JP2005233170A - Method for reducing disc friction by forming spiral groove - Google Patents

Method for reducing disc friction by forming spiral groove Download PDF

Info

Publication number
JP2005233170A
JP2005233170A JP2004079153A JP2004079153A JP2005233170A JP 2005233170 A JP2005233170 A JP 2005233170A JP 2004079153 A JP2004079153 A JP 2004079153A JP 2004079153 A JP2004079153 A JP 2004079153A JP 2005233170 A JP2005233170 A JP 2005233170A
Authority
JP
Japan
Prior art keywords
fluid
flow
spiral
disk
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004079153A
Other languages
Japanese (ja)
Inventor
Keizo Watanabe
敬三 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004079153A priority Critical patent/JP2005233170A/en
Publication of JP2005233170A publication Critical patent/JP2005233170A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce frictional loss by forming a side wall of an impeller, an inner wall or a disc surface of a casing a surface which is provided with a number of spiral grooves meeting a logarithm spiral curve taking a stream angle as a variable for disc frictional loss of the impeller of a turbo type fluid machine which performs energy conversion of the fluid or gas, and viscosity frictional resistance of a rotating disc which rotates in the fluid. <P>SOLUTION: The logarithmic spiral of a required radius r taking the stream angle ψ as the variable is formed into a groove shape, and the required number of spiral grooves where n = 150-160 order, are provided on the disc surface at constant intervals. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は液体や気体など流体のエネルギー変換を行なうターボ式流体機械の円板摩擦損失や流体の流動システムにおける回転円板の摩擦損失低減化に関する。  The present invention relates to disc friction loss of a turbo fluid machine that performs energy conversion of fluid such as liquid or gas, and reduction of friction loss of a rotating disc in a fluid flow system.

背景の技術Background technology

近年、流体の損失や抵抗の低減を低減させる試みは、地球温暖化や省エネルギーに直接関連して国内外で大きな注目を浴びている。流体が流動する際、それと接する固体壁面の摩擦抵抗は実在流体では無視することが出来ず、その低減化は従来から流体工学の主要な研究や技術的課題となってきた。  In recent years, attempts to reduce fluid loss and resistance reduction have attracted a great deal of attention at home and abroad in direct relation to global warming and energy saving. When the fluid flows, the frictional resistance of the solid wall surface in contact with the fluid cannot be ignored in the existing fluid, and its reduction has been a major research and technical problem in fluid engineering.

一方、回転円板摩擦抵抗はポンプ、送風機、ブロワーや水車など液体や気体などのエネルギー変換を行なう流体機械であるターボ機械の羽根車の機械的摩擦損失動力に直接関連し、それら流体機械の効率向上と直接結びつくため、その低減化は工業的にも非常に重要である。  On the other hand, the rotating disk frictional resistance is directly related to the mechanical friction loss power of the impeller of a turbomachine, which is a fluid machine that converts energy such as pumps, blowers, blowers and water turbines, such as liquids and gases. Since it is directly linked to improvement, its reduction is very important industrially.

通常,その損失動力は容器内回転円板摩擦抵抗の解析および実験結果から算定・予測することが出来る。そして、流体の流動における抵抗や損失は流体と固体壁の相互作用により生じると見なせば、その抵抗減少を実現させる方法は流体の特性を変える方法と固体表面の特性を変える方法の二つに大きく分けることができる。  Usually, the loss power can be calculated and predicted from the analysis of the frictional resistance of the rotating disk in the container and the experimental results. If resistance and loss in the fluid flow are considered to be caused by the interaction between the fluid and the solid wall, there are two methods for reducing the resistance: a method for changing the properties of the fluid and a method for changing the properties of the solid surface. It can be roughly divided.

