JP2005231966A - Inorganic porous thin film where carbon nanotubes are formed in the pores, laminated body, and manufacturing method for the same - Google Patents

Inorganic porous thin film where carbon nanotubes are formed in the pores, laminated body, and manufacturing method for the same Download PDF

Info

Publication number
JP2005231966A
JP2005231966A JP2004045402A JP2004045402A JP2005231966A JP 2005231966 A JP2005231966 A JP 2005231966A JP 2004045402 A JP2004045402 A JP 2004045402A JP 2004045402 A JP2004045402 A JP 2004045402A JP 2005231966 A JP2005231966 A JP 2005231966A
Authority
JP
Japan
Prior art keywords
thin film
fine particles
porous thin
inorganic porous
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004045402A
Other languages
Japanese (ja)
Inventor
Hidefumi Sasakura
英史 笹倉
Yukio Yamaguchi
由岐夫 山口
Isao Matsui
功 松井
Nobuaki Ichige
伸明 市毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Toshiba Corp filed Critical Asahi Glass Co Ltd
Priority to JP2004045402A priority Critical patent/JP2005231966A/en
Publication of JP2005231966A publication Critical patent/JP2005231966A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prepare an inorganic porous thin film where a large number of pores with a required shape are arranged in a single layer and carbon nanotubes are selectively grown in the pores, a laminated body made of the same, and a method for manufacturing the inorganic porous thin film. <P>SOLUTION: The inorganic porous thin film 10 has a large number of pores 5 having an opening 1 with a nearly circular shape and an inner peripheral face 3 with a nearly spherical shape and carbon nanotubes 6 are formed in the pores 5. The pores 5 are arranged in the single layer along the flat surface of the thin film 10. The average diameter d1 of the openings 1 is 30-3,000 nm and the average distance between the centers of the neighboring pores d2 is 100-230% of the average diameter d1 of the openings 1. The thickness of the film d3 is 30-100% of the average diameter d1 of the openings 1. The average diameter of the carbon nanotubes 6 is 0.4-50 nm and the average length is 10-1,000 nm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、孔中に選択的にカーボンナノチューブが形成された無機多孔性薄膜、それを用いた積層体、及び無機多孔性薄膜の製造方法に関する。   The present invention relates to an inorganic porous thin film in which carbon nanotubes are selectively formed in pores, a laminate using the same, and a method for producing the inorganic porous thin film.

自己組織化は、ボトムアップ方式によるパターン形成方法の1つであり、ナノテクノロジーを用いた大量生産を実現するための有力な方法である。   Self-organization is one of the bottom-up pattern formation methods, and is a powerful method for realizing mass production using nanotechnology.

近年、ブラウン管(CRT)代替として、ディスプレイフィールド エミッション ディスプレイ(FED)の研究が進められている。このような研究としては、カーボンナノチューブ(CNT)を電子銃とした陰極パネルの研究(例えば、非特許文献1〜2参照)が知られており、またカーボンナノチューブをある領域に選択的に成長させる研究(例えば、非特許文献3参照)が知られている。
斎藤弥八、板東俊治、「カーボンナノチューブの基礎」、コロナ社、1998年、p.185−192 村上裕彦、「FED用ナノカーボン材料の開発」、金属、2002年、第72巻、第9号 Yongyuan Yang,Shaoming Huang,Huizu He,Albert W. H. Mau,and Liming Dai.: ”Patterned Growth of Well-Aligned Carbon Nanotubes: A Photolithographic Approach” ; J. Am. Chem. Soc. 1999, 121; p.10832-10833
In recent years, research on a display field emission display (FED) has been promoted as an alternative to a cathode ray tube (CRT). As such research, research on cathode panels using carbon nanotubes (CNT) as an electron gun is known (for example, see Non-Patent Documents 1 and 2), and carbon nanotubes are selectively grown in a certain region. Research (for example, see Non-Patent Document 3) is known.
Saihachi Hachihachi, Itoh Toshiharu, “The Fundamentals of Carbon Nanotubes”, Corona, 1998, p. 185-192 Hirohiko Murakami, “Development of nano carbon materials for FED”, Metals, 2002, Vol. 72, No. 9 Yongyuan Yang, Shaoming Huang, Huizu He, Albert WH Mau, and Liming Dai .: “Patterned Growth of Well-Aligned Carbon Nanotubes: A Photolithographic Approach”; J. Am. Chem. Soc. 1999, 121; p.10832-10833

しかしながら、上記公報記載のエッチングによるカソード基板の絶縁膜を作製した場合工程数が多く、また電子銃のカーボンナノチューブをカソード基板の細孔に選択的に成長させたものは得られていなかった。   However, when the insulating film of the cathode substrate by the etching described in the above publication is prepared, the number of steps is large, and the carbon nanotubes of the electron gun that are selectively grown in the pores of the cathode substrate have not been obtained.

そこで、本発明の目的は、所定形状の多数の孔中に選択的にカーボンナノチューブを成長させた無機多孔性薄膜、それを用いた積層体、及び無機多孔性薄膜の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide an inorganic porous thin film in which carbon nanotubes are selectively grown in a large number of pores having a predetermined shape, a laminate using the same, and a method for producing the inorganic porous thin film. is there.

本発明者らは、基板上にカーボンナノチューブ形成の触媒となる金属微粒子を塗工し、その上に所定粒子径の無機超微粒子及び有機微粒子を固形成分として含有し、かつ、全固形分濃度が所定範囲内であるゾル状の塗工液を塗工し、さらにCVD法を用いることにより、所定形状の多数の孔が1層に配列し、孔中に選択的にカーボンナノチューブを成長させた無機多孔性薄膜が得られることを見出し、本発明を完成させるに至った。   The present inventors coated metal fine particles serving as a catalyst for forming carbon nanotubes on a substrate, containing inorganic ultrafine particles and organic fine particles having a predetermined particle diameter as solid components thereon, and having a total solid content concentration of By applying a sol-like coating liquid within a predetermined range and further using a CVD method, a large number of holes having a predetermined shape are arranged in one layer, and carbon nanotubes are selectively grown in the holes. The inventors have found that a porous thin film can be obtained, and have completed the present invention.

すなわち、本発明の無機多孔性薄膜は、開口部が略円形状であり内周面が略球面状の多数の孔を有し、前記孔中にカーボンナノチューブが形成された無機多孔性薄膜であって、前記孔が前記薄膜の平面方向に1層に配列し、前記開口部の平均直径が30〜3000nmであり、隣り合う前記開口部の中心間の平均距離が前記開口部の平均直径の100〜230%の長さであり、かつ、膜厚が前記開口部の平均直径の30〜100%の厚さであり、カーボンナノチューブの平均直径が0.4〜50nm、平均長さが10〜1000nmであることを特徴とするものである。   That is, the inorganic porous thin film of the present invention is an inorganic porous thin film having a large number of holes having an approximately circular opening and a substantially spherical inner peripheral surface, and carbon nanotubes are formed in the holes. The holes are arranged in one layer in the plane direction of the thin film, the average diameter of the openings is 30 to 3000 nm, and the average distance between the centers of the adjacent openings is 100 of the average diameter of the openings. -230% in length, and the film thickness is 30-100% of the average diameter of the openings, the average diameter of carbon nanotubes is 0.4-50 nm, and the average length is 10-1000 nm It is characterized by being.

このような孔中にカーボンナノチューブが形成された無機多孔性薄膜は、所定形状の多数の孔が1層に配列していることから、カーボンナノチューブを用いたFEDや電子顕微鏡などの電子銃として特に好適である。   An inorganic porous thin film in which carbon nanotubes are formed in such holes is particularly suitable as an electron gun for an FED or an electron microscope using carbon nanotubes because a large number of holes having a predetermined shape are arranged in one layer. Is preferred.

上記無機多孔性薄膜は、上記孔の平均深さが上記膜厚の50〜100%の深さであることが好ましい。さらに上記カーボンナノチューブの平均長さが、上記孔の平均深さの10〜100%であることが好ましい。   The inorganic porous thin film preferably has an average depth of the holes of 50 to 100% of the film thickness. Furthermore, the average length of the carbon nanotubes is preferably 10 to 100% of the average depth of the holes.

