JP2005230933A - Threaded hole machining tool - Google Patents

Threaded hole machining tool Download PDF

Info

Publication number
JP2005230933A
JP2005230933A JP2004040356A JP2004040356A JP2005230933A JP 2005230933 A JP2005230933 A JP 2005230933A JP 2004040356 A JP2004040356 A JP 2004040356A JP 2004040356 A JP2004040356 A JP 2004040356A JP 2005230933 A JP2005230933 A JP 2005230933A
Authority
JP
Japan
Prior art keywords
blade
tool
cutting tool
axis
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004040356A
Other languages
Japanese (ja)
Inventor
Masaru Sasaki
優 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2004040356A priority Critical patent/JP2005230933A/en
Publication of JP2005230933A publication Critical patent/JP2005230933A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a threaded hole machining tool capable of obtaining an aimed effective thread diameter at both of a deep part and a shallow part of threaded hole depth. <P>SOLUTION: This threaded hole machining tool has a cutting tool formed with a thread machining edge part 13 on the outer peripheral surface to form an internally threaded hole in a workpiece. The internally threaded hole can be formed in the workpiece by revolving the cutting tool 11 around an axis of a prepared hole formed in the workpiece, along the inner peripheral surface of the prepared hole while rotating the cutting tool 11 around its own axis O<SB>2</SB>. When a direction toward the tip side along the axis O<SB>2</SB>of the cutting tool 11 is made an x-axis direction, the effective diameter at the cutting edge start side end part 13a in a region formed with the thread machining edge part 13 of the cutting tool 11 is made D<SB>0</SB>and an effective diameter in a position separated by a distance x in the x-axis direction from the cutting edge start side end part 13a in the region formed with the thread machining edge part 13 of the cutting tool 11 is made D(x), the distance x and an effective diameter enlarged quantity defined by y=(D(x)-D<SB>0</SB>)/2 are in the relation of a cubic function of y=ax<SP>3</SP>+bx<SP>2</SP>+cx (a: a positive number, b<SP>2</SP>-4ac<0). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ワークにめねじ穴を加工する際に使用するねじ穴加工用工具に関する。   The present invention relates to a screw hole machining tool used when machining a female screw hole in a workpiece.

ワークにめねじ穴を形成する場合、例えば、ねじ有効径よりも小さい径の下穴を形成しておき、この下穴をヘリカル切削でめねじ加工することが一般的である。具体的には、ワークに形成された下穴内壁にねじ加工刃部が形成された刃具を当接させ、さらに、この刃具を自転させつつ、下穴の軸心を中心に公転させる間に1リール分軸心方向に送ることにより、めねじ穴を形成している。また、下穴加工とめねじ加工とを一つの工具で実現することができるねじ穴加工用工具もある(例えば、下記特許文献1)。これは、刃具の先端にドリル刃部を形成するとともに、刃具の外周面にねじ溝を形成することにより、下穴の加工とめねじ穴の加工とをひとつの工具で行うようにしたものである。具体的には、図2(a)に示すように、ねじ穴加工用工具30の刃具31の先端部にはドリル刃部32が形成されており、刃具31の外周面にはねじ加工刃部33が形成されている。このような加工用工具30を、図2(b)のように、自転させつつワークW’’に向かって前進させることで、刃具31の先端に形成されているドリル刃部32によりワークW’’に下穴W1’’を形成する。ついで、刃具31を当該刃具31の軸心方向に所定量戻した後、図2(c)のように、下穴W1’’の軸心O’’と刃具31の軸心O’’を半径方向にrだけずらした状態で、刃具31を軸心O’’を中心に自転させつつ、下穴W1’’の軸心O’’を中心に公転させながら、刃具31が1周期公転する間に1リード分刃具31を軸心O’’方向に戻すことにより、ワークW’’の下穴W1’’をめねじ穴W2’’に形成する。最後に、図2(d)に示すように、加工用工具30をめねじ穴W2’’から戻す。
特許2660349号公報
When forming a female screw hole in a workpiece, for example, it is common to form a pilot hole having a diameter smaller than the effective screw diameter, and to machine this pilot hole by helical cutting. Specifically, the blade tool in which the threaded blade is formed is brought into contact with the inner wall of the prepared hole formed in the workpiece, and the blade tool is rotated while rotating around the axis of the prepared hole. A female screw hole is formed by feeding the reel in the axial direction. There is also a screw hole machining tool capable of realizing pilot hole machining and female thread machining with a single tool (for example, Patent Document 1 below). This is because the drill blade is formed at the tip of the cutting tool and the thread groove is formed on the outer peripheral surface of the cutting tool so that the processing of the pilot hole and the processing of the female screw hole are performed with one tool. . Specifically, as shown in FIG. 2 (a), a drill blade 32 is formed at the tip of the blade 31 of the screw hole machining tool 30, and the screw machining blade is formed on the outer peripheral surface of the blade 31. 33 is formed. As shown in FIG. 2B, such a processing tool 30 is advanced toward the workpiece W ″ while rotating, so that the workpiece W ′ is formed by the drill blade portion 32 formed at the tip of the cutting tool 31. A pilot hole W1 '' is formed in '. Next, after the blade tool 31 is returned by a predetermined amount in the axial direction of the blade tool 31, the axis O 1 ″ of the pilot hole W 1 ″ and the shaft center O 2 ″ of the blade tool 31 as shown in FIG. In a state in which is shifted by r in the radial direction, the blade 31 is rotated about the axis O 2 ″ while revolving around the axis O 1 ″ of the pilot hole W1 ″. By returning the one-lead blade 31 in the direction of the axis O 2 ″ during the periodical revolution, the pilot hole W1 ″ of the workpiece W ″ is formed in the female screw hole W2 ″. Finally, as shown in FIG. 2D, the machining tool 30 is returned from the female screw hole W2 ″.
Japanese Patent No. 2660349

