JP2005228191A - Fingerprint image input device - Google Patents

Fingerprint image input device Download PDF

Info

Publication number
JP2005228191A
JP2005228191A JP2004037893A JP2004037893A JP2005228191A JP 2005228191 A JP2005228191 A JP 2005228191A JP 2004037893 A JP2004037893 A JP 2004037893A JP 2004037893 A JP2004037893 A JP 2004037893A JP 2005228191 A JP2005228191 A JP 2005228191A
Authority
JP
Japan
Prior art keywords
light
fingerprint
incident
detection surface
input device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004037893A
Other languages
Japanese (ja)
Inventor
Masaaki Oda
正昭 小田
Kazuyoshi Sugiyama
和義 杉山
Ikuji Hanada
生二 花田
Hidetaka Okamatsu
秀隆 岡松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON RAITON KK
Original Assignee
NIPPON RAITON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON RAITON KK filed Critical NIPPON RAITON KK
Priority to JP2004037893A priority Critical patent/JP2005228191A/en
Priority to PCT/JP2005/002289 priority patent/WO2005078660A1/en
Publication of JP2005228191A publication Critical patent/JP2005228191A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fingerprint image input device by an optical system which has high contrast ratio and is not affected by dry fingers by solving problems of a reflected light system and a full-reflected light system in the optical system. <P>SOLUTION: This fingerprint image input device 3 for fingerprint authentication comprises a light guide body 3c of a transparent material having a fingerprint detection surface for placing the fingerprint of a finger of authentication object, and reflecting incident light from a light source by the fingerprint detection surface so as to be received by a light receiving element through a micro lens. In the light conductor 3c, a light incident surface 3f on which the light of the light source 3d is incident is laid in a state substantially orthogonal to the optical axis d of the light source 3d, and the incident angle to the fingerprint detection surface 3e of incident light a in the light guide body is set to an angle causing reflected light and irregularly reflected light. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、個人認証において、指紋判別に用いられる指紋画像入力装置に関するものである。   The present invention relates to a fingerprint image input device used for fingerprint discrimination in personal authentication.

従来、出入り口のセキュリティ対策のため、指紋認証による照合が行われている。そのようなセキュリティ対策は、今後、高度機密社会において広がりを見せ、パーソナルユースにも対応が必要となる。そのためには、指紋画像入力装置において、軽薄短小化,低価格,原画への忠実度,静電気対策,操作性が求められる。   Conventionally, collation by fingerprint authentication has been performed as a security measure at the entrance and exit. Such security measures will spread in highly confidential society in the future, and it will be necessary to deal with personal use. For this purpose, a fingerprint image input device is required to be light, thin, small, inexpensive, faithful to the original image, countermeasures against static electricity, and operability.

かかる指紋画像入力装置は、縮小光学方式が主流であったが、光路長が約50mm必要であったため、小型.薄型化が困難であった。また、薄型化するため、プリズムやミラーを使用した結果、指紋画像の歪み、拡大縮小が発生し、異なる指紋入力装置からの指紋画像を同じ指紋と認識できないため、ネットワークによる遠隔地からの指紋認証が困難であった。   Such a fingerprint image input apparatus is mainly a reduction optical system, but it requires a light path length of about 50 mm. Thinning was difficult. In addition, the use of prisms and mirrors to reduce the thickness results in distortion and enlargement / reduction of fingerprint images, and fingerprint images from different fingerprint input devices cannot be recognized as the same fingerprint. It was difficult.

そこで、指紋画像を直接半導体の表面で検知する静電容量方式、電界方式等の、非光学式方式の開発が主流となっている。しかし、前記静電容量方式、電界方式等の非光学式はセンサー部の半導体表面に直接人体が接触するため、静電気によってセンサー素子が破壊されるという課題を抱えている。   Therefore, development of non-optical methods such as a capacitance method and an electric field method in which a fingerprint image is directly detected on the surface of a semiconductor has become mainstream. However, the non-optical methods such as the electrostatic capacitance method and the electric field method have a problem that the sensor element is destroyed by static electricity because the human body directly contacts the semiconductor surface of the sensor portion.

