JP2005231927A - Fibrous basic magnesium sulfate massive material - Google Patents

Fibrous basic magnesium sulfate massive material Download PDF

Info

Publication number
JP2005231927A
JP2005231927A JP2004041607A JP2004041607A JP2005231927A JP 2005231927 A JP2005231927 A JP 2005231927A JP 2004041607 A JP2004041607 A JP 2004041607A JP 2004041607 A JP2004041607 A JP 2004041607A JP 2005231927 A JP2005231927 A JP 2005231927A
Authority
JP
Japan
Prior art keywords
magnesium sulfate
basic magnesium
fibrous basic
fibrous
lump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004041607A
Other languages
Japanese (ja)
Other versions
JP4405823B2 (en
Inventor
Shinichi Yamamoto
新一 山本
Akira Ueki
明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2004041607A priority Critical patent/JP4405823B2/en
Publication of JP2005231927A publication Critical patent/JP2005231927A/en
Application granted granted Critical
Publication of JP4405823B2 publication Critical patent/JP4405823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a basic magnesium sulfate massive material which has high stability in water and whose particle shape and size can be easily controlled and a waste water treatment unit using the fibrous basic magnesium sulfate massive material as a waste water treating material. <P>SOLUTION: The fibrous basic magnesium sulfate massive material is formed by bonding a number of fibrous basic magnesium sulfate having 5-200 μm average length and 0.2-1.0 μm average diameter with a binder to expose at least a part of the fiber surface of the same. The waste water treatment unit is structured by filling the waste water treating material 3 comprising the fibrous basic magnesium sulfate massive material into a space between an outside cylindrical body 1 composed of a porous material and an inside cylindrical body 2 composed of the porous material which are concentrically assembled. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、排水の処理材、特に排水中の無機物微粒子やエマルジョン化した油の微粒子の凝集材として有利に使用することができる繊維状塩基性硫酸マグネシウム塊状物に関する。   The present invention relates to a fibrous basic magnesium sulfate lump that can be advantageously used as a wastewater treatment material, particularly an agglomerate of inorganic fine particles and emulsified oil fine particles in wastewater.

研削装置や研磨装置の排水には、一般に無機物微粒子やエマルジョン化した油の微粒子が混入している。このような排水から無機物微粒子や油微粒子を除去する方法として、排水に繊維状塩基性硫酸マグネシウム[MgSO4・5Mg(OH)2・3H2O]の塊状物を接触させることにより、無機物微粒子と油微粒子とをそれぞれ凝集させ、無機物の凝集粒子をフィルタにより濾別し、油の凝集粒子を浮上分離する方法が知られている。 In general, inorganic fine particles and emulsified oil fine particles are mixed in the waste water of the grinding device and the polishing device. As a method for removing inorganic fine particles and oil fine particles from such waste water, the inorganic fine particles are brought into contact with the waste water by contacting a mass of fibrous basic magnesium sulfate [MgSO 4 .5Mg (OH) 2 .3H 2 O]. There is known a method in which oil fine particles are each aggregated, inorganic aggregated particles are separated by a filter, and the oil aggregated particles are floated and separated.

特許文献1には、同芯状に配置された第一の濾過層と第二の濾過層との間に繊維状塩基性硫酸マグネシウム塊状物(吸着剤)を充填した構成の液体濾過装置が開示されている。この特許文献1に開示された液体濾過装置では、外側に配置した第一の濾過層を通って、排水が繊維状塩基性硫酸マグネシウム塊状物と接触するようになっており、排水と繊維状塩基性硫酸マグネシウム塊状物との接触により生成した無機物の凝集粒子は、内側に配置した第二の濾過層により濾別できるようになっている。この特許文献1には、塩基性硫酸マグネシウム塊状物として、30μm程度の繊維状塩基性硫酸マグネシウムが絡み合って形成された250μm程度の毛玉状の塊状物が例示されている。
特許第264091号公報
Patent Document 1 discloses a liquid filtration device having a configuration in which a fibrous basic magnesium sulfate mass (adsorbent) is filled between a first filtration layer and a second filtration layer arranged concentrically. Has been. In the liquid filtration device disclosed in Patent Document 1, the wastewater comes into contact with the fibrous basic magnesium sulfate lump through the first filtration layer disposed on the outside. The agglomerated particles of the inorganic substance produced by contact with the porous magnesium sulfate lump can be separated by a second filtration layer disposed inside. This Patent Document 1 exemplifies a pill-like lump of about 250 μm formed by intertwining fibrous basic magnesium sulfate of about 30 μm as the basic magnesium sulfate lump.
Japanese Patent No. 264091

排水処理材として用いる塩基性硫酸マグネシウム塊状物は、排水との接触下においても崩壊しにくいこと、すなわち水中安定性が高いことが望まれる。
また、排水処理材として用いる塩基性硫酸マグネシウム塊状物は、排水の処理量やその作業性を考慮して、粒子形状やそのサイズを調整できれば好ましい。
従って、本発明の目的は、水中での安定性が高く、かつ粒子形状やそのサイズを容易に調整することができ、且つ排水処理に効果的な無機物微粒子等の凝集機能を発現する塩基性硫酸マグネシウムの塊状物を提供することにある。
本発明の目的はまた、上記の繊維状塩基性硫酸マグネシウム塊状物からなる排水処理材を提供することにもある。
本発明の目的はさらに、上記の排水処理材を用いた排水処理装置を提供することにもある。
It is desired that the basic magnesium sulfate lump used as a wastewater treatment material is not easily disintegrated even in contact with wastewater, that is, has high stability in water.
Moreover, the basic magnesium sulfate lump used as a wastewater treatment material is preferable if the particle shape and the size thereof can be adjusted in consideration of the wastewater treatment amount and workability.
Accordingly, an object of the present invention is to provide basic sulfuric acid that has high stability in water, can easily adjust the particle shape and size, and exhibits an aggregating function such as inorganic fine particles that are effective for wastewater treatment. It is to provide a mass of magnesium.
Another object of the present invention is to provide a wastewater treatment material comprising the above fibrous basic magnesium sulfate lump.
Another object of the present invention is to provide a waste water treatment apparatus using the above waste water treatment material.