しかしながら、上記のような方法でワークにめねじ穴を形成すると、特にめねじ穴の深さが深かったりめねじ穴の有効径が小さかったりする場合に、ねじの有効径がねじ穴の深さ方向で変化し、ねらったねじ有効径を得にくいという問題があった。より具体的には、図6に示すように、めねじ穴W2’’の深さの深い奥の部分では、ねらった有効径よりも小さいねじ有効径しか得ることができず、一方、ねじ穴W2’’の開口部近傍で深さの浅い部分ではねらったねじ有効径よりも大きなねじ有効径となってしまう。つまり、めねじ穴W2’’の加工形状はねじ穴奥へ向けて縮小する形状となる。この現象は、刃具の径が小さく、加工深さが深く、また切削条件が高いほど顕著に表れ、高能率加工の妨げとなっていた。また、このような問題は、下穴加工とめねじ加工とを一つの工具で行う場合にのみ生じるものではなく、ドリル等の工具で下穴を加工した後、タップ等の工具でめねじ穴を加工する場合にも同様に生じるものである。   However, when the female screw hole is formed in the workpiece by the above method, the effective diameter of the screw is the depth of the screw hole, especially when the depth of the female screw hole is deep or the effective diameter of the female screw hole is small. There is a problem that it is difficult to obtain the intended effective screw diameter by changing the direction. More specifically, as shown in FIG. 6, only the effective screw diameter smaller than the intended effective diameter can be obtained at the deep part of the depth of the female screw hole W2 ″. In the vicinity of the opening of W2 ″, the effective screw diameter is larger than the target effective screw diameter in the shallow portion. That is, the processed shape of the female screw hole W2 ″ is a shape that decreases toward the depth of the screw hole. This phenomenon was more noticeable as the diameter of the cutting tool was smaller, the machining depth was deeper, and the cutting conditions were higher, which hindered high-efficiency machining. In addition, such a problem does not occur only when the pilot hole machining and the female screw machining are performed with one tool. After the pilot hole is machined with a tool such as a drill, the female screw hole is formed with a tool such as a tap. This also occurs when processing.

本発明は、以上のような現状を鑑みてなされたものであって、ねじ穴の深さの深い部分においても浅い部分においてもねらったねじ有効径を得ることができるねじ穴加工用工具を提供することを課題とする。   The present invention has been made in view of the present situation as described above, and provides a screw hole machining tool capable of obtaining an effective screw diameter aimed at a deep portion and a shallow portion of a screw hole. The task is to do.

本発明者は、ワークにめねじ穴を形成する際、特にねじ有効径が小さい工具を用いて深さの深いめねじ穴を形成する際に、めねじ穴の端面側と穴奥側とで所望のねじ有効径が得られないことを解決することを目的として、所望のめねじ穴の有効径が得られていない場合での、該めねじ穴のめねじ有効径を測定することを試みた。具体的には、JISB0205に規定されるM10、ピッチ1.2mm、刃長25mmのメートル平目ねじを用いて、(材質:ADC12)で構成されるワークに対して図2に示される方法によりめねじ加工を行った。そして、ワークに形成されるめねじ穴の端面からめねじ穴の深さ方向をX軸方向として、めねじ穴の深さX(mm)の位置におけるめねじ有効径縮小量を測定した。ここで、めねじ有効径縮小量とは、図6に示すように、めねじ穴W2’’の端面におけるめねじ有効径をd(mm)とし、深さXにおけるめねじ有効径をd(x)(mm)としたときに、Y(めねじ有効径縮小量)=(d−d(x))/2で定義される値である。なお、めねじ有効径d、d(x)の測定は、ねじ用限界ゲージを用いて行うことができる。上記のようにして得られるY(めねじ有効径縮小量)とX(めねじ穴の深さ)の測定値は図7の黒点にしめされるようであった。 When forming a female threaded hole in a workpiece, particularly when forming a deep female threaded hole using a tool having a small effective screw diameter, the inventor In order to solve the problem that the desired effective screw diameter cannot be obtained, an attempt is made to measure the effective female screw diameter of the female screw hole when the effective female screw diameter is not obtained. It was. Specifically, using a metric flat thread with M10, a pitch of 1.2 mm, and a blade length of 25 mm as defined in JIS B0205, a female screw is formed by the method shown in FIG. 2 for a workpiece composed of (material: ADC12). Processing was performed. Then, the amount of effective female thread diameter reduction at the position of the depth X (mm) of the female screw hole was measured from the end surface of the female screw hole formed in the workpiece, with the depth direction of the female screw hole being the X-axis direction. Here, as shown in FIG. 6, the female screw effective diameter reduction amount is defined as the effective female screw diameter at the end face of the female screw hole W2 ″ being d 0 (mm) and the effective female screw diameter at the depth X being d. When (x) (mm), it is a value defined as Y (female thread effective diameter reduction amount) = (d 0 −d (x)) / 2. The measurement of the female screw effective diameters d 0 and d (x) can be performed using a screw limit gauge. The measured values of Y (the female thread effective diameter reduction amount) and X (the depth of the female thread hole) obtained as described above seemed to be blackened in FIG.

さらに、図7のように測定されためねじ有効径縮小量(Y)とめねじ穴の深さ(X)の値から、最小二乗法により上記XとYの関係式を求めたところ、図7に示すようにXとYとはY=aX+bX+cX(a:正数、b−4ac<0)型の3次関数の関係にあることがあきらかになった。つまり、めねじ穴W2’’の軸心を含む断面における該めねじ穴W2’’の有効径を深さに対してプロットしたグラフは、3次曲線をなすことがあきらかとなった。 Further, since the measurement is performed as shown in FIG. 7, the relational expression of X and Y is obtained by the least square method from the values of the effective screw diameter reduction amount (Y) and the depth of the female screw hole (X). As shown, it is apparent that X and Y have a relationship of a cubic function of the Y = aX 3 + bX 2 + cX (a: positive number, b 2 -4ac <0) type. In other words, the graph in which the effective diameter of the female screw hole W2 ″ in the cross section including the axis of the female screw hole W2 ″ is plotted against the depth may form a cubic curve.