一方、指紋認証アルゴニズムのフィールドテストでは、指紋認証の失敗によるリトライが生じた場合、人間の視覚に近い光学的な情報を読みとる光学方式の方が被験者のリトライの抵抗が少ないといわれる。   On the other hand, in the field test of fingerprint authentication algorithm, when a retry occurs due to a failure of fingerprint authentication, it is said that the optical system that reads optical information close to human vision has a smaller resistance to retry of the subject.

かかる光学方式の指紋入力装置には、図5に示すように、入力された光を指紋表面で反射させ跳ね返った光を受光素子で受け取る反射光方式と、図6に示すように、導光体内に光を閉じこめて指紋と導光体とが密着することにより発生する乱反射光を受光素子で受け取る全反射方式とがある。   As shown in FIG. 5, such an optical fingerprint input device includes a reflected light method in which input light is reflected by a fingerprint surface and bounced off by a light receiving element, and a light guide body as shown in FIG. There is a total reflection method in which diffused light generated when light is confined and a fingerprint and a light guide are in close contact with each other is received by a light receiving element.

前記反射光方式は、図5に示すように、光源1dより導光体1c中の光入射面1fに光が照射されると、光は導光体1cを通過し、導光体1c中の指紋検出面1eへと向かう。導光体1c中の指紋検出面1eへと到達した光は、指紋面と衝突することで反射光を発生させる。導光体1c中の指紋検出面1eで発生した反射光は、屈折率分布型マイクロレンズ1bにより集光され、受光素子1aに正立等倍画像として結像する。前記受光素子1aにて受光された反射光は、電気信号に変換されアナログ信号として、外部機器へ出力される。   As shown in FIG. 5, when the light incident surface 1f in the light guide 1c is irradiated with light from the light source 1d, the reflected light method passes through the light guide 1c and the light in the light guide 1c. It goes to the fingerprint detection surface 1e. The light reaching the fingerprint detection surface 1e in the light guide 1c collides with the fingerprint surface to generate reflected light. The reflected light generated on the fingerprint detection surface 1e in the light guide 1c is condensed by the gradient index microlens 1b and formed as an erecting equal-magnification image on the light receiving element 1a. The reflected light received by the light receiving element 1a is converted into an electrical signal and output to an external device as an analog signal.

乾燥指などで、その指の指紋面が前記指紋検出面1eに完全に密着しない状況でも、導光体1cを通過した光は、指紋面で反射光を発生させるので、受光素子1aは、指紋の凹凸を検知することが可能となる。   Even when the fingerprint surface of the finger is not completely in close contact with the fingerprint detection surface 1e with a dry finger or the like, the light that has passed through the light guide 1c generates reflected light on the fingerprint surface. It is possible to detect the unevenness of.

しかしながら、光源1dからの光は導光体1c中の光入射面1fをすべて通過するのではなく、反射する光もあるので、その反射光がコントラスト比を劣化させている。ここで、コントラスト比とはコントラスト伝達関数(MTF値)によって求められ、指紋面凹凸の像を受光素子で受光し、その光量レベルから次式で算出する値である。

max − imin
MTF値=――――――――― × 100(%)
max + imin
(ここで、imax および iminは、前記光量レベルの極大値および極小値を示す。)
また、MTF値とはModulation Transfer Functionで、被写体のある部分の光を、画像の対応する位置にどれだけ集められるかを表す値である。レンズの結像性能を数値によって検査するものである。画面中心から周辺に至るまで、各絞り毎に検査され、このMTF値が高いほどコントラスト比が良く、凹凸面の差がはっきりと現れる。
However, since the light from the light source 1d does not pass through all the light incident surface 1f in the light guide 1c but also reflects light, the reflected light deteriorates the contrast ratio. Here, the contrast ratio is obtained by a contrast transfer function (MTF value), and is a value calculated by the following equation from the light amount level of a light-receiving element that receives an image of an uneven fingerprint surface.

i max -i min
MTF value = ――――――――― × 100 (%)
i max + i min
(Here, i max and i min indicate the maximum value and the minimum value of the light amount level.)
The MTF value is a Modulation Transfer Function, which is a value representing how much light of a certain part of the subject can be collected at a corresponding position in the image. The imaging performance of the lens is inspected by numerical values. The diaphragm is inspected for each aperture from the center to the periphery of the screen. The higher the MTF value, the better the contrast ratio and the difference in the uneven surface clearly appears.

