JP2005227130A - Optical spectrum analyzer and multichannel measurement apparatus using the same - Google Patents

Optical spectrum analyzer and multichannel measurement apparatus using the same Download PDF

Info

Publication number
JP2005227130A
JP2005227130A JP2004036118A JP2004036118A JP2005227130A JP 2005227130 A JP2005227130 A JP 2005227130A JP 2004036118 A JP2004036118 A JP 2004036118A JP 2004036118 A JP2004036118 A JP 2004036118A JP 2005227130 A JP2005227130 A JP 2005227130A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
wavelength
reflector
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004036118A
Other languages
Japanese (ja)
Inventor
Yoshifumi Takahashi
良文 高橋
Takanori Saito
崇記 斉藤
Kenichi Nakamura
賢一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2004036118A priority Critical patent/JP2005227130A/en
Publication of JP2005227130A publication Critical patent/JP2005227130A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical spectrum analyzer and a multichannel measurement apparatus, using the same allowing wavelength measurement for a plurality of light rays at a high speed and with high accuracy. <P>SOLUTION: A plurality of light rays to be measured Pb from an optical sensor section 21 are received by a plurality of entrance sections 31 of the optical spectrum analyzer 30 and are allowed to enter with their optical axes being aligned parallel to each other and perpendicular to the diffraction grooves of a diffraction grating 32. Diffracted light rays, emitted from the diffraction grating 32, are received by a reflecting plate 40 of a reflector 35 to be reflected toward the diffraction grating 32. Diffracted light rays, emitted from the diffraction grating at a predetermined angle, are received by a plurality of photoelectric convertors 50, respectively. A drive signal generator 55 provides the reflector 35 with an electrical signal, having a frequency corresponding to the natural frequency of a portion, consisting of a shaft section 38 and the reflecting plate 40, to provide the portion with reciprocal rotational drive with the natural frequency and sweeps the wavelength of light received by each photoelectric convertor 50 within a predetermined wavelength range. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複数の光の波長変化を高速に測定することができるようにするための技術に関する。   The present invention relates to a technique for making it possible to measure wavelength changes of a plurality of lights at high speed.

光学機器の高性能化、低コスト化に伴い、各種現象の測定を光学的に行う方法が盛んに研究、実用化されている。   Along with the improvement in performance and cost of optical instruments, methods for optically measuring various phenomena have been actively researched and put into practical use.

例えば、歪みに関する測定では、歪み−電気変換素子である歪みゲージをセンサとして用いた従来の方法から、雷や雑音等の影響を受けにくい光ファイバをセンサとするものが種々提案されている。   For example, various strain-related measurement methods have been proposed in which an optical fiber that is not easily affected by lightning, noise, or the like is used as a sensor from a conventional method that uses a strain gauge as a strain-electric conversion element as a sensor.

このような歪みセンサとして利用される光ファイバとしては、ファイバーブラッググレーティング(以下、FBGと記す)が知られている。   As an optical fiber used as such a strain sensor, a fiber Bragg grating (hereinafter referred to as FBG) is known.

FBGは、光ファイバの所定長さ範囲のコア部の屈折率を一定間隔で周期的に変化させたもので、このFBGの一端側に光を入射すると、その入射光のうち特定波長(ブラッグ波長という)の光だけが反射されて、他の波長の光は透過する。   The FBG is obtained by periodically changing the refractive index of a core portion of a predetermined length range of an optical fiber at regular intervals. When light is incident on one end side of the FBG, a specific wavelength (Bragg wavelength) of the incident light is used. Only light of the other wavelength is reflected, and light of other wavelengths is transmitted.

そして、このブラッグ波長は、屈折率が一定間隔で周期的に変化している部分が受ける軸方向の歪み(圧縮、伸長)に応じて変化する。   And this Bragg wavelength changes according to the distortion (compression, expansion | extension) of the axial direction which the part into which a refractive index changes periodically with a fixed interval receives.

したがって、このFBGの一端に広帯域光を入射し、その一端側に反射してくる光の波長を測定することで、FBGに印加される外力の測定が可能となる。   Therefore, it is possible to measure the external force applied to the FBG by measuring the wavelength of the light that is incident on one end of the FBG and is reflected on the one end side.

また、地震等の測定では、物体が受ける加速度を3次元測定する必要があるが、これを上記FBGを用いて測定する場合には、複数のFBGによって基準物を上下方向、前後方向および左右方向から支持し、地震の発生で基準物が移動するときに生じる各FBGの伸長変化に伴う各ブラッグ波長の変化を調べ、その波長変化から各方向における加速度等を調べている。   In measurement of an earthquake or the like, it is necessary to measure the acceleration received by an object three-dimensionally. When this is measured using the FBG, the reference object is moved in the vertical direction, the front-rear direction, and the left-right direction using a plurality of FBGs. The change of each Bragg wavelength accompanying the extension change of each FBG generated when the reference object moves due to the occurrence of an earthquake is examined, and the acceleration in each direction is examined from the wavelength change.

なお、このように基準物を複数のFBGで支持し、各FBGで反射される光のブラッグ波長をそれぞれ波長計測手段で計測して、その計測結果を基に地震の解析を行う技術は、次の特許文献1に開示されている。   In addition, the technology for supporting a reference object with a plurality of FBGs and measuring the Bragg wavelength of light reflected by each FBG with the wavelength measuring means and analyzing the earthquake based on the measurement results is as follows. Patent Document 1 discloses this.

特開2001−281347号公報JP 2001-281347 A

しかしながら、上記特許文献1のように、複数のFBGによって反射された光の波長計測をそれぞれ独立した波長計測手段で行うものでは、FBGの数が多い程装置が大型化し、高価になってしまう。   However, in the case of performing wavelength measurement of light reflected by a plurality of FBGs using independent wavelength measurement means as in Patent Document 1, the larger the number of FBGs, the larger the apparatus and the higher the cost.

特に、上記したように地震等の自然現象の計測を行うような場合には、多数の測定点を設ける必要があるため、システムコストが膨大になってしまう。   In particular, when measuring a natural phenomenon such as an earthquake as described above, it is necessary to provide a large number of measurement points, resulting in an enormous system cost.

また、これを解決するために、前記特許文献1には、複数のFBGを直列接続し、その一端側から入射した光に対して、各FBGから反射される光の波長を一つの波長計測手段によって計測する構成も開示されているが、この構成では、各FBGのブラッグ波長が重複しないように予め選んでおく必要があり、FBGとして多種類のものが必要となり、装置の製造過程での管理を厳重にしなければならない。   In order to solve this problem, Patent Document 1 discloses that a plurality of FBGs are connected in series, and the wavelength of the light reflected from each FBG with respect to the light incident from one end thereof is one wavelength measuring unit. In this configuration, it is necessary to select in advance so that the Bragg wavelengths of the FBGs do not overlap, and various types of FBGs are required. Must be strict.

また、波長計測手段として波長測定範囲が非常に広いものが必要となるが、波長測定範囲の広い測定器は一般的に精度が低いか、測定速度が遅いかのどちらかである場合が多く、高精度で且つ高速な測定は望めなかった。   In addition, a wavelength measurement means that requires a very wide wavelength measurement range is required, but measuring instruments with a wide wavelength measurement range generally have either low accuracy or low measurement speed. High-precision and high-speed measurement could not be expected.