前者の流体の特性を変える方法としては水溶性高分子や界面活性剤などの抵抗低減剤を添加する方法を上げることができる。しかしながら、これらは長時間高いせん断速度場で流動させるとその特性が失われる劣化の問題や流動後投棄された場合の環境への影響を考えると、一般的なターボ機械の運転状態では応用することが困難である。さらに、それは液体のみが対象とされる。それ故,ターボ機械の羽根車や流動システムにおける回転円板への抵抗減少効果の応用は後者の固体表面の特性に着目した方法が適し、その応用範囲も広いと考えられる。  As a method of changing the characteristics of the former fluid, a method of adding a resistance reducing agent such as a water-soluble polymer or a surfactant can be raised. However, these can be applied in general turbomachine operating conditions, considering the deterioration problem that the characteristics are lost when flowing in a high shear rate field for a long time and the environmental impact when dumped after flow. Is difficult. Furthermore, it is targeted only for liquids. Therefore, it is considered that the latter method focusing on the characteristics of the solid surface is suitable for application of the resistance reduction effect to the rotating disk in the impeller of a turbomachine and a flow system, and the application range is considered wide.

固体表面の特性に注目した例として、壁面における流体の滑りを生じさせる超はっ水性壁を固体表面に適用する方法がある(例えば、学術文献1参照)。しかしながら、これは層流域での抵抗減少効果を得ることが可能であるが、液体のみが対象であり、ポンプ羽根車など大きな機械的せん断力が長時間作用する流れ場では塗膜のはがれや磨耗などが避けられず、その効果が失われる為、現時点でのその実用化は難しい。  As an example of paying attention to the characteristics of the solid surface, there is a method in which a super water-repellent wall that causes fluid slip on the wall surface is applied to the solid surface (see, for example, academic literature 1). However, it is possible to obtain a resistance reduction effect in the laminar flow area, but only for liquids, and in a flow field where a large mechanical shear force acts for a long time such as a pump impeller, the coating film is peeled off or worn. Is inevitable and its effect is lost, so its practical use at the present time is difficult.

それ故,抵抗減少効果を有する固体表面の実用化に際しては耐久性に優れた壁面が必要となる。この耐久性に優れた壁面の一つとしてリブレットが考えられる。(例えば、学術文献2参照)。リブレットは固体表面に設けられたある種の規則性をもった溝であり、ある流れの領域で流体摩擦抵抗を低減させる効果をもつ。この抵抗減少効果の回転円板への応用は気体や液体ともに対象とすることが可能であり、耐久性の点においても優れていると考えられる。  Therefore, a wall surface with excellent durability is required for practical use of a solid surface having a resistance reducing effect. One of the durable wall surfaces is a riblet. (For example, see academic literature 2). A riblet is a groove having a certain regularity provided on a solid surface, and has an effect of reducing fluid frictional resistance in a certain flow region. The application of this resistance reduction effect to a rotating disk can be applied to both gas and liquid, and is considered excellent in terms of durability.

このことに関連し、ある種の表面形状をもつ流体機械が提案されている(例えば、学術文献3参照)。また、円板表面の流れの様相を実験的に明らかにした結果をもとにして、多条な溝をもつ羽根車として応用したものも提案されている。(例えば、学術文献4参照)。  In connection with this, a fluid machine having a certain surface shape has been proposed (see, for example, academic literature 3). In addition, based on the experimentally clarified aspect of the flow on the disk surface, an application as an impeller with multiple grooves has been proposed. (For example, see academic literature 4).

学術文献Academic literature

学術文献1Academic literature 1

渡辺、小方、超はっ水性回転円板のニュートン流体における摩擦抵抗の低減について、日本機械学会論文集、B編、63巻612号、(1997)、p.2752。Watanabe, Ogata, and Super water-repellent rotating discs for reducing the frictional resistance of Newtonian fluids, The Japan Society of Mechanical Engineers, B, 63, 612, (1997), p. 2752.

学術文献2Academic literature 2

Walsh,W.J.,Riblets as a Viscous Drag Reduction Technique,AIAA Journal,Vol.21,No.4,(1982),p.485.Walsh, W .; J. et al. , Ribets as a Viscous Drag Reduction Technique, AIAA Journal, Vol. 21, no. 4, (1982), p. 485.