前記全反射方式は、図6に示すように、光源2dより導光体2c中の光入射面2fに光が照射されると、光は導光体2cを通過(封じ込め)し、導光体2c中の指紋検出面2eへと向かう。導光体2c中の指紋検出面2eへと到達した光の全反射臨界角度が、導光体2cと密着している指紋面で崩れるため、乱反射光を発生させる。前記導光体2c中の指紋検出面2eで発生した乱反射光は、屈折率分布型マイクロレンズ2bにより集光され、受光素子2aに正立等倍画像として結像する。受光素子2aにて受光された反射光は、電気信号に変換されアナログ信号として、外部機器へ出力される。   In the total reflection system, as shown in FIG. 6, when light is incident on the light incident surface 2f in the light guide 2c from the light source 2d, the light passes through (contains) the light guide 2c, and the light guide It goes to the fingerprint detection surface 2e in 2c. Since the critical angle of total reflection of light reaching the fingerprint detection surface 2e in the light guide 2c is broken on the fingerprint surface in close contact with the light guide 2c, irregularly reflected light is generated. The irregularly reflected light generated on the fingerprint detection surface 2e in the light guide 2c is collected by the gradient index microlens 2b and formed as an erecting equal-magnification image on the light receiving element 2a. The reflected light received by the light receiving element 2a is converted into an electrical signal and output to an external device as an analog signal.

乾燥指等で、その指の指紋面が前記指紋検出面2eに完全に密着しない状況だと、導光体2cを通過した光は、指紋面で乱反射光を発生させることができないので、受光素子2aは、図7に示すように、指紋の凹凸を検知することが不可能となる。
特開2003-323605号公報
When the finger surface of the finger is not completely in close contact with the fingerprint detection surface 2e with a dry finger or the like, the light that has passed through the light guide 2c cannot generate diffusely reflected light on the fingerprint surface. As shown in FIG. 7, it becomes impossible to detect the unevenness of the fingerprint.
Japanese Patent Laid-Open No. 2003-323605

解決しようとする問題点は、光学方式の指紋画像入力装置において、反射光方式では導光体内外面で発生する反射光が指紋凹凸のコントラスト比を劣化させ、指紋画像の品質を下げる点であり、全反射光方式では、導光体と指紋とが密着しづらい乾燥指の場合、指紋検出面で乱反射光が発生しづらく、指紋の凹凸の検知ができないとった点である。
このように、コントラスト比が高く、かつ、乾燥指に強い光学方式による指紋入力装置の開発が要請されているものである。
The problem to be solved is that, in the optical fingerprint image input device, in the reflected light method, the reflected light generated on the outer surface of the light guide deteriorates the contrast ratio of the fingerprint irregularities, and lowers the quality of the fingerprint image. In the total reflection light method, in the case of a dry finger in which the light guide and the fingerprint are difficult to be in close contact with each other, irregular reflection light is hardly generated on the fingerprint detection surface, and the unevenness of the fingerprint cannot be detected.
As described above, there is a demand for development of a fingerprint input device using an optical method having a high contrast ratio and strong against dry fingers.

本発明に係る指紋画像入力装置は、指紋認証用の指紋画像入力装置であって、認証対象の指の指紋を載置する指紋検出面を有するとともに光源からの入射光を前記指紋検出面で反射させマイクロレンズを介して受光素子に受光させる透明材料の導光体において、前記光源の光が入射する光入射面が当該光源の光軸に対してほぼ直交状態にされ、当該導光体中の入射光における前記指紋検出面に対する入射角度が、反射光及び乱反射光が生じる角度に設定されていることである。   A fingerprint image input apparatus according to the present invention is a fingerprint image input apparatus for fingerprint authentication, and has a fingerprint detection surface on which a fingerprint of a finger to be authenticated is placed and reflects incident light from a light source on the fingerprint detection surface. In the light guide of transparent material that is received by the light receiving element via the microlens, the light incident surface on which the light of the light source is incident is substantially orthogonal to the optical axis of the light source, The incident angle of the incident light with respect to the fingerprint detection surface is set to an angle at which reflected light and irregularly reflected light are generated.