本発明は、平均長さが5〜200μmで、平均直径が0.2〜1.0μmの範囲にある多数本の繊維状塩基性硫酸マグネシウムが、それらの繊維表面の少なくとも一部を露出した状態で結合材により結合されてなる繊維状塩基性硫酸マグネシウム塊状物にある。   In the present invention, a large number of fibrous basic magnesium sulfates having an average length of 5 to 200 μm and an average diameter of 0.2 to 1.0 μm have exposed at least a part of their fiber surfaces. In a fibrous basic magnesium sulfate lump formed by bonding with a binder.

本発明の繊維状塩基性硫酸マグネシウム塊状物の好ましい態様は下記の通りである。
(1)結合材が、水不溶性である。
(2)結合材が、繊維状塩基性硫酸マグネシウムよりも短い繊維状塩基性硫酸マグネシウム以外の繊維状無機化合物である。
(3)結合材が、ゾノトライトもしくはセピオライトである。
(4)結合材が高分子材料からなる。
(5)結合材が、フィブリル化したポリテトラフルオロエチレンである。
Preferred embodiments of the fibrous basic magnesium sulfate lump of the present invention are as follows.
(1) The binder is insoluble in water.
(2) The binder is a fibrous inorganic compound other than fibrous basic magnesium sulfate, which is shorter than fibrous basic magnesium sulfate.
(3) The binder is zonotolite or sepiolite.
(4) The binder is made of a polymer material.
(5) The binder is fibrillated polytetrafluoroethylene.

本発明はまた、上記本発明の繊維状塩基性硫酸マグネシウム塊状物からなる排水処理材にもある。   The present invention also resides in a wastewater treatment material comprising the fibrous basic magnesium sulfate lump of the present invention.

本発明はさらに、互いに同芯状に組み合わされた多孔性材料からなる外側筒状体と多孔性材料からなる内側筒状体との間に上記本発明の排水処理材が充填されてなる排水処理装置にもある。   The present invention further includes a wastewater treatment in which the wastewater treatment material of the present invention is filled between an outer cylindrical body made of porous materials and an inner cylindrical body made of a porous material combined concentrically with each other. Also in the device.

本発明の繊維状塩基性硫酸マグネシウム塊状物では、多数本の繊維状塩基性硫酸マグネシウムを結合材により結合しているので、粒子形状やそのサイズを容易に調整することができる。また、塊状物を形成している多数本の繊維状塩基性硫酸マグネシウムは、それぞれが繊維表面を露出しているので、無機物微粒子及び油微粒子の凝集能力を発揮する。従って、上記の繊維状塩基性硫酸マグネシウム塊状物からなる排水処理材及びその排水処理材を用いた排水処理装置は、無機物微粒子や油微粒子を含む排水の処理に有利に使用することができる。   In the fibrous basic magnesium sulfate lump of the present invention, since a large number of fibrous basic magnesium sulfates are bonded together by a binder, the particle shape and the size thereof can be easily adjusted. In addition, since many fibrous basic magnesium sulfates forming a lump are exposed on the fiber surface, they exhibit the ability to aggregate inorganic fine particles and oil fine particles. Therefore, the waste water treatment material comprising the above fibrous basic magnesium sulfate lump and the waste water treatment apparatus using the waste water treatment material can be advantageously used for treatment of waste water containing inorganic fine particles and oil fine particles.

本発明の繊維状塩基性硫酸マグネシウム塊状物は、平均長さが5〜200μmで、平均直径が0.2〜1.0μmの範囲にある多数本の繊維状塩基性硫酸マグネシウムが、それらの繊維表面の少なくとも一部を露出した状態で結合材により結合されてなる。
繊維状塩基性硫酸マグネシウムの平均長さは、5〜100μmの範囲にあることが好ましく、5〜35μmの範囲にあることがより好ましい。平均直径は、0.3〜1.0μmの範囲にあることが好ましい。ここで、平均長さ及び平均直径は、電子顕微鏡の撮影像から個別の一次粒子の長さと直径を測定し、その平均値を算出することにより求めた値である。
The fibrous basic magnesium sulfate lump of the present invention has an average length of 5 to 200 μm and a large number of fibrous basic magnesium sulfate in the range of 0.2 to 1.0 μm. It is bonded by a bonding material with at least part of the surface exposed.
The average length of the fibrous basic magnesium sulfate is preferably in the range of 5 to 100 μm, and more preferably in the range of 5 to 35 μm. The average diameter is preferably in the range of 0.3 to 1.0 μm. Here, the average length and the average diameter are values obtained by measuring the length and diameter of individual primary particles from a photographed image of an electron microscope and calculating the average value.

結合材は、水不溶性であることが好ましい。ここで、水不溶性とは、20℃の水への溶解度が0.03g/L以下であることをいう。
結合材は、無機化合物(但し、塩基性硫酸マグネシウムを除く)であってもよいし、高分子材料であってもよい。
The binder is preferably water insoluble. Here, water-insoluble means that the solubility in water at 20 ° C. is 0.03 g / L or less.
The binder may be an inorganic compound (excluding basic magnesium sulfate) or a polymer material.

無機化合物からなる結合材は、繊維状であることが好ましい。繊維状の無機化合物は、繊維状塩基性硫酸マグネシウムと繊維状塩基性硫酸マグネシウムとの間で凝集体を形成した状態で繊維状塩基性硫酸マグネシウム塊状物中に存在していることが好ましい。繊維状無機化合物は、その平均長さが繊維状塩基性硫酸マグネシウムの平均長さよりも短いことが好ましい。
繊維状無機化合物は、混練等の剪断条件下でフィブリル化し、微細な繊維へ変化するものがより望ましい。そのような繊維状無機化合物の例としては、ゾノトライト[6CaO・6SiO2・H2O]及びセピオライト[Mg8Si1230(OH)4(OH24・8H2O]が挙げられる。
The binder made of an inorganic compound is preferably fibrous. The fibrous inorganic compound is preferably present in the fibrous basic magnesium sulfate mass in a state where an aggregate is formed between the fibrous basic magnesium sulfate and the fibrous basic magnesium sulfate. The average length of the fibrous inorganic compound is preferably shorter than the average length of the fibrous basic magnesium sulfate.
It is more desirable that the fibrous inorganic compound is fibrillated under shearing conditions such as kneading and changes into fine fibers. Examples of such fibrous inorganic compounds include zonotlite [6CaO · 6SiO 2 · H 2 O] and sepiolite [Mg 8 Si 12 O 30 (OH) 4 (OH 2 ) 4 · 8H 2 O].