学術文献3Academic literature 3

ゼンゲ・プロダーセン、流体機械、特許第3455586号(2003)Zenge Prodersen, fluid machinery, Japanese Patent No. 3455586 (2003)

学術文献4Academic literature 4

渡辺、側壁に多条な細溝を有するターボ機械の羽根車、特開平−121316、(1996)。Watanabe, a turbomachine impeller having a plurality of narrow grooves on the side wall, JP-A-121316, (1996).

しかしながら、すでに提案されている上述した方法は回転円板表面上の乱流境界層特性やその流れの様相を十分に把握していないため、実際に適用すると摩擦抵抗が逆に増加する条件まで内蔵し、そのことからは本来の抵抗低減を得ることが出来ない。学術文献3において、対象とした条溝構造はS=5〜25としているが、溝本数を逆算すると450本以上となり、また、条溝構造面積はμmmオーダーとしており、あまりに微少でありこれからは回転円板の境界層制御は不可能である。このことは単純に従来用いられているリブレットの円管や平板からその形状を適用したに過ぎないことによると考えられる。さらに、最大に低減する最適かつ有効な円板の表面形状を特定することが出来ず、現実に実現される方法とは言い難い。However, the proposed method described above does not fully grasp the characteristics of the turbulent boundary layer and its flow on the surface of the rotating disk. However, the original resistance reduction cannot be obtained. In Academic Literature 3, the target groove structure is S = + 5 to 25, but when the number of grooves is calculated backwards, it becomes 450 or more, and the groove structure area is on the order of 2 μm, which is too small. It is impossible to control the boundary layer of the rotating disk. This is thought to be due to the fact that the shape is simply applied from a circular tube or flat plate of a riblet that has been conventionally used. Furthermore, the optimum and effective disk surface shape that can be reduced to the maximum cannot be specified, and it is difficult to say that the method is actually realized.

本発明は、上述の従来の課題を解決することを目的としてなしたものであり、流体力学的に円板表面上の流れの挙動を捉え、その結果に基づいて決定された表面形状をもち、流れの遷移域及び乱流域において摩擦抵抗を減少させることを特徴とする表面で、従来提案されたリブレットの表面構造から類推することやそれらを参考にすることからは到底実現できない独創性と新規性を有する。  The present invention has been made for the purpose of solving the above-described conventional problems, hydrodynamically captures the flow behavior on the disk surface, and has a surface shape determined based on the result, A surface characterized by reducing frictional resistance in the flow transition region and the turbulent flow region. Originality and novelty that cannot be realized by analogy with the surface structure of the riblet proposed in the past or referring to them. Have

従来から行なわれた回転円板表面上の流れの可視化によって、円板表面上に滞留する渦や主流の方向が層流及び乱流域で明らかにされてきた(例えば、学術文献5参照)。すなわち、回転円板上の境界層の流れは、その主流の流れ方向と固定された渦を有する、ある種の組織構造をもった流れであると言える。  The visualization of the flow on the surface of the rotating disk, which has been performed conventionally, has revealed the direction of vortices and main flow that stay on the disk surface in laminar and turbulent regions (see, for example, academic literature 5). That is, it can be said that the flow of the boundary layer on the rotating disk is a flow having a certain type of structure having a flow direction of the main flow and a fixed vortex.

学術文献Academic literature

学術文献5Academic literature 5

加藤、渡辺、納谷、高分子溶液中における回転円板付近の流れについて、日本機械学会論文集、B編、44巻379号、(1978)、p.970。Kato, Watanabe, Naya, The flow in the vicinity of a rotating disk in a polymer solution is described in Japan Society of Mechanical Engineers, Volume B, Vol. 44, 379 (1978), p. 970.