上記のようにめねじ有効径縮小量(Y)とめねじ穴W2’’の深さ(X)とが3次関数の関係にあることから、本発明者は、図2を用いて説明したヘリカル切削による下穴のめねじ加工の際に下穴の内周面に当接する刃具が、切削抵抗により逃げることにより撓むために、めねじ穴W2’’の有効径を所望の有効径にすることができないものであるという知見を得た。これは、片持ち梁の固定端から所定距離離れた位置での片持ち梁の撓み量は、その所定距離と3次関数の関係にあることから、今回のめねじ加工においても、めねじ穴W2’’の軸心O’’を含む断面において、めねじ穴W2’’の有効径の深さ依存性が3次曲線になるのは刃具の撓みが原因であると類推できるためである。 Since the female screw effective diameter reduction amount (Y) and the depth (X) of the female screw hole W2 ″ have a cubic function relationship as described above, the present inventor has described the helical described with reference to FIG. When the internal thread of the pilot hole is machined by cutting, the cutting tool that comes into contact with the inner peripheral surface of the pilot hole is deflected by escaping due to the cutting resistance. The knowledge that it was not possible was obtained. This is because the amount of bending of the cantilever at a position away from the fixed end of the cantilever is in a relation of the predetermined distance and a cubic function. In the cross section including the axis O 1 ″ of W2 ″, the depth dependency of the effective diameter of the female screw hole W2 ″ becomes a cubic curve because it can be inferred that the bending of the cutting tool is the cause. .

そこで、本発明者が鋭意検討した結果、ねじ穴加工用工具の刃具において、該刃具のねじ加工刃部が形成されている領域の有効径が、該刃具の刃元側から先端側に向かって3次関数的に増加するように予め形成しておけば、当該ねじ穴加工用工具によりワークの下穴をねじ切りしたときに刃具が撓むことにより、めねじ穴の端面側とめねじ穴の穴奥側との間のめねじ有効径のずれを補正することが可能であることを発見し、本発明の完成に至ったものである。   Therefore, as a result of intensive studies by the present inventors, in the cutting tool of the screw hole machining tool, the effective diameter of the region where the threading blade portion of the cutting tool is formed is increased from the blade base side to the tip side of the cutting tool. If it is formed in advance so as to increase in a cubic function, the edge of the female screw hole and the hole of the female screw hole are deformed when the cutting tool bends when the pilot hole of the work is threaded with the screw hole machining tool. It has been found that it is possible to correct the deviation of the effective diameter of the female screw from the back side, and the present invention has been completed.

つまり、前述の本発明の課題を解決するために、本発明のねじ穴加工用工具は、外周面にねじ加工刃部が形成されており、自身の軸心を中心に自転しつつ、ワークに形成されている下穴の内周面に沿って該下穴の軸心を中心に公転することによりワークにめねじ穴を形成するための刃具を有するねじ穴加工用工具であって、前記刃具の前記ねじ加工刃部が形成されている領域における有効径が、前記刃具の刃元側から前記刃具の先端側に向かって3次関数的に増加していることを特徴とする。   In other words, in order to solve the above-described problems of the present invention, the threaded hole machining tool of the present invention has a threaded blade portion formed on the outer peripheral surface, and rotates on its own axis while rotating on the workpiece. A threaded hole machining tool having a cutting tool for forming a female threaded hole in a workpiece by revolving around an axis center of the prepared hole along an inner peripheral surface of the formed prepared hole, The effective diameter in the region where the threaded blade portion is formed increases in a cubic function from the blade base side of the blade tool toward the tip side of the blade tool.

さらに、上述の特徴点を別の側面からより具体的にみれば、本発明のねじ穴加工用工具は、外周面にねじ加工刃部が形成されており、自身の軸心を中心に自転しつつ、ワークに形成されている下穴の内周面に沿って該下穴の軸心を中心に公転することによりワークにめねじ穴を形成するための刃具を有するねじ穴加工用工具であって、前記刃具の軸心に沿って先端側に向う方向をx軸方向とし、前記刃具の前記ねじ加工刃部が形成されている領域の刃元側の端部における有効径をDとし、前記刃具の前記ねじ加工刃部が形成されている領域の刃元側の端部から前記x軸方向に距離x離れた位置での有効径をD(x)としたとき、y=(D(x)−D)/2で定義される有効径拡大量と前記距離xとが、y=ax+bx+cx(a:正数、b−4ac<0)型の3次関数の関係にあることを特徴とするものとしてもよい。 Furthermore, if the above-mentioned feature point is seen more specifically from another side, the threaded hole machining tool of the present invention has a threaded blade portion formed on the outer peripheral surface and rotates around its own axis. On the other hand, it is a screw hole machining tool having a cutting tool for forming a female screw hole in a workpiece by revolving around the axis center of the pilot hole along the inner peripheral surface of the pilot hole formed in the workpiece. Te, the direction toward the distal end side along the axis of the cutting tool and the x-axis direction, the effective diameter of the end portion of the threaded blade portion blade root side of the area formed of the cutting tool and D 0, When an effective diameter at a position separated by a distance x in the x-axis direction from an end on the blade base side of the region where the threaded blade portion of the cutting tool is formed is D (x), y = (D ( x) −D 0 ) / 2 and the effective diameter expansion amount and the distance x are y = ax 3 + bx 2 + cx (a : Positive number, b 2 -4ac <0) type cubic function.

なお、上記3次関数において、a、b、cの値は刃具の有効径や刃長や、さらにワークの材質によって適宜最適な値を設定することができるものである。   In the above cubic function, the values of a, b, and c can be appropriately set as appropriate depending on the effective diameter of the cutting tool, the blade length, and the material of the workpiece.

上記のように、刃具のねじ加工刃部における有効径が、ねじ加工刃部の刃元側の端部から刃具の先端に向かうにつれて、3次関数的に増加するようにしたことで、刃具をワークの下穴の内周面に沿って公転させたときに刃具が撓むことにより、ワークの下穴の内周面に当接する刃具の外周面形状が、ねらった有効径のめねじ穴の内周面形状と一致することになり、刃具の撓みによるめねじ穴の有効径のずれを補正することができる。そのため、めねじ穴のワーク端面側においても、めねじ穴の穴奥側においても、ねらった有効径を得やすくなるものである。   As described above, the effective diameter of the threaded blade portion of the blade tool increases in a cubic function as it goes from the end of the threaded blade portion toward the tip of the blade tool. When the blade is bent along the inner peripheral surface of the work hole, the outer peripheral shape of the tool that contacts the inner surface of the work hole is This coincides with the shape of the inner peripheral surface, and the deviation of the effective diameter of the female screw hole due to the bending of the cutting tool can be corrected. Therefore, it is easy to obtain a targeted effective diameter both on the workpiece end surface side of the female screw hole and on the deep side of the female screw hole.

