JP2005226468A - Cogeneration device and method for controlling electrothermal ratio of output - Google Patents

Cogeneration device and method for controlling electrothermal ratio of output Download PDF

Info

Publication number
JP2005226468A
JP2005226468A JP2004033202A JP2004033202A JP2005226468A JP 2005226468 A JP2005226468 A JP 2005226468A JP 2004033202 A JP2004033202 A JP 2004033202A JP 2004033202 A JP2004033202 A JP 2004033202A JP 2005226468 A JP2005226468 A JP 2005226468A
Authority
JP
Japan
Prior art keywords
hot water
heat
steam
heat exchanger
steam generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004033202A
Other languages
Japanese (ja)
Other versions
JP4382513B2 (en
Inventor
Kenji Matsuda
健治 松田
Satoshi Shibata
聡 柴田
Umeo Inoue
梅夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2004033202A priority Critical patent/JP4382513B2/en
Publication of JP2005226468A publication Critical patent/JP2005226468A/en
Application granted granted Critical
Publication of JP4382513B2 publication Critical patent/JP4382513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

<P>PROBLEM TO BE SOLVED: To simply and easily perform electrothermal ratio control of a cogeneration device while maintaining the maximum heat recovery efficiency by simplified facilities. <P>SOLUTION: In a cogeneration device provided with a steam generation boiler capable of operating at various pressure and provided with a gas turbine, a generator, a regenerator, a combustor, a hot water heat exchanger, supplying high temperature turbine exhaust gas from the gas turbine to the steam generation boiler after heating compressed combustion air in the regenerator, the steam generation boiler is operated under reduced pressure steam to increase heat recovery by the hot water heat exchanger when heat demand of heat load is large, and the steam generation boiler is operated under high pressure steam and part of generated high pressure steam is injected into the combustor or a compressed combustion air system including the compressor and the regenerator to increase output of the generator when heat demand of heat load is small. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電力と温水等を同時に供給する小容量のガスタービン・コージェネレーションシステム(以下熱電併給装置と呼ぶ)とその出力の熱電比制御方法に関するものであり、比較的小規模な各種工場やマーケット、事務所、温室農場、集合住宅等で単独又は複数台を組み合せした状態で使用する小容量の熱電併給システムに適用されるものである。   The present invention relates to a small-capacity gas turbine cogeneration system (hereinafter referred to as a combined heat and power supply system) that supplies electric power and hot water simultaneously, and a method for controlling the thermoelectric ratio of the output. The present invention is applied to a small-capacity combined heat and power system used in a market, an office, a greenhouse farm, an apartment house, etc., alone or in combination.

従前から、小規模の病院、スポーツクラブ、店舗、ホテルなどの業務用ビルや中小工場等に於いては、省エネルギーを図る目的から、マイクロガスタービンを用いた熱電併給装置が広く利用されている。
ところで、この種のマイクロガスタービンを用いた小型分散発電をベースとする熱電併給装置に於いては、熱需要先きの都合から温水ボイラを排熱回収装置として用い、温水の形で熱回収が多く行なわれており、また、この種の熱電併給装置は、一般に電気出力と熱出力との比が常にほぼ一定の値になると云う特性を有している。
Conventionally, in business buildings such as small hospitals, sports clubs, stores, hotels, small and medium factories, etc., cogeneration devices using micro gas turbines have been widely used for the purpose of energy saving.
By the way, in a combined heat and power supply system based on small distributed power generation using this type of micro gas turbine, a hot water boiler is used as an exhaust heat recovery device for the convenience of heat demand, and heat recovery is performed in the form of hot water. In many cases, this type of combined heat and power supply apparatus generally has a characteristic that the ratio between the electric output and the heat output is always a substantially constant value.

一方、熱電併給装置を使用する上記各事業所等では、その業務内容からして、電力需要と熱需要のピークが必ずしも時間的に一致するとは限らず、電力需要のピークと熱需要のピークとが夫々異なった時刻となるのが通常である。
そのため、熱電併給装置を利用する各事業所等に於いては、電力需要や熱需要に対する供給力に過不足が生ずるのを防止するため、予かじめ分散設置した複数台の熱電併給装置の運転台数を変更したり、或いは各熱電併給装置の電気出力と熱出力の比(熱電比)を調整するようにしている。
On the other hand, in each of the above-mentioned establishments that use the combined heat and power supply device, the peak of power demand and the peak of heat demand do not always coincide with each other in terms of the work contents. Usually, the times are different.
Therefore, in each business establishment that uses a combined heat and power unit, in order to prevent excess and deficiency in the supply capacity for power demand and heat demand, the operation of multiple combined heat and power units that have been distributed in advance is operated. The number of units is changed, or the ratio between the electric output and the heat output (thermoelectric ratio) of each cogeneration apparatus is adjusted.

図4乃至図6は、従前の上記熱電併給装置の熱電比の調整方法を示すものであり、図4は熱電併給装置の運転台数の制御と共に、排熱回収装置6にバイパスダクト9を設け、余剰な熱をバイパスダクト9を通して外部へ放散させる方法である。また、図5は排熱回収装置6にラジェータ10を併設し、過剰な熱をラジェータ10を介して外部へ放散させるようにしたものである。   4 to 6 show a conventional method for adjusting the thermoelectric ratio of the above combined heat and power unit. FIG. 4 shows the control of the number of operating units of the combined heat and power unit and a bypass duct 9 in the exhaust heat recovery unit 6. This is a method of dissipating excess heat through the bypass duct 9 to the outside. FIG. 5 shows a configuration in which a radiator 10 is provided in the exhaust heat recovery device 6 to dissipate excessive heat to the outside through the radiator 10.

尚、図4及び図5に於いて1はガスタービン、2は圧縮機、3は再生器、4は燃焼器、5は発電機、6は排熱回収装置、6′は温水ボイラ、6″は蒸気ボイラ、7は電力負荷、8は熱負荷、9はバイパスダクト、10はラジエータ、11は自動ダンパー装置、12は温水循環用ポンプ、13は温水温度制御装置、14は三方温度制御弁、15はファン装置、Aは燃焼用空気、Fは燃料用ガス、Epは発電機出力、Whは温水、G1 は高温タービン排ガス、G2 はタービン排ガス、G0 は放出排ガスであり、図4の装置では、熱負荷8の熱需要が減少すると、温水Whの温度が上昇し、温水温度制御装置13を介して自動ダンパー装置11が開放され、バイパスダクト9を通してタービン排ガスG2 が外部へ放散される。 4 and 5, 1 is a gas turbine, 2 is a compressor, 3 is a regenerator, 4 is a combustor, 5 is a generator, 6 is an exhaust heat recovery device, 6 'is a hot water boiler, 6 ". Is a steam boiler, 7 is a power load, 8 is a heat load, 9 is a bypass duct, 10 is a radiator, 11 is an automatic damper device, 12 is a hot water circulation pump, 13 is a hot water temperature control device, 14 is a three-way temperature control valve, 15 is a fan device, A is combustion air, F is fuel gas, Ep is generator output, Wh is hot water, G 1 is high temperature turbine exhaust gas, G 2 is turbine exhaust gas, and G 0 is discharge exhaust gas. in the apparatus, when heat demand of the heat load 8 is reduced, the temperature rise of the hot water Wh, automatic damper device 11 is opened through the hot water temperature control unit 13, dissipated through the bypass duct 9 turbine exhaust gas G 2 is outside Is done.