高分子材料からなる結合材もまた、繊維状であることが好ましい。繊維状の高分子材料は、多数本の繊維状塩基性硫酸マグネシウムを絡めた状態で、繊維状塩基性硫酸マグネシウム塊状物中に存在していることが好ましい。繊維状高分子材料には、フィブリル化したポリテトラフルオロエチレン(PTFE)を用いることができる。   The binder made of a polymer material is also preferably fibrous. The fibrous polymer material is preferably present in the fibrous basic magnesium sulfate mass in a state where a large number of fibrous basic magnesium sulfates are entangled. Fibrilized polytetrafluoroethylene (PTFE) can be used as the fibrous polymer material.

繊維状塩基性硫酸マグネシウム塊状物の結合材含有量は、結合材の材料によって最適な範囲が異なるため一律に定まることができないが、結合材が無機化合物の場合は、塊状物全量に対して、1〜40質量%の範囲にあることが好ましく、5〜30質量%の範囲にあることがより好ましい。結合材が高分子材料の場合は、塊状物全量に対して0.05〜5質量%の範囲にあることが好ましく、0.1〜5質量%の範囲にあることがより好ましい。   The binder content of the fibrous basic magnesium sulfate lump can not be uniformly determined because the optimum range differs depending on the material of the binder, but when the binder is an inorganic compound, It is preferably in the range of 1 to 40% by mass, more preferably in the range of 5 to 30% by mass. When the binder is a polymer material, it is preferably in the range of 0.05 to 5% by mass and more preferably in the range of 0.1 to 5% by mass with respect to the total mass of the block.

本発明の繊維状塩基性硫酸マグネシウム塊状物は、例えば、繊維状塩基性硫酸マグネシウムと結合材とを水の存在下で混合もしくは混練した後、塊状に造粒することにより製造することができる。結合材にフィブリル化したPTFEを用いる場合には、繊維状塩基性硫酸マグネシウムとPTFEの粉末もしくはディスパージョンとを水の存在下で、PTFEがフィブリル化する条件で混練した後、塊状に造粒することにより製造することが好ましい。   The fibrous basic magnesium sulfate lump of the present invention can be produced, for example, by mixing or kneading fibrous basic magnesium sulfate and a binder in the presence of water and then granulating the lump. When fibrillated PTFE is used as a binder, fibrous basic magnesium sulfate and PTFE powder or dispersion are kneaded in the presence of water under the conditions for PTFE fibrillation, and then granulated in a lump. It is preferable to manufacture by this.

繊維状塩基性硫酸マグネシウム塊状物の粒子形状は、球状、扁平状(フレーク状)、又は円柱状であることが好ましい。球状及び扁平状の繊維状塩基性硫酸マグネシウム塊状物の平均粒子サイズは、0.3〜5.0mmの範囲にあることが好ましい。また、円柱状の繊維状塩基性硫酸マグネシウム塊状物は、平均直径が1.0〜5.0mmの範囲、平均長さが1.0〜10.0mmの範囲にあることが好ましい。   The particle shape of the fibrous basic magnesium sulfate lump is preferably spherical, flat (flakes), or cylindrical. The average particle size of the spherical and flat fibrous basic magnesium sulfate agglomerates is preferably in the range of 0.3 to 5.0 mm. Moreover, it is preferable that a columnar fibrous basic magnesium sulfate lump has an average diameter in the range of 1.0 to 5.0 mm and an average length in the range of 1.0 to 10.0 mm.

本発明の繊維状塩基性硫酸マグネシウム塊状物は、排水の処理材、特に研削装置や研磨装置の排水の処理材として有利に使用することができる。すなわち本発明の繊維状塩基性硫酸マグネシウム塊状物を排水に接触させることにより、排水中の無機物微粒子(例えば、シリカ微粒子)やエマルジョン化した油の微粒子を凝集させることができる。また、排水中の重金属イオン(例えば、鉛イオン)を、塩基性硫酸マグネシウムの水酸基と反応させて水酸化物粒子として析出させることもできる。
生成した無機物の凝集粒子(水酸化物粒子を含む)は、フィルタあるいは砂濾過装置などの公知の濾過装置を用いて排水から濾別することができる。油の凝集粒子は、浮上分離装置などの公知の装置を用いて排水から分離することができる。
The fibrous basic magnesium sulfate lump of the present invention can be advantageously used as a wastewater treatment material, particularly as a wastewater treatment material for a grinding device or a polishing device. That is, by bringing the fibrous basic magnesium sulfate lump of the present invention into contact with waste water, inorganic fine particles (for example, silica fine particles) and emulsified oil fine particles in the waste water can be aggregated. Further, heavy metal ions (for example, lead ions) in the waste water can be reacted with a hydroxyl group of basic magnesium sulfate to be precipitated as hydroxide particles.
The produced inorganic aggregated particles (including hydroxide particles) can be separated from the waste water using a known filtration device such as a filter or a sand filtration device. The oil agglomerated particles can be separated from the waste water using a known device such as a flotation device.

次に、本発明の繊維状塩基性硫酸マグネシウム塊状物からなる排水処理材を用いた排水処理装置の一例を図1を用いて説明する。
図1は、本発明に従う排水処理装置の一例の断面図である。
図1において、排水処理装置は、互いに同芯状に組み合わされた多孔性材料からなる外側筒状体1と多孔性材料からなる内側筒状体2との間に上記の繊維状塩基性硫酸マグネシウム塊状物からなる排水処理材3が充填されてなる。
外側筒状体1は、例えば、ポリプロピレン等の樹脂からなり、多孔体もしくは網目状体に形成された第一の筒状体1aと、この第一の筒状体1aに取り付けられた、例えば、合成紙等からなる第一の多孔性材料1bとから構成されている。内側筒状体2は、外側筒状体1と同芯状に設置され、例えば、ポリプロピレン等の樹脂からなり、多孔体もしくは網目状体に形成され、第一の筒状体1aよりも径が小さい第二の筒状体2aと、この第二の筒状体2aに取り付けられた、例えば、合成紙等からなる第二の多孔性材料2bとから構成されており、第二の筒状体2aの上端部には、例えば、板状体からなる盲部2cが設けられている。
Next, an example of the waste water treatment apparatus using the waste water treatment material comprising the fibrous basic magnesium sulfate lump of the present invention will be described with reference to FIG.
FIG. 1 is a cross-sectional view of an example of a wastewater treatment apparatus according to the present invention.
In FIG. 1, the waste water treatment apparatus includes the above-described fibrous basic magnesium sulfate between an outer cylindrical body 1 made of a porous material and an inner cylindrical body 2 made of a porous material that are concentrically combined with each other. The waste water treatment material 3 made of a lump is filled.
The outer cylindrical body 1 is made of, for example, a resin such as polypropylene, and is attached to the first cylindrical body 1a formed in a porous body or a mesh body, and the first cylindrical body 1a. And a first porous material 1b made of synthetic paper or the like. The inner cylindrical body 2 is installed concentrically with the outer cylindrical body 1, is made of, for example, a resin such as polypropylene, is formed in a porous body or a mesh body, and has a diameter larger than that of the first cylindrical body 1a. The second cylindrical body 2a is composed of a small second cylindrical body 2a and a second porous material 2b made of, for example, synthetic paper, attached to the second cylindrical body 2a. For example, a blind portion 2c made of a plate-like body is provided at the upper end of 2a.