また、本発明の積層体は、基板と、該基板の少なくとも一方の面上に形成された上記本発明の孔中にカーボンナノチューブが形成された無機多孔性薄膜とを備えることを特徴とするものである。   The laminate of the present invention comprises a substrate and an inorganic porous thin film in which carbon nanotubes are formed in the holes of the present invention formed on at least one surface of the substrate. It is.

本発明はまた、平均粒子径0.4〜50nmの金属微粒子が第1の分散媒に分散された第1のゾル状塗工液を基板上に供給し、供給された第1のゾル状塗工液から前記第1の分散媒の少なくとも一部を除去することにより、前記基板上に、前記金属微粒子を配列させる第1の塗工工程と、
平均粒子径3〜50nmの無機超微粒子と平均粒子径30〜3000nmの有機微粒子とが第2の分散媒に分散された第2のゾル状塗工液であって(但し、有機微粒子は無機超微粒子よりも大きな平均粒子径を有する。)、全固形分濃度が0.1〜20質量%であり、前記無機超微粒子100質量部に対する前記有機微粒子の含有量が20〜1000質量部である第2のゾル状塗工液を前記基板上に供給し、供給された第2のゾル状塗工液から前記第2の分散媒の少なくとも一部を除去することにより、前記金属微粒子が配列された基板上に、前記有機微粒子が一層に配列し当該有機微粒子間に前記無機超微粒子が配されたゲル状薄膜を形成させる第2の塗工工程と、
得られたゲル状薄膜を600〜1200℃で、ガス状炭素含有化合物の加熱分解物と接触させることにより、上記有機微粒子を除去し無機多孔性薄膜を得、かつ、孔中にカーボンナノチューブを気相成長させる工程と、
を含むことを特徴とする無機多孔性薄膜の製造方法を提供する。この製造方法により、上記本発明の孔中にカーボンナノチューブが形成された無機多孔性薄膜を得ることが可能である。
The present invention also supplies a first sol-like coating liquid in which metal fine particles having an average particle diameter of 0.4 to 50 nm are dispersed in a first dispersion medium on a substrate, and the supplied first sol-like coating liquid is supplied. A first coating step of arranging the metal fine particles on the substrate by removing at least a part of the first dispersion medium from a working liquid;
A second sol coating liquid in which inorganic ultrafine particles having an average particle diameter of 3 to 50 nm and organic fine particles having an average particle diameter of 30 to 3000 nm are dispersed in a second dispersion medium (provided that the organic fine particles are inorganic ultrafine particles). The average particle diameter is larger than that of the fine particles.), The total solid content concentration is 0.1 to 20% by mass, and the content of the organic fine particles is 20 to 1000 parts by mass with respect to 100 parts by mass of the inorganic ultrafine particles. The sol-like coating liquid 2 is supplied onto the substrate, and the metal fine particles are arranged by removing at least a part of the second dispersion medium from the supplied second sol-like coating liquid. A second coating step for forming a gel-like thin film in which the organic fine particles are arranged in a single layer on the substrate and the inorganic ultrafine particles are arranged between the organic fine particles;
The obtained gel-like thin film is brought into contact with a thermal decomposition product of a gaseous carbon-containing compound at 600 to 1200 ° C., thereby removing the organic fine particles to obtain an inorganic porous thin film, and observing carbon nanotubes in the pores. A phase growth step;
The manufacturing method of the inorganic porous thin film characterized by including this is provided. By this production method, an inorganic porous thin film in which carbon nanotubes are formed in the pores of the present invention can be obtained.

また、この製造方法では、上記金属微粒子が遷移金属元素、希土類金属元素、遷移金属元素の酸化物、希土類金属元素の酸化物、及び複数の金属元素から成る複合金属化合物からなる群より選択される少なくとも1つからなるものであることが好ましい。   Further, in this manufacturing method, the fine metal particles are selected from the group consisting of transition metal elements, rare earth metal elements, oxides of transition metal elements, oxides of rare earth metal elements, and composite metal compounds composed of a plurality of metal elements. It is preferably composed of at least one.

また、この製造方法では、上記無機超微粒子がシリカからなるものであること、及び/又は、上記有機微粒子がポリマーからなるものであることが好ましい。   In this production method, it is preferable that the inorganic ultrafine particles are made of silica and / or the organic fine particles are made of a polymer.

また、この製造方法では、上記炭素含有化合物が炭化水素又はアルコールであることが望ましい。   In this production method, the carbon-containing compound is preferably a hydrocarbon or an alcohol.

本発明によれば、所定形状の多数の孔が所定パターンで1層に配列し孔中にカーボンナノチューブが形成された無機多孔性薄膜、それを用いた積層体を得ることが可能となり、また、その無機多孔性薄膜の製造方法を提供することが可能となる。また、このような無機多孔性薄膜は、フォトニッククリスタル、ガラス表面の低反射処理、カーボンナノチューブを用いたFED、電子顕微鏡などの電子銃等として、特に好適である。   According to the present invention, it is possible to obtain an inorganic porous thin film in which a large number of holes having a predetermined shape are arranged in one layer in a predetermined pattern and carbon nanotubes are formed in the holes, and a laminate using the same. It is possible to provide a method for producing the inorganic porous thin film. Such an inorganic porous thin film is particularly suitable as a photonic crystal, a low reflection treatment on the glass surface, an FED using a carbon nanotube, an electron gun for an electron microscope, or the like.

以下、添付図面を参照しながら、本発明の実施の形態について詳細に説明する。なお、図面の説明において、同一又は相当要素には同一の符号を付し、重複する説明は省略する。また、図面における寸法は実際の寸法と必ずしも一致しない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or equivalent elements will be denoted by the same reference numerals, and redundant description will be omitted. Moreover, the dimension in drawing does not necessarily correspond with an actual dimension.

(無機多孔性薄膜、それを用いた積層体)
図1は実施形態に係る「孔中にカーボンナノチューブが形成された無機多孔性薄膜を備えた積層体」の斜視図、図2は図1におけるII−II線に沿った断面図である。
(Inorganic porous thin film, laminate using the same)
FIG. 1 is a perspective view of a “laminated body including an inorganic porous thin film in which carbon nanotubes are formed in holes” according to the embodiment, and FIG. 2 is a cross-sectional view taken along line II-II in FIG.

先ず、無機多孔性薄膜10について説明する。図1及び図2に示す無機多孔性薄膜10は、基板20上に形成されたものである。無機多孔性薄膜10は、開口部1が略円形状であり内周面3が略球面状の多数の孔5を有する無機多孔性薄膜10であって、孔5が無機多孔性薄膜10の平面方向に1層に配列し、開口部1の平均直径d1が30〜3000nmであり、隣り合う開口部1の中心間の平均距離d2が開口部1の平均直径d1の100〜230%の長さであり、かつ、膜厚d3が開口部1の平均直径d1の30〜100%の厚さとなっている。   First, the inorganic porous thin film 10 will be described. The inorganic porous thin film 10 shown in FIGS. 1 and 2 is formed on a substrate 20. The inorganic porous thin film 10 is an inorganic porous thin film 10 having a large number of holes 5 in which the opening 1 has a substantially circular shape and the inner peripheral surface 3 has a substantially spherical shape, and the holes 5 are planes of the inorganic porous thin film 10. The average diameter d1 of the openings 1 is 30 to 3000 nm, and the average distance d2 between the centers of the adjacent openings 1 is 100 to 230% of the average diameter d1 of the openings 1. And the film thickness d3 is 30 to 100% of the average diameter d1 of the openings 1.

無機多孔性薄膜10は、後述する無機多孔性薄膜の製造方法により作製され得るが、その原料としては無機超微粒子が用いられる。このような無機超微粒子としては、アルミニウム、チタン及びニッケル等の金属;シリカ(二酸化ケイ素)、アルミナ(酸化アルミニウム)、チタニア(酸化チタン)、酸化ニオブ及び酸化セリウム等の無機酸化物、又は、窒化ケイ素、窒化アルミ及び窒化チタン等の無機窒化物からなる無機超微粒子のうちの少なくとも1つであることが好ましい。このような材料からなる微粒子の中でも、無機酸化物からなる無機超微粒子であることが好ましく、シリカからなる無機超微粒子であることがより好ましい。   Although the inorganic porous thin film 10 can be produced by a method for producing an inorganic porous thin film, which will be described later, inorganic ultrafine particles are used as the raw material. Such inorganic ultrafine particles include metals such as aluminum, titanium and nickel; inorganic oxides such as silica (silicon dioxide), alumina (aluminum oxide), titania (titanium oxide), niobium oxide and cerium oxide, or nitriding It is preferably at least one of inorganic ultrafine particles composed of inorganic nitrides such as silicon, aluminum nitride and titanium nitride. Among the fine particles made of such a material, inorganic ultra fine particles made of an inorganic oxide are preferable, and inorganic ultra fine particles made of silica are more preferable.

