JP2005221491A - Supercritical water-cooled nuclear reactor - Google Patents

Supercritical water-cooled nuclear reactor Download PDF

Info

Publication number
JP2005221491A
JP2005221491A JP2004059785A JP2004059785A JP2005221491A JP 2005221491 A JP2005221491 A JP 2005221491A JP 2004059785 A JP2004059785 A JP 2004059785A JP 2004059785 A JP2004059785 A JP 2004059785A JP 2005221491 A JP2005221491 A JP 2005221491A
Authority
JP
Japan
Prior art keywords
cooling water
water
fuel assembly
fuel
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004059785A
Other languages
Japanese (ja)
Inventor
Yoshiaki Oka
芳明 岡
Seiichi Koshizuka
誠一 越塚
Tetsushi Yamaji
哲史 山路
Kazuchika Kamei
一央 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004059785A priority Critical patent/JP2005221491A/en
Publication of JP2005221491A publication Critical patent/JP2005221491A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To elevate a cooling water temperature in a reactor core outlet, by bringing cooling water for a fuel assembly into a downflow in a peripheral part of a supercritical water cooled nuclear reactor. <P>SOLUTION: The cooling water of a low temperature flows from a cold leg 3 into a reactor pressure vessel 1. One portion of the cooling water is passed through a downcomer 2 to reach a lower dome 12. The remainder of the cooling water is passed through an upper dome 5, goes down through a control rod cluster guide tube 7, goes down further through the fuel assembly 9 in the peripheral part, and reaches to the lower dome 12. The cooling water joined in the lower dome 12 flows from a core lower part 11 into the fuel assembly 10 in the central part, and heated to be discharged thereafter to a core upper part 8. Two flows of high temperature cooling water discharged from the respective fuel assemblies in the central part are mixed therein to flow toward a turbine through a hot leg 4, after outgoing from the reactor pressure vessel 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は超臨界圧水冷却原子炉に関する。  The present invention relates to a supercritical water-cooled nuclear reactor.

超臨界圧水冷却原子炉は、高温高圧の超臨界圧水を冷却材とする原子炉で、その概念は既に公知である(例えば、非特許文献1参照)。従来の軽水炉と異なり炉心内で沸騰が生じないため、より高温まで冷却材を加熱することができ、発電効率が大幅に上昇する。  The supercritical water-cooled nuclear reactor is a nuclear reactor using high-temperature and high-pressure supercritical water as a coolant, and the concept is already known (for example, see Non-Patent Document 1). Unlike conventional light water reactors, boiling does not occur in the core, so that the coolant can be heated to a higher temperature and the power generation efficiency is greatly increased.

超臨界圧水冷却原子炉は、貫流直接サイクルであり、給水ポンプより供給される冷却水が炉心で加熱された後に全量がタービンへと向かう。炉心は複数の燃料集合体で構成されているので、各燃料集合体を出た冷却水が炉心上部で混合される。混合後の炉心上部の冷却水温度を上昇させると熱効率が高くなる。さらに、炉心上部の冷却水温度を高くすると、炉心上部と下部の温度差が大きくなることで炉心流量が低下し、機器や建屋が小型化する。このように超臨界圧水冷却原子炉では、炉心上部の冷却水温度を高くすることで原子炉の性能を向上することができる。  The supercritical water-cooled nuclear reactor is a once-through direct cycle, and after the cooling water supplied from the feed water pump is heated in the core, the whole amount goes to the turbine. Since the core is composed of a plurality of fuel assemblies, the cooling water from each fuel assembly is mixed in the upper part of the core. Increasing the temperature of the cooling water at the top of the core after mixing increases the thermal efficiency. Further, when the coolant temperature at the upper part of the core is increased, the temperature difference between the upper part and the lower part of the core is increased, so that the core flow rate is reduced and the equipment and the building are downsized. As described above, in the supercritical water-cooled nuclear reactor, the performance of the nuclear reactor can be improved by increasing the cooling water temperature at the upper part of the core.

しかしながら、燃料集合体によって出力が異なると、燃料集合体出口での冷却水温度に差が生じる。原子炉の健全性を保つためには最高温度が制約となるので、燃料集合体出口で温度差が生じると、混合した後の冷却水温度は低くなってしまう。  However, if the output varies depending on the fuel assembly, a difference occurs in the coolant temperature at the fuel assembly outlet. Since the maximum temperature is a constraint in order to maintain the soundness of the nuclear reactor, if a temperature difference occurs at the outlet of the fuel assembly, the cooling water temperature after mixing becomes low.

特に、原子炉の特性上、炉心の周辺部の燃料集合体の出力はあまり高くならず、こうした燃料集合体の出口における冷却水温度は低くなり、原子炉の性能を低下させる。  In particular, due to the characteristics of the nuclear reactor, the output of the fuel assemblies around the core is not so high, the cooling water temperature at the outlet of such fuel assemblies is lowered, and the performance of the reactor is lowered.

これまでに提案された超臨界圧水冷却原子炉に関する技術はいくつかあるが(例えば、特許文献1〜11参照)、原子炉出口温度を高くする方法としては、超臨界圧軽水冷却高速炉におけるブランケット燃料集合体を下降冷却とする方法しかない(例えば、特許文献3参照)。この方法は高速炉にしか適用できず、ブランケット燃料集合体を持たない熱中性子炉には適用できない。  There are several technologies related to supercritical pressure water-cooled reactors proposed so far (see, for example, Patent Documents 1 to 11). As a method for increasing the reactor outlet temperature, supercritical pressure light water-cooled fast reactors are used. There is only a method of cooling the blanket fuel assembly (see, for example, Patent Document 3). This method can be applied only to fast reactors and not to thermal neutron reactors without blanket fuel assemblies.

特開平08−313664号公報JP 08-313664 A 特開2000−056081号公報JP 2000-056081 A 特開2001−004774号公報JP 2001-004774 A 特開2001−091689号公報JP 2001-091689 A 特開2002−031694号公報JP 2002-031694 A 特開2002−156492号公報JP 2002-156492 A 特開2002−341079号公報Japanese Patent Laid-Open No. 2002-341079 特開2003−050292号公報JP 2003-050292 A 特開2003−063801号公報JP 2003-063801 A 特開2003−129881号公報JP 2003-129881 A 特開2003−294878号公報JP 2003-294878 A 岡芳明「超臨界圧軽水炉の概念」原子力工業、第38巻11月号、ページ71−77(1992)Yoshiaki Oka, “Concept of Supercritical Pressure Light Water Reactor”, Nuclear Industry, Vol.38, November, Page 71-77 (1992)

そこで、燃料集合体の出口温度になるべく差が生じないようにし、炉心上部で混合した後の冷却水温度をできるだけ高くするような手段が求められている。  Therefore, there is a demand for means that minimizes the difference in the outlet temperature of the fuel assembly and raises the cooling water temperature as much as possible after mixing in the upper part of the core.

上記の課題を解決するため、本発明では、炉心の周辺部の燃料集合体の燃料棒間流路中の冷却水を下降流とし、中央部の燃料集合体の燃料棒間流路中の冷却水を上昇流とする。こうすることで、出力の低い周辺部の燃料集合体から流出する冷却水が炉心上部に放出されることを防ぐ。中央部の燃料集合体から流出する冷却水だけが炉心上部で混合されるため、混合後の冷却水温度を高く保つことができる。  In order to solve the above problems, in the present invention, the cooling water in the fuel rod passages of the fuel assemblies in the peripheral part of the core is used as a downward flow, and the cooling in the fuel rod passages of the central fuel assemblies Use water as an upward flow. This prevents the cooling water flowing out from the peripheral fuel assembly having a low output from being discharged to the upper part of the core. Since only the cooling water flowing out from the central fuel assembly is mixed in the upper part of the core, the cooling water temperature after mixing can be kept high.

本発明により、超臨界圧水冷却原子炉は、炉心の周辺部の出力の低い燃料集合体から流出する低温の冷却水が炉心上部に放出されることが無く、炉心上部で混合された後の冷却水温度を高く保つことができる。これにより、熱効率が上昇するとともに、炉心流量が減少することで機器や建屋を小型化することができ、超臨界圧水冷却原子炉の性能が向上する。  According to the present invention, the supercritical pressure water-cooled nuclear reactor does not discharge low-temperature cooling water flowing out from the low-power fuel assembly at the periphery of the core to the upper part of the core, and after mixing at the upper part of the core. The cooling water temperature can be kept high. As a result, the thermal efficiency is increased and the core flow rate is reduced, whereby the equipment and the building can be downsized, and the performance of the supercritical water-cooled nuclear reactor is improved.

以下、図面を参照して本発明の実施形態を説明する。図1は本発明の実施形態に係わる原子炉圧力容器の垂直断面を示す図である。原子炉圧力容器1にコールドレグ3より低温の冷却水が流入する。冷却水は一部がダウンカマー2を通り、下部ドーム12に達する。冷却水の残りは上部ドーム5を通り、制御棒クラスタ案内管7を下降し、さらに周辺部の燃料集合体9を下降し、下部ドーム12に達する。下部ドーム12で合流した冷却水は、炉心下部11から中央部の燃料集合体10に流入し、加熱された後、炉心上部8に放出される。ここで中央部の各燃料集合体から放出された高温の冷却水が混合し、原子炉圧力容器1を出てホットレグ4を通りタービンに向かう。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a view showing a vertical cross section of a reactor pressure vessel according to an embodiment of the present invention. Cooling water having a temperature lower than that of the cold leg 3 flows into the reactor pressure vessel 1. A part of the cooling water passes through the downcomer 2 and reaches the lower dome 12. The rest of the cooling water passes through the upper dome 5, descends the control rod cluster guide pipe 7, further descends the peripheral fuel assembly 9, and reaches the lower dome 12. The cooling water merged at the lower dome 12 flows into the fuel assembly 10 at the central portion from the lower core portion 11, is heated, and then discharged to the upper core portion 8. Here, the high-temperature cooling water discharged from the fuel assemblies in the central portion is mixed and exits the reactor pressure vessel 1 and passes through the hot leg 4 toward the turbine.

図2は本発明の実施形態に係わる周辺部の燃料集合体の上部における垂直断面および水平断面を示す図である。図1における制御棒クラスタ案内管7は二重になっており、制御棒クラスタ案内管外管13および制御棒クラスタ案内管内管14により、制御棒クラスタ案内管外側流路15と制御棒クラスタ案内管内側流路16を作る。制御棒クラスタ案内管外側流路15を下降する冷却水は、燃料棒間流路接続管22を通り、燃料棒間流路に導かれ下降流となる。制御棒クラスタ案内管内側流路16を下降する冷却水は、水ロッド21に導かれ下降流となる。なお、制御棒クラスタは複数の制御棒19より構成され、それぞれの制御棒19は水ロッド21内の制御棒案内管20の中に挿入される。炉心設計上、燃料棒間流路の流量と水ロッド21の流量の配分を設定する必要があるが、制御棒クラスタ案内管外側流路オリフィス17と制御棒クラスタ案内管内側流路オリフィス18によって設定が可能となる。  FIG. 2 is a view showing a vertical cross section and a horizontal cross section in the upper portion of the peripheral fuel assembly according to the embodiment of the present invention. The control rod cluster guide tube 7 in FIG. 1 is doubled. The control rod cluster guide tube outer tube 13 and the control rod cluster guide tube inner tube 14 are connected to the control rod cluster guide tube outer flow path 15 and the control rod cluster guide tube. An inner flow path 16 is created. The cooling water descending the control rod cluster guide tube outer passage 15 passes through the inter-fuel rod passage connection pipe 22 and is led to the inter-fuel rod passage and becomes a downward flow. The cooling water descending the control rod cluster guide tube inner flow path 16 is guided to the water rod 21 and becomes a downward flow. The control rod cluster includes a plurality of control rods 19, and each control rod 19 is inserted into a control rod guide tube 20 in the water rod 21. Although the distribution of the flow rate between the fuel rods and the flow rate of the water rod 21 needs to be set in the core design, it is set by the control rod cluster guide tube outer channel orifice 17 and the control rod cluster guide tube inner channel orifice 18. Is possible.

図3は中央部の燃料集合体の上部における垂直断面および水平断面を示す図である。図1における制御棒クラスタ案内管7はこの場合は単管であり、単一の制御棒クラスタ案内管流路23がある。これが水ロッド21に接続され、水ロッド内の冷却水を下降流とすることができる。なお、燃料棒25の間隙に形成される燃料棒間流路26の冷却水は下部ドーム12から導かれ、上昇流となる。  FIG. 3 is a view showing a vertical section and a horizontal section in the upper part of the fuel assembly in the center. The control rod cluster guide tube 7 in FIG. 1 is a single tube in this case, and there is a single control rod cluster guide tube flow path 23. This is connected to the water rod 21, and the cooling water in the water rod can be made to flow downward. In addition, the cooling water of the fuel rod passage 26 formed in the gap between the fuel rods 25 is guided from the lower dome 12 and becomes an upward flow.

上に示した実施形態では、冷却水を上部ドームから制御棒案内管を通じて周辺部の燃料集合体の上部に導いたが、ダウンカマーから直接導くこともできる。  In the embodiment shown above, the cooling water is led from the upper dome through the control rod guide tube to the upper part of the peripheral fuel assembly, but can also be led directly from the downcomer.

また、下部ドームから炉心周辺部に上昇流路を設け、そこから周辺部の燃料集合体の上部に冷却水を送る構造とすることもできる。  Further, it is possible to provide a structure in which an ascending flow path is provided from the lower dome to the periphery of the core, and cooling water is sent from there to the upper part of the fuel assembly in the periphery.

また、下部ドームの冷却水が燃料集合体間を上昇し、周辺部の燃料集合体の上部に達するようにすることもできる。  Further, the cooling water of the lower dome can rise between the fuel assemblies and reach the upper part of the peripheral fuel assembly.

上に示した実施形態では、炉心の中央部および周辺部のすべての燃料集合体において水ロッド内の冷却水は下降流となっているが、中央部の燃料集合体の水ロッド内の冷却水は必ずしも下降流とする必要はない。  In the embodiment shown above, the cooling water in the water rod is in a downward flow in all the fuel assemblies in the central part and the peripheral part of the core, but the cooling water in the water rod of the fuel assembly in the central part. Is not necessarily downflow.

上に示した実施形態では、周辺部の燃料集合体に接続される制御棒クラスタ案内管は二重管で、しかも制御棒クラスタも中に含むため、構造が複雑になっている。そこで、燃料中の可燃性毒物を増加させるなどにより制御棒以外の手段で燃焼反応度を補償できるようにすれば、周辺部の燃料集合体では制御棒は必要なくなる。この場合、制御棒案内管の構造は簡素化される。  In the embodiment shown above, the control rod cluster guide tube connected to the peripheral fuel assembly is a double tube, and the control rod cluster is included therein, so that the structure is complicated. Therefore, if the combustion reactivity can be compensated by means other than the control rod by increasing the flammable poison in the fuel, the control rod is not required in the peripheral fuel assembly. In this case, the structure of the control rod guide tube is simplified.

原子炉圧力容器の垂直断面を示す図。The figure which shows the vertical cross section of a nuclear reactor pressure vessel. 周辺部の燃料集合体の上部における垂直断面および水平断面を示す図。The figure which shows the vertical cross section and the horizontal cross section in the upper part of the fuel assembly of a peripheral part. 中央部の燃料集合体の上部における垂直断面および水平断面を示す図。The figure which shows the vertical cross section and horizontal cross section in the upper part of the fuel assembly of a center part.

符号の説明Explanation of symbols

1 原子炉圧力容器
2 ダウンカマー
3 コールドレグ
4 ホットレグ
5 上部ドーム
6 制御棒駆動装置
7 制御棒クラスタ案内管
8 炉心上部
9 周辺部の燃料集合体
10 中央部の燃料集合体
11 炉心下部
12 下部ドーム
13 制御棒クラスタ案内管外管
14 制御棒クラスタ案内管内管
15 制御棒クラスタ案内管外側流路
16 制御棒クラスタ案内管内側流路
17 制御棒クラスタ案内管外側流路オリフィス
18 制御棒クラスタ案内管内側流路オリフィス
19 制御棒
20 制御棒案内管
21 水ロッド
22 燃料棒間流路接続管
23 制御棒クラスタ案内管流路
24 制御棒クラスタ案内管流路オリフィス
25 燃料棒
26 燃料棒間流路
DESCRIPTION OF SYMBOLS 1 Reactor pressure vessel 2 Downcomer 3 Cold leg 4 Hot leg 5 Upper dome 6 Control rod drive 7 Control rod cluster guide tube 8 Upper core 9 Peripheral fuel assembly 10 Central fuel assembly 11 Lower core 12 Lower dome 13 Control rod cluster guide tube outer tube 14 Control rod cluster guide tube inner tube 15 Control rod cluster guide tube outer channel 16 Control rod cluster guide tube inner channel 17 Control rod cluster guide tube outer channel orifice 18 Control rod cluster guide tube inner channel Orifice 19 Control rod 20 Control rod guide tube 21 Water rod 22 Fuel rod flow passage connection tube 23 Control rod cluster guide tube passage 24 Control rod cluster guide tube passage orifice 25 Fuel rod 26 Fuel rod passage

Claims (4)

炉心の周辺部の燃料集合体の燃料棒間流路中の冷却水を下降流とし、中央部の燃料集合体の燃料棒間流路中の冷却水を上昇流とすることを特徴とする超臨界圧水冷却原子炉。  The cooling water in the flow path between fuel rods of the fuel assembly in the peripheral part of the core is a downward flow, and the cooling water in the flow path between fuel rods of the fuel assembly in the center is an upward flow Critical pressure water cooled reactor. 請求項1に記載の超臨界圧水冷却原子炉において、周辺部および中央部の燃料集合体の水ロッド中の冷却水を下降流とすることを特徴とする超臨界圧水冷却原子炉。  2. The supercritical water-cooled nuclear reactor according to claim 1, wherein the cooling water in the water rods of the peripheral and central fuel assemblies is a downward flow. 請求項1又は2に記載の超臨界圧水冷却原子炉において、原子炉圧力容器の上部ドームから制御棒クラスタ案内管を通じて燃料集合体上端に冷却水を導くことを特徴とする超臨界圧水冷却原子炉。  3. The supercritical water cooling reactor according to claim 1, wherein the cooling water is guided from the upper dome of the reactor pressure vessel to the upper end of the fuel assembly through the control rod cluster guide tube. Reactor. 請求項1、2又は3に記載の超臨界圧水冷却原子炉において、燃料棒間流路中の冷却水が下降流となる周辺部の燃料集合体には制御棒が無いことを特徴とする超臨界圧水冷却原子炉。  The supercritical water-cooled nuclear reactor according to claim 1, 2, or 3, wherein the fuel assemblies in the peripheral portion where the cooling water in the flow path between the fuel rods becomes a downward flow have no control rod. Supercritical water-cooled nuclear reactor.
JP2004059785A 2004-02-03 2004-02-03 Supercritical water-cooled nuclear reactor Pending JP2005221491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059785A JP2005221491A (en) 2004-02-03 2004-02-03 Supercritical water-cooled nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059785A JP2005221491A (en) 2004-02-03 2004-02-03 Supercritical water-cooled nuclear reactor

Publications (1)

Publication Number Publication Date
JP2005221491A true JP2005221491A (en) 2005-08-18

Family

ID=34997232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059785A Pending JP2005221491A (en) 2004-02-03 2004-02-03 Supercritical water-cooled nuclear reactor

Country Status (1)

Country Link
JP (1) JP2005221491A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117664A (en) * 2010-12-24 2011-07-06 中国核动力研究设计院 Double-row hexagonal fuel assembly for supercritical water-cooled reactor
CN102568624A (en) * 2011-12-05 2012-07-11 李正蔚 High-temperature supercritical nuclear reactor
CN102737735A (en) * 2012-07-04 2012-10-17 中国核动力研究设计院 Combined square fuel assembly, reactor core and two-pass flowing method of super-critical water reactor
CN103137220B (en) * 2013-02-04 2015-09-23 中国核动力研究设计院 A kind of Brattice type afflux structure being applicable to Supercritical-Pressure Light Water Cooled Reactor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117664A (en) * 2010-12-24 2011-07-06 中国核动力研究设计院 Double-row hexagonal fuel assembly for supercritical water-cooled reactor
CN102117664B (en) * 2010-12-24 2013-01-02 中国核动力研究设计院 Double-row hexagonal fuel assembly for supercritical water-cooled reactor
CN102568624A (en) * 2011-12-05 2012-07-11 李正蔚 High-temperature supercritical nuclear reactor
CN102737735A (en) * 2012-07-04 2012-10-17 中国核动力研究设计院 Combined square fuel assembly, reactor core and two-pass flowing method of super-critical water reactor
CN102737735B (en) * 2012-07-04 2015-07-29 中国核动力研究设计院 Supercritical water reactor combined type square fuel assembly and use the reactor core of this fuel assembly
CN103137220B (en) * 2013-02-04 2015-09-23 中国核动力研究设计院 A kind of Brattice type afflux structure being applicable to Supercritical-Pressure Light Water Cooled Reactor

Similar Documents

Publication Publication Date Title
US10803997B2 (en) Compact nuclear reactor with integral steam generator
US9177674B2 (en) Compact nuclear reactor
US9715948B2 (en) Reactor system with a lead-cooled fast reactor
JP4786616B2 (en) Reactor
JP5968782B2 (en) Plutonium-How to operate a pressurized water reactor to reach an equilibrium cycle
US9523496B2 (en) Integral pressurized water reactor with external steam drum
JP4422690B2 (en) Natural circulation boiling water reactor
KR20140091714A (en) Pressurized water reactor with upper plenum including cross-flow blocking weir
Domínguez et al. Evolution of the Canadian SCWR fuel-assembly concept and assessment of the 64 element assembly for thermalhydraulic performance
JP2009074960A (en) Fast reactor having reflector control system
JP2005221491A (en) Supercritical water-cooled nuclear reactor
JP2007198997A (en) Super-critical pressure water cooled reactor and super-critical pressure water cooled fuel assembly
JP2009075001A (en) Nuclear reactor
US3180801A (en) Heavy water moderated organic cooled nuclear fission reactor
KR100647808B1 (en) Flow mixing header for an integrated reactor downcomer
JP2003294878A (en) Fuel assembly
JP2012058113A (en) Steam separation facility for nuclear reactor
JP2002257967A (en) Fast breeding reactor
Ueda et al. Current design status of sodium cooled super-safe, small and simple reactor
JPH1010258A (en) Water rod for fuel bundle of boiling water reactor and nuclear fuel bundle
EP2696137B1 (en) Water supply pipe for vapor generator
JP2014106035A (en) Supercritical pressure light water cooled nuclear reactor
Nishi et al. A new concept of the 4S reactor and thermal hydraulic characteristics
JP2022060701A (en) Atomic reactor
KR20090048096A (en) Steam generator cassette structure for flow mixing in integrated reactor