フィルタ4は、例えば、円筒状体であり、内側筒状体2の中空部に取替え可能に設置され、かつ内側筒状体2の内周面に接して、内側筒状体2の強度を補強する。支持体6は、例えば、絶縁材から構成され、外側筒状体1、内側筒状体2、フィルタ4を一体的に支持する。押さえ板7は、外側筒状体1、内側筒状体2、フィルタ4を一体的に支持体6に押圧支持する。ばね受け8は、フィルタ4の中空軸芯部に設置され、フィルタ4の中空部の上部開口部を塞ぐ。はね9は、ばね受け8に設置され、押さえ板7によって、ばね受け8をフィルタ4の上端面に押圧する。   The filter 4 is, for example, a cylindrical body, is installed in the hollow portion of the inner cylindrical body 2 so as to be replaceable, and is in contact with the inner peripheral surface of the inner cylindrical body 2 to reinforce the strength of the inner cylindrical body 2. To do. The support body 6 is made of, for example, an insulating material, and integrally supports the outer cylindrical body 1, the inner cylindrical body 2, and the filter 4. The pressing plate 7 presses and supports the outer cylindrical body 1, the inner cylindrical body 2, and the filter 4 integrally on the support body 6. The spring receiver 8 is installed in the hollow shaft core portion of the filter 4 and closes the upper opening of the hollow portion of the filter 4. The spring 9 is installed on the spring receiver 8, and presses the spring receiver 8 against the upper end surface of the filter 4 by the pressing plate 7.

容器10は、流入口10aと流出口10bとを有する容器部10cと、エアー抜き10dを有する蓋部10eとからなり、流出口10bには、支持体6を支持する支持板10fが取り付けられている。ばね11は、押さえ板7のばね受け部7aに設置され、蓋部10eに押圧されて押さえ板7を押圧する。   The container 10 includes a container portion 10c having an inlet 10a and an outlet 10b, and a lid portion 10e having an air vent 10d. A support plate 10f that supports the support 6 is attached to the outlet 10b. Yes. The spring 11 is installed in the spring receiving portion 7 a of the pressing plate 7 and is pressed by the lid portion 10 e to press the pressing plate 7.

流入口10aから容器10内に流入した排水は、外側筒状体1を通って排水処理材3に至る。排水が排水処理材3を通過する際、排水中の無機物粒子や油の微粒子は凝集する。また、排水中の重金属イオンは水酸化物粒子として析出する。無機物の凝集粒子及び水酸化物粒子は、フィルタ4の外周表面にて濾別される。一方、油の凝集粒子はフィルタ4を排水と共に通過する。この排水中の油の凝集粒子は、浮上分離装置(図示せず)にて排水から分離回収することができる。   The wastewater that flows into the container 10 from the inlet 10 a passes through the outer cylindrical body 1 and reaches the wastewater treatment material 3. When the wastewater passes through the wastewater treatment material 3, the inorganic particles and oil fine particles in the wastewater are aggregated. Moreover, heavy metal ions in the wastewater are precipitated as hydroxide particles. The inorganic agglomerated particles and hydroxide particles are filtered off on the outer peripheral surface of the filter 4. On the other hand, the aggregated oil particles pass through the filter 4 together with the waste water. The oil agglomerated particles in the waste water can be separated and recovered from the waste water by a floating separator (not shown).

[実施例1]
(1)塩基性硫酸マグネシウムスラリーの製造
硫酸マグネシウム・7水和物9kgを水120Lに溶解し、この溶液に水酸化マグネシウム2.25kg及び種晶となる塩基性硫酸マグネシウム0.4kgを分散させた。この分散液を容量170Lのオートクレーブに入れ、170℃で3時間反応させて、固形分濃度3質量%の塩基性硫酸マグネシウムのスラリーを得た。このスラリー中の塩基性硫酸マグネシウムの一部を採取し、乾燥して、粒子形状を電子顕微鏡にて観察したところ繊維状であり、その平均長さは28μm、平均直径は0.5μmであった。
[Example 1]
(1) Production of basic magnesium sulfate slurry 9 kg of magnesium sulfate heptahydrate was dissolved in 120 L of water, and 2.25 kg of magnesium hydroxide and 0.4 kg of basic magnesium sulfate serving as seed crystals were dispersed in this solution. . This dispersion was put into a 170 L autoclave and reacted at 170 ° C. for 3 hours to obtain a basic magnesium sulfate slurry having a solid content concentration of 3 mass%. A part of the basic magnesium sulfate in the slurry was collected, dried, and observed with an electron microscope. The particle shape was fibrous, the average length was 28 μm, and the average diameter was 0.5 μm. .