無機超微粒子の平均粒子径は3〜50nmがよく、3〜20nmがより好ましく、3〜15nmが更に好ましく、3〜10nmが特に好ましい。無機超微粒子の平均粒子径が3nm未満であると、無機超微粒子の作製が困難であることから無機多孔性薄膜の製造が困難となり、50nmを超えると上記形状の孔5の形成が困難であることから無機多孔性薄膜の製造が困難となる。   The average particle size of the inorganic ultrafine particles is preferably 3 to 50 nm, more preferably 3 to 20 nm, still more preferably 3 to 15 nm, and particularly preferably 3 to 10 nm. If the average particle size of the inorganic ultrafine particles is less than 3 nm, it is difficult to produce the inorganic ultrafine particles, so that it is difficult to produce the inorganic porous thin film, and if it exceeds 50 nm, it is difficult to form the pores 5 having the above shape. This makes it difficult to produce an inorganic porous thin film.

なお、無機超微粒子の平均粒子径は、透過型電子顕微鏡(TEM)法により求めることができる。また、無機多孔性薄膜10は、実質的に上述した原料及びそれらの構成成分である無機物からなるものが好ましいが、10%未満の有機物が含まれてもよい。   The average particle diameter of the inorganic ultrafine particles can be determined by a transmission electron microscope (TEM) method. In addition, the inorganic porous thin film 10 is preferably substantially composed of the above-described raw materials and inorganic materials that are constituents thereof, but may contain less than 10% organic material.

無機多孔性薄膜10における孔5の形状は、上述したように開口部1が略円形状であり内周面3が略球面状である。このような形状は、略球状の有機微粒子を無機多孔性薄膜の前駆体(本発明の無機多孔性薄膜の製造方法におけるゲル状薄膜)に所定間隔で分散させておいて、所定間隔で分散させた有機微粒子を焼成で除去することにより形成できる。なお、開口部1とは、図1に示すように無機多孔性薄膜10表面における孔5の略円形状の縁部である。   As described above, the shape of the hole 5 in the inorganic porous thin film 10 is such that the opening 1 is substantially circular and the inner peripheral surface 3 is substantially spherical. In such a shape, substantially spherical organic fine particles are dispersed at a predetermined interval in a precursor of an inorganic porous thin film (gel thin film in the method for producing an inorganic porous thin film of the present invention) at a predetermined interval. The organic fine particles can be formed by removing by baking. In addition, the opening part 1 is a substantially circular edge part of the hole 5 in the inorganic porous thin film 10 surface, as shown in FIG.

開口部1の平均直径d1は30〜3000nmであり、40〜1700nmであることが好ましく、100〜1000nmであることがより好ましい。平均直径d1は孔5の鋳型となる有機微粒子の平均粒子径に基本的に対応し、この有機微粒子が一列に配された状態で焼成を行うことから、所定の平均直径の孔5が1層に配列した無機多孔性薄膜を得ることができる(図2)。   The average diameter d1 of the opening 1 is 30 to 3000 nm, preferably 40 to 1700 nm, and more preferably 100 to 1000 nm. The average diameter d1 basically corresponds to the average particle diameter of the organic fine particles serving as a template for the holes 5 and firing is performed in a state where the organic fine particles are arranged in a line. It is possible to obtain an inorganic porous thin film arranged in the form (FIG. 2).

また、無機多孔性薄膜10は、隣り合う開口部1の中心間の平均距離d2が開口部1の平均直径d1の100〜230%の長さであり、100〜180%の長さであることがより好ましく、120〜160%の長さであることがさらに好ましい。平均距離d2が100%未満であると、孔とそれに隣接する孔とのそれぞれ隣接する部分がつながった状態となる。一方、平均距離d2が平均直径d1の230%を超える長さであると、開口部1の配列が不規則となる。   Moreover, as for the inorganic porous thin film 10, the average distance d2 between the centers of the adjacent openings 1 is 100 to 230% of the average diameter d1 of the openings 1, and is 100 to 180%. Is more preferable, and the length is further preferably 120 to 160%. When the average distance d2 is less than 100%, the adjacent portions of the hole and the adjacent hole are connected. On the other hand, if the average distance d2 is longer than 230% of the average diameter d1, the arrangement of the openings 1 becomes irregular.

ここで開口部1の中心とは、開口部1の輪郭が真円である場合はその中心をいう。また、開口部1の輪郭が真円から変形した形状である場合は、開口部1の中心とは、その形状の重心(開口部1と同じ輪郭の密度均一の板状体を想定したときにおける、当該板状体の重心)に相当する位置という。   Here, the center of the opening 1 means the center when the outline of the opening 1 is a perfect circle. Further, when the contour of the opening 1 is a shape deformed from a perfect circle, the center of the opening 1 is the center of gravity of the shape (when assuming a plate-like body having the same contour as the opening 1 and a uniform density) The position corresponding to the center of gravity of the plate-like body.

無機多孔性薄膜10は、膜厚d3が開口部1の平均直径d1の30〜100%の厚さであり、平均直径d1の50〜80%の厚さであることが好ましい。膜厚d3が平均直径d1の30%未満の厚さであると、孔としての役割を果たさなくなり、平均直径d1の100%を超える厚さであると、薄膜に大きな亀裂を生じる可能性がある。   The inorganic porous thin film 10 has a thickness d3 of 30 to 100% of the average diameter d1 of the openings 1 and preferably 50 to 80% of the average diameter d1. If the film thickness d3 is less than 30% of the average diameter d1, the film does not serve as a hole, and if it is more than 100% of the average diameter d1, there is a possibility that a large crack will occur in the thin film. .

無機多孔性薄膜10における孔の平均深さd4は、膜厚d3の50〜100%の深さであることが好ましく、膜厚d3の70〜100%の深さであることがより好ましい。孔の平均深さd4が膜厚d3の50%未満の深さであると薄膜に亀裂を生じる要因の一つとなる。   The average pore depth d4 in the inorganic porous thin film 10 is preferably 50 to 100% of the film thickness d3, and more preferably 70 to 100% of the film thickness d3. If the average depth d4 of the holes is less than 50% of the film thickness d3, it becomes one of the factors that cause cracks in the thin film.

カーボンナノチューブ6は、孔5の中に選択的に存在し、平均直径が0.4〜50nm、平均長さが10〜1000nmである。平均長さは上記孔5の平均深さd4の10〜100%であることが好ましい。   The carbon nanotubes 6 are selectively present in the holes 5 and have an average diameter of 0.4 to 50 nm and an average length of 10 to 1000 nm. The average length is preferably 10 to 100% of the average depth d4 of the holes 5.

次に、積層体について説明する。図1及び図2に示す、実施形態に係る積層体100は、基板20と、基板20の少なくとも一方の面上に形成された上記無機多孔性薄膜10とを備えることを特徴とするものである。   Next, a laminated body is demonstrated. A laminated body 100 according to the embodiment shown in FIGS. 1 and 2 includes a substrate 20 and the inorganic porous thin film 10 formed on at least one surface of the substrate 20. .

積層体100における基板20は、ガラス、石英、シリコン又はアルミ等からなる平板状の基板を用いることができる。このような基板の形状は特に限定されないが、円板状で直径が10〜90mmであり、厚さが0.2〜3.0mmの基板、または四角状で一辺が50〜300mmであり、0.2〜3.0mmの基板厚さがが好ましい。   As the substrate 20 in the stacked body 100, a flat substrate made of glass, quartz, silicon, aluminum, or the like can be used. The shape of such a substrate is not particularly limited, but is a disk-shaped substrate having a diameter of 10-90 mm, a thickness of 0.2-3.0 mm, or a square substrate having a side of 50-300 mm, 0 A substrate thickness of 2 to 3.0 mm is preferred.