本発明は、このような問題に鑑みてなされたものであり、複数の光の波長測定を高速、高精度に行うことができる光スペクトラムアナライザおよびこれを用いたマルチチャンネル測定装置を提供することを目的としている。   The present invention has been made in view of such a problem, and provides an optical spectrum analyzer capable of measuring a plurality of wavelengths of light at high speed and with high accuracy, and a multichannel measurement apparatus using the same. It is aimed.

前記目的を達成するために、本発明の請求項1の光スペクトラムアナライザは、
回折格子(32)と、
複数の被測定光を、互いに平行な光軸で且つ前記回折格子の回折溝に直交する向きに入射させる複数の入射部(31)と、
固定基板(36、37)と、該固定基板の縁部から所定幅で所定長さ延設され、その長さ方向に沿って捩じれ変形可能な軸部(38、39)と、前記軸部の先端に自身の縁部で連結されて前記固定基板に対して回転自在に支持され、一面側に前記回折格子からの回折光を反射するための反射面が設けられた反射板(40)とを有し、前記複数の入射部から入射された複数の被測定光に対して前記回折格子からそれぞれ出射される回折光を前記反射板で受けて前記回折格子へ反射する反射体(35)と、
前記回折格子の回折溝の長さ方向に沿って並び、前記反射体から出射されたそれぞれの反射光に対して前記回折格子から所定角度で出射される回折光をそれぞれ受けて電気信号に変換する複数の光電変換器(50)と、
前記反射体の軸部と反射板とからなる部分の固有振動数に対応した周波数の電気信号によって前記反射板に力を与えて、該反射板を前記固有振動数またはそれに近い振動数で往復回転させ、前記複数の光電変換器が受ける光の波長を所定波長範囲内で掃引する反射体駆動手段(45、46、47、55)とを備えている。
In order to achieve the object, an optical spectrum analyzer according to claim 1 of the present invention comprises:
A diffraction grating (32);
A plurality of incident portions (31) that allow a plurality of light beams to be measured to be incident in directions parallel to each other and perpendicular to the diffraction grooves of the diffraction grating;
A fixed substrate (36, 37), a shaft portion (38, 39) extending from the edge of the fixed substrate with a predetermined width and having a predetermined length and capable of being twisted and deformed along the length direction; A reflection plate (40) connected to the tip at its own edge and rotatably supported with respect to the fixed substrate, and provided with a reflection surface for reflecting diffracted light from the diffraction grating on one surface side; A reflector (35) that receives the diffracted light emitted from the diffraction grating with respect to the plurality of light beams to be measured incident from the plurality of incident portions, and reflects the diffracted light to the diffraction grating;
Aligned along the length direction of the diffraction grooves of the diffraction grating, each of the reflected light emitted from the reflector receives each diffracted light emitted from the diffraction grating at a predetermined angle and converts it into an electrical signal. A plurality of photoelectric converters (50);
A force is applied to the reflecting plate by an electric signal having a frequency corresponding to the natural frequency of the portion composed of the shaft portion and the reflecting plate of the reflector, and the reflecting plate is rotated back and forth at the natural frequency or a frequency close thereto. And reflector driving means (45, 46, 47, 55) for sweeping the wavelength of light received by the plurality of photoelectric converters within a predetermined wavelength range.

また、本発明の請求項2のマルチチャンネル測定装置は、
測定点における現象変化に応じて波長または強度が変化する光を、複数の測定点について並行出射する光学センサ部(21)と、
前記光学センサ部から出射される複数の光を被測定光として受けてそのスペクトラム特性を測定するスペクトラム測定部(30)と、
前記スペクトラム測定部によって測定された各測定点毎のスペクトラム変化に基づいて各測定点の現象変化を解析する解析部(60)とを有するマルチチャンネル測定装置において、
前記スペクトラム測定部を前記請求項1記載の光スペクトラムアナライザによって構成したことを特徴としている。
A multi-channel measuring device according to claim 2 of the present invention is
An optical sensor unit (21) for emitting light whose wavelength or intensity changes according to a phenomenon change at a measurement point in parallel for a plurality of measurement points;
A spectrum measuring section (30) for receiving a plurality of lights emitted from the optical sensor section as light to be measured and measuring spectrum characteristics thereof;
In a multi-channel measurement apparatus having an analysis unit (60) for analyzing a phenomenon change at each measurement point based on a spectrum change at each measurement point measured by the spectrum measurement unit,
The spectrum measuring unit is configured by the optical spectrum analyzer according to claim 1.

また、本発明の請求項3のマルチチャンネル測定装置は、請求項2のマルチチャンネル測定装置において、
前記光学センサ部は、
光源(22)と、
前記複数の測定点にそれぞれ配置され、前記光源からの光を受けて、それぞれの測定点で受ける歪みの変化に応じて波長が変化する複数の光を出射する複数のファイバブラッググレーティング(23)とを有していることを特徴としている。
A multi-channel measuring device according to claim 3 of the present invention is the multi-channel measuring device according to claim 2,
The optical sensor unit is
A light source (22);
A plurality of fiber Bragg gratings (23) arranged at the plurality of measurement points, respectively, for receiving light from the light source and emitting a plurality of lights whose wavelengths change in accordance with changes in strain received at the respective measurement points; It is characterized by having.

また、本発明の請求項4のマルチチャンネル測定装置は、請求項2のマルチチャンネル測定装置において、
前記光学センサ部は、
光源(22)と、
前記光源から前記複数の測定点の空間を通過して、該空間のガスの変化に応じて吸収波長または吸収量が変化する複数の光をそれぞれ受けて前記スペクトラム測定部に出射する複数の受光部(28)とを有している。
A multi-channel measuring device according to claim 4 of the present invention is the multi-channel measuring device according to claim 2,
The optical sensor unit is
A light source (22);
A plurality of light-receiving units that pass through the spaces of the plurality of measurement points from the light source, receive a plurality of lights whose absorption wavelengths or absorption amounts change according to changes in gas in the spaces, and emit the light to the spectrum measurement unit. (28).

このように構成されているため、本発明の光スペクトラムアナライザでは、並行して入射される複数の光のスペクトラム特性を高速に同時測定することができる。   With this configuration, the optical spectrum analyzer of the present invention can simultaneously measure the spectrum characteristics of a plurality of light incident in parallel at high speed.

また、この光スペクトラムアナライザをスペクトラム測定部として用いたマルチチャンネル測定装置では、各測定点の現象変化を高速に同時測定することができ、また、安価に構成できる。   In addition, a multi-channel measurement apparatus using this optical spectrum analyzer as a spectrum measurement unit can simultaneously measure changes in phenomena at each measurement point at a high speed, and can be configured at low cost.

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、地震計等に適用可能な本発明のマルチチャンネル測定装置20の構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of a multi-channel measuring apparatus 20 of the present invention that can be applied to a seismometer or the like.

このマルチチャンネル測定装置20は、測定点における現象変化に応じて波長が変化する光を、複数の測定点について並行出射する光学センサ部21と、光学センサ部21から出射される複数の光のスペクトラムを測定するスペクトラム測定部としての光スペクトラムアナライザ30と、光スペクトラムアナライザ30によって測定された測定点毎のスペクトラムに基づいて、測定点の現象変化を解析する解析部60とを有している。   The multi-channel measuring device 20 includes an optical sensor unit 21 that emits light whose wavelength changes in response to a phenomenon change at a measurement point in parallel at a plurality of measurement points, and a spectrum of the plurality of lights emitted from the optical sensor unit 21. The optical spectrum analyzer 30 as a spectrum measuring unit for measuring the measurement point, and the analysis unit 60 for analyzing the phenomenon change at the measurement point based on the spectrum for each measurement point measured by the optical spectrum analyzer 30.