(2)繊維状塩基性硫酸マグネシウム塊状物の製造
上記のようにして製造した繊維状塩基性硫酸マグネシウムのスラリーを、真空濾過、加圧脱水して水分50質量%のケーキとした。この繊維状塩基性硫酸マグネシウムケーキに、繊維状ゾノトライト(平均長さ:3μm、平均直径:0.3μm)を固形分含有量が20質量%となるように添加して、混合した。この混合物を押出し造粒装置(ミートチョッパー、平賀工作所(株)製)を用いて混練し、直径2.3mmの押出し穴から押出し造粒して、円柱状の含水塊状物を得た。この含水塊状物を120℃の温度で24時間乾燥した。
(2) Production of fibrous basic magnesium sulfate lump The fibrous basic magnesium sulfate slurry produced as described above was vacuum filtered and pressure dehydrated to obtain a cake having a moisture content of 50% by mass. To this fibrous basic magnesium sulfate cake, fibrous zonotlite (average length: 3 μm, average diameter: 0.3 μm) was added and mixed so that the solid content was 20% by mass. This mixture was kneaded using an extrusion granulator (meet chopper, manufactured by Hiraga Kogyo Co., Ltd.) and extruded and granulated from an extrusion hole having a diameter of 2.3 mm to obtain a cylindrical hydrous mass. This water-containing lump was dried at a temperature of 120 ° C. for 24 hours.

こうして製造した円柱状の塊状物の形態を電子顕微鏡にて観察したところ、多数本の繊維状塩基性硫酸マグネシウムがフィブリル化した微細な繊維状ゾノトライトの凝集体により部分的に結合されており、その繊維表面の大部分が露出していることが確認された。また、繊維状塩基性硫酸マグネシウムの平均長さは8μmであり、平均直径は0.5μmであった。   Observation of the shape of the cylindrical lump produced in this way with an electron microscope reveals that a large number of fibrous basic magnesium sulfates are partially bound by fine fibrous agglomerated zonotolite aggregates. It was confirmed that most of the fiber surface was exposed. The average length of fibrous basic magnesium sulfate was 8 μm, and the average diameter was 0.5 μm.

[実施例2]
繊維状塩基性硫酸マグネシウムケーキと繊維状ゾノトライトとの混合物を転動造粒装置(ニュウグラマン、(株)セイシン企業製)を用いて造粒した以外は、実施例1と同様にして、球状の繊維状塩基性硫酸マグネシウム塊状物を製造した。
こうして製造した塊状物の形態を電子顕微鏡にて観察したところ、多数本の繊維状塩基性硫酸マグネシウムがフィブリル化した微細な繊維状ゾノトライトの凝集体により部分的に結合されており、その繊維表面の大部分が露出していることが確認された。また、繊維状塩基性硫酸マグネシウムの平均長さは8μmであり、平均直径は0.5μmであった。
[Example 2]
In the same manner as in Example 1, except that the mixture of the fibrous basic magnesium sulfate cake and the fibrous zonotlite was granulated using a tumbling granulator (New Grumman, manufactured by Seishin Enterprise Co., Ltd.), A fibrous basic magnesium sulfate mass was produced.
The morphology of the mass produced in this way was observed with an electron microscope. As a result, a large number of fibrous basic magnesium sulfates were partially bound by agglomerated fine fibrous zonotolite, and the fiber surface It was confirmed that most were exposed. The average length of fibrous basic magnesium sulfate was 8 μm, and the average diameter was 0.5 μm.

[実施例3]
繊維状ゾノトライトの変わりに繊維状セピオライト(平均長さ:2μm、平均直径:0.2μm)を固形分含有量が10質量%となるように添加した以外は、実施例1と同様にして、円柱状の繊維状塩基性硫酸マグネシウム塊状物を製造した。
こうして製造した塊状物の形態を電子顕微鏡にて観察したところ、多数本の繊維状塩基性硫酸マグネシウムがフィブリル化した微細な繊維状セピオライトの凝集体により部分的に結合されており、その繊維表面の大部分が露出していることが確認された。また、繊維状塩基性硫酸マグネシウムの平均長さは7μmであり、平均直径は0.4μmであった。
[Example 3]
In the same manner as in Example 1, except that fibrous sepiolite (average length: 2 μm, average diameter: 0.2 μm) was added instead of fibrous zonotlite so that the solid content was 10% by mass, A columnar fibrous basic magnesium sulfate mass was produced.
When the morphology of the mass produced in this way was observed with an electron microscope, a large number of fibrous basic magnesium sulfates were partially bound by agglomerated fine fibrous sepiolite aggregates. It was confirmed that most were exposed. The average length of the fibrous basic magnesium sulfate was 7 μm, and the average diameter was 0.4 μm.

[実施例4]
繊維状ゾノトライトの変わりにポリテトラフルオロエチレン(PTFE)粉末を固形分含有量が0.3質量%となるように添加し、80℃に加温しながら、押出し造粒装置を用いて混練し、造粒した以外は、実施例1と同様にして円柱状の繊維状塩基性硫酸マグネシウム塊状物を製造した。
こうして製造した塊状物の形態を電子顕微鏡にて観察したところ、多数本の繊維状塩基性硫酸マグネシウムがフィブリル化したPTFEに絡まって結合されており、その繊維表面の大部分が露出していることが確認された。また、繊維状塩基性硫酸マグネシウムの平均長さは8μmであり、平均直径は0.4μmであった。一方、フィブリル化したPTFEの直径は、約0.05μmであった。
[Example 4]
Instead of fibrous zonotlite, polytetrafluoroethylene (PTFE) powder is added so that the solid content is 0.3% by mass, and the mixture is kneaded using an extrusion granulator while heating at 80 ° C., A cylindrical fibrous basic magnesium sulfate lump was produced in the same manner as in Example 1 except for granulation.
When the morphology of the mass produced in this way was observed with an electron microscope, a large number of fibrous basic magnesium sulfates were entangled and bonded to the fibrillated PTFE, and most of the fiber surface was exposed. Was confirmed. The average length of the fibrous basic magnesium sulfate was 8 μm and the average diameter was 0.4 μm. On the other hand, the diameter of fibrillated PTFE was about 0.05 μm.