可視化結果から明らかにされた円板近傍の流れに着目すれば、リブレットの効果よりも流れの整流効果すなわち制御をおこなうことにより、回転円板摩擦抵抗の低減化が得られると考えられる。この円板表面上の流れの制御は円板表面の流れに沿う螺旋状の円板の接線方向と半径方向の壁面せん断応力の比である流れ角φを関数とする対数螺旋曲線に従う一定本数の溝を等間隔に付すことで可能となる。  Focusing on the flow in the vicinity of the disk, which is clarified from the visualization result, it is considered that the rotational disk frictional resistance can be reduced by performing the flow rectification effect, that is, the control, rather than the riblet effect. The flow control on the disk surface is controlled by a constant number of lines following a logarithmic spiral curve as a function of the flow angle φ, which is the ratio of the tangential and radial wall shear stresses of the spiral disk along the flow on the disk surface. This is possible by attaching grooves at regular intervals.

これらの溝の製作は、エッチングや機械的加工によって可能であり、当然のことながらそれらの加工が困難であれば、薄い膜やフイルムに所要螺旋形状をもつ溝をプレス加工して、それを対象となる表面に接着することでも実現可能であることは言うまでもない。  These grooves can be manufactured by etching or mechanical processing. If it is of course difficult to process these grooves, a groove with the required spiral shape is pressed into a thin film or film and the target is processed. Needless to say, it can also be realized by bonding to the surface.

本発明によれば、ターボ機械の羽根車の側壁やケーシング内壁、あるいは流体中で回転する円板の表面を微細な螺旋溝を付すことによって粘性損失が最大約15%低減する。遠心ポンプを例にとると、通常円板摩擦損失はポンプ全効率の10〜20%を占め、この低減化によってその性能は2〜3%の効率上昇が期待でき、本発明は優れた効果を発揮する。  According to the present invention, the viscous loss is reduced by about 15% at maximum by attaching fine spiral grooves to the side wall of the impeller of the turbomachine, the inner wall of the casing, or the surface of the disk rotating in the fluid. Taking a centrifugal pump as an example, the disk friction loss usually occupies 10 to 20% of the total efficiency of the pump, and by this reduction, the performance can be expected to increase by 2 to 3%, and the present invention has an excellent effect. Demonstrate.

以下、図面を参照しつつ、本発明の実施例を説明する。第1図は円板表面に付す本発明による螺旋溝の対数螺旋曲線である。流れ角φは、円板の半径を代表寸法とする局所レイノルズ数Reの関数として与え、対数螺旋曲線の半径rがそれを変数として与えられる。

Figure 2005233170
Figure 2005233170
ただし、φ=流れ角(rad)、τθ=接線方向の壁面せん断応力(Pa)、τ=半径方向の壁面せん断応力(Pa)、Re=円板の半径を代表寸法とする局所レイノルズ数(・/・)、r=円板上の任意半径(m)、r=基準となる半径(m)、θ=円周方向座標(rad)Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a logarithmic spiral curve of a spiral groove according to the present invention attached to the disk surface. The flow angle φ is given as a function of the local Reynolds number Re L with the radius of the disk as a representative dimension, and the radius r of the logarithmic spiral curve is given as a variable.
Figure 2005233170
Figure 2005233170
Where φ = flow angle (rad), τ θ = tangential wall shear stress (Pa), τ r = radial wall shear stress (Pa), Re L = local Reynolds with the radius of the disk as a representative dimension. Number (./.), R = arbitrary radius (m) on the disc, r.sub.l = reference radius (m), .theta. = Circumferential coordinate (rad)

図2に示すように、円板表面あるいは内壁に、上述した対数螺旋曲線を150〜160オーダーで等間隔に付す。該螺旋曲線に従う螺旋溝の幅は等間隔に付したことにより、自動的に決まる。図3〜図5は該螺旋溝形状の例である。  As shown in FIG. 2, the above-mentioned logarithmic spiral curve is given to the disc surface or inner wall at equal intervals in the order of 150 to 160. The widths of the spiral grooves according to the spiral curve are automatically determined by giving them equal intervals. 3 to 5 are examples of the spiral groove shape.