同様に、図5の装置では、熱負荷8の熱需要が減少すると温水Whの温度が上昇し、温水温度制御装置13により三方温度制御弁14を切換えしてラジェータ10側へ温水Whを流通させると共に、ファン装置15を駆動することにより、温水Whの余剰な熱が外部へ放散される。
尚、図4及び図5に示した熱電併給装置そのものは公知であるため、ここではその作動の詳細な説明は省略する。
Similarly, in the apparatus of FIG. 5, when the heat demand of the heat load 8 decreases, the temperature of the hot water Wh increases, and the hot water temperature control device 13 switches the three-way temperature control valve 14 to distribute the hot water Wh to the radiator 10 side. At the same time, by driving the fan device 15, excess heat of the hot water Wh is dissipated to the outside.
4 and 5 are well known, so detailed description of their operation is omitted here.

しかし、前記図4に示した熱電比の調整方法に於いては、バイパスダクト9や自動ダンパー装置11を必要とするうえ、自動ダンパー装置11を締切り性能が高性能なものにするとその製造コストが高騰する。そのため、通常は3〜5%程度のガスリークを許容する必要があり、結果として熱回収効率が5〜10%程度低下するだけでなく、バイパスダクト9の使用時の騒音防止のために排気サイレンサーが必要となり、熱回収効率の低下や設備費の上昇を招くと云う問題がある。   However, in the thermoelectric ratio adjustment method shown in FIG. 4, the bypass duct 9 and the automatic damper device 11 are required, and if the automatic damper device 11 has a high cut-off performance, its manufacturing cost is increased. Soaring. Therefore, it is usually necessary to allow a gas leak of about 3 to 5%. As a result, not only the heat recovery efficiency is reduced by about 5 to 10%, but also an exhaust silencer is used to prevent noise when the bypass duct 9 is used. There is a problem that it is necessary and causes a decrease in heat recovery efficiency and an increase in equipment costs.

また、図5に示した熱電比調整の場合も同様であり、放熱により熱回収効率が低下するだけでなく、冷却用ファン装置15の運転用動力を必要とする等様々な問題が存在する。   The same applies to the thermoelectric ratio adjustment shown in FIG. 5, and there are various problems such as not only the heat recovery efficiency is reduced due to heat radiation but also the driving power of the cooling fan device 15 is required.

一方、上述の如き問題、特に熱回収効率の低下の問題を解決する方策として、本願発明者等は、先きに図6に示す如き熱電比制御方法を開発し、特開2002−4946号としてこれを公開している。   On the other hand, as a measure for solving the above-mentioned problems, particularly the problem of reduction in heat recovery efficiency, the inventors of the present application previously developed a thermoelectric ratio control method as shown in FIG. This is released.

即ち、当該図6に示す熱電比制御方法は、排熱回収装置6に排熱回収ボイラを用い、熱需要の減少により発生蒸気S1 が余剰の場合(又は、電力需要の増加により発生電力が不足した場合)には、発生蒸気S1 の一部S3 を蒸気制御弁16及び蒸気供給管路17を通して燃焼器4へ供給し、発電機2の出力増を図ることによって熱電併給装置の熱電比を調整する構成としたものである。尚、図6に於いて、S1 は発生蒸気、S2 は熱負荷への供給蒸気、S3 は燃焼器への供給蒸気、18は蒸気圧力制御装置である。 That is, the thermoelectric ratio control method shown in FIG. 6 uses an exhaust heat recovery boiler for the exhaust heat recovery device 6 and the generated steam S 1 is surplus due to a decrease in heat demand (or the generated power is increased due to an increase in power demand). In the case of shortage), a part of the generated steam S 1 S 3 is supplied to the combustor 4 through the steam control valve 16 and the steam supply line 17, and the output of the generator 2 is increased to increase the thermoelectric power of the cogeneration device. The ratio is adjusted. In FIG. 6, S 1 is generated steam, S 2 is steam supplied to the thermal load, S 3 is steam supplied to the combustor, and 18 is a steam pressure control device.

上記特開2002−4946号の熱電比制御方法は、外部への直接的なタービン排ガスG2 の放散が無く、余剰な蒸気S3 でもって発電機5の電気出力Epの増加を図ることができ、優れた実用的効用を具備するものである。
しかし、図6からも明らかなように、排熱回収ボイラ6″で発生した蒸気S1 の一部S3 を燃焼器4へ供給する構成としているため、排熱回収ボイラ6″の運転圧力を燃焼器4の内部圧力よりも高い高圧力に保持する必要があり、必然的に排熱回収ボイラ6″の運転温度は、排熱回収装置6を温水ボイラ6′とした場合に比較して高温となる。その結果、熱回収効率が温水ボイラ6′の場合に比較して低下せざるを得ず、更に排熱回収装置6及びこれらの制御システムが複雑となり、その設備コストが上昇すると云う難点がある。
The thermoelectric ratio control method disclosed in Japanese Patent Application Laid-Open No. 2002-4946 does not directly diffuse the turbine exhaust gas G 2 to the outside, and can increase the electrical output Ep of the generator 5 with surplus steam S 3. It has excellent practical utility.
However, as is clear from FIG. 6, since a part S 3 of the steam S 1 generated in the exhaust heat recovery boiler 6 ″ is supplied to the combustor 4, the operating pressure of the exhaust heat recovery boiler 6 ″ is changed. It is necessary to keep the pressure higher than the internal pressure of the combustor 4, and the operating temperature of the exhaust heat recovery boiler 6 ″ is inevitably higher than that when the exhaust heat recovery device 6 is a hot water boiler 6 ′. As a result, the heat recovery efficiency is inevitably lowered as compared with the case of the hot water boiler 6 ', and the exhaust heat recovery device 6 and the control system thereof are complicated, resulting in an increase in equipment cost. There is.