[実施例5]
実施例1の(1)にて製造した繊維状塩基性硫酸マグネシウムスラリーに、繊維状ゾノトライト(平均長さ:3μm、平均直径:0.3μm)を固形分含有量が10質量%となるように添加して、攪拌混合した。この混合スラリーをハネビスフィルタで真空濾過し、脱水機で脱水して、水分50質量%のケーキを得た。このケーキを流動層乾燥機で150℃の温度で乾燥した。得られた乾燥物を、目開き3mmのパワーミルで解砕して扁平状の繊維状塩基性硫酸マグネシウム塊状物を製造した。
こうして製造した塊状物の形態を電子顕微鏡にて観察したところ、多数本の繊維状塩基性硫酸マグネシウムが繊維状ゾノトライトの凝集体により部分的に結合されており、その繊維表面の大部分が露出していることが確認された。また、繊維状塩基性硫酸マグネシウムの平均長さは28μmであり、平均直径は0.5μmであった。
[Example 5]
In the fibrous basic magnesium sulfate slurry produced in Example 1 (1), fibrous zonotolite (average length: 3 μm, average diameter: 0.3 μm) was added so that the solid content was 10% by mass. Added and mixed with stirring. The mixed slurry was vacuum-filtered with a honey screw filter and dehydrated with a dehydrator to obtain a cake having a moisture content of 50% by mass. This cake was dried at a temperature of 150 ° C. by a fluid bed dryer. The obtained dried product was crushed with a power mill having a mesh opening of 3 mm to produce a flat fibrous basic magnesium sulfate lump.
When the morphology of the mass produced in this way was observed with an electron microscope, a large number of fibrous basic magnesium sulfates were partially bound by aggregates of fibrous zonotlite, and most of the fiber surface was exposed. It was confirmed that The average length of the fibrous basic magnesium sulfate was 28 μm and the average diameter was 0.5 μm.

[比較例1]
繊維状ゾノトライトを加えない以外は、実施例1と同様にして円柱状の繊維状塩基性硫酸マグネシウム塊状物を製造した。こうして製造した塊状物の形態を電子顕微鏡にて観察したところ、繊維状塩基性硫酸マグネシウムのみが絡み合っていることが確認された。
[Comparative Example 1]
A cylindrical fibrous basic magnesium sulfate lump was produced in the same manner as in Example 1 except that no fibrous zonotlite was added. Observation of the morphology of the mass thus produced with an electron microscope confirmed that only fibrous basic magnesium sulfate was entangled.

[評価]
実施例1〜5及び比較例1にて製造した繊維状塩基性硫酸マグネシウム塊状物の(1)平均粒子サイズ、(2)ゆるみ見かけ密度、(3)流水接触後の残留率、(4)塊状物接触後の水の白濁度、(5)シリカ除去率、及び(6)鉛除去率を下記の方法により測定した。その結果を、表1に示す。
[Evaluation]
(1) Average particle size, (2) Loose apparent density, (3) Residual rate after contact with running water, (4) Bulk shape of fibrous basic magnesium sulfate blocks produced in Examples 1 to 5 and Comparative Example 1 The turbidity of water after contact with an object, (5) silica removal rate, and (6) lead removal rate were measured by the following methods. The results are shown in Table 1.

(1)平均粒子サイズ:円柱状の塊状物(実施例1、実施例3、実施例4、比較例1)は、長さと直径とをそれぞれノギスを用いて測定して、その平均値を算出した。球状の塊状物(実施例2)及び扁平状の塊状物(実施例5)は、JIS−J−8801にて規定された標準篩を用いて粒度分布を測定して、その平均粒子径(D50)を算出した。
(2)ゆるみ見かけ密度:ホソカワミクロン(株)製のパウダーテスタ−を用いて測定した。
(1) Average particle size: For a cylindrical lump (Example 1, Example 3, Example 4, Comparative Example 1), the length and diameter were measured using calipers, and the average value was calculated. did. The spherical mass (Example 2) and the flat mass (Example 5) were measured for particle size distribution using a standard sieve defined in JIS-J-8801, and the average particle size (D 50 ) was calculated.
(2) Loose apparent density: Measured using a powder tester manufactured by Hosokawa Micron Corporation.

(3)流水接触後の残留率:塊状物50cm3を3.5mm径のガラス製カラムに充填して、150%の膨張条件の逆洗を1時間実施した後、カラム中の塊状物の残留率を算出した。残留率が高い方が水中での安定性に優れる。
(4)塊状物接触後の水の白濁度:塊状物50cm3を3.5mm径のガラス製カラムに充填し、上水をSV=50の条件で通水した。塊状物接触後の水の白濁度を目視観察して、以下の四段階で評価した。
A:通水開始直後から白濁を認めない。
B:通水量が2BV(100cm3)まで白濁を認める。
C:通水量が10BV(500cm3)まで白濁を認める。
D:通水量が10BV(500cm3)を超えても白濁が続く。
(3) Residual rate after contact with running water: 50 cm 3 of lumps are packed into a 3.5 mm diameter glass column and backwashed with 150% expansion condition for 1 hour, and then the lumps remain in the column. The rate was calculated. The higher the residual rate, the better the stability in water.
(4) Water turbidity after contact with the lump: The lump 50 cm 3 was filled into a 3.5 mm diameter glass column, and the clean water was passed under the condition of SV = 50. The white turbidity of water after contact with the lump was visually observed and evaluated in the following four stages.
A: No cloudiness is observed immediately after the start of water flow.
B: Cloudiness is recognized up to a water flow rate of 2 BV (100 cm 3 ).
C: Cloudiness is recognized up to a water flow rate of 10 BV (500 cm 3 ).
D: White turbidity continues even if the water flow rate exceeds 10 BV (500 cm 3 ).

(5)コロイダルシリカ除去率:塊状物50cm3を3.5mm径のカラムに充填し、逆洗した後、コロイダルシリカ(平均粒径:80nm)の懸濁液(濃度:800ppm)を、SV=50の条件で通水した。塊状物接触後の水を目開き15μmのメンブランフィルターを用いて濾過した。そして、濾液中のシリカ濃度をICP分光分析装置にて定量して、下記式にてシリカ除去率を算出した。シリカ除去率が高い方が、塊状物のシリカ凝集能力が高いことを示す。
シリカ除去率(質量%)=[コロイダルシリカ懸濁液のシリカ濃度(800ppm)−濾液中のシリカ濃度(単位:ppm)]/コロイダルシリカ懸濁液のシリカ濃度(800ppm)×100
(5) Removal rate of colloidal silica: After packing 50 cm 3 of a lump into a 3.5 mm diameter column and backwashing, a suspension (concentration: 800 ppm) of colloidal silica (average particle size: 80 nm) Water was passed under 50 conditions. The water after contact with the lump was filtered using a membrane filter having an opening of 15 μm. And the silica density | concentration in a filtrate was quantified with the ICP spectrometer, and the silica removal rate was computed by the following formula. The higher the silica removal rate, the higher the lump's silica aggregation ability.
Silica removal rate (mass%) = [silica concentration of colloidal silica suspension (800 ppm) −silica concentration in filtrate (unit: ppm)] / silica concentration of colloidal silica suspension (800 ppm) × 100