以上述べた無機多孔性薄膜10及びそれを用いた積層体100は、カーボンナノチューブを用いたFEDや電子顕微鏡などの電子銃として特に好適である。   The inorganic porous thin film 10 described above and the laminate 100 using the same are particularly suitable as an electron gun for an FED using a carbon nanotube, an electron microscope, or the like.

(無機多孔性薄膜の製造方法)
以下、無機多孔性薄膜の製造方法について説明する。
上述した孔中にカーボンナノチューブが形成された無機多孔性薄膜及び積層体は、実施形態に係る以下の無機多孔性薄膜の製造方法により得ることができる。すなわち、平均粒子径0.4〜50nmの金属微粒子が第1の分散媒に分散された第1のゾル状塗工液を基板上に供給し、供給された第1のゾル状塗工液から上記第1の分散媒の少なくとも一部を除去することにより、上記基板上に、上記金属微粒子を配列させる第1の塗工工程と、平均粒子径3〜50nmの無機超微粒子と平均粒子径30〜3000nmの有機微粒子とが第2の分散媒に分散された第2のゾル状塗工液であって(但し、有機微粒子は無機超微粒子よりも大きな平均粒子径を有する。)、全固形分濃度が0.1〜20質量%であり、上記無機超微粒子100質量部に対する上記有機微粒子の含有量が20〜1000質量部である第2のゾル状塗工液を上記基板上に供給し、供給された第2のゾル状塗工液から上記第2の分散媒の少なくとも一部を除去することにより、上記金属微粒子が配列された基板上に、上記有機微粒子が一層に配列し当該有機微粒子間に上記無機超微粒子が配されたゲル状薄膜を形成させる第2の塗工工程と、得られたゲル状薄膜を600〜1200℃で、ガス状炭素含有化合物の加熱分解物と接触させることにより、上記有機微粒子を除去し無機多孔性薄膜を得、かつ、孔中にカーボンナノチューブを気相成長させる工程と、を含む方法により製造可能である。
(Inorganic porous thin film manufacturing method)
Hereinafter, the manufacturing method of an inorganic porous thin film is demonstrated.
The inorganic porous thin film and laminate in which carbon nanotubes are formed in the above-described pores can be obtained by the following method for producing an inorganic porous thin film according to the embodiment. That is, a first sol-like coating liquid in which metal fine particles having an average particle size of 0.4 to 50 nm are dispersed in a first dispersion medium is supplied onto a substrate, and the supplied first sol-like coating liquid is used. By removing at least a part of the first dispersion medium, a first coating step for arranging the metal fine particles on the substrate, inorganic ultrafine particles having an average particle size of 3 to 50 nm, and an average particle size of 30 A second sol-like coating liquid in which organic fine particles of ˜3000 nm are dispersed in a second dispersion medium (provided that the organic fine particles have a larger average particle size than the inorganic ultrafine particles), and the total solid content. Supplying a second sol-like coating liquid having a concentration of 0.1 to 20% by mass and a content of the organic fine particles of 20 to 1000 parts by mass with respect to 100 parts by mass of the inorganic ultrafine particles on the substrate; The second dispersion from the supplied second sol coating liquid By removing at least a part of the second layer, a gel-like thin film in which the organic fine particles are arranged in a single layer and the inorganic ultrafine particles are arranged between the organic fine particles is formed on the substrate on which the metal fine particles are arranged. The above-mentioned coating process and the obtained gel-like thin film are brought into contact with a thermal decomposition product of a gaseous carbon-containing compound at 600 to 1200 ° C., thereby removing the organic fine particles to obtain an inorganic porous thin film, and pores And can be manufactured by a method including a step of vapor-phase growing carbon nanotubes therein.

先ず、この製造方法において用いる金属微粒子が分散媒に分散された第1のゾル状塗工液(以下、塗工液Iという。)について説明する。   First, a first sol-like coating liquid (hereinafter referred to as coating liquid I) in which metal fine particles used in this production method are dispersed in a dispersion medium will be described.

上記金属微粒子は、カーボンナノチューブを形成させる触媒としての役割を果たす。金属微粒子としては、遷移金属元素、希土類金属元素、遷移金属元素の酸化物、希土類金属元素の酸化物、及び複数の金属元素から成る複合金属化合物からなる群より選択される少なくとも1つからなる微粒子であることが好ましい。上記遷移金属元素としては、鉄、コバルト、ニッケル、白金、金、銀、銅、マンガン、ロジウム、パラジウムが好ましく、鉄、コバルト、ニッケルがより好ましい。上記希土類元素としては、イットリウム、ルテチウム、ガドリニウムが好ましい。   The metal fine particles serve as a catalyst for forming carbon nanotubes. As the metal fine particles, fine particles comprising at least one selected from the group consisting of transition metal elements, rare earth metal elements, oxides of transition metal elements, oxides of rare earth metal elements, and composite metal compounds composed of a plurality of metal elements It is preferable that As the transition metal element, iron, cobalt, nickel, platinum, gold, silver, copper, manganese, rhodium, and palladium are preferable, and iron, cobalt, and nickel are more preferable. As the rare earth element, yttrium, lutetium, and gadolinium are preferable.

上記金属微粒子の平均粒子径は0.4〜50nmであり、1〜20nmであることがより好ましい。平均粒子径が0.4nm未満であるとカーボンナノチューブが成長せず、50nmを超えると電界放出特性に優れたシングルウォールのカーボンナノチューブが形成されにくい。   The average particle diameter of the metal fine particles is 0.4 to 50 nm, and more preferably 1 to 20 nm. When the average particle diameter is less than 0.4 nm, carbon nanotubes do not grow, and when the average particle diameter exceeds 50 nm, single-wall carbon nanotubes having excellent field emission characteristics are hardly formed.

上記塗工液Iに用いる第1の分散媒の種類に関しては、水;メタノール、エタノール、1−プロパノール、2−プロパノール及び1−ブタノール等のアルコール類;エチレングリコール、ジエチレングリコール及びエチレングリコール−モノエチルエーテル等のエチレングリコール類;アセトン及びメチルエチルケトン等のケトン類;ジメチルホルムアミド等のアミド類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類又はそれらのうちの少なくとも1種類以上を混合した溶液が挙げられる。これらの中でも、アルコール類、エチレングリコール類、ケトン類、アミド類、芳香族炭化水素類または脂肪族炭化水素類であることが好ましく、芳香族炭化水素類、脂肪族炭化水素類であることが最も好ましい。   Regarding the kind of the first dispersion medium used in the coating liquid I, water; alcohols such as methanol, ethanol, 1-propanol, 2-propanol and 1-butanol; ethylene glycol, diethylene glycol and ethylene glycol monoethyl ether Ethylene glycols such as acetone; Ketones such as acetone and methyl ethyl ketone; Amides such as dimethylformamide; Aromatic hydrocarbons such as benzene, toluene, xylene; Aliphatic hydrocarbons such as pentane, hexane, heptane, octane, etc. The solution which mixed at least 1 or more types of these is mentioned. Among these, alcohols, ethylene glycols, ketones, amides, aromatic hydrocarbons or aliphatic hydrocarbons are preferable, and aromatic hydrocarbons and aliphatic hydrocarbons are most preferable. preferable.

更に、上記塗工液Iには、上記成分の他に金属微粒子の分散性を向上させるために、界面活性剤などを含有させてもよい。   Further, the coating liquid I may contain a surfactant or the like in order to improve the dispersibility of the metal fine particles in addition to the above components.

上記塗工液Iにおいて全固形分濃度は0.1〜10質量%であることが好ましく、0.2〜5質量部であることがより好ましく、0.5〜3質量部であることがさらに好ましい。全固形分濃度が0.1質量%未満であると、カーボンナノチューブの形成が開始されにくく、10質量%を超えても金属微粒子の触媒としての効果はそれ以上期待しにくい。   In the coating liquid I, the total solid content concentration is preferably 0.1 to 10% by mass, more preferably 0.2 to 5 parts by mass, and further preferably 0.5 to 3 parts by mass. preferable. When the total solid content concentration is less than 0.1% by mass, the formation of carbon nanotubes is difficult to start, and even if it exceeds 10% by mass, the effect of metal fine particles as a catalyst is hardly expected.