特開2002−4946号公報JP 2002-4946 A 特開2002−4945号公報Japanese Patent Laid-Open No. 2002-4945

本願発明は、従前のこの種熱電併給装置及びその熱電比制御方法に於ける上述の如き問題、即ち(イ)熱回収効率が低下すること及び(ロ)排熱回収装置やその制御システムの設備費の引下げを図り難いこと等の問題を解決せんとするものであり、排熱回収装置6を温水用熱交換器を内蔵した変圧運転の可能な排熱回収ボイラとし、当該排熱回収ボイラの蒸気圧力を必要に応じて調整可能とすることにより、常に最大の熱回収効率を維持しつつ、しかも熱電比制御装置の複雑化を招くことなしに簡素な制御装置でもって、高精度な熱電比制御を行なえるようにした熱電併給装置とその熱電比制御方法を提供することを、発明の主たる目的とするものである。   The present invention relates to the above-described problems in the conventional combined heat and power supply device and the thermoelectric ratio control method thereof, that is, (b) the heat recovery efficiency is lowered, and (b) the waste heat recovery device and its control system equipment. It is intended to solve problems such as difficulty in reducing costs, and the waste heat recovery device 6 is a waste heat recovery boiler capable of transformer operation with a built-in heat exchanger for hot water. The steam pressure can be adjusted as necessary, so that the maximum heat recovery efficiency can be maintained at all times, and with a simple control device without complicating the thermoelectric ratio control device, a highly accurate thermoelectric ratio can be achieved. The main object of the present invention is to provide a cogeneration apparatus and a thermoelectric ratio control method capable of performing control.

請求項1の発明は、ガスタービンと発電機と圧縮機と再生器と燃焼器と温水用熱交換器を備えた変圧運転の可能な蒸気発生用ボイラとを備え、ガスタービンからの高温タービン排ガスを再生器で圧縮燃焼用空気を加熱したあと蒸気発生用ボイラへ供給する構成とした熱電併給装置に於いて、熱負荷の熱需要が多いときには前記蒸気発生用ボイラを減圧蒸気下で運転して温水用熱交換器による熱回収を増加させ、また、熱負荷の熱需要が少ないときには前記蒸気発生用ボイラを高圧蒸気下で運転すると共に、発生した高圧蒸気の一部を圧縮機と再生器を含む圧縮燃焼用空気系内若しくは燃焼器内へ噴射して発電機出力を増加させることを発明の基本構成とするものである。   The invention of claim 1 comprises a gas turbine, a generator, a compressor, a regenerator, a combustor, and a steam generation boiler capable of transforming operation, and a hot turbine exhaust gas from the gas turbine. In a combined heat and power system that heats compressed combustion air with a regenerator and then supplies it to a steam generation boiler, the steam generation boiler is operated under reduced pressure steam when the heat demand of the heat load is large. The heat recovery by the heat exchanger for hot water is increased, and when the heat demand of the heat load is small, the steam generating boiler is operated under high pressure steam, and a part of the generated high pressure steam is replaced with a compressor and a regenerator. The basic structure of the invention is to increase the generator output by injecting into the air system for compression combustion or into the combustor.

請求項2の発明は、ガスタービンと発電機と圧縮機と再生器と燃焼器と温水用熱交換器を備えた変圧運転の可能な蒸気発生用ボイラとを備え、ガスタービンからの高温タービン排ガスを再生器で圧縮燃焼用空気を加熱したあと蒸気発生用ボイラへ供給する構成とした熱電併給装置に於いて、前記温水用熱交換器20と熱負荷8との温水循環通路に温水循環用ポンプ12と三方温度調整弁14を介設すると共に、三方温度調整弁14を介して温水用熱交換器20の温水出口と温水入口間を温水バイパス管23で連通させ、また、前記蒸気発生用ボイラ24と前記圧縮機2と再生器3を含む圧縮燃焼用空気系25若しくは燃焼器4とを逆止弁22を介設した蒸気噴射通路21により連通し、前記熱負荷8の熱需要が減少した時には、熱負荷8の出口側の温水Whの温度に基づいて前記温水循環用ポンプ12と三方温度調整弁14の何れか一方又は両方の作動を制御して温水用熱交換器20へ流通する温水流量を減少させ、温水用熱交換器20に於ける熱回収量を減少させると共に蒸気発生用ボイラ24に於ける熱回収量を増加させて高圧蒸気を発生させ、当該高圧蒸気を前記逆止弁22を通して圧縮燃焼用空気系25内又は燃焼器4内へ噴射することにより発電機出力を増加させることを発明の基本構成とするものである。   According to a second aspect of the present invention, a gas turbine, a generator, a compressor, a regenerator, a combustor, and a steam generating boiler equipped with a hot water heat exchanger are provided, and the high temperature turbine exhaust gas from the gas turbine is provided. In the combined heat and power supply apparatus in which compressed combustion air is heated by a regenerator and then supplied to a steam generating boiler, a hot water circulation pump is provided in a hot water circulation passage between the hot water heat exchanger 20 and the heat load 8. 12 and a three-way temperature control valve 14, and a hot water bypass pipe 23 communicates between the hot water outlet and the hot water inlet of the hot water heat exchanger 20 via the three-way temperature control valve 14. 24, the compression combustion air system 25 including the compressor 2 and the regenerator 3 or the combustor 4 are connected by a steam injection passage 21 provided with a check valve 22, and the heat demand of the heat load 8 is reduced. Sometimes the heat load 8 Based on the temperature of the hot water Wh on the side, the operation of one or both of the hot water circulation pump 12 and the three-way temperature control valve 14 is controlled to reduce the flow rate of the hot water flowing to the hot water heat exchanger 20, The amount of heat recovered in the heat exchanger 20 is decreased and the amount of heat recovered in the steam generating boiler 24 is increased to generate high-pressure steam, and the high-pressure steam is compressed through the check valve 22 and compressed combustion air system. The basic configuration of the present invention is to increase the generator output by injecting the fuel into the gas generator 25 or the combustor 4.

請求項3の発明は、請求項2の発明に於いて、蒸気発生用ボイラ24の缶体24aの蒸気溜24b内に温水用熱交換器20の熱交換管20′を配設するようにしたものである。   In the invention of claim 3, in the invention of claim 2, the heat exchange pipe 20 'of the heat exchanger 20 for hot water is arranged in the steam reservoir 24b of the can 24a of the boiler 24 for steam generation. Is.

請求項4の発明は、請求項2の発明に於いて、温水用熱交換器20と蒸気発生用ボイラ24とを別体とし、温水用熱交換器20の缶体20a内と蒸気発生用ボイラ24の蒸気溜24b間を蒸気制御弁26を介して連通すると共に、前記温水用熱交換器20の缶体20aの底部と蒸気発生用ボイラ24の給水溜24c間を連通管路24dにより連通するようにしたものである。   The invention of claim 4 is the invention of claim 2, wherein the hot water heat exchanger 20 and the steam generating boiler 24 are separated, and the inside of the can body 20a of the hot water heat exchanger 20 and the steam generating boiler. 24 steam reservoirs 24b communicate with each other via a steam control valve 26, and the bottom of the can body 20a of the hot water heat exchanger 20 communicates with the water supply reservoir 24c of the steam generating boiler 24 through a communication line 24d. It is what I did.