この螺旋曲線に一致する深さ約h=0.2mmの溝本数n=150本の表面で、容器内回転円板の容器と円板の側壁とのすき間sと半径aの比(s/a)が小さい場合に、図6の円板の摩擦抵抗モーメント係数Cとレイノルズ数Reの関係に示すように、乱流域で平滑の円板と比較して水における円板の摩擦抵抗モーメント係数(図中の●印)を約15%低減させることができた。The ratio of the gap s between the container of the rotating disk in the container and the side wall of the disk and the radius a (s / a) on the surface of the groove number n = 150 having a depth of about h = 0.2 mm that matches the spiral curve ) when the small frictional resistance moment coefficient of the disc in frictional resistance moment coefficient as shown in the relationship of C m and the Reynolds number Re, the water compared to the smooth disc in turbulent disc of FIG. 6 ( The mark (●) in the figure was reduced by about 15%.

このときの流れの状態を表面が平滑な円板と該螺旋溝を付した円板付近の流れの可視化結果を図7及び図8に示した。図7の平滑な円板表面の流れは円周方向外向きで大きな渦の流れが生じているが。図8から該螺旋溝を付すことで流れは円周方向に向けられ制御されていることが判り、その効果が明確に確認できる。  The flow visualization at this time is shown in FIG. 7 and FIG. 8 as a result of visualizing the flow in the vicinity of the disk having a smooth surface and the spiral groove. Although the flow on the smooth disk surface in FIG. 7 is outward in the circumferential direction, a large vortex flow is generated. It can be seen from FIG. 8 that the flow is directed and controlled in the circumferential direction by attaching the spiral groove, and the effect can be clearly confirmed.

尚、本発明は上記実施例にのみ限定されるものでなく、流体攪拌システムのタンク内に設置された回転円板や空気など気体の流れに対して、所要な表面にすることによってその粘性摩擦を減少させることも可能であり、本発明の要旨を逸脱しない範囲において種々変更を加え得ることは勿論である。  The present invention is not limited only to the above-described embodiment, but the viscous friction can be obtained by providing a required surface against the flow of gas such as a rotating disk and air installed in the tank of the fluid stirring system. Of course, various changes can be made without departing from the scope of the present invention.

本発明の方法の一実施例に用いる1本の螺旋溝の対数曲線図である。It is a logarithmic curve figure of one spiral groove used for one Example of the method of this invention. 第1図を円板に等間隔で付した円板の実施例である。It is an Example of the disc which attached | subjected FIG. 1 to the disc at equal intervals. 第2図の螺旋溝に対する断面形状が台形型の実施例である。The cross-sectional shape with respect to the spiral groove of FIG. 2 is an example of a trapezoidal shape. 第2図の螺旋溝に対する断面形状がU字形型の実施例である。FIG. 2 shows an embodiment in which the cross-sectional shape with respect to the spiral groove of FIG. 2 is U-shaped. 第2図の螺旋溝に対する断面形状がV字形型の実施例である。FIG. 2 shows an embodiment in which the cross-sectional shape with respect to the spiral groove in FIG. 2 is V-shaped. 本発明に基づいて製作した、軸方向すき間が比較的狭い場合に対する回転円板摩擦モーメン係数の実験結果の例である。It is an example of the experimental result of the rotation disk friction moment coefficient with respect to the case where the axial clearance was comparatively narrow manufactured based on this invention. 第6図の実験条件と一致する円板表面が平滑な回転円板近傍の流れに対する可視化結果の例である。It is an example of the visualization result with respect to the flow in the vicinity of a rotating disk with a smooth disk surface that matches the experimental conditions of FIG. 第6図及び図7の実験条件と一致する本発明による螺旋溝を付した回転円板近傍の流れに対する可視化結果の例である。It is an example of the visualization result with respect to the flow in the vicinity of the rotating disk with the spiral groove according to the present invention, which is consistent with the experimental conditions of FIGS.

Claims (3)

以下の式で与えられる所要の流れ角φを変数とする所要半径rの対数螺旋曲線を溝形状とし、円板表面に該螺旋溝のn=150〜160オーダーの所要本数を等間隔に付したことを特徴とする液体あるいは気体を作動流体とするターボ式流体機械の羽根車表面やケーシング内壁、あるいは流体の流動システムにおける回転円板表面。
Figure 2005233170
A logarithmic spiral curve having a required radius r with a required flow angle φ given by the following equation as a variable is defined as a groove shape, and the required number of n = 150 to 160 orders of the spiral grooves is given to the disk surface at equal intervals. The surface of the impeller of a turbo fluid machine using the liquid or gas as a working fluid, the inner wall of the casing, or the surface of a rotating disk in a fluid flow system.
Figure 2005233170
該螺旋溝の深さが0.05mm〜0.2mmオーダーにあることを特徴とする請求項1に記載の表面あるいは内壁。The surface or inner wall according to claim 1, wherein the depth of the spiral groove is on the order of 0.05 mm to 0.2 mm. 該螺旋溝の断面形状がV字型、U字型あるいは台形型などにあることを特徴とする請求項1に記載の表面あるいは内壁。The surface or inner wall according to claim 1, wherein the spiral groove has a V-shaped, U-shaped or trapezoidal cross-sectional shape.
JP2004079153A 2004-02-23 2004-02-23 Method for reducing disc friction by forming spiral groove Pending JP2005233170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004079153A JP2005233170A (en) 2004-02-23 2004-02-23 Method for reducing disc friction by forming spiral groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004079153A JP2005233170A (en) 2004-02-23 2004-02-23 Method for reducing disc friction by forming spiral groove

Publications (1)

Publication Number Publication Date
JP2005233170A true JP2005233170A (en) 2005-09-02

Family

ID=35016366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004079153A Pending JP2005233170A (en) 2004-02-23 2004-02-23 Method for reducing disc friction by forming spiral groove

Country Status (1)

Country Link
JP (1) JP2005233170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8979476B2 (en) 2010-07-21 2015-03-17 ITT Manfacturing Enterprises, LLC. Wear reduction device for rotary solids handling equipment
WO2022087675A1 (en) * 2020-10-29 2022-05-05 Weir Minerals Australia Ltd Grooved side liner for centrifugal pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8979476B2 (en) 2010-07-21 2015-03-17 ITT Manfacturing Enterprises, LLC. Wear reduction device for rotary solids handling equipment
WO2022087675A1 (en) * 2020-10-29 2022-05-05 Weir Minerals Australia Ltd Grooved side liner for centrifugal pump

Similar Documents

Publication Publication Date Title
Yu et al. Dimple patterns design for different circumstances
US7351041B2 (en) Fan with reduced noise generation
Gu¨ lich Effect of Reynolds number and surface roughness on the efficiency of centrifugal pumps
JP2008057416A (en) Axial flow turbine
JP3455586B2 (en) Fluid machinery
JPS60256502A (en) Leading end of blade
JP2009539033A5 (en)
Li Model of flow in the side chambers of an industrial centrifugal pump for delivering viscous oil
EP2843226B1 (en) Hydraulic turbine and pipe
Van Esch Fish injury and mortality during passage through pumping stations
JP2005233170A (en) Method for reducing disc friction by forming spiral groove
JP2005265186A (en) Optimization method for groove structure of friction plate of wet type friction engagement element
JP6192990B2 (en) Axial flow turbine
RU2321766C2 (en) Blade system for wheel of hydraulic turbine
JP6518526B2 (en) Axial flow turbine
JP2004293684A (en) Thrust bearing
Shigemitsu et al. Influence of blade outlet angle and blade thickness on performance and internal flow conditions of mini centrifugal pump
CN107339350A (en) A kind of Novel friction plate
Sun et al. Single-phase model for electric submersible pump (ESP) head performance
Flack et al. Fundamental analysis of the secondary flows and jet-wake in a torque converter pump—part I: model and flow in a rotating passage
JP2005163640A (en) Impeller for compressor
RU2692941C1 (en) Centrifugal pump impeller for gas-liquid media
CN208619464U (en) A kind of drag reduction rib structure
US2306639A (en) Blades for turbomachines
JP2009257116A (en) Seal device and steam turbine