光学センサ部21は、例えば前記した地震計と同様に基準物(図示せず)を支持し光源22からの光を受けた複数のFBG23(1)〜23(n)が、外力による歪みに応じて波長が変化する光を出射するように構成されている。   The optical sensor unit 21 supports, for example, a reference object (not shown) like the above-described seismometer, and a plurality of FBGs 23 (1) to 23 (n) receiving light from the light source 22 respond to distortion caused by external force. Thus, it is configured to emit light whose wavelength changes.

即ち、図1に示しているように、光源22から出射された光を光カプラ24(1)〜24(n)によってn本のファイバ光路に分岐し、各分岐光Pa(1)〜Pa(n)を光カプラ25(1)〜25(n)を介してFBG23(1)〜23(n)の一端にそれぞれ入射させ、各FBG23(1)〜23(n)によって反射されたブラッグ波長の光Pb(1)〜Pb(n)を光カプラ25(1)〜25(n)からファイバ光路を介して光スペクトラムアナライザ30の入射部31(1)〜31(n)に入射する。   That is, as shown in FIG. 1, the light emitted from the light source 22 is branched into n fiber optical paths by optical couplers 24 (1) to 24 (n), and the branched lights Pa (1) to Pa ( n) is incident on one end of each of the FBGs 23 (1) to 23 (n) through the optical couplers 25 (1) to 25 (n), and the Bragg wavelength reflected by the FBGs 23 (1) to 23 (n). Lights Pb (1) to Pb (n) are incident on the incident portions 31 (1) to 31 (n) of the optical spectrum analyzer 30 from the optical couplers 25 (1) to 25 (n) through the fiber optical path.

なお、ここで、各FBG23(1)〜23(n)の無歪み状態におけるブラッグ波長はλ0で等しいものとし、光源22が出射する光の帯域は、各FBG23(1)〜23(n)のブラッグ波長の変化範囲をカバーしているものとする。   Here, the Bragg wavelength in the undistorted state of each of the FBGs 23 (1) to 23 (n) is equal to λ0, and the band of the light emitted from the light source 22 is that of each of the FBGs 23 (1) to 23 (n). It is assumed that the range of change of the Bragg wavelength is covered.

光スペクトラムアナライザ30の複数の入射部31(1)〜31(n)は、図2にその具体的構造を示しているように、基台30aの平坦な上面に設けられた支持部材30bによって、縦一列に並ぶように支持されている。   As shown in FIG. 2, the plurality of incident portions 31 (1) to 31 (n) of the optical spectrum analyzer 30 are supported by a support member 30b provided on the flat upper surface of the base 30a. It is supported so as to be lined up vertically.

各入射部31(1)〜31(n)はコリメートレンズを含み、各光カプラ25(1)〜25(n)から入射された光Pb(1)〜Pb(n)をビーム幅がほぼ一定な光(コリメート光)Pc(1)〜Pc(n)にし、その光軸が基台30aの上面と平行で縦に並ぶようにして、基台30a上に直立した状態で設置された回折格子32の一面(回折面)32aに対して所定角度で入射させる。   Each incident portion 31 (1) to 31 (n) includes a collimator lens, and the beam width of the light Pb (1) to Pb (n) incident from each optical coupler 25 (1) to 25 (n) is substantially constant. Grating (collimated light) Pc (1) to Pc (n), the optical axis of which is parallel to the upper surface of the base 30a and vertically aligned, and the diffraction grating installed upright on the base 30a The light is incident at a predetermined angle on one surface (diffraction surface) 32a.

回折格子32の一面32aには、基台30aの上面と直交する回折溝が所定間隔で並んで設けられており、入射された光Pc(1)〜Pc(n)に含まれる各波長の光成分をその波長に対応した回折角でそれぞれ出射する。   On one surface 32a of the diffraction grating 32, diffraction grooves orthogonal to the upper surface of the base 30a are provided at predetermined intervals, and light of each wavelength included in the incident light Pc (1) to Pc (n). Each component is emitted at a diffraction angle corresponding to the wavelength.

入射光Pc(1)〜Pc(n)に対して回折格子32が出射する回折光Pd(1)〜Pd(n)は、基台30aの上に立設された反射体35に入射する。   The diffracted lights Pd (1) to Pd (n) emitted from the diffraction grating 32 with respect to the incident lights Pc (1) to Pc (n) are incident on the reflector 35 erected on the base 30a.

この反射体35は、図2、図3に示しているように、横長矩形で互いに平行に配置された一対の固定基板36、37と、両固定基板36、37の長辺側縁部の中央から固定基板36、37と直交する方向に所定幅、所定長さで延設され、その長さ方向に沿って捩じれ変形可能な一対の軸部38、39と、横長矩形で一方の長辺側縁部の中央部で軸部38の先端に連結され、他方の長辺側縁部の中央部で軸部38の先端に連結された反射板40とを有している。   As shown in FIGS. 2 and 3, the reflector 35 includes a pair of fixed substrates 36 and 37 that are horizontally long and arranged in parallel to each other, and the center of the long side edge of the fixed substrates 36 and 37. A pair of shaft portions 38 and 39 that extend in a direction orthogonal to the fixed substrates 36 and 37 with a predetermined width and a predetermined length and can be twisted and deformed along the length direction, and one long side in a horizontally long rectangle The reflector 40 is connected to the tip of the shaft 38 at the center of the edge and connected to the tip of the shaft 38 at the center of the other long side edge.

この反射板40は、捩じれ変形可能な軸部38、39に中心部が支持されているので、この軸部38、39を結ぶ線を中心軸として固定基板36、37に対して回転することができる。また、軸部38、39と反射板40とからなる部分の固有振動数f0は、反射板40自体の形状や質量および軸部38、39のバネ定数によって決まる。   Since the central portion of the reflector 40 is supported by the shaft portions 38 and 39 that can be torsionally deformed, the reflector 40 can rotate with respect to the fixed substrates 36 and 37 with the line connecting the shaft portions 38 and 39 as the central axis. it can. Further, the natural frequency f0 of the portion composed of the shaft portions 38 and 39 and the reflecting plate 40 is determined by the shape and mass of the reflecting plate 40 itself and the spring constant of the shaft portions 38 and 39.

また、反射板40の一面側には、光を高い反射率で反射する反射面41が形成されている。この反射面41は、反射板40自体を鏡面仕上げして形成したり、反射率の高い膜(図示せず)を蒸着あるいは接着して形成したものであってもよい。なお、この反射体35は、薄い半導体基板からエッチング処理等により一体的に切り出されたもので、金属膜の蒸着加工により高導電性を有している。   In addition, a reflection surface 41 that reflects light with high reflectance is formed on one surface side of the reflection plate 40. The reflection surface 41 may be formed by mirror-finishing the reflection plate 40 itself, or may be formed by vapor deposition or adhesion of a highly reflective film (not shown). The reflector 35 is integrally cut out from a thin semiconductor substrate by etching or the like, and has high conductivity by metal film vapor deposition.

この反射体35は、基台30aの上に直立した状態で固定されている支持基板45の一面側に支持されている。   The reflector 35 is supported on one surface side of the support substrate 45 fixed in an upright state on the base 30a.