本願発明では、(イ)蒸気発生用ボイラ24からの蒸気Sを圧縮機2の出口と再生器3の入口とを連結する圧縮空気系25内又は燃焼器4内へ噴射するようにしているため、蒸気Sが0.3〜0.5MPa・160℃〜170℃の比較的低温・低圧蒸気でよく、その結果従前の燃焼器4内へ高温・高圧蒸気を噴射する場合に比較して、蒸気発生用ボイラ24を常により高い熱回収効率の下で運転することができる。   In the present invention, (i) the steam S from the steam generating boiler 24 is injected into the compressed air system 25 or the combustor 4 that connects the outlet of the compressor 2 and the inlet of the regenerator 3. The steam S may be a relatively low temperature / low pressure steam of 0.3 to 0.5 MPa · 160 ° C. to 170 ° C. As a result, the steam S is compared with the case where high temperature / high pressure steam is injected into the conventional combustor 4. The generating boiler 24 can always be operated under higher heat recovery efficiency.

また、(ロ)再生器3の入口側へ160℃〜170℃の温度の蒸気を噴射することにより、圧縮機2からの燃焼用空気Aの温度が若干低下することになり、結果として再生器3に於ける熱交換効率が向上することになる。   Further, (b) by injecting steam having a temperature of 160 ° C. to 170 ° C. to the inlet side of the regenerator 3, the temperature of the combustion air A from the compressor 2 is slightly lowered, and as a result, the regenerator The heat exchange efficiency in 3 will be improved.

更に、(ハ)上記(イ)及び(ロ)等により、本願発明では従前の燃焼器4へ蒸気を噴射する場合に比較して発電機効率の上昇がより大きくなる。   Furthermore, (c) Due to the above (a) and (b), etc., in the present invention, the increase in generator efficiency is greater than in the case where steam is injected into the conventional combustor 4.

以下、図面に基づいて本発明の各実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施形態1Embodiment 1

図1は、本発明の実施形態1を適用した熱電併給装置の全体系統図であり、図1に於いて1はガスタービン、2は圧縮機、3は再生器、4は燃焼器、5は発電機、6は排熱回収装置(温水用熱交換器20を備えた蒸気発生用ボイラ24)、7は電力負荷、8は熱負荷、12は温水循環用ポンプ、13は温水温度制御装置、14は三方温度調整弁、20は温水用熱交換器、20′は熱交換管、20aは缶体、21は蒸気噴射管、22は逆止弁、23は温水バイパス管、24は蒸気発生用ボイラ、24′は熱交換管、24aは缶体、24bは蒸気溜、24cは給水溜、24dは連通管路、Aは燃焼用空気、Fは燃料用ガス、G1 は高温タービン排ガス、G2 はタービン排ガス、G0 は放出排ガス、Whは温水、T1 ・T2 は温度センサ、Wh′はバイパス温水である。 FIG. 1 is an overall system diagram of a cogeneration apparatus to which Embodiment 1 of the present invention is applied. In FIG. 1, 1 is a gas turbine, 2 is a compressor, 3 is a regenerator, 4 is a combustor, 5 is A generator, 6 is an exhaust heat recovery device (a steam generation boiler 24 equipped with a hot water heat exchanger 20), 7 is an electric load, 8 is a heat load, 12 is a hot water circulation pump, 13 is a hot water temperature control device, 14 is a three-way temperature control valve, 20 is a hot water heat exchanger, 20 'is a heat exchange pipe, 20a is a can, 21 is a steam injection pipe, 22 is a check valve, 23 is a hot water bypass pipe, and 24 is for steam generation. Boiler, 24 'is a heat exchange pipe, 24a is a can, 24b is a steam reservoir, 24c is a water supply reservoir, 24d is a communication pipe, A is combustion air, F is a fuel gas, G 1 is a high-temperature turbine exhaust gas, G 2 is turbine exhaust gas, G 0 is discharge exhaust gas, Wh is hot water, T 1 and T 2 are temperature sensors, Wh 'is Pass hot water.

尚、図1に於いて、前記図4乃至図6と同一の部位・部材にはこれと同じ参照番号が付されている。   In FIG. 1, the same parts and members as those in FIGS. 4 to 6 are denoted by the same reference numerals.

図1を参照して、本件発明に於いては、タービン排ガスG2 の排熱回収装置6として、温水用熱交換器20を備えた蒸気圧の変圧運転が可能な蒸気発生用ボイラ24が利用されており、缶体24a内に蒸気発生用の熱交換管24′と温水用熱交換器20の熱交換管20′とが配設されている。尚、図1に於いて24bは蒸気発生用ボイラ24の蒸気溜、24cは給水溜である。 Referring to FIG. 1, in the present invention, a steam generation boiler 24 equipped with a hot water heat exchanger 20 capable of steam pressure transformation operation is used as the exhaust heat recovery device 6 of the turbine exhaust gas G 2. In the can 24a, a heat exchanging pipe 24 'for generating steam and a heat exchanging pipe 20' of the heat exchanger 20 for hot water are arranged. In FIG. 1, 24b is a steam reservoir of the steam generating boiler 24, and 24c is a water supply reservoir.

圧縮機2で圧縮された燃焼用空気Aが再生器3で予熱され、燃焼器4で燃料用ガスFと混合燃焼されることにより約850℃の高温燃焼ガスが生成される。この高温燃焼ガスによりガスタービン1が回転駆動され、発電機5で15〜100kw程度の発電機出力E0 が発生される。 Combustion air A compressed by the compressor 2 is preheated by the regenerator 3 and mixed and burned with the fuel gas F by the combustor 4 to generate a high-temperature combustion gas of about 850 ° C. The gas turbine 1 is rotationally driven by this high-temperature combustion gas, and a generator output E 0 of about 15 to 100 kW is generated by the generator 5.

前記ガスタービン1からの約600℃高温タービン排ガスG1 は再生器3での圧縮空気Aとの熱交換により約280〜300℃のタービン排ガスG2 となって蒸気発生用ボイラ24の熱交換管24′へ送られ、蒸気Sを発生することにより約80〜90℃の放出排ガスG0 となって、外部へ放散されて行く。 Heat exchange tubes of approximately 600 ° C. hot turbine exhaust gas G 1 is regenerator 3 by heat exchange with a turbine exhaust gas G 2 from about 280 to 300 ° C. Steam generating boiler 24 with the compressed air A in from the gas turbine 1 By being sent to 24 ′ and generating steam S, it becomes a discharged exhaust gas G 0 of about 80 to 90 ° C. and is diffused to the outside.

温水循環ポンプ12により熱負荷8側から還流されて来た温水Whは、温水用熱交換器20で、前記蒸気溜24b内に発生した蒸気Sにより約60〜70℃に加熱され、熱負荷8側へ循環して行く。   The hot water Wh that has been recirculated from the heat load 8 side by the hot water circulation pump 12 is heated to about 60-70 ° C. by the steam S generated in the steam reservoir 24b by the heat exchanger 20 for hot water. Circulate to the side.