また、導光体が透明材料でかつその屈折率をn1、空気の屈折率をn2とした場合に、公式θ=Sin-1 (n2/n1)°にて求められた導光体内での光の臨界角をθとして、
前記指紋検出面に対する光源からの光の入射角度が、0°≦α≦θ °であること、;
更に、指紋検出面に対する指紋検出面からの光の受光角度が、θ °≦β≦90°であること、;
前記指紋検出面の直交軸に対して受光側の受光素子と反対側に、受光可能領域幅以上の幅で指紋画像のコントラストを高める背景面が設けられ、かつ、背景色の色彩が黒単色であること、;
前記導光体の表面に、架橋性樹脂の硬化皮膜が設けられていることを含むものである。
Further, when the light guide is a transparent material, the refractive index thereof is n1, and the refractive index of air is n2, the light in the light guide obtained by the formula θ = Sin −1 (n2 / n1) °. The critical angle of
An incident angle of light from a light source with respect to the fingerprint detection surface is 0 ° ≦ α ≦ θ °;
And the light receiving angle of the light from the fingerprint detection surface with respect to the fingerprint detection surface is θ ° ≦ β ≦ 90 °;
A background surface is provided on the opposite side to the light receiving element on the light receiving side with respect to the orthogonal axis of the fingerprint detection surface to increase the contrast of the fingerprint image with a width equal to or larger than the light receiving area width, and the background color is a single black color. Be,
It includes that a cured film of a crosslinkable resin is provided on the surface of the light guide.

本発明の指紋画像入力装置は、光源を導光体の光入射面にほぼ直交状態にされているので、光源に対しては全反射光方式が採用され、導光体中の入射光における前記指紋検出面に対する入射角度が、反射光及び乱反射光が生じる角度に設定されているので、反射光方式が採用されている。これにより、乾燥指に強く、指紋凹凸のコントラスト比を高くすることができる。前記両光方式の良い点が採用できるものである。更に、背景面が設けられることで、指紋画像がより鮮明になる。   In the fingerprint image input device of the present invention, since the light source is substantially orthogonal to the light incident surface of the light guide, a total reflection light system is adopted for the light source, and the light incident on the light guide is described above. Since the incident angle with respect to the fingerprint detection surface is set to an angle at which reflected light and irregularly reflected light are generated, the reflected light method is adopted. Thereby, it is strong to a dry finger and can raise the contrast ratio of fingerprint unevenness. The good point of the both light systems can be adopted. Furthermore, a fingerprint image becomes clearer by providing a background surface.

本発明の目的を、反射光方式と全反射光方式とを組み合わせることで実現した。   The object of the present invention is realized by combining the reflected light system and the total reflected light system.

図1は、本発明に係る指紋画像入力装置3の概略構成を示す図であり、透明な導光体3cの下に、光源3dが配設され、斜め下には、屈折率分布型マイクロレンズ3bと、受光素子3aとが配設されている。   FIG. 1 is a diagram showing a schematic configuration of a fingerprint image input device 3 according to the present invention. A light source 3d is disposed under a transparent light guide 3c, and a gradient index microlens is obliquely below. 3b and a light receiving element 3a are disposed.

前記導光体3cは、透明なアクリル樹脂などの透明樹脂やガラスなどの光を透過する物質であり、前記光源3dの光軸dに対して略直交するように、光入射面3fが設けられている。これは、全反射光方式のように導光体3cの外面からの反射光の影響を防止するためである。また、前記導光体3cの表面には、架橋性樹脂の硬化皮膜が設けられている。これは、硬度の向上、対候性の向上、耐熱性の向上、耐摩耗性の向上などのためである。   The light guide 3c is a material that transmits light such as transparent resin such as transparent acrylic resin or glass, and a light incident surface 3f is provided so as to be substantially orthogonal to the optical axis d of the light source 3d. ing. This is for preventing the influence of the reflected light from the outer surface of the light guide 3c like the total reflection light system. A cured film of a crosslinkable resin is provided on the surface of the light guide 3c. This is for improving hardness, weather resistance, heat resistance, wear resistance and the like.