上記塗工液Iの塗工方法としては、スピンコーター、キャピラリーコーター、グラビアコーター又はダイコーターが挙げられる。供給手段がスピンコーターである場合は、供給時(塗工時)の最大回転数が1000〜8000rpmであることが好ましく、1500〜8000rpmであることがより好ましく、2000〜8000rpmであることが更に好ましい。また、供給手段がグラビアコーター又はダイコーターである場合は、供給時(塗工時)の膜形成速度が1〜1000mm/sであることが好ましく、5〜100mm/sであることがより好ましい。   Examples of the coating method of the coating liquid I include a spin coater, a capillary coater, a gravure coater, and a die coater. When the supply means is a spin coater, the maximum rotational speed at the time of supply (coating) is preferably 1000 to 8000 rpm, more preferably 1500 to 8000 rpm, and further preferably 2000 to 8000 rpm. . Moreover, when a supply means is a gravure coater or a die coater, it is preferable that the film formation rate at the time of supply (at the time of coating) is 1-1000 mm / s, and it is more preferable that it is 5-100 mm / s.

上記塗工液Iからの第1の分散媒の除去は、公知の乾燥方法により実施することができ、供給手段としてスピンコーターを用いた場合は、塗工液を塗工後しばらくの間回転し続けることにより、分散媒の除去が可能である。ここで、第1の分散媒は少なくともその一部が除去されればよいが、その全てを除去することが好ましい。   The removal of the first dispersion medium from the coating liquid I can be carried out by a known drying method. When a spin coater is used as a supply means, the coating liquid is rotated for a while after coating. By continuing, the dispersion medium can be removed. Here, at least a part of the first dispersion medium may be removed, but it is preferable to remove all of the first dispersion medium.

次に、この製造方法において用いる無機超微粒子と有機微粒子とが分散媒に分散された第2のゾル状塗工液(以下、塗工液IIという。)について説明する。塗工液IIは、固形分として無機超微粒子及び有機微粒子を含有するものであり、塗工液IIにおいて全固形分濃度は0.1〜20質量%であり、より好ましくは0.2〜10質量%であり、更に好ましくは0.5〜10質量%である。全固形分濃度が0.1質量%未満であると、濃度が低すぎるために無機多孔性薄膜の作製が困難となり、20質量%を超えると有機微粒子が多層に配列するため無機多孔性薄膜の作製が困難となる。   Next, a second sol coating liquid (hereinafter referred to as coating liquid II) in which inorganic ultrafine particles and organic fine particles used in this production method are dispersed in a dispersion medium will be described. The coating liquid II contains inorganic ultrafine particles and organic fine particles as a solid content, and the total solid content concentration in the coating liquid II is 0.1 to 20% by mass, more preferably 0.2 to 10%. It is mass%, More preferably, it is 0.5-10 mass%. If the total solid content concentration is less than 0.1% by mass, it is difficult to produce an inorganic porous thin film because the concentration is too low. If the total solid content concentration exceeds 20% by mass, organic fine particles are arranged in multiple layers. Production becomes difficult.

上記無機超微粒子としては、無機多孔性薄膜の説明で述べた無機超微粒子と同様のものを用いることができる。   As the inorganic ultrafine particles, those similar to the inorganic ultrafine particles described in the description of the inorganic porous thin film can be used.

上記有機微粒子としては、ポリスチレン、スチレン−ブタジエン共重合体、ポリビニルトルエン、スチレン−ジビニルベンゼン共重合体、ビニルトルエン−t−ブチルスチレン共重合体、ポリメタクリレート及びポリアクリレート等のポリマーからなるものが好ましく、ポリスチレン、スチレン−ブタジエン共重合体、又は、スチレン−ジビニルベンゼン共重合体からなるものがより好ましい。   The organic fine particles are preferably composed of polymers such as polystyrene, styrene-butadiene copolymer, polyvinyltoluene, styrene-divinylbenzene copolymer, vinyltoluene-t-butylstyrene copolymer, polymethacrylate and polyacrylate. More preferred are those made of polystyrene, styrene-butadiene copolymer, or styrene-divinylbenzene copolymer.

有機微粒子の平均粒子径は30〜3000nmである。有機微粒子の平均粒子径は40〜1700nmであることが好ましく、100〜1000nmであることがより好ましい。平均粒子径が30nm未満であると、粒子径が均一である粒子の作製が困難であるため、無機多孔性薄膜の作製が困難となる。一方、3000nmを越える場合も、粒子径が均一である粒子の作製が困難であるため、無機多孔性薄膜の作製が困難となる。なお、有機微粒子の平均粒子径は、透過型電子顕微鏡(TEM)法により求めることができる。   The average particle diameter of the organic fine particles is 30 to 3000 nm. The average particle diameter of the organic fine particles is preferably 40 to 1700 nm, and more preferably 100 to 1000 nm. When the average particle size is less than 30 nm, it is difficult to produce particles having a uniform particle size, and thus it is difficult to produce an inorganic porous thin film. On the other hand, when the thickness exceeds 3000 nm, it is difficult to produce particles having a uniform particle diameter, and thus it is difficult to produce an inorganic porous thin film. The average particle diameter of the organic fine particles can be determined by a transmission electron microscope (TEM) method.

上記塗工液IIは、無機超微粒子100質量部に対して上記有機微粒子を20〜1000質量部含有する。無機超微粒子100質量部に対する有機微粒子の含有量は25〜600質量部が好ましく、25〜400質量部がより好ましい。無機超微粒子100質量部に対する有機微粒子の含有量が20質量部未満であると、有機微粒子が所定パターンで配列せず本発明の無機多孔性薄膜の作製が困難となり、1000質量部を超えると、有機微粒子の間に十分な量の無機超微粒子が存在しなくなるため本発明の無機多孔性薄膜が困難となる。   The coating liquid II contains 20 to 1000 parts by mass of the organic fine particles with respect to 100 parts by mass of the inorganic ultrafine particles. The content of the organic fine particles with respect to 100 parts by mass of the inorganic ultrafine particles is preferably 25 to 600 parts by mass, and more preferably 25 to 400 parts by mass. When the content of the organic fine particles with respect to 100 parts by mass of the inorganic ultrafine particles is less than 20 parts by mass, the organic fine particles are not arranged in a predetermined pattern, making it difficult to produce the inorganic porous thin film of the present invention. Since a sufficient amount of inorganic ultrafine particles do not exist between the organic fine particles, the inorganic porous thin film of the present invention becomes difficult.

また、上記塗工液IIに用いる第2の分散媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール及びブタノール等のアルコール類;エチレングリコール、ジエチレングリコール及びエチレングリコール−モノエチルエーテル等のエチレングリコール類;アセトン及びメチルエチルケトン等のケトン類;ジメチルホルムアミド等のアミド類又はそれらのうちの少なくとも1種類以上を混合した水溶液、水が挙げられる。これらの中でも、水、アルコールまたはが水及びアルコールの混合溶媒が好ましく、水または水及びアルコールの混合溶媒であることが最も好ましい。   The second dispersion medium used in the coating liquid II includes alcohols such as methanol, ethanol, 1-propanol, 2-propanol and butanol; ethylene glycol such as ethylene glycol, diethylene glycol and ethylene glycol monoethyl ether. Ketones such as acetone and methyl ethyl ketone; amides such as dimethylformamide or an aqueous solution obtained by mixing at least one of them, and water. Among these, water, alcohol or a mixed solvent of water and alcohol is preferable, and water or a mixed solvent of water and alcohol is most preferable.

更に、上記塗工液IIには、上記成分の他に界面活性剤などの溶液安定剤、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン及びメチルトリエトキシシラン等のアルコキシシラン類を含有させてもよい。   In addition to the above components, the coating liquid II contains a solution stabilizer such as a surfactant, and alkoxysilanes such as tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, and methyltriethoxysilane. Also good.

次に、無機多孔性薄膜の製造方法の各工程について図面を参照しつつ説明する。図3(a)〜(e)は実施形態に係る無機多孔性薄膜の製造方法の工程図である。図3(a)は金属微粒子42が第1の分散媒44に分散された「塗工液I」46が、基板20上に供給された状態を示す断面図である。   Next, each process of the manufacturing method of an inorganic porous thin film is demonstrated, referring drawings. 3A to 3E are process diagrams of the method for manufacturing an inorganic porous thin film according to the embodiment. FIG. 3A is a cross-sectional view showing a state where the “coating liquid I” 46 in which the metal fine particles 42 are dispersed in the first dispersion medium 44 is supplied onto the substrate 20.

なお、基板としては、積層体の説明で述べた基板、すなわち、ガラス、石英、シリコン又はアルミ等からなる平板状の基板を用いることができる。   As the substrate, a substrate described in the description of the stacked body, that is, a flat substrate made of glass, quartz, silicon, aluminum, or the like can be used.

第1の分散媒44の除去の結果、図3(b)に示すように、金属微粒子42が配列した層40が、基板20上に形成される。   As a result of the removal of the first dispersion medium 44, a layer 40 in which metal fine particles 42 are arranged is formed on the substrate 20 as shown in FIG.

図3(c)は有機微粒子22と無機超微粒子24とが第2の分散媒26に分散された「塗工液II」28が、金属微粒子の配列した基板20上に供給された状態を示す断面図である。図3(c)では、第2の分散媒26中に存在する有機微粒子22が基板20上に一層に配されており、複数の無機超微粒子24が有機微粒子22間に存在している。   FIG. 3C shows a state in which “Coating Liquid II” 28 in which the organic fine particles 22 and the inorganic ultrafine particles 24 are dispersed in the second dispersion medium 26 is supplied onto the substrate 20 on which the metal fine particles are arranged. It is sectional drawing. In FIG. 3C, the organic fine particles 22 present in the second dispersion medium 26 are arranged on a single layer on the substrate 20, and a plurality of inorganic ultrafine particles 24 are present between the organic fine particles 22.

第2の分散媒26の除去の結果、図3(d)に示すように、有機微粒子22が一層に配列し有機微粒子22間に無機超微粒子24が配されたゲル状薄膜30が、基板20上に形成される。   As a result of the removal of the second dispersion medium 26, as shown in FIG. 3D, the gel thin film 30 in which the organic fine particles 22 are arranged in one layer and the inorganic ultrafine particles 24 are arranged between the organic fine particles 22 is formed on the substrate 20. Formed on top.

このようにして形成されたゲル状薄膜30を600〜1200℃で、ガス状炭素含有化合物の加熱分解物と接触させることにより、有機微粒子22が熱分解して除去されるとともに、有機微粒子22間に存在する複数の無機微粒子24が焼結等により一体化して無機多孔性薄膜10が形成され、かつ孔中に選択的にカーボンナノチューブが成長すると考えられる。この場合において、有機微粒子22が孔形成のための鋳型(テンプレート)として機能し、ゲル状薄膜30における有機微粒子22の配列状態や粒子サイズに対応して孔が形成されると推測される。   By bringing the gel-like thin film 30 formed in this way into contact with a thermal decomposition product of a gaseous carbon-containing compound at 600 to 1200 ° C., the organic fine particles 22 are thermally decomposed and removed, and between the organic fine particles 22 It is considered that a plurality of inorganic fine particles 24 present in the substrate are integrated by sintering or the like to form the inorganic porous thin film 10 and carbon nanotubes are selectively grown in the pores. In this case, it is presumed that the organic fine particles 22 function as a template for forming holes, and holes are formed corresponding to the arrangement state and particle size of the organic fine particles 22 in the gel thin film 30.

図3(e)は、孔中にカーボンナノチューブが形成された無機多孔性薄膜10を基板20上に備える積層体100を示す断面図である。図3(e)に示す積層体100は、基板20上に、開口部1が略円形状であり内周面3が略球面状の多数の孔5を有する無機多孔性薄膜10を備えるものである。   FIG. 3 (e) is a cross-sectional view showing a laminate 100 including the inorganic porous thin film 10 in which carbon nanotubes are formed in the pores on the substrate 20. A laminated body 100 shown in FIG. 3 (e) is provided with an inorganic porous thin film 10 having a large number of holes 5 on a substrate 20, in which the opening 1 is substantially circular and the inner peripheral surface 3 is substantially spherical. is there.

次に、ゲル状薄膜を加熱しカーボンナノチューブを成長させる工程について説明する。
ゲル状薄膜を加熱する温度範囲は、好適には600〜1200℃、更には700〜1000℃となる。用いる基板ごとに好適例を示すならば、基板として石英を用いる場合には600〜1200℃(好適には700〜1000℃、更には750〜950℃)、基板としてガラスを用いる場合には600〜700℃、基板としてシリコンを用いる場合は600〜700℃である。焼成温度が上記下限値未満であると、カーボンナノチューブの生成が不十分となり、他方、上記上限値を越えると、基板が軟化し無機多孔性薄膜の形成が困難となる傾向がある。
Next, the process of growing the carbon nanotubes by heating the gel-like thin film will be described.
The temperature range for heating the gel-like thin film is preferably 600 to 1200 ° C, more preferably 700 to 1000 ° C. If a suitable example is shown for every board | substrate to be used, when using quartz as a board | substrate, 600-1200 degreeC (preferably 700-1000 degreeC, Furthermore, 750-950 degreeC), When using glass as a board | substrate, 600- 700 ° C., and 600 to 700 ° C. when silicon is used as the substrate. If the firing temperature is less than the lower limit, carbon nanotubes are not sufficiently generated. On the other hand, if the firing temperature exceeds the upper limit, the substrate tends to soften and it becomes difficult to form an inorganic porous thin film.

ゲル状薄膜に接触させる炭素含有化合物は、メタン、エタン、プロパン、ブタンなどの飽和脂肪族系炭化水素類;エチレン、アセチレン、プロピレン、1−ブテン、2−ブテンなどの不飽和脂肪族炭化水素類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;メタノール、エタノール、プロパノールなどのアルコール類のうちの1種類又は2種類以上の混合気体からなるものであることが望ましい。   Carbon-containing compounds brought into contact with the gel-like thin film include saturated aliphatic hydrocarbons such as methane, ethane, propane, and butane; unsaturated aliphatic hydrocarbons such as ethylene, acetylene, propylene, 1-butene, and 2-butene. An aromatic hydrocarbon such as benzene, toluene and xylene; and a mixture of one or more kinds of alcohols such as methanol, ethanol and propanol is desirable.

ガス状炭素含有化合物の分解方法は、アーク放電法、レーザーアブレーション法、熱CVD法又はプラズマCVD法であることが好ましい。   The method for decomposing the gaseous carbon-containing compound is preferably an arc discharge method, a laser ablation method, a thermal CVD method or a plasma CVD method.

上記無機多孔性薄膜の製造方法は、従来技術である塗布速度が遅い垂直堆積法の実用性に欠ける点(塗布速度、生産性等)を改善することができ、短時間で大量に広い面積を有する無機多孔性薄膜を製造することを可能にする。   The inorganic porous thin film manufacturing method can improve the lack of practicality of the conventional vertical deposition method (coating speed, productivity, etc.), which has a low coating speed, and can provide a large area in a large amount in a short time. It makes it possible to produce an inorganic porous thin film.

以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited at all by the following Examples.

(実施例1)
先ず、直径15mmΦ、厚さ1.1mmの石英基板(イセテック社製)をクロム混酸溶液に浸し基板表面の汚れ等を除去した。この基板をクロム混酸溶液が完全に除去されるまで蒸留水で洗浄し、室温で乾燥させた。
(Example 1)
First, a quartz substrate (made by Isetec Co., Ltd.) having a diameter of 15 mmΦ and a thickness of 1.1 mm was immersed in a chrome mixed acid solution to remove stains on the substrate surface. This substrate was washed with distilled water until the chromium mixed acid solution was completely removed, and dried at room temperature.

次に、固形分としてドデカンチオールが表面に配位した粒子径3nmの鉄−白金複合粒子を1質量%含有している塗工液I(分散媒、ヘキサン)を調製した。洗浄及び乾燥を行ったガラス基板をスピンコーター(アクティブ社製、型番:ACT−300D)に装着し、そのガラス基板上にオートピペット(エッペンドルフ社製、型番:エッペンドルフリファレンス4910、10〜100μL容)を用いて塗工液Iを100μL乗せた後、回転数3000rpmで3分間回転させた。この結果、塗工液Iをガラス基板上に均一に塗布し乾燥させることができた。   Next, a coating liquid I (dispersion medium, hexane) containing 1% by mass of iron-platinum composite particles having a particle diameter of 3 nm with dodecanethiol coordinated to the surface as a solid content was prepared. A glass substrate that has been cleaned and dried is mounted on a spin coater (manufactured by Active, model number: ACT-300D), and an autopipette (manufactured by Eppendorf, model number: Eppendorf reference 4910, 10 to 100 μL) is placed on the glass substrate. After using the coating solution I for 100 μL, it was rotated at a rotational speed of 3000 rpm for 3 minutes. As a result, the coating liquid I was uniformly coated on the glass substrate and dried.