支持基板45は絶縁性を有する材料からなり、その一面側の上部と下部には、前方へ突出する支持台45a、45bが形成されており、反射体35の固定基板36、37は、この上下の支持台45a、45bに接した状態で固定されている。   The support substrate 45 is made of an insulating material, and support bases 45a and 45b projecting forward are formed on the upper and lower portions on one side, and the fixed substrates 36 and 37 of the reflector 35 are formed on the upper and lower sides. Are fixed in contact with the support bases 45a and 45b.

また、支持基板45の一面側中央部の両端には、反射体35の反射板40の両端にそれぞれ対向する電極板46、47がパターン形成されている。   In addition, electrode plates 46 and 47 that are opposed to both ends of the reflection plate 40 of the reflector 35 are formed in patterns at both ends of the central portion on the one surface side of the support substrate 45.

この電極板46、47は、後述する駆動信号発生器55とともに実施形態の反射体駆動手段を構成するものであり、反射板40の両端部に静電力を交互に且つ周期的に印加して、反射板40を軸部38、39を結ぶ線を中心に往復回転運動させる。なお、反射板40の回転軸は回折格子32の回折溝と平行となるように設定されている。   The electrode plates 46 and 47 constitute the reflector driving means of the embodiment together with the driving signal generator 55 described later, and electrostatic force is alternately and periodically applied to both ends of the reflecting plate 40. The reflector 40 is reciprocally rotated around a line connecting the shaft portions 38 and 39. The rotational axis of the reflecting plate 40 is set to be parallel to the diffraction grooves of the diffraction grating 32.

このように構成された反射体35は、図1、図2に示しているように、回折格子32からの各回折光Pd(1)〜Pd(n)を反射板40の反射面41で受けて、その反射光Pe(1)〜Pe(n)を回折格子32へ再入射させて、回折させる。   As shown in FIGS. 1 and 2, the reflector 35 configured in this manner receives each diffracted light Pd (1) to Pd (n) from the diffraction grating 32 by the reflecting surface 41 of the reflecting plate 40. Then, the reflected lights Pe (1) to Pe (n) are incident again on the diffraction grating 32 and are diffracted.

光電変換器50(1)〜50(n)は、基台30aの上面に立設された支持部材30cによって縦一列に支持され、反射光Pe(1)〜Pe(n)に対して回折格子32が出射する回折光のうち、回折格子32の回折面32aに対して所定角度で出射される回折光Pf(1)〜Pf(n)をそれぞれ受けて、その光の強度に応じた電圧の受光信号E(1)〜E(n)をそれぞれ出力する。   The photoelectric converters 50 (1) to 50 (n) are supported in a vertical row by a support member 30c erected on the upper surface of the base 30a, and are diffraction gratings with respect to the reflected light Pe (1) to Pe (n). Of the diffracted light emitted by 32, the diffracted lights Pf (1) to Pf (n) emitted at a predetermined angle with respect to the diffraction surface 32a of the diffraction grating 32 are respectively received, and the voltage corresponding to the intensity of the light is received. The light reception signals E (1) to E (n) are output.

このような光学配置を有する光スペクトラムアナライザ30では、複数の光電変換器50(1)〜50(n)が受ける回折光Pf(1)〜Pf(n)の波長は、回折格子32の回折面32aに対する反射体35の反射板40の角度に応じて変化する。   In the optical spectrum analyzer 30 having such an optical arrangement, the wavelengths of the diffracted lights Pf (1) to Pf (n) received by the plurality of photoelectric converters 50 (1) to 50 (n) are the diffraction surfaces of the diffraction grating 32. It changes according to the angle of the reflector 40 of the reflector 35 with respect to 32a.

一方、駆動信号発生器55は、例えば図4の(a)、(b)に示しているように、反射体35の電位を基準として電極板46、47に対して、固有振動数f0に対応した周波数(固有振動数f0あるいはその近傍の周波数)を有し、位相が180°ずれた駆動信号Da、Dbを印加し、電極板46と反射板40の一端側との間および電極板47と反射板40との間に交互に且つ周期的に静電力(引力)を与え、反射板40を固有振動数f0あるいはその近傍の振動数で所定角度範囲を往復回転させる。   On the other hand, the drive signal generator 55 corresponds to the natural frequency f0 with respect to the electrode plates 46 and 47 with reference to the potential of the reflector 35 as shown in FIGS. The drive signals Da and Db having a frequency (natural frequency f0 or a frequency in the vicinity thereof) and having a phase shifted by 180 ° are applied between the electrode plate 46 and one end side of the reflection plate 40 and the electrode plate 47. An electrostatic force (attracting force) is alternately and periodically applied to the reflecting plate 40, and the reflecting plate 40 is reciprocally rotated within a predetermined angle range at a natural frequency f0 or a frequency in the vicinity thereof.

この角度範囲は、各光電変換器50(1)〜50(n)が受ける回折光の波長範囲λa〜λbを決定するものであり、この波長範囲(波長掃引範囲)λa〜λbは、FBG23(1)〜23(n)のブラッグ波長の変化範囲をカバーするように設定されている。   This angle range determines the wavelength range λa to λb of the diffracted light received by each of the photoelectric converters 50 (1) to 50 (n). The wavelength range (wavelength sweep range) λa to λb is determined by the FBG 23 ( 1) to 23 (n) are set so as to cover the change range of the Bragg wavelength.

なお、図4では、2つの駆動信号Da、Dbがデューティ比50%の矩形波の場合を示しているが、両信号のデューティ比は50%以下であってもよく、また、波形も矩形波に限らず、正弦波、三角波等であってもよい。   4 shows a case where the two drive signals Da and Db are rectangular waves with a duty ratio of 50%, the duty ratio of both signals may be 50% or less, and the waveform is also a rectangular wave. It is not limited to sine waves, triangular waves, and the like.

また、この駆動信号発生器55は、駆動信号Da、Ddによって掃引される波長に対応した波長データD(λ)を後述するスペクトラムデータ記憶手段57に出力する。   In addition, the drive signal generator 55 outputs wavelength data D (λ) corresponding to the wavelength swept by the drive signals Da and Dd to the spectrum data storage means 57 described later.

一方、各光電変換器50(1)〜50(n)の信号E(1)〜E(n)は、A/D変換器56(1)〜56(n)によってそれぞれディジタル値の信号列に変換され、スペクトラムデータ記憶手段57に入力される。   On the other hand, the signals E (1) to E (n) of the photoelectric converters 50 (1) to 50 (n) are converted into digital signal sequences by the A / D converters 56 (1) to 56 (n), respectively. It is converted and input to the spectrum data storage means 57.

スペクトラムデータ記憶手段57は、A/D変換器56(1)〜56(n)によってディジタル値に変換された受光信号E(1)〜E(n)を、各入射光Pb(1)〜Pb(n)のスペクトラムデータとして波長データD(λ)に対応づけて内部のメモリ(図示せず)に記憶する。   The spectrum data storage means 57 converts the received light signals E (1) to E (n) converted into digital values by the A / D converters 56 (1) to 56 (n) into the respective incident lights Pb (1) to Pb. (N) spectrum data is stored in an internal memory (not shown) in association with the wavelength data D (λ).

解析部60は、スペクトラムデータ記憶手段57に記憶された各入射光Pb(1)〜Pb(n)のスペクトラムデータを解析し、そのスペクトラムの強度がピークとなる波長(ブラッグ波長)を、例えば1掃引毎にそれぞれ求め、その波長の変化Δλを時系列にそれぞれ求める。   The analysis unit 60 analyzes the spectrum data of each incident light Pb (1) to Pb (n) stored in the spectrum data storage unit 57, and sets the wavelength (Bragg wavelength) at which the intensity of the spectrum reaches a peak, for example, 1 Each of the sweeps is obtained, and the wavelength change Δλ is obtained in time series.