具体的なねじ加工刃部の形状は、前述した実験のとおり、通常のねじ加工用工具を用いた場合に、下穴のめねじ有効径縮小量(Y)とめねじ穴の深さ(X)の関係が、Y=aX+bX+cX(a:正数、b、c:定数)型の3次関数の関係になることから、前述のy=(D(x)−D)/2で定義される刃具のねじ加工刃部のめねじ有効径拡大量(y)をy=ax+bx+cx(a:正数、b−4ac<0)型の3次関数とすることができる。これは、めねじ有効径縮小量(Y)が示す3次曲線を、刃具のねじ加工刃部の外周面形状に転写することに相当するものである。これにより、本発明のねじ加工用工具を用いてワーク下穴のねじ切りを行ったときに、ワークの下穴の内周面に当接する刃具の外周面形状が、ねらった有効径のめねじ穴の内周面形状とより一層一致しやすくなる。したがって、めねじ穴のワーク端面側においても、めねじ穴の穴奥側においても、ねらった有効径をより一層得やすくなるものである。 The specific shape of the threading blade portion is, as described above, when the normal threading tool is used, the effective diameter reduction (Y) of the prepared hole and the depth (X) of the female thread hole. Is a cubic function relationship of Y = aX 3 + bX 2 + cX (a: positive number, b, c: constant) type, and therefore y = (D (x) −D 0 ) / 2 described above. The effective diameter expansion amount (y) of the threaded blade part of the cutting tool defined by ( 2 ) is a cubic function of the type y = ax 3 + bx 2 + cx (a: positive number, b 2 -4ac <0). it can. This corresponds to transferring the cubic curve indicated by the internal thread effective diameter reduction amount (Y) to the outer peripheral surface shape of the threaded blade portion of the cutting tool. As a result, when the workpiece pilot hole is threaded using the threading tool of the present invention, the outer peripheral surface shape of the cutting tool that comes into contact with the inner peripheral surface of the workpiece pilot hole is a female screw hole having an effective diameter. This makes it easier to match the shape of the inner peripheral surface. Therefore, it is easier to obtain a target effective diameter both on the workpiece end face side of the female screw hole and on the deep side of the female screw hole.

以下、添付の図面を用いて、本発明の実施の形態について説明する。図1(a)は、本実施形態のねじ加工用工具の概略を示すものである。図1(a)に示すねじ穴加工用工具10は、ワークへの下穴加工と、下穴内周面へのめねじ加工とを同一の工具で実現できるものである。具体的には、円柱状に形成されるとともに、先端部にドリル刃部12が形成され、先端部近傍の外周面にねじ加工刃部13が形成されている刃具11を有するものである。このような構成のねじ加工用工具10によれば、刃具11の先端に形成されるドリル刃部12をワークに対して前進させることにより、ワークの下穴加工を行い、その後、刃具11を下穴から抜き戻す際に下穴をねじ切りすることができる。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Fig.1 (a) shows the outline of the tool for threading of this embodiment. A screw hole machining tool 10 shown in FIG. 1 (a) is capable of realizing pilot hole machining on a workpiece and female screw machining on the inner peripheral surface of the pilot hole with the same tool. Specifically, it has a blade 11 having a cylindrical shape, a drill blade 12 formed at the tip, and a threaded blade 13 formed on the outer peripheral surface near the tip. According to the screw machining tool 10 having such a configuration, the drill blade 12 formed at the tip of the cutting tool 11 is advanced with respect to the work to perform the pilot hole machining of the work, and then the cutting tool 11 is moved down. The pilot hole can be threaded as it is withdrawn from the hole.

また、図1(b)は、図1(a)に示すねじ加工用工具10において、刃具11のねじ加工刃部13が形成されている領域における軸心Oを含む断面図を示すものである。図1(b)においては、説明を容易にするために、刃具11のねじ加工刃部13における径方向の大きさを若干誇張して記載している。図1(b)に示すように、刃具11のねじ加工刃部13が形成されている領域における有効径は、刃具11の先端側に向かって3次関数的に増加するようになっている。より具体的には、図1(b)に示すように、刃具11の軸心Oに沿って刃具11の先端側に向かう方向をx軸方向とし、刃具11のねじ加工刃部13が形成されている領域の刃元側の端部13aにおける有効径をDとし、該刃具11のねじ加工刃部13が形成されている領域の刃元側の端部からx軸方向に距離xだけ離れた位置13bでの有効径をD(x)としたとき、y=(D(x)−D)/2で定義される有効径拡大量(y)が、y=ax+bx+cx(a:正数、b−4ac<0)型の距離xに対する3次関数となっている。 1 (b) is in threaded tool 10 shown in FIG. 1 (a), shows a cross-sectional view including the shaft center O 2 in the region where the threaded blade 13 of the cutting tool 11 is formed is there. In FIG. 1B, the radial size of the threaded blade 13 of the blade 11 is slightly exaggerated for ease of explanation. As shown in FIG. 1 (b), the effective diameter of the cutting tool 11 in the region where the threading blade portion 13 is formed increases in a cubic function toward the tip side of the cutting tool 11. More specifically, as shown in FIG. 1 (b), the direction toward the distal end side of the cutting tool 11 along the axis O 2 of the cutting tool 11 as the x-axis direction, threaded blade 13 of the cutting tool 11 is formed the effective diameter of the end portion 13a of the blade root side of the area being a D 0, the x-axis direction from an end portion of the blade root side area of threading edge portion 13 of the blade member 11 is formed distance x When the effective diameter at the distant position 13b is D (x), the effective diameter expansion amount (y) defined by y = (D (x) −D 0 ) / 2 is y = ax 3 + bx 2 + cx It is a cubic function with respect to a distance x of (a: positive number, b 2 -4ac <0) type.

以下、上記のようなねじ加工用工具10を用いためねじ穴の加工方法について図2を用いて説明する。基本的には、従来技術で示しためねじ加工と同様の方法である。まず、図2(a)に示すように、ねじ加工用工具10の刃具11を自身の軸心Oを中心に自転させつつ、ワークWに対して前進させることにより、ワークWを刃具11のドリル刃部12により切削する。これにより、図2(b)に示すように、ワークWに下穴W1を形成することができる。さらに、刃具11の刃元側には面取り加工刃部14が形成されており、ワークWの下穴加工と同時に口元面取り加工をも行うことができるようになっている。なお、刃具11の先端に形成されているドリル刃部11の外径は、刃具11のねじ加工刃部13における外径よりもわずかに大きく設定されているため、下穴W1を形成する際に、ねじ加工刃部13が下穴W1の内周面に干渉することがないようになっている。ついで、刃具11を該刃具11の軸心O方向に沿って1〜2ピッチ分程度戻し、面取り加工刃部14がめねじ加工に際して、ワークWに干渉しないようにする。 Hereinafter, a method for machining a screw hole for using the above-described screw machining tool 10 will be described with reference to FIG. Basically, a tapping a manner similar to that shown in the prior art. First, as shown in FIG. 2 (a), while rotating the cutting tool 11 of the threading tool 10 about its axial center O 2, by advancing the workpiece W, the workpiece W of the cutting tool 11 Cutting with the drill blade 12. Thereby, the pilot hole W1 can be formed in the workpiece | work W, as shown in FIG.2 (b). Further, a chamfering blade portion 14 is formed on the blade base side of the blade 11 so that the chamfering of the mouth can be performed simultaneously with the preparation of the workpiece W. In addition, since the outer diameter of the drill blade part 11 currently formed in the front-end | tip of the blade tool 11 is set slightly larger than the outer diameter in the threading blade part 13 of the blade tool 11, when forming the pilot hole W1, The threading blade 13 does not interfere with the inner peripheral surface of the pilot hole W1. Next, the cutting tool 11 is returned by about 1 to 2 pitches along the direction of the axis O 2 of the cutting tool 11 so that the chamfering blade 14 does not interfere with the workpiece W during female thread processing.

次に、ヘリカル切削でめねじ加工を行う。具体的には、図2(c)に示すように、自身の軸心Oを中心に自転している刃具11のねじ加工刃部13を、ワークWに形成された下穴W1の内周面に押し付けながら、該下穴W1の内周面に沿って該下穴W1の軸心Oを中心に刃具11を公転させつつ、刃具11が一周期公転する間に該刃具11を1リード分軸方向に送るようにする。このように、刃具11を少なくとも1周期分軸心Oを中心に公転させることにより、刃具11のねじ加工刃部13が形成されている領域の長さ(刃長)と略同じ長さにわたって、下穴W1の内周面にめねじ溝を形成することができる。これにより、下穴W1をめねじ穴W2にめねじ加工することができる。このとき、刃具11の先端に形成されているドリル刃部12もワークW2を切削するため、形成されるめねじ穴W2の底部には逃がし部W3が形成されることになる。 Next, female threading is performed by helical cutting. Specifically, as shown in FIG. 2 (c), the inner periphery of the pilot hole W 1 formed in the workpiece W is used for the threading blade portion 13 of the blade 11 that rotates about its own axis O 2. While pressing against the surface, the blade 11 is revolved about the axis O 1 of the pilot hole W1 along the inner peripheral surface of the pilot hole W1, and the blade 11 is rotated by one lead while the blade 11 revolves for one cycle. Send in the direction of the minute axis. In this way, by revolving the blade 11 about the axis O 1 at least for one period, the length (blade length) of the region where the threaded blade portion 13 of the blade 11 is formed (blade length) is substantially the same. A female thread groove can be formed on the inner peripheral surface of the pilot hole W1. Thereby, the prepared hole W1 can be internally threaded into the internally threaded hole W2. At this time, since the drill blade portion 12 formed at the tip of the cutting tool 11 also cuts the workpiece W2, a relief portion W3 is formed at the bottom of the formed female screw hole W2.

このとき、本実施形態のねじ穴加工用工具10は、前述したように、刃具11の有効径が、ねじ加工刃部13の刃元側の端部から先端に向かって3次関数的に増加するようにしている。そのため、図3に示すように、刃具11を下穴W1の内周面に押し付けたときに刃具11が撓んでも、ねじ加工刃部13の下穴W1の内周面に当接する側の外周面の形状をねらった有効径のめねじ穴の内周面形状と一致させることが可能となる。これにより、めねじ穴W2のワークWの端面側と穴奥側とにおいて、実際の有効径がねらった有効径からずれる不具合を解消することができる。   At this time, as described above, in the threaded hole machining tool 10 of the present embodiment, the effective diameter of the cutting tool 11 increases in a cubic function from the end of the threaded blade 13 toward the tip. Like to do. Therefore, as shown in FIG. 3, even when the cutting tool 11 is pressed against the inner peripheral surface of the pilot hole W1, even if the cutting tool 11 bends, the outer periphery on the side in contact with the inner peripheral surface of the pilot hole W1 of the threaded blade portion 13 It is possible to match the shape of the inner peripheral surface of the female screw hole with an effective diameter aiming at the shape of the surface. As a result, it is possible to eliminate the problem that the actual effective diameter deviates from the effective diameter aimed at the end face side and the hole back side of the work W of the female screw hole W2.

なお、ねじ加工用工具10の刃具11により、下穴W1をヘリカル切削させるには、刃具11をX軸、Y軸、Z軸の3軸において同時に移動させることができる3軸同時制御とヘリカル補間機能を有する数値制御装置を備えた加工機を使用することで実現することができる。   In order to helically cut the pilot hole W1 with the cutting tool 11 of the threading tool 10, the three-axis simultaneous control and the helical interpolation that can move the cutting tool 11 simultaneously in the three axes of the X axis, the Y axis, and the Z axis. This can be realized by using a processing machine equipped with a numerical control device having a function.

最後に、刃具11の軸心Oがめねじ穴W2の軸心Oに略一致するように刃具11を移動させて、ねじ加工刃部13をめねじ穴W2の内周面から離した後、刃具11を自身の軸心Oの方向に引き上げて、めねじ加工を完了する。 Finally, the axis O 2 of the cutting tool 11 moves the blade 11 so as to be substantially coincident with the axis O 1 of the internal thread hole W2, after releasing the threaded blade portion 13 from the inner peripheral surface of the internal thread hole W2 Then, the blade 11 is pulled up in the direction of its own axis O 2 to complete the internal thread machining.