今、熱負荷8側の温水熱需要が大きい場合には、熱負荷8の出口側の温水Whの温度が設定値近傍の温度以下にまで低下すると共に、温水循環用ポンプ12は全負荷運転の状態となる。これにより、温水用熱交換器20の熱負荷は最大状態となる。   Now, when the demand for hot water heat on the heat load 8 side is large, the temperature of the hot water Wh on the outlet side of the heat load 8 decreases to a temperature near the set value and the hot water circulation pump 12 is in full load operation. It becomes a state. Thereby, the heat load of the heat exchanger 20 for hot water will be in the maximum state.

ところで、一般に給湯暖房等の熱負荷8の温水温度は通常60〜70℃であるため、温水用熱交換器20のピンチポイント温度差を夫々10℃とすれば、加熱側の蒸気発生用ボイラ24の蒸気溜24b内の蒸気圧力は、70〜80℃の飽和蒸気圧となる。   By the way, since the hot water temperature of the heat load 8 such as hot water heater is generally 60-70 ° C., if the pinch point temperature difference of the hot water heat exchanger 20 is 10 ° C., respectively, the steam generator boiler 24 on the heating side. The vapor pressure in the vapor reservoir 24b is a saturated vapor pressure of 70 to 80 ° C.

また、再生器3からのタービン排ガスG2 の温度は通常約280〜300℃であり、蒸気発生用の熱交換管24′に於ける熱交換により80〜90℃にまで冷却され、放出排ガスG0 となる。即ち、排熱回収装置6としては、タービン排ガスG2 の冷却温度差ΔT=200〜210℃に相当する熱量を回収することになる。 Further, the temperature of the turbine exhaust gas G 2 from the regenerator 3 is normally about 280 to 300 ° C., and is cooled to 80 to 90 ° C. by heat exchange in the heat exchange pipe 24 ′ for generating steam. 0 . That is, the exhaust heat recovery device 6 recovers the amount of heat corresponding to the cooling temperature difference ΔT = 200 to 210 ° C. of the turbine exhaust gas G 2 .

尚、この状態に於いては、蒸気発生用ボイラ24の缶体24a内の蒸気圧は前述の通り70〜80℃の飽和蒸気圧であり、圧縮機2や燃焼器4の器内圧力に比較して低い圧力である。そのため、逆止弁22は閉鎖状態にあり、圧縮空気Aや燃焼ガス等が蒸気発生用ボイラ24側へ流入することは無い。   In this state, the vapor pressure in the can 24a of the steam generating boiler 24 is a saturated vapor pressure of 70 to 80 ° C. as described above, and is compared with the internal pressure of the compressor 2 and the combustor 4. And low pressure. Therefore, the check valve 22 is in a closed state, and compressed air A, combustion gas, etc. do not flow into the steam generating boiler 24 side.

これに対して、熱負荷8側の熱負荷が減少した場合には、熱負荷8の出口側の温水温度が上昇する。この温水温度の上昇が温度センサT2 により検出されると、温水温度制御器13を介して温水循環用ポンプ12の運転が低速運転に切換えられ、温水循環量が減少する。これにより、温水用熱交換器20の熱交換管20′の出口側の温水Wh″温度が上昇するため、三方温度調整弁14が作動され、温水バイパス管23内を流通するバイパス温水Wh′の流量を増大させることにより、熱負荷8へ送出する温水Whの温度が一定値に保持される。即ち、温水用熱交換器20を流通する温水Wh″が減少して温水温度が上昇することにより、温水用熱交換器20による熱回収量が減少する。
尚、本実施形態では、温水循環用ポンプ12と三方温度調整弁14の両方の作動を調整するようにしているが、何れか一方のみの調整でもって対処することも可能である。
On the other hand, when the heat load on the heat load 8 side decreases, the hot water temperature on the outlet side of the heat load 8 rises. When increase of the hot water temperature detected by the temperature sensor T 2, the operation of the hot water circulation pump 12 via a hot water temperature controller 13 is switched to low-speed operation, the hot water circulation amount is decreased. As a result, the temperature of the hot water Wh ″ on the outlet side of the heat exchange pipe 20 ′ of the hot water heat exchanger 20 rises, so that the three-way temperature adjustment valve 14 is actuated and the bypass hot water Wh ′ flowing through the hot water bypass pipe 23 By increasing the flow rate, the temperature of the warm water Wh sent to the heat load 8 is maintained at a constant value, that is, the warm water Wh ″ flowing through the warm water heat exchanger 20 decreases and the warm water temperature rises. The amount of heat recovered by the hot water heat exchanger 20 is reduced.
In the present embodiment, the operation of both the hot water circulation pump 12 and the three-way temperature adjustment valve 14 is adjusted, but it is also possible to cope with the adjustment by only one of them.

一方、再生器3を備えた小容量ガスタービンの圧縮比は3〜5程度であるため、圧縮機2と燃焼器4の圧縮空気系統内へ蒸気噴射管21を通して蒸気噴射を行なうには、0.3〜0.5MPaの蒸気圧力を必要とする。   On the other hand, since the compression ratio of the small capacity gas turbine provided with the regenerator 3 is about 3 to 5, in order to perform the steam injection through the steam injection pipe 21 into the compressed air system of the compressor 2 and the combustor 4, 0 Requires a vapor pressure of 3 to 0.5 MPa.

そのため、本発明に於いては、熱負荷8の熱需要が減少して来た場合には蒸気発生用ボイラ24の器内蒸気圧力が、0.3〜0.5MPaとなるように予かじめ設計されている。
即ち、この時の前記発生蒸気S(飽和蒸気圧0.3〜0.5MPa)の温度は150〜160℃となるため、蒸気発生用ボイラ24からの排出ガスG0 の温度は160〜170℃となり、蒸気発生用ボイラ24ではタービン排ガスG2 の冷却温度差ΔT=130〜140℃(280〜300℃→160〜170℃)に相当する熱量が、飽和蒸気Sの型で回収されることになる。
Therefore, in the present invention, when the heat demand of the heat load 8 decreases, the internal steam pressure of the steam generating boiler 24 is preliminarily set to 0.3 to 0.5 MPa. Designed.
That is, since the temperature of the generated steam S (saturated steam pressure 0.3 to 0.5 MPa) at this time is 150 to 160 ° C., the temperature of the exhaust gas G 0 from the steam generating boiler 24 is 160 to 170 ° C. In the steam generating boiler 24, the amount of heat corresponding to the cooling temperature difference ΔT = 130 to 140 ° C. (280 to 300 ° C. → 160 to 170 ° C.) of the turbine exhaust gas G 2 is recovered in the saturated steam S mold. Become.