(6)鉛除去率:塊状物を50cm3を3.5mm径のカラムに充填し、逆洗した後、硝酸鉛水溶液(濃度:10ppm)を、SV=50の条件で通水した。塊状物接触後の水を目開き15μmのメンブランフィルターを用いて濾過した。濾液中の鉛量をICP分光分析装置にて定量して、下記式にて鉛除去率を算出した。鉛浄化率が高い方が、塊状物の重金属イオンを水酸化物粒子として析出させる能力が高いことを示す。
鉛除去率(質量%)=[硝酸鉛水溶液の鉛濃度(10ppm)−濾液中の鉛濃度(単位:ppm)]/硝酸鉛水溶液の鉛濃度(10ppm)×100
(6) Lead removal ratio: bulk was filled with 50 cm 3 in the column of 3.5mm diameter, after backwash, lead nitrate solution (concentration: 10 ppm) were passed through under the conditions of SV = 50. The water after contact with the lump was filtered using a membrane filter having an opening of 15 μm. The amount of lead in the filtrate was quantified with an ICP spectrometer, and the lead removal rate was calculated according to the following formula. The higher the lead purification rate, the higher the ability to precipitate heavy metal ions in the lump as hydroxide particles.
Lead removal rate (mass%) = [lead concentration of lead nitrate aqueous solution (10 ppm) −lead concentration in filtrate (unit: ppm)] / lead concentration of lead nitrate aqueous solution (10 ppm) × 100

Figure 2005231927
(*)通水後、繊維状塩基性硫酸マグネシウム塊状物が直ちに崩壊したため測定できず。
Figure 2005231927
(*) After passing water, the fibrous basic magnesium sulfate lump collapsed immediately and could not be measured.

表1の結果から、結合材により結合されている繊維状塩基性硫酸マグネシウム塊状物(実施例1〜5)は、結合材を用いずに製造した繊維状塩基性硫酸マグネシウム塊状物(比較例1)と比べて、流水との接触に対して安定であることがわかる。また、繊維状塩基性硫酸マグネシウム繊維の表面が露出しているので、シリカの凝集能力及び鉛イオンを水酸化物粒子として析出、凝集させる能力が高いことがわかる。   From the result of Table 1, the fibrous basic magnesium sulfate lump (Examples 1-5) couple | bonded with the binder is the fibrous basic magnesium sulfate lump (Comparative Example 1) manufactured without using the binder. ), It can be seen that it is more stable against contact with running water. Moreover, since the surface of the fibrous basic magnesium sulfate fiber is exposed, it can be seen that the ability to aggregate silica and the ability to precipitate and aggregate lead ions as hydroxide particles are high.

本発明に従う排水処理装置の一例の断面図である。It is sectional drawing of an example of the waste water treatment equipment according to this invention.

符号の説明Explanation of symbols

1 外側筒状体
1a 第一の筒状体
1b 第一の多孔性材料
2 内側筒状体
2a 第二の筒状体
2b 第二の多孔性材料
2c 盲部
3 排水処理材
4 フィルタ
6 支持体
7 押さえ板
7a ばね受け部
8 ばね受け
9 ばね
10 容器
10a 流入口
10b 流出口
10c 容器部
10d エアー抜き
10e 蓋部
10f 支持板
11 ばね
DESCRIPTION OF SYMBOLS 1 Outer cylindrical body 1a 1st cylindrical body 1b 1st porous material 2 Inner cylindrical body 2a 2nd cylindrical body 2b 2nd porous material 2c Blind part 3 Waste water treatment material 4 Filter 6 Support body 7 Holding plate 7a Spring receiving portion 8 Spring receiving portion 9 Spring 10 Container 10a Inlet port 10b Outlet port 10c Container portion 10d Air vent 10e Lid portion 10f Support plate 11 Spring

Claims (8)

平均長さが5〜200μmで、平均直径が0.2〜1.0μmの範囲にある多数本の繊維状塩基性硫酸マグネシウムが、それらの繊維表面の少なくとも一部を露出した状態で結合材により結合されてなる繊維状塩基性硫酸マグネシウム塊状物。   A large number of fibrous basic magnesium sulfates having an average length of 5 to 200 μm and an average diameter of 0.2 to 1.0 μm are formed by a binder in a state where at least a part of the fiber surface is exposed. A fibrous basic magnesium sulfate lump formed by bonding. 結合材が、水不溶性である請求項1に記載の繊維状塩基性硫酸マグネシウム塊状物。   The fibrous basic magnesium sulfate lump according to claim 1, wherein the binder is water-insoluble. 結合材が、該繊維状塩基性硫酸マグネシウムよりも短い繊維状塩基性硫酸マグネシウム以外の繊維状無機化合物である請求項2に記載の繊維状塩基性硫酸マグネシウム塊状物。   The fibrous basic magnesium sulfate lump according to claim 2, wherein the binder is a fibrous inorganic compound other than the fibrous basic magnesium sulfate, which is shorter than the fibrous basic magnesium sulfate. 結合材が、ゾノトライトもしくはセピオライトである請求項2もしくは3に記載の繊維状塩基性硫酸マグネシウム塊状物。   The fibrous basic magnesium sulfate lump according to claim 2 or 3, wherein the binder is zonotolite or sepiolite. 結合材が高分子材料からなる請求項2に記載の繊維状塩基性硫酸マグネシウム塊状物。   The fibrous basic magnesium sulfate lump according to claim 2, wherein the binder is made of a polymer material. 結合材が、フィブリル化したポリテトラフルオロエチレンである請求項5に記載の繊維状塩基性硫酸マグネシウム塊状物。   The fibrous basic magnesium sulfate lump according to claim 5, wherein the binder is fibrillated polytetrafluoroethylene. 請求項1乃至6のうちのいずれかの項に記載の繊維状塩基性硫酸マグネシウム塊状物からなる排水処理材。   A wastewater treatment material comprising the fibrous basic magnesium sulfate lump according to any one of claims 1 to 6. 互いに同芯状に組み合わされた多孔性材料からなる外側筒状体と多孔性材料からなる内側筒状体との間に請求項7に記載の排水処理材が充填されてなる排水処理装置。
A wastewater treatment apparatus in which the wastewater treatment material according to claim 7 is filled between an outer cylindrical body made of a porous material and an inner cylindrical body made of a porous material that are concentrically combined with each other.
JP2004041607A 2004-02-18 2004-02-18 Wastewater treatment material consisting of fibrous basic magnesium sulfate lump Expired - Fee Related JP4405823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041607A JP4405823B2 (en) 2004-02-18 2004-02-18 Wastewater treatment material consisting of fibrous basic magnesium sulfate lump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041607A JP4405823B2 (en) 2004-02-18 2004-02-18 Wastewater treatment material consisting of fibrous basic magnesium sulfate lump