更に、認証対象の指5の指紋5aが載置される指紋検出面3eと入射光aの入射角度αが、0°となっている。入射角度αとは、前記指紋検出面3eの直交軸に対する入射光aの傾斜角度である。なお、許容範囲としては、導光体の屈折率をn1、空気の屈折率をn2とし、公式 θ =Sin-1 (n2/n1)°にて求められた導光体内での光の臨界角をθとして、光源からの光の入射角度αを、0°≦α≦θ °にしている。これは、指5の指紋5aに到達した光により、反射光方式のように乾燥指でも反射光が生じる角度に設定されているものである。 Furthermore, the incident angle α of the incident light a and the fingerprint detection surface 3e on which the fingerprint 5a of the finger 5 to be authenticated is placed is 0 °. The incident angle α is an inclination angle of the incident light a with respect to the orthogonal axis of the fingerprint detection surface 3e. The allowable range is that the refractive index of the light guide is n1, the refractive index of air is n2, and the critical angle of light in the light guide determined by the formula θ = Sin −1 (n2 / n1) °. Is θ, and the incident angle α of light from the light source is 0 ° ≦ α ≦ θ °. This is set to an angle at which reflected light is generated even with a dry finger by the light reaching the fingerprint 5a of the finger 5 as in the reflected light method.

また、前記指紋検出面3eの反射光bの反射角度βを、導光体の屈折率をn1、空気の屈折率をn2とし、公式 θ =Sin-1 (n2/n1)° にて求められた導光体内での光の臨界角をθとし、θ °≦β≦90°として、その反射光bに直交するように光出射面3hが設けられている。なお、背景面3gは、下記の屈折率分布型マイクロレンズ3bの受光可能領域幅以上の長さにして、指紋検出面3eの直交軸を中心にして前記光出射面3hと対称側に設けられている。該背景面3gの色彩は黒単色である。 Also, the reflection angle β of the reflected light b of the fingerprint detection surface 3e is obtained by the formula θ = Sin −1 (n2 / n1) °, where n1 is the refractive index of the light guide and n2 is the refractive index of the air. The light emitting surface 3h is provided so that the critical angle of light in the light guide is θ and θ ° ≦ β ≦ 90 ° and is orthogonal to the reflected light b. The background surface 3g has a length equal to or larger than the light-receiving area width of the following gradient index microlens 3b, and is provided on the side symmetrical to the light emitting surface 3h with the orthogonal axis of the fingerprint detection surface 3e as the center. ing. The color of the background surface 3g is a single black color.

前記反射光bの先に、屈折率分布型マイクロレンズ3bと、受光素子3aとが配設されている。   A gradient index microlens 3b and a light receiving element 3a are disposed at the tip of the reflected light b.

前記光源3dは、例えば、レーザー光や、LED光等の単色光源、そのほか、蛍光ランプ,白熱ランプ,HIDランプ,紫外線,赤外線等の光源である。   The light source 3d is, for example, a monochromatic light source such as laser light or LED light, or a light source such as a fluorescent lamp, an incandescent lamp, an HID lamp, ultraviolet light, or infrared light.

このような指紋画像入力装置3により、前記指紋検出面3e上に指5を矢印方向にスイープさせることで、指5の指紋5aで若しくは導光体3c中の指紋検出面3eで発生した反射光及び乱反射光は、屈折率分布型マイクロレンズ3bにより集光され、受光素子3aに正立等倍画像として結像する。   By such a fingerprint image input device 3, the reflected light generated by the fingerprint 5a of the finger 5 or the fingerprint detection surface 3e in the light guide 3c is obtained by sweeping the finger 5 on the fingerprint detection surface 3e in the direction of the arrow. Then, the irregularly reflected light is collected by the gradient index microlens 3b and formed as an erecting equal-magnification image on the light receiving element 3a.

前記受光素子3aにて受光された反射光及び乱反射光は、電気信号に変換されアナログ信号として、外部機器へ出力される。その結果、図2乃至図3に示すように、通常の指5でも、乾燥した指5でも、コントラスト比が、70%以上を持続する良好な指紋画像が得られる。   The reflected light and irregularly reflected light received by the light receiving element 3a are converted into electrical signals and output to an external device as analog signals. As a result, as shown in FIG. 2 to FIG. 3, a good fingerprint image having a contrast ratio of 70% or more can be obtained with both the normal finger 5 and the dry finger 5.

この実施例では、図4に示すように、導光体3cの形態が変更され、指紋検出面3eの直交軸cに対して、光源3dと受光素子3aとが同じ側にある。入射光aは、光軸dに略直交する光入射面3fから入光した後に入射光屈折面3iで屈折して、前記直交軸cに対して入射角度αが、ほぼ0°となって、指紋検出面3eに至る。   In this embodiment, as shown in FIG. 4, the shape of the light guide 3c is changed, and the light source 3d and the light receiving element 3a are on the same side with respect to the orthogonal axis c of the fingerprint detection surface 3e. The incident light a enters the light incident surface 3f substantially orthogonal to the optical axis d and then is refracted by the incident light refracting surface 3i, so that the incident angle α is approximately 0 ° with respect to the orthogonal axis c. The fingerprint detection surface 3e is reached.