上記温水用熱交換器20内の流通温水Wh″の流通量の減少と温水Wh″の温度上昇により、温水用熱交換器20による回収熱量が減少するに伴なって、蒸気発生用ボイラ24の器内蒸気Sの圧力が徐々に上昇し、これが圧縮機2と再生器3間の圧縮燃焼用空気系25の内圧を越えると、逆止弁22が開放され、蒸気噴射管21を通して蒸気発生用ボイラ24内の蒸気Sが前記圧縮燃焼用空気系25内へ噴射される。   As the amount of heat recovered by the hot water heat exchanger 20 decreases due to a decrease in the flow rate of the circulating hot water Wh ″ in the hot water heat exchanger 20 and an increase in the temperature of the hot water Wh ″, the steam generating boiler 24 When the pressure of the internal steam S gradually increases and exceeds the internal pressure of the compression combustion air system 25 between the compressor 2 and the regenerator 3, the check valve 22 is opened, and steam is generated through the steam injection pipe 21. Steam S in the boiler 24 is injected into the compressed combustion air system 25.

尚、前記圧縮燃焼用空気系25内へ噴射する蒸気Sの流量を増すことにより、ガスタービン1の出力(即ち、発電機出力Ep)は増大し、これによって熱電併給装置の熱電比が調整されることになる。   In addition, by increasing the flow rate of the steam S injected into the compressed combustion air system 25, the output of the gas turbine 1 (that is, the generator output Ep) increases, thereby adjusting the thermoelectric ratio of the cogeneration device. Will be.

本願発明では、(イ)蒸気発生用ボイラ24からの蒸気Sを圧縮機2の出口と再生器3の入口とを連結する圧縮空気系25内へ噴射するようにしているため、蒸気Sが0.3〜0.5MPa・160〜170℃比較的低温低圧蒸気でよく、その結果従前の燃焼器4内へ高温・高圧蒸気を噴射する場合に比較して、蒸気発生用ボイラ24における熱回収効率が高くなる。   In the present invention, (a) the steam S from the steam generating boiler 24 is injected into the compressed air system 25 that connects the outlet of the compressor 2 and the inlet of the regenerator 3, so that the steam S is 0. .3 to 0.5 MPa · 160 to 170 ° C. A relatively low temperature and low pressure steam may be used. As a result, the heat recovery efficiency in the steam generating boiler 24 is higher than when high temperature and high pressure steam is injected into the conventional combustor 4. Becomes higher.

また、(ロ)再生器3の入口側へ160〜170℃の温度の蒸気を噴射することにより、圧縮機2からの燃焼用空気Aの温度が若干低下することになり、結果として再生器3に於ける熱交換効率が向上することになる。   In addition, (b) by injecting steam having a temperature of 160 to 170 ° C. to the inlet side of the regenerator 3, the temperature of the combustion air A from the compressor 2 is slightly lowered, and as a result, the regenerator 3 In this case, the heat exchange efficiency is improved.

更に、(ハ)上記(イ)及び(ロ)等により、本願発明では従前の燃焼器4へ蒸気を噴射する場合に比較して発電機効率の上昇がより大きくなる。   Furthermore, (c) Due to the above (a) and (b), etc., in the present invention, the increase in generator efficiency is greater than in the case where steam is injected into the conventional combustor 4.

実施形態2Embodiment 2

図2は、本発明の実施形態2を適用した熱電併給装置の全体系統図である。
当該第2実施形態に於いては、蒸気発生用ボイラ24からの蒸気Sの一部を燃焼器4へ噴射する構成としており、蒸気噴射管21の一端側が燃焼器4へ連通されている点を除いて、その他の構成は実施形態1の場合と全く同一である。
FIG. 2 is an overall system diagram of a combined heat and power apparatus to which Embodiment 2 of the present invention is applied.
In the second embodiment, a part of the steam S from the steam generating boiler 24 is injected into the combustor 4, and one end side of the steam injection pipe 21 is communicated with the combustor 4. Except for this, the other configurations are exactly the same as those in the first embodiment.

当該実施形態2に於いては、燃焼器4へ160〜170℃の燃焼ガスよりも低温の蒸気Sを供給するため、燃焼器4に於ける燃焼効率が若干低下することになる。しかし、低温・低圧蒸気の利用による蒸気発生用ボイラ24に於ける熱回収効率の上昇より、総合的な熱回収効率は、従前の高温・高圧蒸気を噴射する特開2002−4946号の場合よりも、大幅に向上する。   In Embodiment 2, since the steam S having a temperature lower than that of the combustion gas at 160 to 170 ° C. is supplied to the combustor 4, the combustion efficiency in the combustor 4 slightly decreases. However, due to the increase in heat recovery efficiency in the steam generating boiler 24 due to the use of low temperature / low pressure steam, the overall heat recovery efficiency is higher than in the case of Japanese Patent Laid-Open No. 2002-4946 in which conventional high temperature / high pressure steam is injected. Even greatly improved.

実施形態3Embodiment 3

図3は、本発明の実施形態3を適用した熱電併給装置の全体系統図を示すものである。 当該実施形態3に於いては、温水用熱交換器20が蒸気発生用ボイラ24と別体として設けられており、且つ温水用熱交換器20の缶体20aと蒸気発生用ボイラ24の缶体24aとが蒸気制御弁26及び連結管27a・27bを介して連通されている。
尚、上記温水用熱交換器20が蒸気発生用ボイラ24と別体になっている点を除いて、その他の構成は実施形態1の場合と同一である。
FIG. 3 shows an overall system diagram of a combined heat and power system to which Embodiment 3 of the present invention is applied. In the third embodiment, the hot water heat exchanger 20 is provided separately from the steam generating boiler 24, and the can 20a of the hot water heat exchanger 20 and the can of the steam generating boiler 24 are provided. 24a is communicated with the steam control valve 26 and the connecting pipes 27a and 27b.
The remaining configuration is the same as that of the first embodiment except that the hot water heat exchanger 20 is separated from the steam generating boiler 24.

当該実施形態3では、熱負荷8の熱需要が減少した場合には、温水Whの温度センサT2 の検出信号により温水循環用ポンプ12と三方温度調整弁14の他に蒸気制御弁26の開度も調整され、蒸気発生用ボイラ24から温水用熱交換器20へ流入する加熱用蒸気S′の流量を調整する構成となっている。 In the third embodiment, when the heat demand of the heat load 8 is reduced, the steam control valve 26 is opened in addition to the hot water circulation pump 12 and the three-way temperature adjustment valve 14 by the detection signal of the temperature sensor T 2 of the hot water Wh. The flow rate of the heating steam S ′ flowing from the steam generating boiler 24 into the hot water heat exchanger 20 is adjusted.

また、当該実施形態3では、熱需要の減少時に蒸気噴射管21を介して、蒸気発生用ボイラ24内の蒸気Sを圧縮燃焼用空気系25内へ噴射する構成としているが、当該蒸気Sを燃焼器4内へ噴射するようにしても良いことは勿論である。   In the third embodiment, the steam S in the steam generating boiler 24 is injected into the compression combustion air system 25 via the steam injection pipe 21 when the heat demand is reduced. Of course, it may be injected into the combustor 4.