さらに、固形分として粒子径5nmの無機超微粒子を0.25質量%、粒子径178nmの有機微粒子を0.5質量%含有している全固形分濃度が0.75質量%である塗工液IIを試料調製ポリ容器を用いて調製した。なお、無機超微粒子にはシリカ粒子(触媒化成社製CATALOID、型番:SI−550)を用い、有機微粒子にはポリスチレンラテックス粒子(JSR社製STADEX、型番:SC−017−S)を用いた。また、この塗工液IIは無機超微粒子100質量部に対して有機微粒子を200質量部含有するものであった。   Further, the coating liquid containing 0.25% by mass of inorganic ultrafine particles having a particle size of 5 nm and 0.5% by mass of organic fine particles having a particle size of 178 nm as a solid content and having a total solid concentration of 0.75% by mass. II was prepared using a sample preparation plastic container. In addition, silica particles (CATALOID manufactured by Catalytic Chemicals, model number: SI-550) were used as the inorganic ultrafine particles, and polystyrene latex particles (STADEX manufactured by JSR, model number: SC-017-S) were used as the organic fine particles. Moreover, this coating liquid II contained 200 mass parts of organic fine particles with respect to 100 mass parts of inorganic ultrafine particles.

上記塗工液Iを塗布したガラス基板を上記スピンコーターに装着し、そのガラス基板上にオートピペットを用いて塗工液IIを100μL乗せた後、回転数2000rpmで5分間回転させた。この結果、塗工液IIをガラス基板上に均一に塗布し乾燥させることができ、ゲル状薄膜が形成した基板を得た。   The glass substrate coated with the coating liquid I was mounted on the spin coater, and 100 μL of the coating liquid II was placed on the glass substrate using an autopipette, and then rotated at a rotational speed of 2000 rpm for 5 minutes. As a result, the coating liquid II could be uniformly applied on a glass substrate and dried, thereby obtaining a substrate on which a gel-like thin film was formed.

上記ゲル状薄膜が形成した基板をCVD装置に入れ、ポンプで5.0×10−1 Paまで減圧した後、窒素を流量10cm/分(標準状態)流して、窒素気流下で800℃まで昇温した。その後ガスをメタンに切り替え、800℃のまま100cm/分(標準状態)で10分間流した。その後再び流量10cm/分(標準状態)で窒素を流し、常温まで冷却し、孔内にカーボンナノチューブが形成された無機多孔性薄膜付き基板を得た。 A substrate having the gel-like thin film is formed placed in a CVD apparatus, the pressure was reduced to 5.0 × 10 -1 Pa at the pump, nitrogen flowing rate 10 cm 3 / min (standard state), and up to 800 ° C. under a stream of nitrogen The temperature rose. Thereafter, the gas was switched to methane, and it was allowed to flow at 100 cm 3 / min (standard state) at 800 ° C. for 10 minutes. Thereafter, nitrogen was flowed again at a flow rate of 10 cm 3 / min (standard state), and the resultant was cooled to room temperature to obtain a substrate with an inorganic porous thin film in which carbon nanotubes were formed in the pores.

この無機多孔性薄膜の構造を調べるために、高分解走査型電子顕微鏡(日立製作所社製、型番:S−900)で観察すると共に、図4に示すSEM写真を得た。その結果、基板上に所定形状の多数の孔が所定パターンで1層に配列し、その孔中に選択的にカーボンナノチューブが形成された無機多孔性薄膜が形成していることが確認された。得られた無機多孔性薄膜の開口部の平均直径は160nm、開口部の中心間の平均距離は200nm、膜厚は80nmであった。孔中のカーボンナノチューブの平均長さは50nm、平均直径は12nmであった。   In order to investigate the structure of this inorganic porous thin film, it was observed with a high resolution scanning electron microscope (manufactured by Hitachi, Ltd., model number: S-900), and an SEM photograph shown in FIG. 4 was obtained. As a result, it was confirmed that a large number of holes having a predetermined shape were arranged in a single layer in a predetermined pattern on the substrate, and an inorganic porous thin film in which carbon nanotubes were selectively formed in the holes was formed. The average diameter of the openings of the obtained inorganic porous thin film was 160 nm, the average distance between the centers of the openings was 200 nm, and the film thickness was 80 nm. The average length of the carbon nanotubes in the pores was 50 nm, and the average diameter was 12 nm.

実施形態に係る積層体の斜視図である。It is a perspective view of the layered product concerning an embodiment. 図1の積層体のII−II線に沿った断面図である。It is sectional drawing along the II-II line of the laminated body of FIG. 実施形態に係る無機多孔性薄膜の製造方法の工程図であり、(a)は塗工液Iが基板上に供給された状態を示す断面図、(b)は基板上に供給された塗工液Iから分散媒が除去された状態を示す断面図、(c)は塗工液IIが基板上に供給された状態を示す断面図、(d)は基板上に供給された塗工液IIから分散媒が除去された状態を示す断面図、(e)は最終的に得られた積層体を示す断面図である。It is process drawing of the manufacturing method of the inorganic porous thin film which concerns on embodiment, (a) is sectional drawing which shows the state with which the coating liquid I was supplied on the board | substrate, (b) is the coating supplied on the board | substrate. Sectional drawing which shows the state from which the dispersion medium was removed from the liquid I, (c) is sectional drawing which shows the state in which the coating liquid II was supplied on the board | substrate, (d) is the coating liquid II supplied on the board | substrate. Sectional drawing which shows the state from which the dispersion medium was removed from, (e) is sectional drawing which shows the laminated body finally obtained. 実施例1の無機多孔性薄膜の一部を示すSEM写真(倍率25000倍)である。2 is a SEM photograph (magnification: 25000 times) showing a part of the inorganic porous thin film of Example 1.

符号の説明Explanation of symbols

1・・・開口部、3・・・内周面、5・・・孔、6・・・カーボンナノチューブ、10・・・無機多孔性薄膜、20・・・基板、22・・・有機微粒子、24・・・無機超微粒子、26・・・第2の分散媒、28・・・塗工液II、30・・・ゲル状薄膜、40・・・金属微粒子層、42・・・金属微粒子、44・・・第1の分散媒、46・・・塗工液I、100・・・積層体、d1・・・開口部の平均直径、d2・・・開口部の中心間の平均距離、d3・・・膜厚、d4・・・孔の平均深さ。   DESCRIPTION OF SYMBOLS 1 ... Opening part, 3 ... Inner peripheral surface, 5 ... Hole, 6 ... Carbon nanotube, 10 ... Inorganic porous thin film, 20 ... Substrate, 22 ... Organic fine particle, 24 ... inorganic ultrafine particles, 26 ... second dispersion medium, 28 ... coating liquid II, 30 ... gel-like thin film, 40 ... metal fine particle layer, 42 ... metal fine particles, 44 ... first dispersion medium, 46 ... coating liquid I, 100 ... laminate, d1 ... average diameter of openings, d2 ... average distance between centers of openings, d3 ... Film thickness, d4 ... Average depth of holes.