そして、この波長変化Δλから、各FBG23(1)〜23(n)の歪みH(1)〜H(n)を算出し、その歪みデータに基づいて、地震に関わる各種の解析を行い、その解析結果等を表示出力したり、必要であればアラーム発生等の処理を行う。   Then, from this wavelength change Δλ, the strains H (1) to H (n) of the FBGs 23 (1) to 23 (n) are calculated, and various analyzes relating to the earthquake are performed based on the strain data. Display and output analysis results, etc., and perform processing such as alarm generation if necessary.

このように構成されたマルチチャンネル測定装置20の光スペクトラムアナライザ30は、反射体35を、一対の固定基板36、37と、その縁部から所定幅で所定長さ延設され、その長さ方向に沿って捩じれ変形可能な軸部38、39と、軸部38、39の先端に自身の縁部が連結され、軸部38、39に対して対称な形状に形成され、一面側に反射面41が形成された反射板40とによって構成するとともに、反射体35の軸部38、39と反射板40とからなる部分の固有振動数f0に対応した周波数の電気信号によって反射板40に力を与えて、反射板40を固有振動数f0またはその近傍の振動数で往復回転させている。   In the optical spectrum analyzer 30 of the multi-channel measuring apparatus 20 configured as described above, the reflector 35 is extended from the pair of fixed substrates 36 and 37 and a predetermined length from the edge thereof with a predetermined width, and the length direction thereof. The shaft portions 38 and 39 that can be twisted and deformed along the edges of the shaft portions 38 and 39 are connected to the ends of the shaft portions 38 and 39, and are formed in a symmetrical shape with respect to the shaft portions 38 and 39. 41, and a force is applied to the reflector 40 by an electrical signal having a frequency corresponding to the natural frequency f0 of the portion formed by the shaft portions 38 and 39 of the reflector 35 and the reflector 40. The reflecting plate 40 is reciprocally rotated at the natural frequency f0 or a frequency in the vicinity thereof.

このため、僅かな電気エネルギーで反射板40を高速に往復回転させることができ、しかも、その回転中心が反射板40の内部(この場合、中央部)にあるので、その角度変化に対して、反射板40の反射面41への入射光の反射角の変化量が最も大きくなり、波長掃引範囲を格段に広くすることができる。   For this reason, the reflector 40 can be reciprocally rotated at a high speed with a small amount of electrical energy, and the center of rotation is inside the reflector 40 (in this case, the central portion). The amount of change in the reflection angle of incident light on the reflecting surface 41 of the reflecting plate 40 becomes the largest, and the wavelength sweeping range can be greatly widened.

なお、軸部38、39のバネ定数は、軸部38、39の長さ、幅、厚み、材質によって決まり、このバネ定数と、反射板40の形状、厚み、材質等で固有振動数f0が決定され、これらのパラメータを選ぶことにより、固有振動数f0を数100Hz〜数10KHzの範囲内で設定することができる。   The spring constants of the shaft portions 38 and 39 are determined by the length, width, thickness, and material of the shaft portions 38 and 39, and the natural frequency f0 is determined by the spring constant and the shape, thickness, material, and the like of the reflector 40. By selecting these parameters, the natural frequency f0 can be set within a range of several hundred Hz to several tens KHz.

このように、光スペクトラムアナライザ30は、同時に入射される複数の入射光に対するスペクトラムデータの取得を並行して高速に行えるので、光センサ部21を含めてマルチチャンネル測定装置20を小型に構成でき、地震等のような比較的低速な現象であれば、ほぼリアルタイムな測定が可能となる。   As described above, the optical spectrum analyzer 30 can simultaneously acquire the spectrum data for a plurality of incident lights incident simultaneously, so that the multichannel measuring device 20 including the optical sensor unit 21 can be configured in a small size. If the phenomenon is relatively slow, such as an earthquake, almost real-time measurement is possible.

したがって、光スペクトラムアナライザ30の複数の入射部31(1)〜31(n)に対して、上記したように各FBG23(1)〜23(n)から反射された光Pb(1)〜Pb(n)を入射することで、各FBG23(1)〜23(n)が受ける歪みの解析を正確に行うことができる。   Therefore, the light Pb (1) to Pb (reflected from the FBGs 23 (1) to 23 (n) as described above with respect to the plurality of incident portions 31 (1) to 31 (n) of the optical spectrum analyzer 30. By making n) incident, it is possible to accurately analyze the strain received by each of the FBGs 23 (1) to 23 (n).

例えば、各FBG23(1)〜23(n)に定常的な力が加わっているときの最初の掃引によって図5に示すようなスペクトラムデータが波長範囲λa〜λbの範囲で得られたとき、解析部60は、これらのスペクトラムデータの強度がピークとなる波長(ブラッグ波長)λ(1,1)〜λ(n,1)をそれぞれ求める。   For example, when spectrum data as shown in FIG. 5 is obtained in the wavelength range λa to λb by the first sweep when a steady force is applied to each of the FBGs 23 (1) to 23 (n), the analysis is performed. The unit 60 obtains wavelengths (Bragg wavelengths) λ (1, 1) to λ (n, 1) at which the intensity of the spectrum data peaks.

そして、前記無歪みブラッグ波長λ0と初期状態におけるブラッグ波長λ(1,1)〜λ(n,1)との波長差Δλを次のようにして求める。   Then, the wavelength difference Δλ between the undistorted Bragg wavelength λ0 and the Bragg wavelengths λ (1,1) to λ (n, 1) in the initial state is obtained as follows.

Δλ(1,1)=λ(1,1)−λ0
Δλ(2,1)=λ(2,1)−λ0
Δλ(3,1)=λ(3,1)−λ0
……
Δλ(n,1)=λ(n,1)−λ0
Δλ (1,1) = λ (1,1) −λ0
Δλ (2,1) = λ (2,1) −λ0
Δλ (3,1) = λ (3,1) −λ0
......
Δλ (n, 1) = λ (n, 1) −λ0

これら得られた各波長差は、各FBG23(1)〜23(n)に定常的に加わっている軸方向の歪みによるものであり、その歪みHは次の演算で求めることができる。   Each of these obtained wavelength differences is due to axial distortion that is constantly applied to each of the FBGs 23 (1) to 23 (n), and the distortion H can be obtained by the following calculation.

H(i,j)=Δλ(i,j)/[λ0・(1−p)]
ここで、iは各FBGを指定する数で1〜nの間の値、jは1つのFBGについてのブラッグ波長の検出回数(例えば掃引回数)を表す値、pはポアソン比(歪みテンソルの成分で定まる定数)である。
H (i, j) = Δλ (i, j) / [λ0 · (1-p)]
Here, i is a number that designates each FBG and is a value between 1 and n, j is a value that represents the number of times Bragg wavelength is detected (for example, the number of sweeps) for one FBG, and p is a Poisson's ratio (component of distortion tensor) Constant).

解析部60は、前記得られた最初の波長差Δλ(1,1)〜Δλ(n,1)についての歪みH(1,1)〜H(n,1)を求め、これを図示しない内部のメモリに記憶する。   The analysis unit 60 obtains distortions H (1,1) to H (n, 1) for the obtained first wavelength differences Δλ (1,1) to Δλ (n, 1), which are not shown in the drawing. Store in the memory.