本発明は、小容量のガスタービン・ユージェネレーションシステムの全てに適用することが可能なものであり、ガスタービンや排熱回収装置の種類・型式等に関係なく全ての所謂熱電併給装置に適用可能である。   The present invention can be applied to all small-capacity gas turbine and eugeneration systems, and can be applied to all so-called combined heat and power systems regardless of the type and type of the gas turbine and exhaust heat recovery device. It is.

本発明の実施形態1を適用した熱電併給装置の全体系統図である。1 is an overall system diagram of a combined heat and power apparatus to which Embodiment 1 of the present invention is applied. 本発明の実施形態2を適用した熱電併給装置の全体系統図である。It is the whole system diagram of the combined heat and power apparatus to which Embodiment 2 of this invention is applied. 本発明の実施形態3を適用した熱電併給装置の全体系統図である。It is a whole system diagram of the combined heat and power unit to which Embodiment 3 of the present invention is applied. 従前の熱電併給装置に於ける熱電比制御方法の一例を示す説明図である。It is explanatory drawing which shows an example of the thermoelectric ratio control method in the conventional thermoelectric supply apparatus. 従前の熱電併給装置に於ける熱電比制御方法の他例を示す説明図である。It is explanatory drawing which shows the other example of the thermoelectric ratio control method in the conventional thermoelectric supply apparatus. 従前の熱電併給装置に於ける熱電比制御方法の他例を示す説明図である。It is explanatory drawing which shows the other example of the thermoelectric ratio control method in the conventional thermoelectric supply apparatus.

符号の説明Explanation of symbols

1はガスタービン、2は圧縮機、3は再生器、4は燃焼器、5は発電機、6は排熱回収装置、7は電力負荷、8は熱負荷、9はバイパスダクト、10はラジエータ、11は自動ダンパー装置、12は温水循環用ポンプ、13は温水温度制御装置、14は三方温度制御弁、15はファン装置、Aは燃焼用空気、Fは燃料用ガス、G1 は高温タービン排ガス、G2 はタービン排ガス、G0 は放出排ガス、Whは温水、Wh″は熱交換管出口側温度、Wh′はバイパス温水、Epは発電機出力、T1 ・T2 は温度センサ、S・S1 は蒸気、20は温水用熱交換器、20′は熱交換管、20aは缶体、21は蒸気噴射通路、22は逆止弁、温水循環通路、23は温水バイパス管、24は蒸気発生用ボイラ、24′は熱交換管、24aは缶体、24bは蒸気溜、24cは給水溜、24dは連通管路、25は圧縮燃焼用空気系、26は蒸気制御弁、27a・27bは連結管。 1 is a gas turbine, 2 is a compressor, 3 is a regenerator, 4 is a combustor, 5 is a generator, 6 is an exhaust heat recovery device, 7 is a power load, 8 is a heat load, 9 is a bypass duct, and 10 is a radiator. , 11 is an automatic damper device, 12 is a hot water circulation pump, 13 is a hot water temperature control device, 14 is a three-way temperature control valve, 15 is a fan device, A is combustion air, F is a fuel gas, and G 1 is a high-temperature turbine. Exhaust gas, G 2 is turbine exhaust gas, G 0 is discharge exhaust gas, Wh is hot water, Wh ″ is heat exchanger tube outlet side temperature, Wh ′ is bypass hot water, Ep is generator output, T 1 and T 2 are temperature sensors, S · S 1 steam, 20 a heat exchanger for hot water, 20 'heat exchange tubes, 20a is the can body, 21 the steam injection passage, 22 is a check valve, the hot water circulation passage 23 is the hot water bypass pipe, 24 Steam generating boiler, 24 'is a heat exchange tube, 24a is a can, 24b is steam , 24c water supply reservoir, 24d are communication duct 25 is an air system for compressing the combustion, 26 steam control valve, 27a · 27b are connected pipe.

Claims (4)

ガスタービンと発電機と圧縮機と再生器と燃焼器と温水用熱交換器を備えた変圧運転の可能な蒸気発生用ボイラとを備え、ガスタービンからの高温タービン排ガスを再生器で圧縮燃焼用空気を加熱したあと蒸気発生用ボイラへ供給する構成とした熱電併給装置に於いて、熱負荷の熱需要が多いときには前記蒸気発生用ボイラを減圧蒸気下で運転して温水用熱交換器による熱回収を増加させ、また、熱負荷の熱需要が少ないときには前記蒸気発生用ボイラを高圧蒸気下で運転すると共に、発生した高圧蒸気の一部を圧縮機と再生器を含む圧縮燃焼用空気系内若しくは燃焼器内へ噴射して発電機出力を増加させる構成としたことを特徴とする熱電併給装置に於ける出力の熱電比制御方法。   A gas turbine, a generator, a compressor, a regenerator, a combustor, and a steam generating boiler equipped with a heat exchanger for hot water, and a steam generator boiler capable of transforming operation. In a combined heat and power system configured to supply air to a steam generating boiler after heating the air, when the heat demand of the heat load is large, the steam generating boiler is operated under reduced pressure steam to generate heat from a hot water heat exchanger. When the recovery is increased and the heat demand of the heat load is small, the steam generating boiler is operated under high-pressure steam, and a part of the generated high-pressure steam is contained in a compression combustion air system including a compressor and a regenerator. Alternatively, the output thermoelectric ratio control method in the combined heat and power supply apparatus is characterized in that the generator output is increased by being injected into the combustor. ガスタービンと発電機と圧縮機と再生器と燃焼器と温水用熱交換器を備えた変圧運転の可能な蒸気発生用ボイラとを備え、ガスタービンからの高温タービン排ガスを再生器で圧縮燃焼用空気を加熱したあと蒸気発生用ボイラへ供給する構成とした熱電併給装置に於いて、前記温水用熱交換器(20)と熱負荷(8)との温水循環通路に温水循環用ポンプ(12)と三方温度調整弁(14)を介設すると共に、三方温度調整弁(14)を介して温水用熱交換器(20)の温水出口と温水入口間を温水バイパス管(23)で連通させ、また、前記蒸気発生用ボイラ(24)と前記圧縮機(2)と再生器(3)を含む圧縮燃焼用空気系(25)若しくは燃焼器(4)とを逆止弁(22)を介設した蒸気噴射通路(21)により連通し、前記熱負荷(8)の熱需要が減少した時には、熱負荷(8)の出口側の温水(Wh)の温度に基づいて前記温水循環用ポンプ(12)と三方温度調整弁(14)の何れか一方又は両方の作動を制御して温水用熱交換器(20)へ流通する温水流量を減少させ、温水用熱交換器(20)に於ける熱回収量を減少させると共に蒸気発生用ボイラ(24)に於ける熱回収量を増加させて高圧蒸気を発生させ、当該高圧蒸気を前記逆止弁(22)を通して圧縮燃焼用空気系(25)内又は燃焼器(4)内へ噴射することにより発電機出力を増加させる構成としたことを特徴とする熱電併給装置。   A gas turbine, a generator, a compressor, a regenerator, a combustor, and a steam generating boiler equipped with a heat exchanger for hot water, and a steam generator boiler capable of transforming operation. In a combined heat and power supply apparatus configured to supply air to a steam generating boiler after heating air, a hot water circulation pump (12) is provided in a hot water circulation passage between the hot water heat exchanger (20) and the heat load (8). And a three-way temperature control valve (14), and a hot water bypass pipe (23) communicates between the hot water outlet and the hot water inlet of the hot water heat exchanger (20) through the three-way temperature control valve (14), The steam generating boiler (24), the compressor (2), and the compressed combustion air system (25) including the regenerator (3) or the combustor (4) are provided with a check valve (22). Communicated by the steam injection passage (21), the heat load ( ) When the heat demand decreases, based on the temperature of the hot water (Wh) on the outlet side of the heat load (8), either or both of the hot water circulation pump (12) and the three-way temperature control valve (14) The operation is controlled to reduce the flow rate of hot water flowing to the hot water heat exchanger (20), thereby reducing the amount of heat recovered in the hot water heat exchanger (20) and at the steam generating boiler (24). The amount of heat recovery is increased to generate high-pressure steam, and the high-pressure steam is injected into the compressed combustion air system (25) or the combustor (4) through the check valve (22), thereby generating the generator output. A combined heat and power device characterized by having an increased configuration. 蒸気発生用ボイラ(24)の缶体(24a)の蒸気溜(24b)内に温水用熱交換器(20)の熱交換管(20′)を配設して成る蒸気発生用ボイラとした請求項2に記載の熱電併給装置。   Claim for a steam generating boiler comprising a heat exchange pipe (20 ') of a heat exchanger for hot water (20) in a steam reservoir (24b) of a can (24a) of a steam generating boiler (24) Item 3. A combined heat and power device according to Item 2. 温水用熱交換器(20)と蒸気発生用ボイラ(24)とを別体とし、温水用熱交換器(20)の缶体(20a)内と蒸気発生用ボイラ(24)の蒸気溜(24b)間を蒸気制御弁(26)を介して連通すると共に、前記温水用熱交換器(20)の缶体(20a)の底部と蒸気発生用ボイラ(24)の給水溜(24c)間を連通管路(24d)により連通する構成とした請求項2に記載の熱電併給装置。   The hot water heat exchanger (20) and the steam generating boiler (24) are separated, and the inside of the can (20a) of the hot water heat exchanger (20) and the steam reservoir (24b) of the steam generating boiler (24). Between the bottom of the can (20a) of the heat exchanger for hot water (20) and the water reservoir (24c) of the steam generating boiler (24). The combined heat and power supply device according to claim 2, wherein the two-way pipe (24d) communicates with each other.
JP2004033202A 2004-02-10 2004-02-10 Combined thermoelectric device and thermoelectric ratio control method for its output Expired - Fee Related JP4382513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004033202A JP4382513B2 (en) 2004-02-10 2004-02-10 Combined thermoelectric device and thermoelectric ratio control method for its output

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004033202A JP4382513B2 (en) 2004-02-10 2004-02-10 Combined thermoelectric device and thermoelectric ratio control method for its output

Publications (2)

Publication Number Publication Date
JP2005226468A true JP2005226468A (en) 2005-08-25
JP4382513B2 JP4382513B2 (en) 2009-12-16

Family

ID=35001397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004033202A Expired - Fee Related JP4382513B2 (en) 2004-02-10 2004-02-10 Combined thermoelectric device and thermoelectric ratio control method for its output

Country Status (1)

Country Link
JP (1) JP4382513B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206484A (en) * 2014-04-17 2015-11-19 株式会社日本サーモエナー Vacuum type water heater
CN112709609A (en) * 2020-12-15 2021-04-27 广西电网有限责任公司电力科学研究院 Method for obtaining electric power range through heat supply flow
CN115126690A (en) * 2022-08-02 2022-09-30 山东国舜建设集团有限公司 Organic working medium filling and recycling assembly, waste heat recycling generator set and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206484A (en) * 2014-04-17 2015-11-19 株式会社日本サーモエナー Vacuum type water heater
CN112709609A (en) * 2020-12-15 2021-04-27 广西电网有限责任公司电力科学研究院 Method for obtaining electric power range through heat supply flow
CN115126690A (en) * 2022-08-02 2022-09-30 山东国舜建设集团有限公司 Organic working medium filling and recycling assembly, waste heat recycling generator set and method
CN115126690B (en) * 2022-08-02 2023-10-31 山东国舜建设集团有限公司 Organic working medium filling and recycling assembly, waste heat recycling generator set and method

Also Published As

Publication number Publication date
JP4382513B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
US10400636B2 (en) Supercritical CO2 generation system applying plural heat sources
EP1766196B1 (en) Remote-heating plant for urban, civil, industrial and agricultural applications
KR100624815B1 (en) Exhaust gas heat exchanger for cogeneration system
JP2008522125A (en) Heating equipment and heating method
US10030546B2 (en) Arrangement and method utilizing waste heat
US10731515B2 (en) Hybrid type power generation system
CN106930827B (en) A kind of cogeneration energy supplying system, method and device
JP2009074744A (en) Gas heat pump cogeneration apparatus
US10287926B2 (en) Supercritical CO2 generation system applying recuperator per each heat source
JP4382513B2 (en) Combined thermoelectric device and thermoelectric ratio control method for its output
US20210190328A1 (en) Combined heating and cooling system
JP4128054B2 (en) Fuel cell system and operating method thereof
KR101518381B1 (en) Co-generation and Control method of the same
US10202874B2 (en) Supercritical CO2 generation system applying plural heat sources
JP3784616B2 (en) Thermoelectric ratio control method for small capacity gas turbine cogeneration system
US20170204747A1 (en) Supercritical carbon dioxide power generation system utilizing plural heat sources
CN109209536B (en) Variable heat energy recovery system and method for cogeneration unit
JP3784617B2 (en) Thermoelectric ratio control method for small capacity gas turbine cogeneration system
JP2010181049A (en) Cogeneration system
JP4463751B2 (en) Cogeneration system
JP3936123B2 (en) Operation control method for small capacity gas turbine cogeneration system
LU501801B1 (en) Energy efficient heating /cooling module
JP3173408U (en) An energy system with an expanded range of adjustment of the power supplied to the electrical grid
JP5189387B2 (en) Heating device using waste heat of cogeneration device
KR101797435B1 (en) Supercritical CO2 generation system applying recuperator per each heat source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151002

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees