作を繰り返して、加湿暖房が行なわれる。
なお、吸湿性液体は、再生コンタクタ19にて外気から吸湿するので、補給水導入部64から水を補給することはしない。
本発明による空調機は、ガスエンジンで駆動される空調システムであれば、工場用、病院用、列車用、ビル用などの大型の空調システムとしてはもちろんのこと、民生用、家庭用、車両用など小型・軽量の空調システムにおいても利用することができる。
本発明による空調機の一実施例を示す配管図である。 本発明による空調機を除湿冷房・外気加湿モードとしたときの配管図である。 本発明による空調機を加湿冷房・補給水ありモードとしたときの配管図である。 本発明による空調機を加湿冷房・外気吸湿・補給水なしモードとしたときの配管図である。
符号の説明
10…室外機、11…室内機としてのエアコンタクタ、12…圧縮機、13…4方弁、14…凝縮器、15…減圧器、16…蒸発器、17…冷媒管路、18…冷凍機、19…室外機用再生コンタクタ、20…熱交換器、21…熱交換器、22…吸湿液リザーバタンク、23…コンタクタ筐体、24…充填材、25…受液タンク、26…ファン、27…通風路、28…底部、29…熱交換器、30…ドレン、31…ガスエンジン、32…外部熱導入部、33…外部熱導入部、34…コンタクタ筐体、35…充填材、36…受液タンク、37…ファン、38…熱交換器、39…蒸発部、40…凝縮部、41…ヒートパイプ、42…吸湿液出入管、43…バルブ、44…吸湿液循環管路、45…ポンプ、46…ポンプ、47…噴射ノズル、48…出口管路、49…戻し管路、50…噴射ノズル、51…ポンプ、52…循環管路、53…バルブ、54…供給管路、55…バルブ、56…噴射ノズル、57…出口管路、58…ポンプ、59…戻し管路、60…バルブ、61…噴射ノズル、62…循環管路、63…バルブ、64…補給水導入部、65…バルブ、66…再生用空気、67…排気、68…吸入空気、69…処理済空気、70…外部熱管路、71…外部熱管路、72…バルブ、73…バルブ、74…排熱供給口、75…ダンパー、76…外部熱源、77…切り替え弁、78…排熱管路。

Claims (4)

  1. 蒸発器16、圧縮機12、凝縮器14、減圧器15の経路を冷媒管路17で連結したヒートポンプからなる室外機10と、前記圧縮機12を駆動するガスエンジン31と、前記室外機10の熱エネルギーを外気と熱交換して処理済みの冷却した空気として出力する室内機とを有する空調機において、前記蒸発器16に、吸湿性液体を循環する吸湿液循環管路44を設け、この吸湿液循環管路44の前記蒸発器16における出口側を、前記蒸発器16での熱交換後の吸湿性液体を噴射して外気と接触し、熱交換する室内機としてのエアコンタクタ11の入口側に連結し、このエアコンタクタ11の出口側に連結された吸湿性液体を循環する循環管路52を、熱交換器21を介して前記凝縮器14の入口側の供給管路54に連結し、この供給管路54の前記凝縮器14における出口側を、前記吸湿性液体を噴射して外気と接触し、熱交換するとともに、外気から吸湿する室外機用再生コンタクタ19に連結し、この再生コンタクタ19の出口管路57を、前記熱交換器21を介して前記蒸発器16の入口側に連結し、前記再生コンタクタ19に外部熱と熱交換する外部熱管路70を設け、この外部熱管路70に、前記ガスエンジン31に結合された排熱管路78を連結して、除湿冷房・外気加湿モードで動作するようにしたことを特徴とする空調機。
  2. 蒸発器16、圧縮機12、凝縮器14、減圧器15の経路を冷媒管路17で連結したヒートポンプからなる室外機10と、前記圧縮機12を駆動するガスエンジン31と、前記室外機10の熱エネルギーを外気と熱交換して処理済みの加温した空気として出力する室内機とを有する空調機において、前記凝縮器14に、吸湿性液体を循環する吸湿液循環管路44を設け、この吸湿液循環管路44の前記蒸発器16における出口側を、熱交換器20を介して前記凝縮器14での熱交換後の吸湿性液体を噴射して外気と接触し、熱交換する室内機としてのエアコンタクタ11の入口側に連結し、このエアコンタクタ11の出口側に連結された吸湿性液体を循環する循環管路52を、前記凝縮器14の入口側に連結し、前記熱交換器20に外部熱と熱交換する外部熱管路71を設け、この外部熱管路71に、前記ガスエンジン31に結合された排熱管路78を連結し、前記吸湿液循環管路44の途中に、補給水導入部64を連結し、前記蒸発器16に、吸湿性液体を循環する供給管路54を設け、この供給管路54の前記蒸発器16における出口側を、前記吸湿性液体を噴射して外気と接触し、熱交換するとともに、外気から吸湿する室外機用再生コンタクタ19に連結し、この再生コンタクタ19の出口管路57を、前記供給管路54の前記蒸発器16における入口側に連結して、加湿暖房・補給水ありモードで動作するようにしたことを特徴とする空調機。
  3. 蒸発器16、圧縮機12、凝縮器14、減圧器15の経路を冷媒管路17で連結したヒートポンプからなる室外機10と、前記圧縮機12を駆動するガスエンジン31と、前記室外機10の熱エネルギーを外気と熱交換して処理済みの加温した空気として出力する室内機とを有する空調機において、前記凝縮器14に、吸湿性液体を循環する吸湿液循環管路44を設け、この吸湿液循環管路44の前記蒸発器16における出口側を、熱交換器20を介して前記凝縮器14での熱交換後の吸湿性液体を噴射して外気と接触し、熱交換する室内機としてのエアコンタクタ11の入口側に連結し、このエアコンタクタ11の出口側に連結された吸湿性液体を循環する循環管路52を、熱交換器21を介して前記蒸発器16の入口側の供給管路54に連結し、この供給管路54の前記蒸発器16における出口側を、前記吸湿性液体を噴射して外気と接触し、熱交換するとともに、外気から吸湿する室外機用再生コンタクタ19に連結し、この再生コンタクタ19の出口管路57を、前記熱交換器21を介して前記凝縮器14の入口側に連結し、前記熱交換器20に外部熱と熱交換する外部熱管路71を設け、この外部熱管路71に、前記ガスエンジン31に結合された排熱管路78を連結して、加湿暖房・外気吸湿モードで動作するようにしたことを特徴とする空調機。
  4. 冷房時における蒸発器16又は暖房時における凝縮器14に設けられた吸湿液循環管路44に、熱の余剰時に濃度の高い吸湿性液体を貯め込むための吸湿液リザーバタンク22を連結したことを特徴とする請求項1、2又は3記載の空調機。
JP2004043203A 2004-02-19 2004-02-19 空調機 Pending JP2005233511A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043203A JP2005233511A (ja) 2004-02-19 2004-02-19 空調機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043203A JP2005233511A (ja) 2004-02-19 2004-02-19 空調機

Publications (1)

Publication Number Publication Date
JP2005233511A true JP2005233511A (ja) 2005-09-02

Family

ID=35016656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043203A Pending JP2005233511A (ja) 2004-02-19 2004-02-19 空調機

Country Status (1)

Country Link
JP (1) JP2005233511A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406833C (zh) * 2006-09-21 2008-07-30 青岛大学 热管热泵复合式干燥动力源系统
JP2013064548A (ja) * 2011-09-16 2013-04-11 Daikin Industries Ltd 調湿装置
JP2013130381A (ja) * 2011-12-22 2013-07-04 Daikin Industries Ltd 調湿装置
CN103836742A (zh) * 2014-02-10 2014-06-04 中国科学院理化技术研究所 多联热管机房空调系统
JP2016040517A (ja) * 2015-12-25 2016-03-24 ダイキン工業株式会社 調湿装置
CN109114689A (zh) * 2018-09-27 2019-01-01 奥克斯空调股份有限公司 一种热泵联合空调系统及空调器
CN115264561A (zh) * 2022-07-29 2022-11-01 湖南东尤水汽能节能有限公司 一种大气换热式水汽能热泵空气调节装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406833C (zh) * 2006-09-21 2008-07-30 青岛大学 热管热泵复合式干燥动力源系统
JP2013064548A (ja) * 2011-09-16 2013-04-11 Daikin Industries Ltd 調湿装置
JP2013130381A (ja) * 2011-12-22 2013-07-04 Daikin Industries Ltd 調湿装置
CN103836742A (zh) * 2014-02-10 2014-06-04 中国科学院理化技术研究所 多联热管机房空调系统
JP2016040517A (ja) * 2015-12-25 2016-03-24 ダイキン工業株式会社 調湿装置
CN109114689A (zh) * 2018-09-27 2019-01-01 奥克斯空调股份有限公司 一种热泵联合空调系统及空调器
CN115264561A (zh) * 2022-07-29 2022-11-01 湖南东尤水汽能节能有限公司 一种大气换热式水汽能热泵空气调节装置

Similar Documents

Publication Publication Date Title
Fekadu et al. Renewable energy for liquid desiccants air conditioning system: A review
US6324860B1 (en) Dehumidifying air-conditioning system
CN103502740B (zh) 混合制冷装置
US5758509A (en) Absorption heat pump and desiccant assisted air conditioning apparatus
CN101240925B (zh) 太阳能吸收式液体除湿空调系统
KR200443867Y1 (ko) 태양열 저온수 흡수식 냉방장치
JP2017537293A (ja) 小型のスプリット型液体乾燥剤空調方法及びシステム
EP1746355B1 (en) Air conditioner system
Cerci A new ideal evaporative freezing cycle
JP4368212B2 (ja) 空調機
CN103353189A (zh) 基于空气实现再生热量高效利用的热源塔热泵装置
CN105910190B (zh) 一种太阳能驱动的吸附热池耦合膜溶液除湿空调系统
KR101642843B1 (ko) 삼중 하이브리드 히트펌프 냉난방 시스템
KR101616516B1 (ko) 흡수식 냉동기를 이용한 외기 냉방 시스템
JP2005233511A (ja) 空調機
JP2015194304A (ja) 外気処理装置
CN112113367A (zh) 太阳能热驱动的改进溶液吸收式热泵系统与除湿空调系统
JP2009145040A (ja) 空調機
CN2916472Y (zh) 溶液除湿冷却与压缩式热泵复合系统
CN108488955B (zh) 一种除湿溶液再生装置及一种空气除湿系统
JP3373948B2 (ja) 空気調和装置
JPH05223283A (ja) 吸湿液体を用いた空気調和方法および空気調和装置
CN202813876U (zh) 一种喷淋液烘干式超低温风能热泵空调装置
KR20090021807A (ko) 냉방기능을 갖는 연료전지 시스템
JP2007040286A (ja) ガスタービンプラント