Publications (2)

Publication Number Publication Date
JP2005231927A true JP2005231927A (en) 2005-09-02
JP4405823B2 JP4405823B2 (en) 2010-01-27

Family

ID=35015274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041607A Expired - Fee Related JP4405823B2 (en) 2004-02-18 2004-02-18 Wastewater treatment material consisting of fibrous basic magnesium sulfate lump

Country Status (1)

Country Link
JP (1) JP4405823B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119814A1 (en) * 2008-03-28 2009-10-01 宇部マテリアルズ株式会社 Process for continuous production of fibrous basic magnesium sulfate particle
WO2009123097A1 (en) * 2008-03-31 2009-10-08 宇部マテリアルズ株式会社 Basic magnesium sulfate granule and process for production thereof
WO2009133881A1 (en) * 2008-04-28 2009-11-05 宇部マテリアルズ株式会社 Basic magnesium sulfate granule, and process for production thereof
JP2009280422A (en) * 2008-05-20 2009-12-03 Ube Material Industries Ltd Method for producing fibrous basic magnesium sulfate particle
JP2011005358A (en) * 2009-06-23 2011-01-13 Heishin Kikai Kogyo Kk Oil/water separator
JP2012055794A (en) * 2010-09-06 2012-03-22 Maeda Material:Kk Purification system of polymer wax exfoliation waste liquid
CN109317078A (en) * 2018-11-15 2019-02-12 上海外高桥发电有限责任公司 A kind of nano-sized magnesium hydroxide recycling concentric drums reactor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119814A1 (en) * 2008-03-28 2009-10-01 宇部マテリアルズ株式会社 Process for continuous production of fibrous basic magnesium sulfate particle
US8114366B2 (en) 2008-03-28 2012-02-14 Ube Material Industries, Ltd. Process for continuous production of fibrous basic magnesium sulfate particle
JP5394369B2 (en) * 2008-03-28 2014-01-22 宇部マテリアルズ株式会社 Continuous production method of fibrous basic magnesium sulfate particles
JP5394370B2 (en) * 2008-03-31 2014-01-22 宇部マテリアルズ株式会社 Basic magnesium sulfate granular material and method for producing the same
WO2009123097A1 (en) * 2008-03-31 2009-10-08 宇部マテリアルズ株式会社 Basic magnesium sulfate granule and process for production thereof
US8388915B2 (en) 2008-03-31 2013-03-05 Ube Material Industries, Ltd. Basic magnesium sulfate granule having high crush strength and process for production thereof
WO2009133881A1 (en) * 2008-04-28 2009-11-05 宇部マテリアルズ株式会社 Basic magnesium sulfate granule, and process for production thereof
KR101534367B1 (en) * 2008-04-28 2015-07-06 우베 마테리알즈 가부시키가이샤 Basic magnesium sulfate granule, and process for production thereof
TWI449671B (en) * 2008-04-28 2014-08-21 宇部材料股份有限公司 Alkaline magnesium sulfate granules and methods for producing the same
JP5331106B2 (en) * 2008-04-28 2013-10-30 宇部マテリアルズ株式会社 Basic magnesium sulfate granular material and method for producing the same
JP2009280422A (en) * 2008-05-20 2009-12-03 Ube Material Industries Ltd Method for producing fibrous basic magnesium sulfate particle
JP2011005358A (en) * 2009-06-23 2011-01-13 Heishin Kikai Kogyo Kk Oil/water separator
JP2012055794A (en) * 2010-09-06 2012-03-22 Maeda Material:Kk Purification system of polymer wax exfoliation waste liquid
CN109317078A (en) * 2018-11-15 2019-02-12 上海外高桥发电有限责任公司 A kind of nano-sized magnesium hydroxide recycling concentric drums reactor

Also Published As

Publication number Publication date
JP4405823B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
KR100840068B1 (en) Adsorption container and iron oxide adsorber
EP1328477B1 (en) Contact and adsorber granulates
CN106687189B (en) Granular filter medium mixture and use in water purification
DE102004016601A1 (en) Stable adsorber granules
JP4463474B2 (en) Method for producing precipitated silica containing aluminum
EP2911980A1 (en) Method and composition for water purification and sludge dewatering
JP6106952B2 (en) Radioactive material adsorbent, and adsorption vessel, adsorption tower, and water treatment apparatus using the same
JP4405823B2 (en) Wastewater treatment material consisting of fibrous basic magnesium sulfate lump
CN111511466B (en) Adsorption filter
TWI428287B (en) Alkaline magnesium sulfate granules and methods for producing the same
CN104437593B (en) A kind of preparation method of manganese systems catalyst filter material
US4919818A (en) Process for extruding and treating clay for improved filtration
JP6858055B2 (en) Lead adsorbent
WO2019064936A1 (en) Granular activated carbon and method for manufacturing same
JP2731531B2 (en) Extrusion and treatment method of clay used for improvement of filter
WO2022102448A1 (en) Granulated adsorbent and method for producing same
WO2004063097A1 (en) Method of adding active carbon in water purification and method of water purification
KR20170128539A (en) Filtration aid and filtration treatment method
JP6586482B2 (en) Water purification filter
JP2020018971A (en) Adsorbent granulated body, manufacturing method of adsorbent granulated body, and purification method of solution containing radioactive strontium
JP2010269225A (en) Anion adsorbent molding and water purifier using the same
JP2002113359A (en) Granular smectite and its manufacturing method
DE10129307A1 (en) Filtration unit for removing pollutants from fluids, especially water, comprises agglomerates of finely divided iron oxide and oxyhydroxide
JP6618769B2 (en) Activated clay particles
JPH09294990A (en) Treatment of water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4405823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees