JP2005225511A - Powder filling apparatus and powder filling method - Google Patents

Powder filling apparatus and powder filling method Download PDF

Info

Publication number
JP2005225511A
JP2005225511A JP2004035161A JP2004035161A JP2005225511A JP 2005225511 A JP2005225511 A JP 2005225511A JP 2004035161 A JP2004035161 A JP 2004035161A JP 2004035161 A JP2004035161 A JP 2004035161A JP 2005225511 A JP2005225511 A JP 2005225511A
Authority
JP
Japan
Prior art keywords
powder
valve
filling
gas
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004035161A
Other languages
Japanese (ja)
Inventor
Sachihiro Sugiyama
祥弘 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004035161A priority Critical patent/JP2005225511A/en
Publication of JP2005225511A publication Critical patent/JP2005225511A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Basic Packing Technique (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder filling apparatus which enables workers to put separate portions of hyperfine powder into small containers quickly and accurately without damaging the characteristics and blend composition of the powder, nor soiling a working environment or the workers, nor imposing a risk on the workers, is easy to automatize, and is superior in handleability, and to provide a powder filling method. <P>SOLUTION: The powder filling apparatus comprises a large-sized container 10 having a gas permeable member on the inner wall thereof, a fluidizing means 50 which fluidizes the powder in the large-sized container by discharging a pressurized gas into the large-sized container via the gas permeable member, a powder valve 11 which sucks and separate the gas out of the powder, using a gas separating means, at a discharge opening leading to a small-sized container 20 and stops the discharge of the powder using a bridge, a suction pressure source 43 for forming the bridge in the powder valve 11, and a weight measuring means 30 which measures the total weight of the small-sized container filled with the powder. A tank 44, an air valve 45, and a filling amount control means 40, which opens the air valve 45 on the basis of measurement data from from the weight measuring means 30, are arranged between the powder valve 11 and the suction pressure source 43. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、平均粒径がミクロン単位の超微細な静電潜像現像用トナー(通常、体積平均粒径0.2〜20μm)の如き粉体の所望量を過不足なく大型容器から小型容器に充填する粉体充填装置及び粉体充填方法に関する。この充填方法及び充填装置は、例えば静電潜像現像用トナーを例にとると、その製造工程で一時的に貯蔵する大型容器から分割保管や出荷のための小分けの際にも、また、エンドユーザの元で小型トナー容器にオンデマンド充填する際にも用いることができる。   The present invention provides a desired amount of powder such as an ultra-fine electrostatic latent image developing toner having an average particle size of micron (usually a volume average particle size of 0.2 to 20 μm) from a large container to a small container. The present invention relates to a powder filling apparatus and a powder filling method. This filling method and filling device is, for example, a toner for developing an electrostatic latent image. For example, a large container that is temporarily stored in the manufacturing process can be divided into small parts for storage and shipping. It can also be used when filling a small toner container on demand by the user.

従来、静電潜像現像用トナーを大型容器から小分けして他の容器に充填することは、しばしば行われている。例えば特許文献1には、内部にトナー撹拌用オーガーを具備し底部にロータリーバルブを具備したトナー供給用容器からトナー受け容器にトナー粉体を充填する方法が開示されている。この充填方法は、トナー供給用容器内で撹拌下にあるトナーに気体を導入してトナーの流動性を高める工程と、該トナーを搬送配管を用いてトナー受け容器に搬送し、この搬送されたトナーを圧縮して高密度化充填する工程を有し、その際に、前記搬送配管の途中とトナー供給用容器との間に設けた循環用排気管により気体分を分離し、分離気体中に随伴されるトナーを該気体と共に前記トナー供給用容器に再度返送することを特徴とするものである。
しかしながら、静電潜像現像用トナーは極く小粒径の粉体であって、セラミック材料等の他の粉体に比べて密度比重が比較的小さい割に流動性が悪く凝集性が高いものである。特に最近では、トナーは、現像された画像の解像度上昇の要求に応えるためますます小粒径化が進み、また、省エネルギー化及び瞬時高速定着の要求に応えるためますます低温溶融性の樹脂が採用される傾向にある。そのため、凝集性及び他物体表面への付着性やフィルミング性が問題となっている。
Conventionally, electrostatic latent image developing toner is often divided from a large container into other containers. For example, Patent Document 1 discloses a method of filling toner powder into a toner receiving container from a toner supplying container having a toner auger inside and a rotary valve at the bottom. In this filling method, a step of introducing a gas into the toner under stirring in the toner supply container to improve the fluidity of the toner, and the toner is transported to a toner receiving container using a transport pipe, and the transported A step of compressing and densifying the toner, and separating the gas by a circulation exhaust pipe provided in the middle of the conveyance pipe and the toner supply container. The accompanying toner is returned again to the toner supply container together with the gas.
However, the toner for developing an electrostatic latent image is a powder having a very small particle diameter, and has a relatively low density and specific gravity compared to other powders such as ceramic materials, and has poor fluidity and high cohesion. It is. Recently, in particular, toners are becoming smaller in size to meet the demand for higher resolution of developed images, and more and more low-melting resins are used to meet the demands for energy saving and instantaneous high-speed fixing. Tend to be. Therefore, cohesion, adhesion to other object surfaces, and filming are problems.

従って、これらの性質を改善し流動性低下及び凝集を避けるため、多くの場合、トナー粒子表面に流動性向上剤や凝集防止剤等の超微粒子を担持させたり、帯電特性改善のための電荷調節剤超微粒子を担持させた形で用いたりしている。ところが、トナー表面に担持させたこれら超微粒子の分離、脱落を防ぎつつ、帯電特性、流動性及び耐凝集性を保持するという観点からは、トナーに過剰なストレスを与えるオーガーやスクリューコンベアのような手段による撹拌や移送は望ましくない。
特に、カラー用のトナーは高い解像性を得るために粒径が小さく、表面に流動性向上剤、帯電調節剤、流動化剤、凝集防止剤、融着防止剤などの成分を担持しているため、粒子が相互に絡み合って流動性が悪く、その上、強い外力が加わるとトナーの特性を損なう危険性があり、ロータリーバルブやオーガーのような装置を用いた従来の機械的処理は好ましくない。
Therefore, in order to improve these properties and avoid fluidity reduction and aggregation, in many cases, the toner particle surface is loaded with ultrafine particles such as a fluidity improver and an aggregation inhibitor, or charge control for improving charging characteristics. It is used in the form of supporting ultrafine agent. However, from the viewpoint of maintaining charging characteristics, fluidity and aggregation resistance while preventing separation and dropping of these ultrafine particles carried on the toner surface, such as an auger or screw conveyor that gives excessive stress to the toner. Agitation or transfer by means is not desirable.
In particular, color toners have a small particle size in order to obtain high resolution, and have components such as fluidity improvers, charge control agents, fluidizing agents, anti-aggregation agents, and anti-fusing agents on the surface. Therefore, the particles are entangled with each other, resulting in poor fluidity.In addition, if a strong external force is applied, there is a risk of damaging the properties of the toner. Conventional mechanical processing using a device such as a rotary valve or auger is preferable. Absent.

また、トナーのニューマチック処理のためトナーと空気を混合すると、超微細なトナーの浮遊によるトナー雲(トナーと気体との混合により形成される雲状のトナー浮遊物)が生じて取り扱うべき容積が膨張してしまうので、このトナー雲から気体を速やかに分離して取扱いを容易にする必要がある。ところがトナー雲からの気体の速やかな分離は、分離配管の構造形状や位置等のみによってはその達成が難しく、従って、このような配管手段を用いた移送用気体の分離によりトナーの圧縮量をコントロールすることは困難である。また、極く微細なトナーを対象にした場合、供給空気量が多過ぎると、流動相が急速に拡大して容易に粉塵相に移行し、かつ一旦生成した粉塵相からトナーを回収するのに長時間を要したり、周辺を粉塵で汚染したりすることがある。例えば、一旦トナー雲が形成されると、トナーのみを自然落下によって底面に堆積させるには数時間から数十時間の静置を要する。しかし、大きなトナー雲の生成を抑制するために、空気の供給を緩やかにコントロールしながら堆積しているトナーを流動化させて小分け用の小型容器に移動させる操作を行うことは容易ではない。
また、トナーを大型の貯蔵容器から多数の小分け容器に分取すると、当初均一に混合していたトナーが、貯蔵容器内へ供給する空気の影響で、次第に成分ムラを発生することがあり、その対策を講じる必要もある。
In addition, when toner and air are mixed for the pneumatic processing of toner, a toner cloud (cloudy toner suspended matter formed by mixing toner and gas) is generated due to the suspension of ultrafine toner, and the volume to be handled is reduced. Since it expands, it is necessary to quickly separate the gas from the toner cloud to facilitate handling. However, the rapid separation of gas from the toner cloud is difficult to achieve depending only on the structure and position of the separation pipe. Therefore, the amount of compressed toner can be controlled by separating the transfer gas using such a pipe means. It is difficult to do. In addition, when targeting extremely fine toner, if the supply air amount is too large, the fluid phase rapidly expands and easily shifts to the dust phase, and the toner can be recovered from the dust phase once generated. It may take a long time or the surrounding area may be contaminated with dust. For example, once a toner cloud is formed, it takes several hours to several tens of hours to deposit only the toner on the bottom surface by natural fall. However, in order to suppress the generation of a large toner cloud, it is not easy to perform an operation of fluidizing the accumulated toner and moving it to a small container for subdivision while gently controlling the air supply.
In addition, when toner is dispensed from a large storage container into a large number of sub-containers, the initially uniformly mixed toner may gradually generate unevenness of components due to the effect of air supplied into the storage container. It is also necessary to take measures.

このような従来技術の課題を解決するため、本出願人は特願2003−188328号及び特願2003−194522号に係る発明を出願した。前者は、大きさの異なる2つ以上の吐出開口部を有すること、後者は更に計量槽を設けることを特徴の1つとするものである。また、何れの出願も請求項6として粉体バルブを用いる態様を開示しているが、本発明のような充填停止精度の向上を目的とした粉体バルブの具体的構成については何も記載されていない。また、バルブ形成時に、吸引圧発生源の稼働から設定吸引圧に到達するまでにラグタイムがあるためバルブ形成に時間がかかり充填量にばらつきを生じるという問題及びその解決手段についても特に記載はない。   In order to solve such problems of the prior art, the present applicant has applied for inventions according to Japanese Patent Application Nos. 2003-188328 and 2003-194522. One of the features is that the former has two or more discharge openings of different sizes, and the latter further has a measuring tank. Each application discloses a mode using a powder valve as claim 6, but nothing is described about a specific configuration of the powder valve for the purpose of improving the filling stop accuracy as in the present invention. Not. In addition, there is no particular description of the problem that the valve formation takes time and the filling amount varies due to the lag time from the operation of the suction pressure generation source to the set suction pressure at the time of valve formation, and the means for solving the problem. .

特開平9−193902号公報JP-A-9-193902

本発明は、平均粒径がミクロン単位の超微細な粉体を、粉体に特段のストレスを与えず粉体の諸物性及び配合性を損なうことなく、作業環境や作業者を汚すことなく、かつ作業者に危険なく、大型容器内に貯蔵されている粉体を流動化させて小型容器に迅速かつ正確に分取することができ、自動化が容易で取扱い性に優れ、しかも充填停止精度が高く充填量のばらつきが小さい粉体充填装置及びこの装置を用いた粉体充填方法の提供を目的とする。また、一時貯蔵容器からの切出しばかりでなく、製造ラインの途中における粉体の移送用装置としても利用できる粉体充填装置及びこの装置を用いた粉体充填方法の提供も目的とする。   The present invention is an ultrafine powder having an average particle size of a micron unit, without giving special stress to the powder, without impairing various physical properties and compounding properties of the powder, without polluting the work environment and workers, In addition, there is no danger to the operator, the powder stored in the large container can be fluidized and quickly and accurately sorted into a small container, which is easy to automate, easy to handle, and has a filling stop accuracy. An object of the present invention is to provide a powder filling apparatus having a high filling amount and a small variation in filling amount and a powder filling method using the apparatus. Another object of the present invention is to provide a powder filling apparatus that can be used not only for cutting out from a temporary storage container but also for transferring powder in the middle of a production line, and a powder filling method using this apparatus.

上記課題は、次の1)〜24)の発明によって解決される。
1) 内壁に通気性部材を有する大型容器、通気性部材を介して大型容器内に加圧気体を吐出させることにより大型容器内の粉体を流動化させる流動化手段、小型容器への吐出口において気体分離手段により気体のみを分離吸引してブリッジにより吐出を停止する粉体バルブ、粉体バルブにブリッジを形成するための吸引圧発生源、及び粉体が移送充填された小型容器の総重量を計測する重量計測手段を有する粉体充填装置であって、粉体バルブと吸引圧発生源の間にタンクを有し、該タンクと粉体バルブの間に空気弁を有し、重量計測手段からの計測データに基づいて空気弁を開く充填量制御手段を有することを特徴とする大型容器内の粉体を小型容器に充填する粉体充填装置。
2) 空気弁と粉体バルブの間に空気を圧入する経路が設けられ、空気弁の閉時に、この経路からの空気の圧入によりブリッジが破壊されることを特徴とする1)記載の粉体充填装置。
3) 気体分離手段が、粉体吐出管の内側に配置されており、粉体は通過させず気体のみを通過させるメッシュ材を装着したものであることを特徴とする1)又は2)記載の粉体充填装置。
4) 気体分離手段が、粉体吐出管の内側に配置されており、粉体は通過させず気体のみを通過させる多数の微細孔を有し各微細孔が内部で相互に連通している多孔体であることを特徴とする1)又は2)記載の粉体充填装置。
5) 流動化手段が、気体分離手段に加圧気体を導入する気体導入管を備えていることを特徴とする3)又は4)記載の粉体充填装置。
6) 気体導入管が、送気停止、送気開始及び送気量調節を行う送気調節弁を有することを特徴とする5)記載の粉体充填装置。
7) 大型容器が少なくとも一部に傾斜した内壁部分を有することを特徴とする1)〜6)の何れかに記載の粉体充填装置。
8) 傾斜した内壁部分が、大型容器下部のホッパ状の構造部分の一部であることを特徴とする7)記載の粉体充填装置。
9) 充填量制御手段が、重量計測手段により計測される、少なくとも粉体が充填された小型容器の総重量を表示するためのモニタ部を有することを特徴とする1)〜8)の何れかに記載の粉体充填装置。
10) 充填量制御手段が、小型容器の空重量と粉体が充填された小型容器の総重量から、充填済み粉体重量を演算する演算処理部を有することを特徴とする1)〜9)の何れかに記載の粉体充填装置。
11) 演算処理部が入力手段を有し、該入力手段により粉体の充填予定重量の入力、及び入力された充填予定重量の変更が可能であることを特徴とする10)記載の粉体充填装置。
12) 演算処理部の演算結果に基いて、空気弁の開閉動作が制御されることを特徴とする10)又は11)記載の粉体充填装置。
13) 大型容器内の粉体を小型容器に充填する粉体充填方法であって、前記大型容器は、内壁に通気性部材を有し、該通気性部材を介して大型容器内に加圧気体を吐出させることにより大型容器内の粉体を流動化させ、小型容器への吐出口において気体分離手段と吸引圧発生源により気体のみを分離吸引し、粉体バルブにブリッジを形成して粉体の吐出を停止するに際し、粉体バルブと吸引圧発生源の間にタンクを設け、タンクと粉体バルブの間に空気弁を設け、吸引圧発生源により予めタンクに吸引圧を溜めておくと共に、粉体が移送充填された小型容器の総重量を計測し、該計測データに基づいて空気弁を開き、タンクに溜めておいた吸引圧を粉体バルブにかけてブリッジを瞬時に形成し粉体の吐出を停止することを特徴とする粉体充填方法。
14) 空気弁と粉体バルブの間に空気を圧入する経路を設け、空気弁の閉時に、この経路から空気を圧入してブリッジを破壊することを特徴とする13)記載の粉体充填方法。
15) 気体分離手段として、粉体は通過させず気体のみを通過させるメッシュ材を装着したものを粉体吐出管の内側に配置したことを特徴とする13)又は14)記載の粉体充填方法。
16) 気体分離手段として、粉体は通過させず気体のみを通過させる多数の微細孔を有し各微細孔が内部で相互に連通している多孔体を粉体吐出管の内側に配置したことを特徴とする13)又は14)記載の粉体充填方法。
17) 気体分離手段に加圧気体を導入する気体導入管を備えた流動化手段を採用することを特徴とする15)又は16)記載の粉体充填方法。
18) 送気停止、送気開始及び送気量調節を行う送気調節弁を有する気体導入管を備えた流動化手段を採用することを特徴とする17)記載の粉体充填方法。
19) 少なくとも一部に傾斜した内壁部分を有する大型容器を用いることを特徴とする13)〜18)の何れかに記載の粉体充填方法。
20) 傾斜した内壁部分が、大型容器下部のホッパ状の構造部分の一部であることを特徴とする19)記載の粉体充填方法。
21) 重量計測手段により計測される、少なくとも粉体が充填された小型容器の総重量を表示するためのモニタ部を有する充填量制御手段を採用することを特徴とする13)〜20)の何れかに記載の粉体充填方法。
22) 小型容器の空重量と粉体が充填された小型容器の総重量から充填済み粉体重量を演算する演算処理部を有する充填量制御手段を採用することを特徴とする13)〜21)の何れかに記載の粉体充填方法。
23) 演算処理部が入力手段を有し、該入力手段により粉体の充填予定重量の入力、及び入力された充填予定重量の変更を行うことを特徴とする22)記載の粉体充填方法。
24) 演算処理部の演算結果に基いて、空気弁の開閉動作を制御することを特徴とする22)又は23)記載の粉体充填方法。
The above problems are solved by the following inventions 1) to 24).
1) Large container having a breathable member on the inner wall, fluidizing means for fluidizing powder in the large container by discharging pressurized gas into the large container through the breathable member, discharge port to the small container The total weight of the powder valve that separates and sucks only the gas by the gas separation means and stops the discharge by the bridge, the suction pressure generation source for forming the bridge on the powder valve, and the small container filled with powder A powder filling apparatus having a weight measuring means for measuring a weight, comprising a tank between a powder valve and a suction pressure generation source, an air valve between the tank and the powder valve, and a weight measuring means A powder filling apparatus for filling a small container with powder in a large container, comprising filling amount control means for opening an air valve based on measurement data from the container.
2) The powder according to 1), wherein a path for press-fitting air is provided between the air valve and the powder valve, and the bridge is broken by the press-fitting of air from this path when the air valve is closed. Filling equipment.
3) The gas separation means is disposed inside the powder discharge pipe, and is equipped with a mesh material that allows only gas to pass without passing powder, 1) or 2) Powder filling device.
4) The gas separating means is disposed inside the powder discharge pipe, and has a plurality of fine holes through which only the gas passes without passing through the powder, and each fine hole communicates with each other inside. The powder filling apparatus according to 1) or 2), wherein the powder filling apparatus is a body.
5) The powder filling apparatus according to 3) or 4), wherein the fluidizing means includes a gas introduction pipe for introducing a pressurized gas into the gas separation means.
6) The powder filling apparatus according to 5), wherein the gas introduction pipe has an air supply control valve that performs air supply stop, air supply start, and air supply amount adjustment.
7) The powder filling apparatus according to any one of 1) to 6), wherein the large container has an inner wall portion inclined at least partially.
8) The powder filling apparatus according to 7), wherein the inclined inner wall portion is a part of a hopper-like structural portion at the bottom of the large container.
9) Any one of 1) to 8), wherein the filling amount control means has a monitor unit for displaying the total weight of at least the small container filled with the powder, which is measured by the weight measuring means. The powder filling apparatus described in 1.
10) The filling amount control means includes an arithmetic processing unit that calculates the weight of the filled powder from the empty weight of the small container and the total weight of the small container filled with the powder 1) to 9) The powder filling apparatus according to any one of the above.
11) The powder filling according to 10), wherein the arithmetic processing unit has an input means, and the input means can input the expected filling weight of the powder and change the inputted expected filling weight. apparatus.
12) The powder filling apparatus according to 10) or 11), wherein the opening / closing operation of the air valve is controlled based on a calculation result of the calculation processing unit.
13) A powder filling method for filling powder in a large container into a small container, the large container having a breathable member on an inner wall, and a pressurized gas in the large container via the breathable member The powder in the large container is fluidized by discharging the gas, and only the gas is separated and sucked by the gas separating means and the suction pressure generation source at the discharge port to the small container, and a powder is formed by forming a bridge on the powder valve. When stopping discharge, a tank is provided between the powder valve and the suction pressure generation source, an air valve is provided between the tank and the powder valve, and the suction pressure is stored in the tank in advance by the suction pressure generation source. Measure the total weight of the small container filled with powder, open the air valve based on the measured data, apply the suction pressure stored in the tank to the powder valve, and instantly form a bridge to form the powder. Powder filling characterized by stopping discharge Method.
14) The powder filling method according to 13), wherein a path for press-fitting air is provided between the air valve and the powder valve, and when the air valve is closed, air is pressed from this path to break the bridge. .
15) The powder filling method according to 13) or 14), wherein as the gas separation means, a powder material is installed inside the powder discharge pipe, which is fitted with a mesh material that does not allow powder to pass but allows only gas to pass. .
16) As a gas separating means, a porous body having a large number of fine holes through which only gas is allowed to pass without allowing powder to pass therethrough is arranged inside the powder discharge pipe. The powder filling method as described in 13) or 14) above.
17) The powder filling method according to 15) or 16), wherein a fluidizing means including a gas introduction pipe for introducing a pressurized gas into the gas separation means is employed.
18) The powder filling method according to 17), wherein fluidizing means including a gas introduction pipe having an air supply control valve that performs air supply stop, air supply start, and air supply amount adjustment is adopted.
19) The powder filling method according to any one of 13) to 18), wherein a large container having an inner wall portion inclined at least in part is used.
20) The powder filling method according to 19), wherein the inclined inner wall part is a part of a hopper-like structure part at the lower part of the large container.
21) Any one of 13) to 20), wherein a filling amount control means having a monitor unit for displaying the total weight of at least the small container filled with powder, which is measured by the weight measuring means, is adopted. The powder filling method according to claim 1.
22) The filling amount control means having an arithmetic processing unit for calculating the weight of the filled powder from the empty weight of the small container and the total weight of the small container filled with the powder is employed 13) to 21) The powder filling method according to any one of the above.
23) The powder filling method according to 22), wherein the arithmetic processing unit has an input means, and the input means inputs the expected filling weight of the powder and changes the inputted expected filling weight.
24) The powder filling method according to 22) or 23), wherein the opening / closing operation of the air valve is controlled based on a calculation result of the calculation processing unit.

以下、上記本発明について詳しく説明する。
本発明は、大型容器内の粉体を、機械的ストレスをかけることなく小型容器に所定量、過不足なしに迅速に充填する粉体充填技術に係るものである。
本発明の対象となる「粉体」としては、静電潜像現像用トナー、薬品、化粧品、食品等の各種粉体が挙げられるが、特に好適なのは、平均粒径がミクロン単位の超微細な粉体である静電潜像現像用トナーである。
本発明における大型容器としては、内壁に通気性部材を有すると共に、粉体を小型容器に排出するための吐出開口部を有するものを使用する。通気性部材は、空気、窒素などの気体を通過させて大型容器内に導入できるものであればよく、少なくとも吐出部付近に設けることが好ましい。流動化手段は、通気性部材を介して大型容器内に加圧気体を吐出させることにより粉体を流動化させるものである。即ち、大型容器の通気性部材が設けられている付近で粉体の流動床を形成し、大型容器内の粉体に気体を吹き込み、大型容器内の粉体層を僅かに膨張乃至浮動化させて、粉体に機械的ストレスを与えることなく粉体を吐出開口部に導くようにする。
Hereinafter, the present invention will be described in detail.
The present invention relates to a powder filling technique for quickly filling a small container with a predetermined amount of powder in a large container without applying mechanical stress.
Examples of the “powder” as an object of the present invention include various powders such as toner for developing electrostatic latent images, chemicals, cosmetics, foods, etc., but particularly preferable is an ultrafine particle having an average particle size of micron. It is a toner for developing an electrostatic latent image that is powder.
As the large container in the present invention, a container having a breathable member on the inner wall and a discharge opening for discharging powder to the small container is used. The breathable member may be any member that can be introduced into a large container through the passage of a gas such as air or nitrogen, and is preferably provided at least near the discharge portion. The fluidizing means fluidizes the powder by discharging a pressurized gas into the large container through the breathable member. That is, a fluidized bed of powder is formed in the vicinity of the breathable member of the large container, gas is blown into the powder in the large container, and the powder layer in the large container is slightly expanded or floated. Thus, the powder is guided to the discharge opening without applying mechanical stress to the powder.

また、本発明では、小型容器へ粉体を投入する充填ノズルにおいて空気のみを分離吸引してブリッジにより吐出を停止する粉体バルブ構造を有し、粉体バルブにおける気体吸引手段について、粉体バルブと吸引圧発生源の間にタンクを設け、そのタンクと粉体バルブの間に空気弁を設置する構成とする。この構成によれば、空気弁を閉じた状態でタンク内に吸引圧を溜めておき、粉体の充填量が規定量に達したとき空気弁を開いて急速に粉体バルブに吸引圧をかけ、バルブの閉状態を瞬時に形成して粉体の吐出を停止させることができ、吐出の停止精度が顕著に向上する。そして容器毎の充填量のばらつきを低減できる。
粉体バルブとタンク間、及びタンクと吸引圧発生源間の接続は、例えば金属パイプの様な剛体だけでなく、エアチューブの様なフレキシブルなものでもよい。タンクの大きさは粉の特性や流動状態、或いは粉体バルブ(充填ノズル)の通気性部材内径と接粉部断面積によって異なるが、好ましくは吸引開始から粉体バルブの閉状態が完成するまでの吸引空気容量を100%確保できるものが望ましい。しかし、100%未満の容量でも効果は発揮される。
また、本発明は、少なくとも粉体が充填された小型容器の総重量を計測する重量計測手段と、前記重量計測手段からの計測データに基づき、大型容器の各吐出開口部の充填量制御を行う充填量制御手段を有する。重量計測手段は、粉体が充填されていない空の小型容器の重量を計測して、そのデータを充填量制御手段に伝えてもよいし、空の小型容器の重量が判っている場合には前もって充填量制御手段にそのデータを入力しておいてもよい。
Further, the present invention has a powder valve structure in which only air is separated and sucked at a filling nozzle for charging powder into a small container and discharge is stopped by a bridge. A tank is provided between the suction pressure source and the air valve between the tank and the powder valve. According to this configuration, the suction pressure is accumulated in the tank with the air valve closed, and when the powder filling amount reaches a specified amount, the air valve is opened and the suction pressure is rapidly applied to the powder valve. Thus, the closed state of the valve can be instantaneously formed to stop the discharge of the powder, and the discharge stop accuracy is remarkably improved. And the dispersion | variation in the filling amount for every container can be reduced.
The connection between the powder valve and the tank and between the tank and the suction pressure generation source may be not only a rigid body such as a metal pipe but also a flexible one such as an air tube. The size of the tank varies depending on the characteristics and flow state of the powder, or the inner diameter of the breathable member of the powder valve (filling nozzle) and the cross-sectional area of the contact part of the powder. Preferably, from the start of suction until the closed state of the powder valve is completed. It is desirable to be able to secure 100% of the suction air capacity. However, the effect is exhibited even with a capacity of less than 100%.
Further, the present invention performs weight control for measuring the total weight of at least a small container filled with powder, and controls the filling amount of each discharge opening of the large container based on measurement data from the weight measurement means. It has a filling amount control means. The weight measuring means may measure the weight of an empty small container not filled with powder and transmit the data to the filling amount control means, or when the weight of the empty small container is known. The data may be input to the filling amount control means in advance.

更に、空気弁と粉体バルブの間に空気を圧入する経路を設置することにより、空気弁の閉時に、この経路から粉体バルブに空気を圧入して瞬時にブリッジを破壊し吐出を開始することが可能となる。
更に、気体分離手段として、例えば吐出管に複数の穴を開け、その内側に粉体は通過させず気体のみを通過させるメッシュ材(例えば3500メッシュ)を装着したもの、或いは、銅やステンレスなどの微小粒子を焼結により結合した焼結金属からなる多孔体を用いることができる。
更に、流動化手段として気体分離手段に気体導入管を付設したものを用いてもよいし、送気停止、送気開始及び送気量調節用の送気調節弁を有する気体導入管を用いて、流動化手段から気体吹き込みが行われた大型容器内の流動状態や粉圧の調節をし易くすることもできる。
In addition, by installing a path to press-in air between the air valve and the powder valve, when the air valve is closed, air is pressed into the powder valve from this path to instantly break the bridge and start discharging. It becomes possible.
Further, as the gas separating means, for example, a plurality of holes are formed in the discharge pipe, and a mesh material (for example, 3500 mesh) that allows only the gas to pass therethrough without passing the powder, or copper, stainless steel, etc. A porous body made of a sintered metal in which fine particles are bonded by sintering can be used.
Further, as the fluidizing means, a gas separation means provided with a gas introduction pipe may be used, or a gas introduction pipe having an air supply control valve for air supply stop, air supply start and air supply amount adjustment is used. Further, it is possible to easily adjust the flow state and the powder pressure in the large container in which gas is blown from the fluidizing means.

更に、大型容器は、少なくとも一部に傾斜した内壁部分を有していることが好ましく、この傾斜した内壁部分により、内部に収納された粉体の各吐出開口部までの排出が円滑化される。典型的には、この傾斜した内壁部分を大型容器下部のホッパ状の構造部分の一部とすることができる。
更に、充填量制御手段には、重量計測手段により計測される、少なくとも粉体が充填された小型容器の総重量を表示するモニタ部を有することが好ましく、小型容器の空重量と粉体が充填された小型容器の総重量から、充填済み粉体重量を演算する演算処理部を有することがより好ましい。この演算処理部は、キーボードやデジタルスイッチ等の従来公知の入力手段を備え、該入力手段により粉体の充填予定重量の入力、及び入力された充填予定重量の変更ができるものであることが好ましい。
更に、この演算処理部の演算結果に基いて、前記流動化手段の送気調節弁の開閉動作の制御を行うようにしてもよい。
Furthermore, it is preferable that the large container has an inner wall portion that is inclined at least partially, and the inclined inner wall portion facilitates the discharge of the powder stored therein to each discharge opening. . Typically, this sloped inner wall portion can be part of a hopper-like structural portion below the large container.
Furthermore, the filling amount control means preferably has a monitor unit for displaying the total weight of the small container filled with the powder, which is measured by the weight measuring means, and is filled with the empty weight of the small container and the powder. It is more preferable to have a calculation processing unit for calculating the weight of the filled powder from the total weight of the small containers. The arithmetic processing unit preferably includes a conventionally known input unit such as a keyboard or a digital switch, and is capable of inputting the expected filling weight of the powder and changing the inputted estimated filling weight. .
Furthermore, the opening / closing operation of the air supply control valve of the fluidizing means may be controlled based on the calculation result of the calculation processing unit.

本発明によれば、空気弁45を閉じた状態でタンク44内に吸引圧を溜めておき、粉体の充填量が規定量に達したとき空気弁45を開いて急速に粉体バルブ11に吸引圧をかけ、ブリッジを瞬時に形成して粉体の吐出を停止させることにより、吐出の停止精度を向上させ、容器毎の充填量のばらつきを低減することが可能な粉体充填装置及び粉体充填方法を提供できる。   According to the present invention, the suction pressure is accumulated in the tank 44 with the air valve 45 closed, and when the powder filling amount reaches a specified amount, the air valve 45 is opened and the powder valve 11 is rapidly opened. Powder filling device and powder capable of improving discharge stopping accuracy and reducing variation in filling amount for each container by applying suction pressure and instantaneously forming a bridge to stop powder discharge A body filling method can be provided.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited by these Examples.

実施例1
図1に従来の粉体充填装置の構成例を、図2に本発明による粉体充填装置の実施例を模式的に示す(大型容器の下半分は断面で示した)。従来は粉体バルブ11と吸引圧発生源43が吸引管13で接続されているのみであるが、本発明は、粉体バルブ11と吸引圧発生源43の間にタンク44を設け、該タンク44と粉体バルブ11の間に空気弁45を設けた点に特徴がある。なお、60は図示しない大量トナー保管場所より大型容器10へトナーを供給するための供給口である。
本実施例では、平均粒径数ミクロンの静電荷像現像用トナーを充填対象の粉体とする。
小型トナー容器20はロードセルの如き公知の重量計測手段30上に載置する。
大型容器10は下方吐出部に粉体バルブ(充填ノズル)11を有する。粉体バルブ11は内部に気体分離手段である多孔体(メッシュ材でもよい)12を有し、空気弁45、タンク44を介して吸引圧発生源43に接続されている。
また、大型容器10はホッパ状であり、その内壁部分14は内部に収容したトナーの滑落を妨げないように傾斜しており、トナー吐出管までの排出が円滑化される。
Example 1
FIG. 1 schematically shows a configuration example of a conventional powder filling apparatus, and FIG. 2 schematically shows an embodiment of the powder filling apparatus according to the present invention (the lower half of a large container is shown in cross section). Conventionally, the powder valve 11 and the suction pressure generation source 43 are only connected by the suction pipe 13. However, in the present invention, a tank 44 is provided between the powder valve 11 and the suction pressure generation source 43. It is characterized in that an air valve 45 is provided between 44 and the powder valve 11. Reference numeral 60 denotes a supply port for supplying toner to the large container 10 from a large-scale toner storage location (not shown).
In this embodiment, toner for developing an electrostatic image having an average particle diameter of several microns is used as a powder to be filled.
The small toner container 20 is placed on a known weight measuring means 30 such as a load cell.
The large container 10 has a powder valve (filling nozzle) 11 at the lower discharge part. The powder valve 11 has a porous body (which may be a mesh material) 12 as gas separation means inside, and is connected to a suction pressure generation source 43 via an air valve 45 and a tank 44.
Further, the large container 10 has a hopper shape, and the inner wall portion 14 thereof is inclined so as not to prevent the toner contained therein from sliding off, so that the discharge to the toner discharge tube is facilitated.

更に、大型容器10には流動化手段50が設けられている。この流動化手段50は、大型容器10の下方壁に設けられた通気性部材51と、該通気性部材51を介して大型容器10の内部に空気を供給するための加圧空気供給手段52と、該加圧空気供給手段52と該通気性部材51を連結する空気導入管53から構成されている。通気性部材51は、空気を噴出するための多数の微細孔を有し各微細孔が内部で連通している多孔体からなる。所要の高吐出能力を得るため、本実施例では通気性部材51は円周の全周にわたって設けられている。通気性部材51における孔部の多少は供給空気量にも大いに関係する。本実施例の装置の場合、大型容器10はトナー吐出管に向かって断面が狭くなっているので、トナーによる架橋現象を防止するために、円周面に沿って空気の吹き出し口を数段階連続的に設けたり、螺旋方向へ空気が吹き出すような吹き出し構造としてもよい。このような流動化手段50により、トナー流出の中断或いはボタ落ちを防止することができ、また、送気量を加減することにより、トナー吐出量を調節することができ、送気された空気との混合により形成されるトナー雲の大きさを調節することができる。   Furthermore, fluidizing means 50 is provided in the large container 10. The fluidizing means 50 includes a breathable member 51 provided on the lower wall of the large container 10, and a pressurized air supply means 52 for supplying air to the inside of the large container 10 through the breathable member 51. The pressurized air supply means 52 and the air-permeable member 51 are connected to each other to form an air introduction pipe 53. The air-permeable member 51 is made of a porous body having a large number of micropores for ejecting air and each micropore communicating with the inside. In order to obtain the required high discharge capacity, the air-permeable member 51 is provided over the entire circumference in this embodiment. Some of the holes in the breathable member 51 are greatly related to the amount of supplied air. In the case of the apparatus of this embodiment, since the cross section of the large container 10 becomes narrower toward the toner discharge tube, several stages of air outlets are continuously provided along the circumferential surface in order to prevent the cross-linking phenomenon caused by the toner. It is good also as a blowout structure in which air is provided, or air blows off in the spiral direction. Such fluidization means 50 can prevent interruption of toner outflow or dropout, and can adjust toner discharge amount by adjusting the air supply amount. It is possible to adjust the size of the toner cloud formed by the mixing.

重量計測手段30としては、ロードセルの如き慣用の重量計測機器を用いることができ、その計測データ(空の小型トナー容器20の重量及びトナー21が充填された小型トナー容器20の総重量)は通信線31を介して、充填量制御手段40の演算処理部41に送られるようになっている。
充填量制御手段40は、演算処理部41と通信線42からなる。演算処理部41は、重量計測手段30で計測された、小型トナー容器20の空重量とトナー21が充填された小型トナー容器20の総重量から充填済みトナー重量を演算し、それに基づいて空気弁45を開動作制御する。この演算処理部41は、キーボード等の入力手段により、粉体の充填予定重量の入力や入力された充填予定重量の変更ができるようにしてもよい。
As the weight measuring means 30, a conventional weight measuring device such as a load cell can be used, and the measurement data (the weight of the empty small toner container 20 and the total weight of the small toner container 20 filled with the toner 21) are communicated. It is sent to the arithmetic processing section 41 of the filling amount control means 40 via the line 31.
The filling amount control means 40 includes an arithmetic processing unit 41 and a communication line 42. The arithmetic processing unit 41 calculates the filled toner weight from the empty weight of the small toner container 20 measured by the weight measuring means 30 and the total weight of the small toner container 20 filled with the toner 21, and based on the calculated weight of the air valve 45 is controlled to open. The arithmetic processing unit 41 may be configured to allow the input of the expected filling weight of the powder and the change of the inputted expected filling weight by an input means such as a keyboard.