次に、上記のねじ穴加工用工具10とは異なる本発明の実施形態について図4を用いて説明する。図4に示すねじ穴加工用工具20は、ドリル刃部12を有しない点で図1に示すねじ穴加工用工具10とは異なる。つまり、予めワークに形成されている下穴をめねじ穴に形成するものであり、ワークにめねじ穴を形成するに際してワークに下穴を形成するためのドリル等の工具が別途必要となるものである。図4(a)に示すように、ねじ穴加工用工具20は、円柱状に形成されるとともに、先端部近傍の外周面にねじ加工刃部23が形成されている刃具21を有するものであり、より具体的にはタップとして構成されるものである。   Next, an embodiment of the present invention that is different from the above-described screw hole machining tool 10 will be described with reference to FIG. The screw hole machining tool 20 shown in FIG. 4 is different from the screw hole machining tool 10 shown in FIG. 1 in that the drill blade part 12 is not provided. In other words, pilot holes already formed in the workpiece are formed in the female screw holes, and when a female screw hole is formed in the workpiece, a tool such as a drill for forming the pilot hole in the workpiece is separately required. It is. As shown in FIG. 4 (a), the screw hole machining tool 20 has a cutting tool 21 that is formed in a cylindrical shape and has a thread machining blade portion 23 formed on the outer peripheral surface near the tip. More specifically, it is configured as a tap.

また、図4(b)は、図4(a)に示すねじ加工用工具20において、刃具21のねじ加工刃部23が形成されている領域における軸心O’を含む断面図を示すものである。図4(b)においては、説明を容易にするために、刃具21のねじ加工刃部23における径方向の大きさを若干誇張して記載している。図4(b)に示すように、刃具21のねじ加工刃部23が形成されている領域における有効径は、刃具21の先端側に向かって3次関数的に増加するようになっている。より具体的には、図4(b)に示すように、刃具21の軸心O’に沿って刃具21の先端側に向かう方向をx軸方向とし、刃具21のねじ加工刃部23が形成されている領域の刃元側の端部23aにおける有効径をDとし、該刃具21のねじ加工刃部23が形成されている領域の刃元側の端部23aからx軸方向に距離xだけ離れた位置23bでの有効径をD(x)としたとき、y=(D(x)−D)/2で定義される有効径拡大量(y)が、y=ax+bx+cx(a:正数、b−4ac<0)型の距離xに対する3次関数となっている。 FIG. 4B shows a cross-sectional view including the axis O 2 ′ in the region where the threading blade portion 23 of the cutting tool 21 is formed in the screw machining tool 20 shown in FIG. 4A. It is. In FIG. 4B, the radial size of the threaded blade portion 23 of the blade 21 is slightly exaggerated for ease of explanation. As shown in FIG. 4B, the effective diameter of the cutting tool 21 in the region where the threading blade portion 23 is formed increases in a cubic function toward the tip side of the cutting tool 21. More specifically, as shown in FIG. 4B, the direction toward the tip side of the blade 21 along the axis O 2 ′ of the blade 21 is the x-axis direction, and the threading blade portion 23 of the blade 21 is the effective diameter and D 0 in blade root side end portion 23a of the area formed, the distance from the blade root side end portion 23a of the region threading edge portion 23 of the blade member 21 is formed in the x-axis direction When the effective diameter at the position 23b separated by x is D (x), the effective diameter expansion amount (y) defined by y = (D (x) −D 0 ) / 2 is y = ax 3 + bx It is a cubic function with respect to the distance x of the 2 + cx (a: positive number, b 2 -4ac <0) type.

次に、図4に示すねじ穴加工用工具20を用いためねじ穴の加工方法について図5を用いて説明する。まず、下穴W1’が形成されているワークW’を用意する。ワークW’に下穴W1’を形成するには、通常のドリル刃を使用することができる。次に、図5に示すように、下穴W1’にねじ穴加工用工具20であるタップ20を挿入し、該タップ20の刃具21に形成されているねじ加工刃部23を下穴W1’の内周面に当接させる。そして、刃具21を自身の軸心O’を中心に自転させつつ、下穴W1’の軸心O’を中心に公転させながら、刃具21が1周期公転する間に刃具21を1リード分軸心O’方向に移動させる。これにより、下穴W1’をめねじ穴W2’にめねじ加工することができる。 Next, a screw hole machining method for using the screw hole machining tool 20 shown in FIG. 4 will be described with reference to FIG. First, a workpiece W ′ having a prepared hole W1 ′ is prepared. In order to form the pilot hole W1 ′ in the work W ′, a normal drill blade can be used. Next, as shown in FIG. 5, the tap 20 which is the tool 20 for threading holes is inserted into the prepared hole W1 ′, and the threading blade portion 23 formed on the cutting tool 21 of the tap 20 is inserted into the prepared hole W1 ′. It is made to contact | abut to the internal peripheral surface. Then, while rotating the blade 21 around its own axis O 2 ′ and revolving around the axis O 1 ′ of the pilot hole W1 ′, the blade 21 is rotated by one lead while the blade 21 revolves one cycle. Move in the direction of the branch axis O 2 ′. As a result, the pilot hole W1 ′ can be internally threaded into the internal thread hole W2 ′.

このとき、本実施形態のねじ穴加工用工具20においては、刃具21の有効径が、ねじ加工刃部23の刃元側の端部から先端に向かって3次関数的に増加するようにしている。そのため、図3に示すねじ穴加工用工具10と同様に、刃具21を下穴W1’の内周面に押し付けたときに刃具21が撓んでも、ねじ加工刃部23の外周面形状をねらった有効径のめねじ穴の内周面形状と一致させることが可能となる。これにより、めねじ穴W2’のワークW’の端面側と穴奥側とにおいて、実際の有効径がねらった有効径からずれる不具合を解消することができる。   At this time, in the threaded hole machining tool 20 of the present embodiment, the effective diameter of the cutting tool 21 is increased in a cubic function from the end on the blade base side of the threaded blade 23 toward the tip. Yes. Therefore, similarly to the screw hole machining tool 10 shown in FIG. 3, even if the blade 21 is bent when the blade 21 is pressed against the inner circumferential surface of the pilot hole W1 ′, the outer peripheral surface shape of the thread machining blade portion 23 is aimed. It is possible to match the inner peripheral surface shape of the female screw hole having an effective diameter. As a result, the problem that the actual effective diameter deviates from the effective diameter aimed at the end face side and the hole back side of the workpiece W 'of the female screw hole W2' can be solved.

なお、ねじ加工用工具20の刃具21は、3軸同時制御とヘリカル補間機能を有する数値制御装置を備えた加工機により駆動させることができる。   Note that the cutting tool 21 of the threading tool 20 can be driven by a processing machine provided with a numerical control device having three-axis simultaneous control and a helical interpolation function.