そして、例えば次の掃引で、図5の点線で示すようなスペクトラムデータが得られた場合、前記同様に、各スペクトラムデータからブラッグ波長λ(1,2)〜λ(n,2)を求め、その無歪みブラッグ波長λ0からの波長変化Δλ(1,2)〜Δλ(n,2)を求め、その波長変化に基づいて、各FBG23(1)〜23(n)の歪みH(1,2)〜H(n,2)を算出する。   For example, when spectrum data as shown by the dotted line in FIG. 5 is obtained in the next sweep, Bragg wavelengths λ (1, 2) to λ (n, 2) are obtained from each spectrum data in the same manner as described above. Wavelength changes Δλ (1,2) to Δλ (n, 2) from the undistorted Bragg wavelength λ0 are obtained, and distortions H (1,2) of the FBGs 23 (1) to 23 (n) are determined based on the wavelength changes. ) To H (n, 2) are calculated.

以下同様の処理を光スペクトラムアナライザ30による波長掃引がなされる毎(または複数の波長掃引毎)に行うことで、例えば図6に示すような各FBG23(1)〜23(n)の歪みHの経時変化を得ることができる。   Thereafter, the same processing is performed every time the wavelength sweep is performed by the optical spectrum analyzer 30 (or every plural wavelength sweeps), so that the distortion H of each of the FBGs 23 (1) to 23 (n) as shown in FIG. A change with time can be obtained.

この図6に示しているように、ある時刻範囲Tiにおいて、各FBG23(1)〜23(n)の歪みが大きく且つ激しく変化しており、この様子から地震の発生を認識することができ、その大きさや変化周期、各変化の位相差等から発生した地震の特性を解析することができる。   As shown in FIG. 6, in a certain time range Ti, the distortions of the FBGs 23 (1) to 23 (n) change greatly and violently, and it is possible to recognize the occurrence of an earthquake from this state, It is possible to analyze the characteristics of earthquakes generated from their magnitude, change period, phase difference of each change, and so on.

上記したマルチチャンネル測定装置20は、その測定対象が地震等による歪みであったが、例えば火山性ガスや、トンネル内の空気の状態等を測定対象とする場合には、ガスによる波長吸収作用を利用することができる。   The above-described multi-channel measuring device 20 has been subjected to a distortion due to an earthquake or the like. However, for example, when measuring a volcanic gas or the state of air in a tunnel or the like, the wavelength absorption action of the gas is reduced. Can be used.

その場合、図7に示すように光学センサ部21′を構成すればよい。
図7に示したマルチチャンネル測定装置20′の光学センサ部21′は、光源22(1)〜22(n)からの出射光Pa(1)〜Pa(n)を各測定点の空間K(1)〜K(n)にそれぞれ通過させ、その各通過光Pb(1)〜Pb(n)を受光部28(1)〜28(n)の一端側でそれぞれ受けて、光スペクトラムアナライザ30の入射部31(1)〜31(n)に導く。
In that case, an optical sensor unit 21 'may be configured as shown in FIG.
The optical sensor unit 21 ′ of the multi-channel measuring device 20 ′ shown in FIG. 7 converts the emitted light Pa (1) to Pa (n) from the light sources 22 (1) to 22 (n) into the space K ( 1) to K (n), respectively, and each passing light Pb (1) to Pb (n) is received at one end side of the light receiving sections 28 (1) to 28 (n), respectively. It guide | induces to incident part 31 (1) -31 (n).

この場合、各通過光Pb(1)〜Pb(n)は、例えば図8に示しているように、各光源22(1)〜22(n)の出射光から、それぞれの空間中に存在するガス固有の波長成分が吸収されたものである。   In this case, each passing light Pb (1) to Pb (n) exists in each space from the emitted light of each light source 22 (1) to 22 (n), as shown in FIG. 8, for example. The wavelength component peculiar to gas is absorbed.

したがって、光スペクトラムアナライザ30で各通過光Pb(1)〜Pb(n)についてのスペクトラムデータを前記同様に求め、そのスペクトラムのうち吸収により大きく減衰している波長(ディップ波長)を求めることで、各空間K(1)〜K(n)に含まれるガス成分と量を把握することができる。   Therefore, by obtaining the spectrum data for each passing light Pb (1) to Pb (n) in the same manner as described above by the optical spectrum analyzer 30, and obtaining the wavelength (dip wavelength) that is greatly attenuated by absorption in the spectrum, The gas components and amounts contained in the spaces K (1) to K (n) can be grasped.

また、図8の点線のAで示しているように、特定のガスの吸収波長においてディップが深く変化したときにはその波長のガスの量が増加したことが分かり、また、点線のBで示しているようにそれまでディップしていなかった波長でディップが発生すれば、新たな種類のガスが出現したことが分かる。   Further, as indicated by a dotted line A in FIG. 8, when the dip changes deeply at the absorption wavelength of a specific gas, it can be seen that the amount of gas at that wavelength has increased, and is indicated by a dotted line B. Thus, if a dip occurs at a wavelength that has not been dipped until then, it can be seen that a new type of gas has appeared.

また、ガスによる吸収波長は、温度や圧力等によって変動するので、ディップ波長の変化を調べることで、温度や圧力の変化の有無がわかる。   In addition, since the absorption wavelength due to gas varies depending on temperature, pressure, and the like, the presence or absence of a change in temperature or pressure can be determined by examining the change in dip wavelength.

なお、ここでは測定点が離れている場合を想定して複数の光源を用いているが、各測定点が近い場合には、前記マルチチャンネル測定装置20の光学センサ部21と同様に共通の光源と複数の光カプラで構成してもよい。また逆に、前記した地震測定の実施例において、このガス測定用の実施例のように光源を複数用いてもよい。   Here, a plurality of light sources are used assuming that measurement points are separated from each other. However, when each measurement point is close, a common light source is used in the same manner as the optical sensor unit 21 of the multichannel measurement device 20. And a plurality of optical couplers. Conversely, in the embodiment of the earthquake measurement described above, a plurality of light sources may be used as in the embodiment for gas measurement.

また、前記したマルチチャンネル測定装置20で用いた光スペクトラムアナライザ30では、反射体35を導電性の高い材料で構成していたが、反射体35を導電性の低い材料で構成した場合には、反射板40の反射面41と反対面の両側(全面でもよい)に電極板46、47と対向する電極板をそれぞれ設け、さらに固定基板36、37の背面側にも電極板を設け、それらの電極板の間をパターン等によって接続する。そして、支持基板45の支持台45a、45bの表面に、固定基板36、37の背面側の電極板と接触する電極板をパターン形成して、その少なくとも一方を基準電位ラインとして前記した駆動信号発生器55に接続すればよい。   Further, in the optical spectrum analyzer 30 used in the multi-channel measuring device 20 described above, the reflector 35 is made of a material having high conductivity. However, when the reflector 35 is made of a material having low conductivity, Electrode plates opposed to the electrode plates 46 and 47 are provided on both sides (or the entire surface) of the reflection plate 40 opposite to the reflection surface 41, respectively, and electrode plates are also provided on the back side of the fixed substrates 36 and 37. The electrode plates are connected by a pattern or the like. Then, on the surfaces of the support bases 45a and 45b of the support substrate 45, an electrode plate that comes into contact with the electrode plates on the back side of the fixed substrates 36 and 37 is patterned, and at least one of them is used as a reference potential line to generate the drive signal described above What is necessary is just to connect to the device 55.