図2の装置により、トナーが収容されている大型容器10から小型トナー容器20にトナーの充填を行う場合、先ず、空の小型トナー容器20を重量計測手段30に載置する。重量計測手段30は空の小型トナー容器20の重量計測データを通信線31を介して演算装置41に送信する。ここで、加圧空気供給手段52を作動させ空気供給管53を通して圧縮空気を通気性部材51に供給する。すると空気は通気性部材51の多数の孔を通って大型容器10内に吹き出し、その中に収容されたトナーを流動化させ流動床状態とする。
一方、演算処理部41の指示により空気弁45が閉状態となり、トナーの充填が開始される。
トナー21が小型トナー容器20内に充填されると、重量計測手段30は、充填された小型トナー容器20の総重量の計測データを通信線31を介して演算処理部41に送信する。演算処理部41では、小型トナー容器20の種類及びトナーの種類と充填量に応じて、予め空気弁開重量及び吸引圧発生源始動重量を決め、内部メモリに記憶しておく。そして、現在の充填トナー量を計測し、吸引圧発生源始動重量に相当する充填量になった場合、信号線42を介して吸引圧発生源43を始動させタンク44に吸引圧を確保する。そして、空気弁開重量に相当する充填量になった場合、信号線42を介して空気弁45を開状態とし、タンク44に溜めておいた吸引圧により粉体バルブ11の空気を一気に吸引し、粉体ブリッジを瞬時に形成してトナー排出を停止する。
このようにして、平均粒径がミクロン単位の超微細なトナーの所望量を精度良くトナー容器20に充填することができる。
実際に図2の構成で、ノズル内径12mmの粉体バルブ11、接粉部断面積1055mmの気体分離手段、500mlのタンク44を用いて、電子写真に用いられるトナー粉を用いた充填を実施した結果、従来方式に対し充填量のばらつきが5.0%低減した。
When filling the toner from the large container 10 containing toner into the small toner container 20 with the apparatus of FIG. 2, first, the empty small toner container 20 is placed on the weight measuring means 30. The weight measuring unit 30 transmits the weight measurement data of the empty small toner container 20 to the arithmetic device 41 via the communication line 31. Here, the pressurized air supply means 52 is operated to supply compressed air to the breathable member 51 through the air supply pipe 53. Then, air blows out into the large container 10 through a large number of holes of the air-permeable member 51, and fluidizes the toner accommodated therein to form a fluidized bed state.
On the other hand, the air valve 45 is closed according to an instruction from the arithmetic processing unit 41, and toner charging is started.
When the toner 21 is filled into the small toner container 20, the weight measuring unit 30 transmits measurement data of the total weight of the filled small toner container 20 to the arithmetic processing unit 41 via the communication line 31. In the arithmetic processing unit 41, the air valve opening weight and the suction pressure generation source starting weight are determined in advance according to the type of the small toner container 20, the type of toner, and the filling amount, and are stored in the internal memory. Then, the current filling toner amount is measured, and when the filling amount corresponding to the suction pressure generation source starting weight is reached, the suction pressure generation source 43 is started via the signal line 42 to secure the suction pressure in the tank 44. When the filling amount corresponding to the air valve opening weight is reached, the air valve 45 is opened via the signal line 42 and the air in the powder valve 11 is sucked at once by the suction pressure stored in the tank 44. The powder bridge is instantly formed to stop the toner discharge.
In this manner, the toner container 20 can be accurately filled with a desired amount of ultrafine toner having an average particle diameter of a micron.
In practice, the powder valve 11 having a nozzle inner diameter of 12 mm, the gas separation means having a cross-sectional area of 1055 mm 2 and the 500 ml tank 44 are filled with toner powder used in electrophotography with the configuration shown in FIG. As a result, the variation in the filling amount was reduced by 5.0% compared to the conventional method.

実施例2
実施例1に比べて、瞬時に吐出開始を行うようにするため、図2の装置に更に図3のような圧縮空気源46を設けた構成の粉体充填装置を作製した。
本実施例によれば、粉体バルブ形成後の吐出開始時、空気弁45が閉状態になった直後に、制御部41からの信号で、圧縮空気源46から解除用空気を吹き込む事により、吐出開始がスムーズとなる。
Example 2
Compared with Example 1, a powder filling apparatus having a configuration in which a compressed air source 46 as shown in FIG.
According to the present embodiment, at the start of discharge after the powder valve is formed, immediately after the air valve 45 is closed, the release air is blown from the compressed air source 46 by a signal from the control unit 41, The discharge starts smoothly.

実施例3
図4に示す構成の粉体充填装置を作製した。この装置の特徴は、実施例1の図2の装置が重力で送粉及び粉体吐出を行うのに対し、大型容器内の圧力で送粉及び粉体吐出を行う点である。なお、図2と同じ機能の部分は同じ番号で示した。
密閉可能な大型容器10に流動化手段50を設けた。この流動化手段50は、大型容器10の底部に設けた通気性部材51と、該通気性部材51を介して大型容器10の内部に空気を供給するための加圧空気供給手段52からなる。
トナー排出部は、大型容器10の底面に密着しないように粉体内に挿入した粉体導入管17から、流動粉体輸送管16を経由して粉体バルブ(充填ノズル)11へ導かれる。
本実施例の装置では、圧力開放弁18の開放状態において、充填しようとする粉体を大型容器上部の閉鎖弁付き粉体投入口から投入する。その後、加圧空気供給手段52から通気性部材51を介して大型容器10に気体を導入することで粉体を流動化する。
流動化した後、粉体投入口及び圧力開放弁18を閉じると、粉体はその流動化に使用した気体の圧力で大型容器10内から流動粉体輸送管16に押し出され、小型容器20の上部に設置した粉体バルブ11から小型容器20に排出される。その際、粉体速度調整弁19の開度を調整し、粉体の吐出速度を調整する。
その後は、実施例1と同様にして、粉体の吐出を停止する。
Example 3
A powder filling apparatus having the configuration shown in FIG. 4 was produced. The feature of this apparatus is that the apparatus of FIG. 2 of Example 1 performs powder feeding and powder discharge by gravity, whereas powder feeding and powder discharge is performed by the pressure in the large container. Parts having the same functions as those in FIG. 2 are indicated by the same numbers.
The fluidizing means 50 is provided in the large container 10 that can be sealed. The fluidizing means 50 includes a breathable member 51 provided at the bottom of the large container 10 and a pressurized air supply means 52 for supplying air to the inside of the large container 10 through the breathable member 51.
The toner discharge portion is guided from a powder introduction tube 17 inserted into the powder so as not to be in close contact with the bottom surface of the large container 10 to a powder valve (filling nozzle) 11 via a fluidized powder transport tube 16.
In the apparatus of this embodiment, when the pressure release valve 18 is open, the powder to be filled is introduced from the powder inlet with a shut-off valve at the top of the large container. Thereafter, the powder is fluidized by introducing gas from the pressurized air supply means 52 into the large container 10 through the air-permeable member 51.
After fluidization, when the powder inlet and the pressure release valve 18 are closed, the powder is pushed out of the large container 10 into the fluid powder transport pipe 16 by the pressure of the gas used for fluidization, and the small container 20 The powder is discharged from the powder valve 11 installed in the upper part into the small container 20. At that time, the opening degree of the powder speed adjusting valve 19 is adjusted to adjust the powder discharge speed.
Thereafter, in the same manner as in Example 1, the discharge of the powder is stopped.

従来の粉体充填装置の構成例を模式的に示す図。The figure which shows the structural example of the conventional powder filling apparatus typically. 実施例1の粉体充填装置の構成を模式的に示す図。The figure which shows the structure of the powder filling apparatus of Example 1 typically. 実施例2の粉体充填装置の部分構成を模式的に示す図。The figure which shows typically the partial structure of the powder filling apparatus of Example 2. FIG. 実施例3の粉体充填装置の構成を模式的に示す図。The figure which shows the structure of the powder filling apparatus of Example 3 typically.