背景面3gは、屈折率分布型マイクロレンズ3bの受光可能領域幅以上の幅(長さ)にして、指紋検出面3eの直交軸cを中心にして、マイクロレンズ3b,受光素子3a,前記光出射面3hと対称側に設けられている。また、背景面3gの色彩を黒単色にすることで、取得する指紋画像の凹凸部分に光量レベル差を生じさせる。これらにより、指紋画像のコントラスト比が向上して、より鮮明な画像を得ることができる。
また、光出射面3hも、反射光bに直交するようにして設けられている。このような指紋画像入力装置6によっても、前記実施例1と同様の作用・効果が得られるものである。
The background surface 3g has a width (length) that is equal to or larger than the receivable region width of the gradient index microlens 3b, and the microlens 3b, the light receiving element 3a, and the light are centered on the orthogonal axis c of the fingerprint detection surface 3e. It is provided on the side symmetric to the exit surface 3h. In addition, by making the color of the background surface 3g a single black color, a light amount level difference is generated in the uneven portion of the fingerprint image to be acquired. As a result, the contrast ratio of the fingerprint image is improved, and a clearer image can be obtained.
The light exit surface 3h is also provided so as to be orthogonal to the reflected light b. Such a fingerprint image input device 6 can provide the same operation and effect as the first embodiment.

光学的に表面の凹凸を画像処理する分野にも適用できる。   It can also be applied to the field of optically processing surface irregularities.

本発明に係る指紋画像入力装置3の概略構成を示す正断面図である。It is a front sectional view showing a schematic configuration of a fingerprint image input apparatus 3 according to the present invention. 同本発明の指紋画像入力装置3により取得した指紋画像の図である。It is a figure of the fingerprint image acquired by the fingerprint image input device 3 of the same invention. 同本発明の指紋画像入力装置3により取得した、乾燥指の場合における指紋画像の説明図である。It is explanatory drawing of the fingerprint image in the case of the dry finger acquired by the fingerprint image input device 3 of the same invention. 同本発明の実施例2で、指紋画像入力装置6の概略構成を示す正断面図である。FIG. 6 is a front sectional view showing a schematic configuration of a fingerprint image input device 6 in Embodiment 2 of the present invention. 従来例に係る反射光方式の指紋画像入力装置1の概略構成を示す正断面図である。It is a front sectional view showing a schematic configuration of a reflected light type fingerprint image input apparatus 1 according to a conventional example. 同従来例に係る全反射光方式の指紋画像入力装置2の概略構成を示す正断面図である。It is a front sectional view showing a schematic configuration of a total reflection light type fingerprint image input apparatus 2 according to the conventional example. 同従来例に係る全反射光方式による指紋画像の説明図(A),(B)である。It is explanatory drawing (A), (B) of the fingerprint image by the total reflection light system based on the prior art example.

符号の説明Explanation of symbols

1、2,3,6 指紋画像入力装置、
1a,2a,3a 受光素子、
1b,2b,3b 屈折率分布型マイクロレンズ、
1c,2c,3c 導光体、
1d,2d,3d 光源、
1e,2e,3e 指紋検出面、
1f,2f,3f 光入射面、
3g 背景面、
3h 光出射面。
1, 2, 3, 6 fingerprint image input device,
1a, 2a, 3a light receiving element,
1b, 2b, 3b gradient index microlens,
1c, 2c, 3c light guide,
1d, 2d, 3d light source,
1e, 2e, 3e fingerprint detection surface,
1f, 2f, 3f light incident surface,
3g background,
3h Light exit surface.