また、固定基板36、37の一端側同士の間あるいは両端の間を連結して、固定基板をコの字枠あるいは矩形枠状に形成してもよい。また、反射板40の形状も任意であり、前記した横長矩形の他に、円形、楕円形、長円形、菱形、正方形、多角形等であってもよい。   Further, the fixed substrates may be formed in a U-shaped frame or a rectangular frame shape by connecting one end side or both ends of the fixed substrates 36 and 37. Moreover, the shape of the reflecting plate 40 is also arbitrary, and may be a circle, an ellipse, an oval, a rhombus, a square, a polygon, or the like in addition to the above-described horizontally long rectangle.

また、高速往復回転時の空気抵抗を減らすために、反射板40の内側に大きな穴あるいは多数の小さな穴を設けてもよい。   Further, in order to reduce air resistance during high-speed reciprocating rotation, a large hole or a large number of small holes may be provided inside the reflector plate 40.

また、前記した光スペクトラムアナライザ30では、反射体35の反射板40の両端にそれぞれ対向する2つの電極板46、47が設けられていたが、一方側の電極板(例えば電極板46)だけによって静電力を印加してもよい。   Further, in the optical spectrum analyzer 30 described above, the two electrode plates 46 and 47 facing each other at both ends of the reflection plate 40 of the reflector 35 are provided, but only by one electrode plate (for example, the electrode plate 46). An electrostatic force may be applied.

また、駆動方式についても、前記した静電力の他に、電磁力によって反射板40を往復回転させてもよい。   Moreover, also about a drive system, you may rotate the reflecting plate 40 reciprocatingly with an electromagnetic force other than the above-mentioned electrostatic force.

この場合、例えば、前記した電極板46、47の代わりにコイルを用い、反射板40の両端部に磁性体あるいはコイルを設け、コイル間あるいはコイルと磁性体との間に発生する磁界による吸引力および反発力によって、反射板40を往復回転させる。   In this case, for example, a coil is used instead of the electrode plates 46 and 47 described above, and a magnetic body or a coil is provided at both ends of the reflector 40, and an attractive force due to a magnetic field generated between the coils or between the coil and the magnetic body. And the reflecting plate 40 is reciprocated by the repulsive force.

また、前記したように、静電力や電磁力を反射板40に直接与える方法の他に、超音波振動子等による前記固有振動数f0またはその近傍の振動を反射体35全体に加えて、その振動を反射板40に伝達させて往復回転させることも可能である。この場合、振動子を支持基板45の背面側や支持台45a、45bの部分に設けることで、その振動を反射板40に効率的に伝達することができる。   Further, as described above, in addition to the method of directly applying an electrostatic force or electromagnetic force to the reflector 40, the natural frequency f0 by an ultrasonic vibrator or the like or a vibration in the vicinity thereof is applied to the entire reflector 35, It is also possible to transmit the vibration to the reflecting plate 40 and rotate it back and forth. In this case, the vibration can be efficiently transmitted to the reflection plate 40 by providing the vibrator on the back side of the support substrate 45 and the support bases 45a and 45b.

また、上記した光スペクトラムアナライザ30では、回折格子32から出射される回折光Pf(i)を光電変換器50(i)で直接受けていたが、回折格子32から出射された各回折光Pf(i)をそれぞれ集光レンズで集光して各光電変換器50(i)に入射させる構造のものや、回折格子32から出射された各回折光Pf(i)を、スリットを介して各光電変換器50(i)に入射させる構造でもよく、集光レンズとスリットを併用してもよい。   In the optical spectrum analyzer 30 described above, the diffracted light Pf (i) emitted from the diffraction grating 32 is directly received by the photoelectric converter 50 (i), but each diffracted light Pf ( i) is condensed by a condensing lens and incident on each photoelectric converter 50 (i), or each diffracted light Pf (i) emitted from the diffraction grating 32 is converted into each photoelectric via a slit. A structure for entering the converter 50 (i) may be used, and a condensing lens and a slit may be used in combination.

また、前記したマルチチャンネル測定装置20、20′では、地震やガス等を測定対象としていたが、本発明は、現象変化を光の波長変化や強度変化としてとらえることができる測定対象について同様に適用できる。   Further, in the above-described multi-channel measuring devices 20, 20 ′, earthquakes, gases, and the like are measured objects. However, the present invention is similarly applied to measuring objects that can detect phenomenon changes as light wavelength changes and intensity changes. it can.

本発明を適用したマルチチャンネル測定装置の全体構成図Overall configuration diagram of a multi-channel measuring apparatus to which the present invention is applied 実施例の光スペクトラムアナライザの光学系の構成図Configuration diagram of optical system of optical spectrum analyzer of embodiment 光スペクトラムアナライザの要部の分解斜視図An exploded perspective view of the main part of the optical spectrum analyzer 駆動信号図Drive signal diagram 実施例の動作を説明するためのスペクトラム図Spectrum diagram for explaining the operation of the embodiment 地震等による歪みの変化を示す図Diagram showing changes in strain due to earthquakes, etc. ガス測定用のマルチチャンネル測定装置の全体構成図Overall configuration of multi-channel measuring device for gas measurement ガス測定の場合のスペクトラム図Spectrum diagram for gas measurement

符号の説明Explanation of symbols

20、20′……マルチチャンネル測定装置、21、21′……光学センサ部、22……光源、23……FBG、24、25……光カプラ、28……受光部、30……光スペクトラムアナライザ、31……入射部、32……回折格子、35……反射体、36、37……固定基板、38、39……軸部、40……反射板、41……反射面、45……支持基板、46、47……電極板、50……光電変換器、55……駆動信号発生器、56……A/D変換器、57……スペクトラムデータ記憶手段、60……解析部   20, 20 '.... multi-channel measuring device, 21, 21' .. optical sensor, 22..light source, 23..FBG, 24, 25..optical coupler, 28..light receiving unit, 30..optical spectrum Analyzer 31 ... Incident part 32 ... Diffraction grating 35 ... Reflector 36, 37 ... Fixed substrate 38, 39 ... Shaft part 40 ... Reflector plate 41 ... Reflecting surface 45 ... ... support substrate, 46, 47 ... electrode plate, 50 ... photoelectric converter, 55 ... drive signal generator, 56 ... A / D converter, 57 ... spectrum data storage means, 60 ... analysis unit

Claims (4)