符号の説明Explanation of symbols

10 大型容器
11 粉体バルブ(=充填ノズル)
12 多孔体(又はメッシュ材)
13 吸引管
14 大型容器の内壁部分
16 流動粉体輸送管
17 粉体導入管
18 圧力開放弁
19 粉体速度調整弁
20 小型トナー容器
21 トナー
24 圧力計
25 圧力計
30 重量計測手段
31 通信線
40 充填量制御手段
41 演算処理部
42 通信線
43 吸引圧発生源
44 タンク
45 空気弁
46 圧縮空気源
50 流動化手段
51 通気性部材
52 加圧空気供給手段
53 気体導入管
60 供給口
10 Large container 11 Powder valve (= Filling nozzle)
12 Porous body (or mesh material)
DESCRIPTION OF SYMBOLS 13 Suction pipe 14 Inner wall part of large container 16 Fluidized powder transport pipe 17 Powder introduction pipe 18 Pressure release valve 19 Powder speed adjustment valve 20 Small toner container 21 Toner 24 Pressure gauge 25 Pressure gauge 30 Weight measuring means 31 Communication line 40 Filling amount control means 41 Arithmetic processing part 42 Communication line 43 Suction pressure generation source 44 Tank 45 Air valve 46 Compressed air source 50 Fluidization means 51 Breathable member 52 Pressurized air supply means 53 Gas introduction pipe 60 Supply port

Claims (24)

内壁に通気性部材を有する大型容器、通気性部材を介して大型容器内に加圧気体を吐出させることにより大型容器内の粉体を流動化させる流動化手段、小型容器への吐出口において気体分離手段により気体のみを分離吸引してブリッジにより吐出を停止する粉体バルブ、粉体バルブにブリッジを形成するための吸引圧発生源、及び粉体が移送充填された小型容器の総重量を計測する重量計測手段を有する粉体充填装置であって、粉体バルブと吸引圧発生源の間にタンクを有し、該タンクと粉体バルブの間に空気弁を有し、重量計測手段からの計測データに基づいて空気弁を開く充填量制御手段を有することを特徴とする大型容器内の粉体を小型容器に充填する粉体充填装置。   Large container having a breathable member on the inner wall, fluidizing means for fluidizing the powder in the large container by discharging pressurized gas into the large container through the breathable member, gas at the discharge port to the small container Measures the total weight of a powder valve that separates and sucks only gas by a separation means and stops discharge by a bridge, a suction pressure generation source for forming a bridge in the powder valve, and a small container filled with powder. A powder filling device having a weight measuring means, comprising a tank between a powder valve and a suction pressure generation source, an air valve between the tank and the powder valve, A powder filling apparatus for filling powder in a large container into a small container, comprising filling amount control means for opening an air valve based on measurement data. 空気弁と粉体バルブの間に空気を圧入する経路が設けられ、空気弁の閉時に、この経路からの空気の圧入によりブリッジが破壊されることを特徴とする請求項1記載の粉体充填装置。   2. The powder filling according to claim 1, wherein a path for press-fitting air is provided between the air valve and the powder valve, and the bridge is broken by the press-fitting of air from the path when the air valve is closed. apparatus. 気体分離手段が、粉体吐出管の内側に配置されており、粉体は通過させず気体のみを通過させるメッシュ材を装着したものであることを特徴とする請求項1又は2記載の粉体充填装置。   The powder according to claim 1 or 2, wherein the gas separating means is disposed inside the powder discharge pipe, and is equipped with a mesh material that allows only the gas to pass without passing the powder. Filling equipment. 気体分離手段が、粉体吐出管の内側に配置されており、粉体は通過させず気体のみを通過させる多数の微細孔を有し各微細孔が内部で相互に連通している多孔体であることを特徴とする請求項1又は2記載の粉体充填装置。   The gas separation means is disposed inside the powder discharge pipe, and is a porous body having a large number of micropores that allow only the gas to pass therethrough without allowing the powder to pass therethrough, and each micropore communicates with each other inside. 3. The powder filling apparatus according to claim 1, wherein the powder filling apparatus is provided. 流動化手段が、気体分離手段に加圧気体を導入する気体導入管を備えていることを特徴とする請求項3又は4記載の粉体充填装置。   5. The powder filling apparatus according to claim 3, wherein the fluidizing means includes a gas introduction pipe for introducing a pressurized gas into the gas separation means. 気体導入管が、送気停止、送気開始及び送気量調節を行う送気調節弁を有することを特徴とする請求項5記載の粉体充填装置。   6. The powder filling apparatus according to claim 5, wherein the gas introduction pipe has an air supply control valve that performs air supply stop, air supply start, and air supply amount adjustment. 大型容器が少なくとも一部に傾斜した内壁部分を有することを特徴とする請求項1〜6の何れかに記載の粉体充填装置。   The powder filling apparatus according to claim 1, wherein the large container has an inner wall portion inclined at least partially. 傾斜した内壁部分が、大型容器下部のホッパ状の構造部分の一部であることを特徴とする請求項7記載の粉体充填装置。   8. The powder filling apparatus according to claim 7, wherein the inclined inner wall part is a part of a hopper-like structure part at the lower part of the large container. 充填量制御手段が、重量計測手段により計測される、少なくとも粉体が充填された小型容器の総重量を表示するためのモニタ部を有することを特徴とする請求項1〜8の何れかに記載の粉体充填装置。   9. The filling amount control means has a monitor unit for displaying the total weight of at least the small container filled with the powder, which is measured by the weight measuring means. Powder filling equipment. 充填量制御手段が、小型容器の空重量と粉体が充填された小型容器の総重量から、充填済み粉体重量を演算する演算処理部を有することを特徴とする請求項1〜9の何れかに記載の粉体充填装置。   The filling amount control means includes an arithmetic processing unit that calculates the weight of the filled powder from the empty weight of the small container and the total weight of the small container filled with the powder. A powder filling apparatus according to claim 1. 演算処理部が入力手段を有し、該入力手段により粉体の充填予定重量の入力、及び入力された充填予定重量の変更が可能であることを特徴とする請求項10記載の粉体充填装置。   11. The powder filling apparatus according to claim 10, wherein the arithmetic processing unit has an input means, and the input means can input the expected filling weight of the powder and change the inputted expected filling weight. . 演算処理部の演算結果に基いて、空気弁の開閉動作が制御されることを特徴とする請求項10又は11記載の粉体充填装置。   12. The powder filling apparatus according to claim 10, wherein the opening / closing operation of the air valve is controlled based on a calculation result of the calculation processing unit. 大型容器内の粉体を小型容器に充填する粉体充填方法であって、前記大型容器は、内壁に通気性部材を有し、該通気性部材を介して大型容器内に加圧気体を吐出させることにより大型容器内の粉体を流動化させ、小型容器への吐出口において気体分離手段と吸引圧発生源により気体のみを分離吸引し、粉体バルブにブリッジを形成して粉体の吐出を停止するに際し、粉体バルブと吸引圧発生源の間にタンクを設け、タンクと粉体バルブの間に空気弁を設け、吸引圧発生源により予めタンクに吸引圧を溜めておくと共に、粉体が移送充填された小型容器の総重量を計測し、該計測データに基づいて空気弁を開き、タンクに溜めておいた吸引圧を粉体バルブにかけてブリッジを瞬時に形成し粉体の吐出を停止することを特徴とする粉体充填方法。   A powder filling method for filling powder in a large container into a small container, wherein the large container has a breathable member on an inner wall and discharges pressurized gas into the large container through the breathable member. The powder in the large container is fluidized, and only the gas is separated and sucked by the gas separation means and the suction pressure generation source at the discharge port to the small container, and a bridge is formed on the powder valve to discharge the powder. Is stopped, a tank is provided between the powder valve and the suction pressure generation source, an air valve is provided between the tank and the powder valve, and the suction pressure is stored in the tank in advance by the suction pressure generation source. Measure the total weight of the small container with the body transferred and filled, open the air valve based on the measured data, and apply the suction pressure stored in the tank to the powder valve to instantly form a bridge to discharge the powder. A powder filling method characterized by stopping. 空気弁と粉体バルブの間に空気を圧入する経路を設け、空気弁の閉時に、この経路から空気を圧入してブリッジを破壊することを特徴とする請求項13記載の粉体充填方法。   14. The powder filling method according to claim 13, wherein a path for press-fitting air is provided between the air valve and the powder valve, and when the air valve is closed, the bridge is broken by press-fitting air from this path. 気体分離手段として、粉体は通過させず気体のみを通過させるメッシュ材を装着したものを粉体吐出管の内側に配置したことを特徴とする請求項13又は14記載の粉体充填方法。   15. The powder filling method according to claim 13 or 14, wherein as the gas separation means, a device equipped with a mesh material that does not allow powder to pass but allows only gas to pass is disposed inside the powder discharge pipe. 気体分離手段として、粉体は通過させず気体のみを通過させる多数の微細孔を有し各微細孔が内部で相互に連通している多孔体を粉体吐出管の内側に配置したことを特徴とする請求項13又は14記載の粉体充填方法。   As the gas separation means, a porous body having a large number of fine holes that allow only the gas to pass therethrough without allowing the powder to pass therethrough is arranged inside the powder discharge pipe, and each fine hole communicates with each other inside. The powder filling method according to claim 13 or 14. 気体分離手段に加圧気体を導入する気体導入管を備えた流動化手段を採用することを特徴とする請求項15又は16記載の粉体充填方法。   The powder filling method according to claim 15 or 16, wherein fluidizing means including a gas introduction pipe for introducing pressurized gas into the gas separation means is employed. 送気停止、送気開始及び送気量調節を行う送気調節弁を有する気体導入管を備えた流動化手段を採用することを特徴とする請求項17記載の粉体充填方法。   18. The powder filling method according to claim 17, wherein fluidization means including a gas introduction pipe having an air supply control valve for performing an air supply stop, an air supply start, and an air supply amount adjustment is employed. 少なくとも一部に傾斜した内壁部分を有する大型容器を用いることを特徴とする請求項13〜18の何れかに記載の粉体充填方法。   The powder filling method according to any one of claims 13 to 18, wherein a large container having an inner wall portion inclined at least partially is used. 傾斜した内壁部分が、大型容器下部のホッパ状の構造部分の一部であることを特徴とする請求項19記載の粉体充填方法。   20. The powder filling method according to claim 19, wherein the inclined inner wall portion is a part of a hopper-like structure portion at the lower portion of the large container. 重量計測手段により計測される、少なくとも粉体が充填された小型容器の総重量を表示するためのモニタ部を有する充填量制御手段を採用することを特徴とする請求項13〜20の何れかに記載の粉体充填方法。   21. The filling amount control means having a monitor unit for displaying the total weight of at least the small container filled with the powder, which is measured by the weight measuring means, is adopted. The powder filling method as described. 小型容器の空重量と粉体が充填された小型容器の総重量から充填済み粉体重量を演算する演算処理部を有する充填量制御手段を採用することを特徴とする請求項13〜21の何れかに記載の粉体充填方法。   The filling amount control means having an arithmetic processing unit for calculating the weight of the filled powder from the empty weight of the small container and the total weight of the small container filled with the powder is employed. The powder filling method according to claim 1. 演算処理部が入力手段を有し、該入力手段により粉体の充填予定重量の入力、及び入力された充填予定重量の変更を行うことを特徴とする請求項22記載の粉体充填方法。   23. The powder filling method according to claim 22, wherein the arithmetic processing unit has an input means, and the input means inputs the expected filling weight of the powder and changes the inputted expected filling weight. 演算処理部の演算結果に基いて、空気弁の開閉動作を制御することを特徴とする請求項22又は23記載の粉体充填方法。
The powder filling method according to claim 22 or 23, wherein the opening / closing operation of the air valve is controlled based on a calculation result of the calculation processing unit.
JP2004035161A 2004-02-12 2004-02-12 Powder filling apparatus and powder filling method Pending JP2005225511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035161A JP2005225511A (en) 2004-02-12 2004-02-12 Powder filling apparatus and powder filling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004035161A JP2005225511A (en) 2004-02-12 2004-02-12 Powder filling apparatus and powder filling method

Publications (1)

Publication Number Publication Date
JP2005225511A true JP2005225511A (en) 2005-08-25

Family

ID=35000539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035161A Pending JP2005225511A (en) 2004-02-12 2004-02-12 Powder filling apparatus and powder filling method

Country Status (1)

Country Link
JP (1) JP2005225511A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120245743A1 (en) * 2009-12-10 2012-09-27 Takehiko Hino machine, a system, and a method for suctioning powders and granular materials
JP2012523329A (en) * 2009-04-07 2012-10-04 スリーエム イノベイティブ プロパティズ カンパニー Toner dispenser without pump
JP2014000218A (en) * 2012-06-18 2014-01-09 Hitachi Aloka Medical Ltd Powder dispensing device
JP2016172566A (en) * 2015-03-17 2016-09-29 コニカミノルタ株式会社 Toner filling device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487903A (en) * 1990-07-25 1992-03-19 Yamato Scale Co Ltd Powder and grain filling apparatus
JPH0720287U (en) * 1993-09-20 1995-04-11 茨木精機株式会社 Adsorption type article carrier
JP2001058601A (en) * 1999-06-16 2001-03-06 Konica Corp Granule feeder, granule feed method and solid body flowing control method
JP2003221003A (en) * 2002-01-30 2003-08-05 Ricoh Co Ltd Method and device for filling fine powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487903A (en) * 1990-07-25 1992-03-19 Yamato Scale Co Ltd Powder and grain filling apparatus
JPH0720287U (en) * 1993-09-20 1995-04-11 茨木精機株式会社 Adsorption type article carrier
JP2001058601A (en) * 1999-06-16 2001-03-06 Konica Corp Granule feeder, granule feed method and solid body flowing control method
JP2003221003A (en) * 2002-01-30 2003-08-05 Ricoh Co Ltd Method and device for filling fine powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523329A (en) * 2009-04-07 2012-10-04 スリーエム イノベイティブ プロパティズ カンパニー Toner dispenser without pump
US20120245743A1 (en) * 2009-12-10 2012-09-27 Takehiko Hino machine, a system, and a method for suctioning powders and granular materials
US9126773B2 (en) * 2009-12-10 2015-09-08 Sintokogio, Ltd. Machine, a system, and a method for suctioning powders and granular materials
JP2014000218A (en) * 2012-06-18 2014-01-09 Hitachi Aloka Medical Ltd Powder dispensing device
JP2016172566A (en) * 2015-03-17 2016-09-29 コニカミノルタ株式会社 Toner filling device
US9885979B2 (en) 2015-03-17 2018-02-06 Konica Minolta, Inc. Toner filling apparatus

Similar Documents

Publication Publication Date Title
EP1616793B1 (en) Powder charging device and powder charging method
EP1568612B1 (en) Apparatus and method of filing microscopic powder
US6679301B2 (en) Powder packing method and apparatus therefor
KR20020090241A (en) A portable device for accurately metering and delivering cohesive bulk solid powders
JP2000118501A (en) Power processor
JP4307975B2 (en) Method and apparatus for filling fine powder
JP2006243722A (en) Method and system for increasing density of toner in toner container
JP4255304B2 (en) Powder continuous supply method, continuous filling method and powder continuous filling system
US7333756B2 (en) Method and device for the transport of toner material from a reservoir
JP3547730B2 (en) Filling method and filling device for fine powder
JP2005225511A (en) Powder filling apparatus and powder filling method
JP2005029186A (en) Powder filling device and powder filling method
JP2005022788A (en) Device and method for filling powdery material
JP2002337801A (en) Method and apparatus of filling extra-fine powder
JP4434794B2 (en) Powder filling apparatus and filling method using the same
JP3888628B2 (en) Powder filling machine
JP4290507B2 (en) Powder filling method, filling device and filling nozzle
JP4274537B2 (en) Powder filling method
JP2005075374A (en) Fine powder filling apparatus
JP2004276962A (en) Apparatus and method for filling powder
JP2005075376A (en) Fine powder filling apparatus
JP4335600B2 (en) Powder filling method and filling device
JPH04365725A (en) Powder feeder
JP2005096864A (en) Powder filling method and filling device
JP4053953B2 (en) Powder filling method and powder filling apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013