Claims (5)

指紋認証用の指紋画像入力装置であって、認証対象の指の指紋を載置する指紋検出面を有するとともに光源からの入射光を前記指紋検出面で反射させマイクロレンズを介して受光素子に受光させる透明材料の導光体において、
前記光源の光が入射する光入射面が当該光源の光軸に対してほぼ直交状態にされ、当該導光体中の入射光における前記指紋検出面に対する入射角度が、反射光及び乱反射光が生じる角度に設定されていること、を特徴とする指紋画像入力装置。
A fingerprint image input device for fingerprint authentication, having a fingerprint detection surface on which a fingerprint of a finger to be authenticated is placed and reflecting incident light from a light source on the fingerprint detection surface and receiving it on a light receiving element through a microlens In the transparent material light guide
The light incident surface on which the light from the light source is incident is made substantially orthogonal to the optical axis of the light source, and the incident light with respect to the fingerprint detection surface in the incident light in the light guide is reflected light and irregularly reflected light. A fingerprint image input device characterized by being set to an angle.
導光体が透明材料でかつその屈折率をn1、空気の屈折率をn2、前記導光体における光の臨界角をθ=Sin-1 (n2/n1)°とした場合に、指紋検出面に対する光源からの光の入射角度αが、
0°≦α≦θ °であること、
を特徴とする請求項1に記載の指紋画像入力装置。
When the light guide is a transparent material, the refractive index is n1, the refractive index of air is n2, and the critical angle of light in the light guide is θ = Sin −1 (n2 / n1) °, the fingerprint detection surface The incident angle α of light from the light source with respect to
0 ° ≦ α ≦ θ °,
The fingerprint image input device according to claim 1.
導光体が透明材料でかつその屈折率をn1、空気の屈折率をn2、前記導光体における光の臨界角をθ=Sin-1 (n2/n1)°としたとした場合に、指紋検出面に対する指紋検出面からの光の受光角度βが、
θ °≦β≦90°であること、
を特徴とする請求項1または2に記載の指紋画像入力装置。
When the light guide is a transparent material, the refractive index is n1, the refractive index of air is n2, and the critical angle of light in the light guide is θ = Sin −1 (n2 / n1) °, the fingerprint The light receiving angle β of light from the fingerprint detection surface with respect to the detection surface is
θ ° ≦ β ≦ 90 °,
The fingerprint image input device according to claim 1, wherein:
指紋検出面の直交軸に対して受光側の受光素子と反対側に、受光可能領域幅以上の幅で指紋画像のコントラストを高める背景面が設けられ、かつ、該背景面の色彩が黒単色であること、
を特徴とする請求項1乃至3のいずれかに記載の指紋画像入力装置。
A background surface is provided on the opposite side of the light-receiving element on the light-receiving side with respect to the orthogonal axis of the fingerprint detection surface to increase the contrast of the fingerprint image with a width equal to or larger than the light-receiving area width. There is,
The fingerprint image input device according to any one of claims 1 to 3.
導光体の表面に、架橋性樹脂の硬化皮膜が設けられていること、
を特徴とする請求項1乃至4のいずれかに記載の指紋画像入力装置。
A cured film of a crosslinkable resin is provided on the surface of the light guide;
The fingerprint image input device according to claim 1, wherein:
JP2004037893A 2004-02-16 2004-02-16 Fingerprint image input device Pending JP2005228191A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004037893A JP2005228191A (en) 2004-02-16 2004-02-16 Fingerprint image input device
PCT/JP2005/002289 WO2005078660A1 (en) 2004-02-16 2005-02-16 Finger print image input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004037893A JP2005228191A (en) 2004-02-16 2004-02-16 Fingerprint image input device

Publications (1)

Publication Number Publication Date
JP2005228191A true JP2005228191A (en) 2005-08-25

Family

ID=34857792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004037893A Pending JP2005228191A (en) 2004-02-16 2004-02-16 Fingerprint image input device

Country Status (2)