Claims (9)

開口部が略円形状であり内周面が略球面状の多数の孔を有し、前記孔中にカーボンナノチューブが形成された無機多孔性薄膜であって、
前記孔が前記薄膜の平面方向に1層に配列し、前記開口部の平均直径が30〜3000nmであり、隣り合う前記開口部の中心間の平均距離が前記開口部の平均直径の100〜230%の長さであり、かつ、膜厚が前記開口部の平均直径の30〜100%の厚さであり、
前記カーボンナノチューブの平均直径が0.4〜50nm、平均長さが10〜1000nmであることを特徴とする無機多孔性薄膜。
The inorganic porous thin film in which the opening has a substantially circular shape and the inner peripheral surface has a large number of holes having a substantially spherical shape, and carbon nanotubes are formed in the holes,
The holes are arranged in one layer in the plane direction of the thin film, the average diameter of the openings is 30 to 3000 nm, and the average distance between the centers of the adjacent openings is 100 to 230 of the average diameter of the openings. % And the film thickness is 30-100% of the average diameter of the openings,
An inorganic porous thin film, wherein the carbon nanotube has an average diameter of 0.4 to 50 nm and an average length of 10 to 1000 nm.
前記孔の平均深さが前記膜厚の50〜100%の深さであることを特徴とする請求項1記載の無機多孔性薄膜。   The inorganic porous thin film according to claim 1, wherein an average depth of the holes is 50 to 100% of the film thickness. 前記カーボンナノチューブの平均長さが、前記孔の平均深さの10〜100%であることを特徴とする請求項1又は2記載の無機多孔性薄膜。   The inorganic porous thin film according to claim 1 or 2, wherein an average length of the carbon nanotubes is 10 to 100% of an average depth of the pores. 基板と、該基板の少なくとも一方の面上に形成された請求項1〜3のいずれか一項に記載の無機多孔性薄膜とを備えることを特徴とする積層体。   A laminate comprising: a substrate; and the inorganic porous thin film according to any one of claims 1 to 3 formed on at least one surface of the substrate. 平均粒子径0.4〜50nmの金属微粒子が第1の分散媒に分散された第1のゾル状塗工液を基板上に供給し、供給された第1のゾル状塗工液から前記第1の分散媒の少なくとも一部を除去することにより、前記基板上に、前記金属微粒子を配列させる第1の塗工工程と、
平均粒子径3〜50nmの無機超微粒子と平均粒子径30〜3000nmの有機微粒子とが第2の分散媒に分散された第2のゾル状塗工液であって(但し、有機微粒子は無機超微粒子よりも大きな平均粒子径を有する。)、全固形分濃度が0.1〜20質量%であり、前記無機超微粒子100質量部に対する前記有機微粒子の含有量が20〜1000質量部である第2のゾル状塗工液を前記基板上に供給し、供給された第2のゾル状塗工液から前記第2の分散媒の少なくとも一部を除去することにより、前記金属微粒子が配列された基板上に、前記有機微粒子が一層に配列し当該有機微粒子間に前記無機超微粒子が配されたゲル状薄膜を形成させる第2の塗工工程と、
得られたゲル状薄膜を600〜1200℃で、ガス状炭素含有化合物の加熱分解物と接触させることにより、上記有機微粒子を除去し無機多孔性薄膜を得、かつ、孔中にカーボンナノチューブを気相成長させる工程と、
を含むことを特徴とする無機多孔性薄膜の製造方法。
A first sol-like coating liquid in which metal fine particles having an average particle size of 0.4 to 50 nm are dispersed in a first dispersion medium is supplied onto the substrate, and the first sol-like coating liquid is supplied with the first sol-like coating liquid. A first coating step of arranging the metal fine particles on the substrate by removing at least a part of the one dispersion medium;
A second sol coating liquid in which inorganic ultrafine particles having an average particle diameter of 3 to 50 nm and organic fine particles having an average particle diameter of 30 to 3000 nm are dispersed in a second dispersion medium (provided that the organic fine particles are inorganic ultrafine particles). The average particle diameter is larger than that of the fine particles.), The total solid content concentration is 0.1 to 20% by mass, and the content of the organic fine particles is 20 to 1000 parts by mass with respect to 100 parts by mass of the inorganic ultrafine particles. The sol-like coating liquid 2 is supplied onto the substrate, and the metal fine particles are arranged by removing at least a part of the second dispersion medium from the supplied second sol-like coating liquid. A second coating step for forming a gel-like thin film in which the organic fine particles are arranged in a single layer on the substrate and the inorganic ultrafine particles are arranged between the organic fine particles;
The obtained gel-like thin film is brought into contact with a thermal decomposition product of a gaseous carbon-containing compound at 600 to 1200 ° C., thereby removing the organic fine particles to obtain an inorganic porous thin film, and observing carbon nanotubes in the pores. A phase growth step;
The manufacturing method of the inorganic porous thin film characterized by including.
前記金属微粒子が、遷移金属元素、希土類金属元素、遷移金属元素の酸化物、希土類金属元素の酸化物、及び複数の金属元素から成る複合金属化合物からなる群より選択される少なくとも1つからなるものであることを特徴とする請求項5記載の無機多孔性薄膜の製造方法。   The metal fine particles comprise at least one selected from the group consisting of transition metal elements, rare earth metal elements, oxides of transition metal elements, oxides of rare earth metal elements, and composite metal compounds composed of a plurality of metal elements. The method for producing an inorganic porous thin film according to claim 5, wherein: 前記無機超微粒子がシリカからなるものであることを特徴とする請求項5又は6記載の無機多孔性薄膜の製造方法。   The method for producing an inorganic porous thin film according to claim 5 or 6, wherein the inorganic ultrafine particles are made of silica. 前記有機微粒子がポリマーからなるものであることを特徴とする請求項5〜7のいずれか一項に記載の無機多孔性薄膜の製造方法。   The method for producing an inorganic porous thin film according to any one of claims 5 to 7, wherein the organic fine particles are made of a polymer. 前記炭素含有化合物が炭化水素又はアルコールであることを特徴とする請求項5〜8のいずれか一項に記載の無機多孔性薄膜の製造方法。   The method for producing an inorganic porous thin film according to any one of claims 5 to 8, wherein the carbon-containing compound is a hydrocarbon or an alcohol.
JP2004045402A 2004-02-20 2004-02-20 Inorganic porous thin film where carbon nanotubes are formed in the pores, laminated body, and manufacturing method for the same Pending JP2005231966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045402A JP2005231966A (en) 2004-02-20 2004-02-20 Inorganic porous thin film where carbon nanotubes are formed in the pores, laminated body, and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004045402A JP2005231966A (en) 2004-02-20 2004-02-20 Inorganic porous thin film where carbon nanotubes are formed in the pores, laminated body, and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2005231966A true JP2005231966A (en) 2005-09-02

Family

ID=35015310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045402A Pending JP2005231966A (en) 2004-02-20 2004-02-20 Inorganic porous thin film where carbon nanotubes are formed in the pores, laminated body, and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2005231966A (en)

Similar Documents

Publication Publication Date Title
Hu et al. Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate
US8323608B2 (en) Embedded nanoparticle films and method for their formation in selective areas on a surface
Pang et al. CVD growth of 1D and 2D sp 2 carbon nanomaterials
TWI557067B (en) Method of making nanowire array
US20020114949A1 (en) Process for controlled introduction of defects in elongated nanostructures
KR20030077425A (en) Aligned carbon nanotube films and a process for producing them
Choi et al. Growth mechanism of vertically aligned carbon nanotubes on silicon substrates
JP2004002182A (en) Oriented carbon nanotube film and its manufacturing method
JP2007297698A (en) Method for manufacturing dlc film
Hu et al. Fabrication and characterization of vertically aligned carbon nanotubes on silicon substrates using porous alumina nanotemplates
Lee et al. Well-ordered Co nanowire arrays for aligned carbon nanotube arrays
Li et al. From top to down—Recent advances in etching of 2D materials
CN102328925A (en) Preparation process for high-density carbon nanotube bundle
JP2009119414A (en) Substrate for cnt (carbon nanotube) growth and method of manufacturing cnt
Bayam et al. Synthesis of Ga2O3 nanorods with ultra-sharp tips for high-performance field emission devices
Li et al. The synthesis of MWNTs/SWNTs multiple phase nanowire arrays in porous anodic aluminum oxide templates
Yin et al. Postgrowth processing of carbon nanotube arrays-enabling new functionalities and applications
JP2005231966A (en) Inorganic porous thin film where carbon nanotubes are formed in the pores, laminated body, and manufacturing method for the same
Xiang et al. Patterned growth of high-quality single-walled carbon nanotubes from dip-coated catalyst
JP4428035B2 (en) INORGANIC POROUS THIN FILM, LAMINATE USING SAME, AND METHOD FOR PRODUCING INORGANIC POROUS THIN FILM
JP2005306681A (en) Method for removing catalyst metal
JP6287463B2 (en) Method for producing recycled substrate and method for producing catalyst substrate for carbon nanotube production
Tang et al. Atomic layer deposition of Al2O3 catalysts for narrow diameter distributed single-walled carbon nanotube arrays growth
JP2007320810A (en) Method and apparatus for producing carbon nanotube
Chen et al. Preparation of well-aligned CNT arrays catalyzed with porous anodic aluminum oxide template