また、ねじ加工用工具20にあっては、ワークW’に形成されている下穴W1’は、通り穴でも止り穴でもどちらでもよい。さらに、刃具21を下穴W1’の軸心O’を中心に公転させながら自身の軸心O’方向に移動する際、下穴W1’の端面側から穴奥側に向かって刃具21を移動させてもよいし、下穴W1’の穴奥側から端面側に向かって刃具21を移動させるようにしてもよい。具体的には、図5(b)に示すように、下穴W1’が止り穴である場合には、刃具21を下穴W1’に挿入した状態から、下穴W1’の穴奥側から端面側に向かって刃具21を移動させる形態を例示することができる。 Further, in the screw machining tool 20, the prepared hole W1 ′ formed in the workpiece W ′ may be either a through hole or a blind hole. Further, when the blade 21 moves in the direction of its own axis O 2 ′ while revolving around the axis O 1 ′ of the pilot hole W1 ′, the blade 21 is moved from the end face side of the pilot hole W1 ′ toward the back of the hole. May be moved, or the cutting tool 21 may be moved from the hole back side to the end face side of the pilot hole W1 ′. Specifically, as shown in FIG. 5 (b), when the pilot hole W1 ′ is a blind hole, the blade 21 is inserted into the pilot hole W1 ′ and from the hole back side of the pilot hole W1 ′. The form which moves the blade 21 toward an end surface side can be illustrated.

以上説明したように本発明のねじ穴加工用工具は、刃具のねじ加工刃部が形成されている領域における有効径が、刃具の刃元側から刃具の先端側に向かって3次関数的に増加しているので、ヘリカル切削によりめねじ加工を行った際に、刃具が撓んでも、めねじ穴の端面側と穴奥側とでねらった有効径を実現しやすくなる。さらに、本発明のねじ穴加工用工具は、刃具の軸心に沿って先端側に向う方向をx軸方向とし、刃具のねじ加工刃部が形成されている領域の刃元側の端部における有効径をDとし、刃具のねじ加工刃部が形成されている領域の刃元側の端部からx軸方向に距離x離れた位置での有効径をD(x)としたとき、y=(D(x)−D)/2で定義される有効径拡大量と距離xとが、y=ax+bx+cx(a:正数、b−4ac<0)型の3次関数の関係にあるので、ヘリカル切削によりめねじ加工を行った際に、刃具が撓んでも、めねじ穴の端面側と穴奥側とでねらった有効径をさらに実現しやすくなる。 As described above, in the threaded hole machining tool of the present invention, the effective diameter in the region where the threaded blade portion of the blade is formed is a cubic function from the blade base side of the blade tool toward the tip side of the blade tool. Therefore, even if the cutting tool is bent when female thread processing is performed by helical cutting, it is easy to realize an effective diameter aimed at the end face side and the deep hole side of the female thread hole. Furthermore, in the screw hole machining tool of the present invention, the direction toward the tip side along the axis of the cutting tool is the x-axis direction, and at the end of the blade base side in the region where the threading blade part of the cutting tool is formed. When the effective diameter is D 0 and the effective diameter at a position separated by a distance x in the x-axis direction from the edge of the blade base side of the region where the threaded blade portion of the blade is formed is Y (x), y The effective diameter expansion amount defined by = (D (x) −D 0 ) / 2 and the distance x are the third -order of y = ax 3 + bx 2 + cx (a: positive number, b 2 -4ac <0) type Because of the function relationship, even when the cutting tool is bent by helical cutting, the effective diameter aimed at the end face side of the female screw hole and the deep side of the hole can be more easily realized.

なお、本発明のねじ加工用工具においては、その工具の有効径及び刃長は特に限定されるものではないが、本発明は、工具の有効径が小さく加工深さが深い場合に、特に顕著に表れる問題を解決するものであるので、刃具のねじ加工刃部の有効径が小さく、ねじ加工刃部の刃長が長いものに適用するのがより効果的である。具体的には、JISB0205に規定されるM10以下、さらに望ましくはM6以下のメートル平目ねじに対応するねじ穴加工用工具に特に好適に採用することができる。   In the screw machining tool of the present invention, the effective diameter and the blade length of the tool are not particularly limited, but the present invention is particularly remarkable when the effective diameter of the tool is small and the machining depth is deep. Therefore, it is more effective to apply to a tool having a small effective diameter of the threading blade portion of the cutting tool and a long blade length of the threading blade portion. Specifically, it can be particularly preferably employed for a screw hole machining tool corresponding to a metric flat thread of M10 or less, more preferably M6 or less as defined in JIS B0205.

本発明のねじ穴加工用工具の一実施形態について説明する図。The figure explaining one Embodiment of the tool for screw hole processing of this invention. ねじ穴加工用工具によりワークにめねじ穴を形成する工程を説明する図。The figure explaining the process of forming a female screw hole in a workpiece | work with the tool for screw hole processing. 図1に示すねじ穴加工用工具の作用を説明する図。The figure explaining the effect | action of the tool for screw hole processing shown in FIG. 本発明のねじ穴加工用工具の図1とは異なる一実施形態について説明する図。The figure explaining one Embodiment different from FIG. 1 of the tool for threaded hole processing of this invention. 図4に示すねじ穴加工用工具によりワークにめねじ穴を形成する工程を説明する図。The figure explaining the process of forming a female screw hole in a workpiece | work with the tool for screw hole processing shown in FIG. 従来のねじ穴加工用工具で加工したときのめねじ穴の内周面形状を示す図。The figure which shows the internal peripheral surface shape of a female screw hole when processing with the tool for conventional screw hole processing. 図6に示すめねじ穴において、めねじ有効径縮小量とねじ穴の深さとの関係を示す図。The figure which shows the relationship between the female screw effective diameter reduction amount and the depth of a screw hole in the female screw hole shown in FIG.

符号の説明Explanation of symbols

10、20、30 ねじ加工用工具
11、21、31 刃具
13、23、33 ねじ加工刃部
13a、23a ねじ加工刃部の刃元側の端部
W、W’、W’’ ワーク
W1、W1’、W1’’ 下穴
W2、W2’、W2’’ めねじ穴
、O’、O’’ 下穴の軸心
、O’、O’’ 刃具の軸心
10, 20, 30 Thread processing tool 11, 21, 31 Cutting tool 13, 23, 33 Thread processing blade portion 13a, 23a End portion on the blade base side of the thread processing blade portion W, W ′, W ″ Work W1, W1 ', W1''pilot hole W2, W2', W2 '' internal thread hole O 1, O 1 ', O 1' axis O 'of the prepared hole 2, O 2', O 2 'axis' of the cutting tool

Claims (2)

外周面にねじ加工刃部が形成されており、自身の軸心を中心に自転しつつ、ワークに形成されている下穴の内周面に沿って該下穴の軸心を中心に公転することによりワークにめねじ穴を形成するための刃具を有するねじ穴加工用工具であって、
前記刃具の前記ねじ加工刃部が形成されている領域における有効径が、前記刃具の刃元側から前記刃具の先端側に向かって3次関数的に増加していることを特徴とするねじ穴加工用工具。
A threaded blade is formed on the outer peripheral surface, and revolves about the axis of the pilot hole along the inner peripheral surface of the pilot hole formed in the workpiece while rotating about its own axis. A screw hole machining tool having a cutting tool for forming a female screw hole in a workpiece,
A screw hole, wherein an effective diameter of the cutting tool in a region where the threaded blade portion is formed increases in a cubic function from a cutting edge side of the cutting tool toward a tip side of the cutting tool. Tool for processing.
外周面にねじ加工刃部が形成されており、自身の軸心を中心に自転しつつ、ワークに形成されている下穴の内周面に沿って該下穴の軸心を中心に公転することによりワークにめねじ穴を形成するための刃具を有するねじ穴加工用工具であって、
前記刃具の軸心に沿って先端側に向う方向をx軸方向とし、前記刃具の前記ねじ加工刃部が形成されている領域の刃元側の端部における有効径をDとし、前記刃具の前記ねじ加工刃部が形成されている領域の刃元側の端部から前記x軸方向に距離x離れた位置での有効径をD(x)としたとき、y=(D(x)−D)/2で定義される有効径拡大量と前記距離xとが、y=ax+bx+cx(a:正数、b−4ac<0)型の3次関数の関係にあることを特徴とするねじ穴加工用工具。
A threaded blade is formed on the outer peripheral surface, and revolves about the axis of the pilot hole along the inner peripheral surface of the pilot hole formed in the workpiece while rotating about its own axis. A screw hole machining tool having a cutting tool for forming a female screw hole in a workpiece,
The direction toward the tip side along the axis of the cutting tool is the x-axis direction, and the effective diameter at the end of the cutting tool in the region where the threading blade is formed is D 0 , Where D (x) is the effective diameter at a distance x in the x-axis direction from the end on the blade base side of the region where the threaded blade portion is formed, y = (D (x) The effective diameter expansion amount defined by −D 0 ) / 2 and the distance x are in the relationship of a cubic function of the type y = ax 3 + bx 2 + cx (a: positive number, b 2 -4ac <0). A screw hole machining tool characterized by that.
JP2004040356A 2004-02-17 2004-02-17 Threaded hole machining tool Pending JP2005230933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040356A JP2005230933A (en) 2004-02-17 2004-02-17 Threaded hole machining tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040356A JP2005230933A (en) 2004-02-17 2004-02-17 Threaded hole machining tool

Publications (1)

Publication Number Publication Date
JP2005230933A true JP2005230933A (en) 2005-09-02

Family

ID=35014403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040356A Pending JP2005230933A (en) 2004-02-17 2004-02-17 Threaded hole machining tool

Country Status (1)

Country Link
JP (1) JP2005230933A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018010830A1 (en) * 2016-07-13 2018-01-18 Audi Ag Method for producing a threaded bore

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200916A (en) * 1987-02-10 1988-08-19 サンドビック アクティエボラーグ Tool combining boring thread cutting and usage thereof
JPH0611923U (en) * 1992-07-15 1994-02-15 オーエスジー株式会社 Perforated threading coupling tool for through holes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200916A (en) * 1987-02-10 1988-08-19 サンドビック アクティエボラーグ Tool combining boring thread cutting and usage thereof
JPH0611923U (en) * 1992-07-15 1994-02-15 オーエスジー株式会社 Perforated threading coupling tool for through holes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018010830A1 (en) * 2016-07-13 2018-01-18 Audi Ag Method for producing a threaded bore
CN109475956A (en) * 2016-07-13 2019-03-15 奥迪股份公司 For manufacturing the method and threading tool of threaded hole
JP2019520996A (en) * 2016-07-13 2019-07-25 アウディ アクチェンゲゼルシャフト Method of manufacturing screw hole
US10632553B2 (en) 2016-07-13 2020-04-28 Audi Ag Method for producing a threaded bore and tapping tool bit

Similar Documents

Publication Publication Date Title
JP5301647B2 (en) Drill tap and internal thread processing method
JP6247807B2 (en) Cutting tool and cutting apparatus equipped with this cutting tool
JP4666885B2 (en) Annular thread forming tool
JP5862960B2 (en) Deburring method and burr removing device for workpiece
JP2006289584A (en) Thread cutter
JP6069791B2 (en) Cutting tool and cutting apparatus equipped with this cutting tool
JP5241196B2 (en) Thick tap for processing large diameter female thread
JP2005230933A (en) Threaded hole machining tool
JP2015024471A (en) Processing tool and processing method for nut for ball screw
US9902004B2 (en) Helical broach
JP2007098481A (en) Cold forming tap and chamfering part
JP2005279832A (en) Straight groove tap
JP5851706B2 (en) Machining method using cutting tools
JP3808455B2 (en) Chip cutting tool for tapping and female thread machining method
US20190283158A1 (en) Thread former and method for producing a thread
JP6499117B2 (en) Female thread machining tool
KR20160076094A (en) Rolling tap
JP2011161579A (en) Cutting tap
JPH09272016A (en) Cold forming tap
JP2019018315A (en) Tap
TW201713437A (en) Drilling and tapping device capable of guaranteeing the cutting edges and the tapping blade to be automatically aligned with the slot in an operating process so as to eliminate the error generated when replacing the tool
JP6420515B1 (en) Tap
JP5052399B2 (en) Internal thread processing method
JPH074092Y2 (en) Wave type trepanning cutter
JPH06114631A (en) Multiple taper thread forming milling tool with boring cutter and method for using milling tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070118

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20100427

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831