Country Link
JP (1) JP2005228191A (en)
WO (1) WO2005078660A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045130A1 (en) * 2015-09-15 2017-03-23 Shanghai Oxi Technology Co., Ltd Optical fingerprint imaging system and array sensor
WO2018101772A1 (en) * 2016-11-30 2018-06-07 주식회사 엘지화학 Control method of digital device
WO2019143034A1 (en) * 2018-01-19 2019-07-25 Samsung Electronics Co., Ltd. Sensor and electronic apparatus for fingerprint recognition
CN110554454A (en) * 2019-09-29 2019-12-10 厦门天马微电子有限公司 Backlight module and display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748201B2 (en) * 2011-01-27 2015-07-15 Necエンジニアリング株式会社 Image reading device
CN105184282B (en) * 2015-10-14 2019-04-23 京东方科技集团股份有限公司 Optical finger print detection device and display equipment
CN109753852B (en) * 2017-11-03 2020-09-18 华为技术有限公司 Optical assembly for object texture, display assembly and electronic equipment
CN111183429B (en) * 2019-07-10 2022-08-30 深圳市汇顶科技股份有限公司 Fingerprint identification method and device and electronic equipment
JP2023534071A (en) 2020-07-23 2023-08-07 スリーエム イノベイティブ プロパティズ カンパニー Electronic device with optical sensor module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0581414A (en) * 1991-09-20 1993-04-02 Toshiba Corp Finger image input device
JPH0589229A (en) * 1991-09-26 1993-04-09 Toshiba Corp Finger image input device
JPH0944674A (en) * 1995-07-31 1997-02-14 Sony Corp Image reader
JPH11144032A (en) * 1997-11-06 1999-05-28 Techno Imagica Kk Fingerprint reader
JPH11250231A (en) * 1998-03-05 1999-09-17 Fujitsu Ltd Projecting and recessing face contact pad and projecting and recessing pattern collecting device
JP2001283205A (en) * 2000-04-03 2001-10-12 Seiko Instruments Inc Image reader, its method and device applying the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045130A1 (en) * 2015-09-15 2017-03-23 Shanghai Oxi Technology Co., Ltd Optical fingerprint imaging system and array sensor
US10614281B2 (en) 2015-09-15 2020-04-07 Shanghai Oxi Technology Co., Ltd Optical fingerprint imaging system and array sensor
WO2018101772A1 (en) * 2016-11-30 2018-06-07 주식회사 엘지화학 Control method of digital device
KR20180062349A (en) * 2016-11-30 2018-06-08 주식회사 엘지화학 Method for controlling a disgital device
KR102136553B1 (en) 2016-11-30 2020-07-22 주식회사 엘지화학 Method for controlling a disgital device
US11003887B2 (en) 2016-11-30 2021-05-11 Lg Chem, Ltd. Sheet and an optical fingerprint scanner
US11120244B2 (en) 2016-11-30 2021-09-14 Lg Chem, Ltd. Method for controlling a digital device
WO2019143034A1 (en) * 2018-01-19 2019-07-25 Samsung Electronics Co., Ltd. Sensor and electronic apparatus for fingerprint recognition
CN110554454A (en) * 2019-09-29 2019-12-10 厦门天马微电子有限公司 Backlight module and display device
CN110554454B (en) * 2019-09-29 2020-07-31 厦门天马微电子有限公司 Backlight module and display device

Also Published As

Publication number Publication date
WO2005078660A1 (en) 2005-08-25

Similar Documents

Publication Publication Date Title
TW511038B (en) High contrast, low distortion optical acquisition systems for image capturing
KR900006061B1 (en) Uneuen-surface data detection apparatus
TW571247B (en) Fingerprint reading method and fingerprint reading apparatus
US4681435A (en) Contact pattern observation apparatus
US5146102A (en) Fingerprint image input apparatus including a cylindrical lens
WO2005078660A1 (en) Finger print image input device
KR100469571B1 (en) Method and apparatus for reduction of trapezoidal distortion and improvement of image sharpness in an optical image capturing system
US20130051635A1 (en) Substrate for fingerprint contact
JPH10289304A (en) Fingerprint image input device
US20190228200A1 (en) Electronic device and image capture module thereof
KR20090053937A (en) System and method for robust fingerprint acquisition
KR101042378B1 (en) optical finger print recognition system
WO2011043201A1 (en) Relief pattern detection device
KR100726100B1 (en) Optical Sytem for fingerprint recognizing device
KR20040105831A (en) Imaging method and apparatus
US7119889B2 (en) Apparatus for reducing ambient light into an optical print scanner
KR100349832B1 (en) Line scan type fingerprint input device
KR20200108256A (en) Under-display sensing device
KR20040042727A (en) fingerprint input apparatus using a optics
CN111832429A (en) Under-screen fingerprint identification module, under-screen fingerprint identification method and electronic equipment
KR950015188B1 (en) Fingerprint identification system
US11676417B2 (en) Method of detecting spoof fingerprints using an optical fingerprint sensor and polarization
JPH10293015A (en) Optical detection device
KR100760061B1 (en) Fingerprint identification assembly using total reflection to identify pattern of the fingerprint
JPS63228271A (en) Fingerprint image detector