回折格子(32)と、
複数の被測定光を、互いに平行な光軸で且つ前記回折格子の回折溝に直交する向きに入射させる複数の入射部(31)と、
固定基板(36、37)と、該固定基板の縁部から所定幅で所定長さ延設され、その長さ方向に沿って捩じれ変形可能な軸部(38、39)と、前記軸部の先端に自身の縁部で連結されて前記固定基板に対して回転自在に支持され、一面側に前記回折格子からの回折光を反射するための反射面が設けられた反射板(40)とを有し、前記複数の入射部から入射された複数の被測定光に対して前記回折格子からそれぞれ出射される回折光を前記反射板で受けて前記回折格子へ反射する反射体(35)と、
前記回折格子の回折溝の長さ方向に沿って並び、前記反射体から出射されたそれぞれの反射光に対して前記回折格子から所定角度で出射される回折光をそれぞれ受けて電気信号に変換する複数の光電変換器(50)と、
前記反射体の軸部と反射板とからなる部分の固有振動数に対応した周波数の電気信号によって前記反射板に力を与えて、該反射板を前記固有振動数またはそれに近い振動数で往復回転させ、前記複数の光電変換器が受ける光の波長を所定波長範囲内で掃引する反射体駆動手段(45、46、47、55)とを備えた光スペクトラムアナライザ。
A diffraction grating (32);
A plurality of incident portions (31) that allow a plurality of light beams to be measured to be incident in directions parallel to each other and perpendicular to the diffraction grooves of the diffraction grating;
A fixed substrate (36, 37), a shaft portion (38, 39) extending from the edge of the fixed substrate with a predetermined width and having a predetermined length and capable of being twisted and deformed along the length direction; A reflection plate (40) connected to the tip at its own edge and rotatably supported with respect to the fixed substrate, and provided with a reflection surface for reflecting diffracted light from the diffraction grating on one surface side; A reflector (35) that receives the diffracted light emitted from the diffraction grating with respect to the plurality of light beams to be measured incident from the plurality of incident portions, and reflects the diffracted light to the diffraction grating;
Aligned along the length direction of the diffraction grooves of the diffraction grating, each of the reflected light emitted from the reflector receives each diffracted light emitted from the diffraction grating at a predetermined angle and converts it into an electrical signal. A plurality of photoelectric converters (50);
A force is applied to the reflecting plate by an electric signal having a frequency corresponding to the natural frequency of the portion composed of the shaft portion and the reflecting plate of the reflector, and the reflecting plate is rotated back and forth at the natural frequency or a frequency close thereto. And a reflector driving means (45, 46, 47, 55) for sweeping the wavelength of light received by the plurality of photoelectric converters within a predetermined wavelength range.
測定点における現象変化に応じて波長または強度が変化する光を、複数の測定点について並行出射する光学センサ部(21)と、
前記光学センサ部から出射される複数の光を被測定光として受けてそのスペクトラム特性を測定するスペクトラム測定部(30)と、
前記スペクトラム測定部によって測定された各測定点毎のスペクトラム変化に基づいて各測定点の現象変化を解析する解析部(60)とを有するマルチチャンネル測定装置において、
前記スペクトラム測定部を前記請求項1記載の光スペクトラムアナライザによって構成したことを特徴とするマルチチャンネル測定装置。
An optical sensor unit (21) for emitting light whose wavelength or intensity changes according to a phenomenon change at a measurement point in parallel for a plurality of measurement points;
A spectrum measuring section (30) for receiving a plurality of lights emitted from the optical sensor section as light to be measured and measuring spectrum characteristics thereof;
In a multi-channel measurement apparatus having an analysis unit (60) for analyzing a phenomenon change at each measurement point based on a spectrum change at each measurement point measured by the spectrum measurement unit,
The multi-channel measurement apparatus, wherein the spectrum measurement unit is configured by the optical spectrum analyzer according to claim 1.
前記光学センサ部は、
光源(22)と、
前記複数の測定点にそれぞれ配置され、前記光源からの光を受けて、それぞれの測定点で受ける歪みの変化に応じて波長が変化する複数の光を出射する複数のファイバブラッググレーティング(23)とを有していることを特徴とする請求項2記載のマルチチャンネル測定装置。
The optical sensor unit is
A light source (22);
A plurality of fiber Bragg gratings (23) arranged at the plurality of measurement points, respectively, for receiving light from the light source and emitting a plurality of lights whose wavelengths change in accordance with changes in strain received at the respective measurement points; The multi-channel measuring apparatus according to claim 2, wherein
前記光学センサ部は、
光源(22)と、
前記光源から前記複数の測定点の空間を通過して、該空間のガスの変化に応じて吸収波長または吸収量が変化する複数の光をそれぞれ受けて前記スペクトラム測定部に出射する複数の受光部(28)とを有していることを特徴とする請求項2記載のマルチチャンネル測定装置。
The optical sensor unit is
A light source (22);
A plurality of light-receiving units that pass through the spaces of the plurality of measurement points from the light source, receive a plurality of lights whose absorption wavelengths or absorption amounts change according to changes in gas in the spaces, and emit the light to the spectrum measurement unit. The multi-channel measuring device according to claim 2, wherein:
JP2004036118A 2004-02-13 2004-02-13 Optical spectrum analyzer and multichannel measurement apparatus using the same Pending JP2005227130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036118A JP2005227130A (en) 2004-02-13 2004-02-13 Optical spectrum analyzer and multichannel measurement apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036118A JP2005227130A (en) 2004-02-13 2004-02-13 Optical spectrum analyzer and multichannel measurement apparatus using the same

Publications (1)

Publication Number Publication Date
JP2005227130A true JP2005227130A (en) 2005-08-25

Family

ID=35001962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036118A Pending JP2005227130A (en) 2004-02-13 2004-02-13 Optical spectrum analyzer and multichannel measurement apparatus using the same

Country Status (1)

Country Link
JP (1) JP2005227130A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208243A (en) * 2005-01-28 2006-08-10 Anritsu Corp Optical spectrum analyzer
WO2009054193A1 (en) * 2007-10-26 2009-04-30 Murata Manufacturing Co., Ltd. Optical spectrum analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208243A (en) * 2005-01-28 2006-08-10 Anritsu Corp Optical spectrum analyzer
JP4557730B2 (en) * 2005-01-28 2010-10-06 アンリツ株式会社 Optical spectrum analyzer
WO2009054193A1 (en) * 2007-10-26 2009-04-30 Murata Manufacturing Co., Ltd. Optical spectrum analyzer

Similar Documents

Publication Publication Date Title
US8348611B2 (en) Wind turbine having a sensor system for detecting deformation in a wind turbine rotor blade and corresponding method
CN101960252B (en) Angle sensor and system employing guided-mode resonance
US6359691B2 (en) Device for measuring translation, rotation or velocity via light beam interference
JP5928769B2 (en) Electromechanical component monitoring system and method
US10557755B2 (en) Position detection method and optical module
JP4557907B2 (en) Wavelength calibration apparatus and method for MEMS wavelength swept light source
KR20130018553A (en) Film thickness measurement apparatus
KR101959341B1 (en) Position-measuring device and system having a plurality of position-measuring devices
KR20170014404A (en) Apparatus for measuring Light Detection and Ranging
CN108139284A (en) Fibre optic compression sensor and method
CN113167998A (en) Spatial modulation device
US10119862B2 (en) Spectrum measuring device, spectroscopic device, and spectroscopic system
Mikhailov et al. Multifunctional fiber-optic sensors for space infrastructure
CN112710256B (en) Electromechanical performance test system and method for scanning grating micro-mirror
JP4787789B2 (en) FBG sensor system
JP5685290B2 (en) Method and apparatus for performing time domain measurements
JP2005227130A (en) Optical spectrum analyzer and multichannel measurement apparatus using the same
CN110806274A (en) Strain sensing measurement device and method based on multi-longitudinal-mode self-mixing effect
JP2006266771A (en) Gas sensor
JP2006145270A (en) Mems optical spectrum analyzer and its wavelength calibration method
JP2008249735A (en) Gas sensor
JP4399444B2 (en) FBG sensor system
US7406218B2 (en) FBG sensor system
CN104535199A (en) Terahertz wave frequency coherent measurement method
KR100902045B1 (en) System for Measuring Surface Vibration using Interferometer and Method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20070723

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A131 Notification of reasons for refusal

Effective date: 20071204

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401