JP2005220088A - Silicon-containing polyvalent amine, hole transport material composed of the same and organic el element using the same material - Google Patents

Silicon-containing polyvalent amine, hole transport material composed of the same and organic el element using the same material Download PDF

Info

Publication number
JP2005220088A
JP2005220088A JP2004030627A JP2004030627A JP2005220088A JP 2005220088 A JP2005220088 A JP 2005220088A JP 2004030627 A JP2004030627 A JP 2004030627A JP 2004030627 A JP2004030627 A JP 2004030627A JP 2005220088 A JP2005220088 A JP 2005220088A
Authority
JP
Japan
Prior art keywords
group
hole transport
silicon
transport material
polyvalent amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004030627A
Other languages
Japanese (ja)
Inventor
Junji Kido
淳二 城戸
Daisaku Tanaka
大作 田中
Kazushi Shimizu
一志 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemipro Kasei Kaisha Ltd
Original Assignee
Chemipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemipro Kasei Kaisha Ltd filed Critical Chemipro Kasei Kaisha Ltd
Priority to JP2004030627A priority Critical patent/JP2005220088A/en
Publication of JP2005220088A publication Critical patent/JP2005220088A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon-containing polyvalent amine useful as a hole transport material having a wide energy gap in order to improve a triplet excitation level of the hole transport material, namely a silicon-containing hole transport material having an energy gap wider than 3.0e, the hole transport material composed of the amine and a highly efficient (blue) phosphorescent organic EL element using the transport material. <P>SOLUTION: The silicon-containing polyvalent amine is represented by general formula (1) (R<SP>1</SP>and R<SP>2</SP>are each a group each independently selected from a group consisting of an alkyl group and an aryl group; Ar<SP>1</SP>, Ar<SP>2</SP>, Ar<SP>3</SP>and Ar<SP>4</SP>are each a group each independently selected from a group consisting of an aryl group and a heterocyclic group; Ar<SP>1</SP>and Ar<SP>2</SP>and/or Ar<SP>3</SP>and Ar<SP>4</SP>each together forms a heterocyclic group). The hole transport material is composed of the amine. The highly efficient (blue) phosphorescent organic EL element uses the transport material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ケイ素含有多価アミン、それよりなる最低励起三重項エネルギー準位を有するホール輸送材料およびそれを用いた有機EL素子に関する。   The present invention relates to a silicon-containing polyvalent amine, a hole transport material having the lowest excited triplet energy level, and an organic EL device using the same.

従来燐光素子を作製するに当っては、これまで蛍光素子に用いられていた下記式

Figure 2005220088
で示されるα−NPD〔N,N′−ジフェニル−N,N′−ジ(1−ナフチル)ベンジジン〕あるいは下記式
Figure 2005220088
で示されるTPD〔N,N′−ジフェニル−N,N′−ジ(m−トリル)ベンジジン〕などがホール輸送材料に用いられていた。蛍光素子は発光(蛍光)材料の一重項励起準位からの発光であるため、発光効率はホール輸送材料の一重項励起準位に起因する。一方、燐光素子の場合は発光(燐光)材料の三重項励起準位からの発光であるため、ホール輸送材料の三重項励起準位を考慮した素子構成が必要である。α−NPD、TPDなどの蛍光素子に用いられたホール輸送材料では三重項励起準位がそれほど高くないために、発光層で生成した三重項励起子エネルギーがホール輸送層へエネルギー移動してしまい、その結果、高効率(青色)燐光素子を作製することは困難であった。 In the production of conventional phosphorescent devices, the following formulas that have been used in fluorescent devices so far:
Figure 2005220088
Α-NPD [N, N′-diphenyl-N, N′-di (1-naphthyl) benzidine] represented by the formula:
Figure 2005220088
TPD [N, N′-diphenyl-N, N′-di (m-tolyl) benzidine] represented by the following has been used as a hole transport material. Since the fluorescent element emits light from the singlet excitation level of the light emitting (fluorescent) material, the light emission efficiency is attributed to the singlet excitation level of the hole transport material. On the other hand, a phosphorescent device emits light from a triplet excitation level of a light emitting (phosphorescent) material, and thus an element configuration that takes into account the triplet excitation level of a hole transport material is required. In a hole transport material used for a fluorescent element such as α-NPD and TPD, the triplet exciton level is not so high, and thus triplet exciton energy generated in the light emitting layer is transferred to the hole transport layer, As a result, it has been difficult to produce a high efficiency (blue) phosphorescent device.

特許文献1には、下記一般式

Figure 2005220088
(式中、R11はアルキル基、アリール基、ヘテロアリール基またはアルキニル基を表し、Ar11、Ar12、Ar13はそれぞれヘテロアリール基を示す)
で示される特定のシラン化合物からなる発光素子材料及びそれを含有する発光素子に関する発明が開示されているが、リン光素子(特に青色)の高効率化に重要な最低励起三重項エネルギー準位や電気化学特性であるエネルギーギャップの広さに関しては記載も示唆もない。 Patent Document 1 includes the following general formula:
Figure 2005220088
(In the formula, R 11 represents an alkyl group, an aryl group, a heteroaryl group or an alkynyl group, and Ar 11 , Ar 12 and Ar 13 each represent a heteroaryl group)
Are disclosed, and a light-emitting device material comprising the specific silane compound and a light-emitting device containing the same are disclosed. However, the lowest excited triplet energy level important for improving the efficiency of phosphorescent devices (especially blue) and There is no description or suggestion regarding the wide energy gap, which is an electrochemical property.

特許文献2では、1対の電極間に発光層または発光層を含む複数の有機化合物層を形成した発光素子において、特定の多環芳香族化合物と特定の有機ケイ素誘導体を含む発光素子について記載されているが、有機ケイ素誘導体はホスト材料としての使用を開示しているに過ぎない。   Patent Document 2 describes a light-emitting element that includes a light-emitting layer or a plurality of organic compound layers including a light-emitting layer between a pair of electrodes, and that includes a specific polycyclic aromatic compound and a specific organosilicon derivative. However, organosilicon derivatives only disclose use as host materials.

特許文献3には、発光材料とホスト材料とを含有する発光層を少なくとも有し、発光極大波長が500nm以下であり、且つ前記ホスト材料の最低励起三重項エネルギー準位が前記発光材料の最低励起三重項エネルギー準位よりも高いことを特徴とする発光素子が開示されている。
より具体的には、前記発光層を発光材料(ゲスト材料)と該発光材料の最低励起三重項エネルギー準位(T)よりも高いTを有するホスト材料とで構成しているものであり、ここにおいて有機ケイ素誘導体は発光層に隣接する層に含まれる成分として例示されているにとどまり、ホール輸送材料としての使用は全く示唆されていない。
Patent Document 3 includes at least a light emitting layer containing a light emitting material and a host material, a light emission maximum wavelength is 500 nm or less, and the lowest excitation triplet energy level of the host material is the lowest excitation of the light emitting material. A light-emitting element characterized by being higher than the triplet energy level is disclosed.
More specifically, the light emitting layer includes a light emitting material (guest material) and a host material having T 1 higher than the lowest excited triplet energy level (T 1 ) of the light emitting material. Here, the organosilicon derivative is only exemplified as a component contained in a layer adjacent to the light emitting layer, and its use as a hole transport material is not suggested at all.

特開2000−351966号公報JP 2000-351966 A 特開2002−329579号公報JP 2002-329579 A 特開2002−100476号公報JP 2002-1000047 A

本発明の目的は、ホール輸送材料の三重項励起準位を向上させる目的として広いエネルギーギャップを有するホール輸送材料、すなわちエネルギーギャップが3.0eVより広いエネルギーギャップを有するケイ素含有ホール輸送材料として有用なケイ素含有多価アミン、それよりなるホール輸送材料およびそれを用いた高効率(青色)燐光有機EL素子を提供する点にある。   The object of the present invention is useful as a hole transport material having a wide energy gap for the purpose of improving the triplet excitation level of the hole transport material, that is, a silicon-containing hole transport material having an energy gap wider than 3.0 eV. The object is to provide a silicon-containing polyvalent amine, a hole transport material comprising the same, and a high-efficiency (blue) phosphorescent organic EL device using the same.

本発明の第1は、下記一般式(1)

Figure 2005220088
〔式中、RおよびRはアルキル基およびアリール基よりなる群からそれぞれ独立して選ばれた基であり、Ar、Ar、ArおよびArは、アリール基および複素環基よりなる群からそれぞれ独立して選ばれた基であり、また、ArとArおよび/またはArとArはそれぞれ一体となって複素環基を形成した基である。〕
で示されるケイ素含有多価アミンに関する。
本発明の第2は、3.0eVよりも広いエネルギーギャップを有するものである請求項1記載のケイ素含有多価アミンに関する。
本発明の第3は、請求項1または2記載のケイ素含有多価アミンよりなるホール輸送材料に関する。
本発明の第4は、請求項1または2記載のケイ素含有多価アミンを用いたことを特徴とする有機EL素子に関する。
本発明の第5は、請求項1または2記載のケイ素含有多価アミンをホール輸送層に用いたことを特徴とする有機EL素子に関する。
本発明の第6は、発光材料が燐光材料である請求項5記載の有機EL素子に関する。
本発明の第7は、その発光ピーク波長が480nmよりも短波長である青色発光を示す前記燐光材料である請求項6記載の有機EL素子に関する。 The first of the present invention is the following general formula (1)
Figure 2005220088
[Wherein, R 1 and R 2 are groups independently selected from the group consisting of an alkyl group and an aryl group, and Ar 1 , Ar 2 , Ar 3 and Ar 4 are each selected from an aryl group and a heterocyclic group. Each of these groups is independently selected from the group consisting of Ar 1 and Ar 2 and / or Ar 3 and Ar 4 together forming a heterocyclic group. ]
It is related with the silicon-containing polyvalent amine shown by these.
The second aspect of the present invention relates to the silicon-containing polyvalent amine according to claim 1, which has an energy gap wider than 3.0 eV.
A third aspect of the present invention relates to a hole transport material comprising the silicon-containing polyvalent amine according to claim 1 or 2.
A fourth aspect of the present invention relates to an organic EL device using the silicon-containing polyvalent amine according to claim 1 or 2.
The fifth aspect of the present invention relates to an organic EL device characterized in that the silicon-containing polyvalent amine according to claim 1 or 2 is used for a hole transport layer.
A sixth aspect of the present invention relates to the organic EL element according to claim 5, wherein the light emitting material is a phosphorescent material.
A seventh aspect of the present invention relates to the organic EL element according to claim 6, wherein the phosphorescent material exhibits blue light emission whose emission peak wavelength is shorter than 480 nm.

本発明で用いる一般式(1)の化合物の製造方法は下記のとおりである。

Figure 2005220088
〔式中、RおよびRはアルキル基およびアリール基よりなる群からそれぞれ独立して選ばれた基であり、Xはハロゲンを示し、好ましくは臭素、ヨウ素であり、また、式中Ar、Ar、ArおよびArは、環数1〜6のアリール基および複素環基よりなる群から独立して選ばれた基であり、また、ArとArおよび/またはArとArはそれぞれ一体となって複素環を形成した基である。〕
前記反応は、パラジウム〔例えば、塩化パラジウム、酢酸パラジウム、ビス(ジベンジリデンアセトン)パラジウム〕触媒あるいは銅粉存在下、塩基性条件、不活性ガス(例えば、窒素、アルゴン)下の反応であり、反応溶媒としては一般的な芳香族溶媒を使用することが可能で、具体的には、トルエン、キシレン、N,N−ジメチルホルムアミド、ニトロベンゼン、テトラリンなどが使用でき、反応温度は室温から300℃、好ましくは60℃から200℃、より好ましくは100℃から150℃にて行なう。
Ar、Ar、ArおよびArの好ましい具体例としては、下記式群
Figure 2005220088
〔式中、R3およびR4は炭素数が好ましくは1〜20、より好ましくは1〜10、さらにより好ましくは1〜6のアルキル基よりなる群からそれぞれ独立して選ばれた基であり、それぞれ直鎖状であっても、枝分かれしていても良い。その例としては、−CH、−C、−CHCHCH、−CH(CH、−CH(CHCH、−C(CH、−CH(CHCH、−CH(CHCHなどを挙げることができる。〕
からそれぞれ独立して選ばれた基である。なお、これらの芳香族環や複素環には必要に応じて任意の置換基を有することができる。これらの置換基としては、アルキル基、アルコキシ基、エステル基およびハロゲン基などを挙げることができる。
また、ArとArあるいはArとArが結合した場合の形としてはArとArあるいはArとArが結合しているN原子も含めてその構造例を示すと
Figure 2005220088
などを挙げることができる。 The manufacturing method of the compound of General formula (1) used by this invention is as follows.
Figure 2005220088
[Wherein, R 1 and R 2 are groups independently selected from the group consisting of an alkyl group and an aryl group, X represents a halogen, preferably bromine or iodine, and Ar 1 , Ar 2 , Ar 3 and Ar 4 are groups independently selected from the group consisting of an aryl group having 1 to 6 rings and a heterocyclic group, and Ar 1 and Ar 2 and / or Ar 3 Ar 4 is a group forming a heterocyclic ring together. ]
The reaction is a reaction under a basic condition and inert gas (for example, nitrogen, argon) in the presence of a palladium [for example, palladium chloride, palladium acetate, bis (dibenzylideneacetone) palladium] catalyst or copper powder. As the solvent, a general aromatic solvent can be used. Specifically, toluene, xylene, N, N-dimethylformamide, nitrobenzene, tetralin, and the like can be used, and the reaction temperature is from room temperature to 300 ° C., preferably Is carried out at 60 ° C to 200 ° C, more preferably 100 ° C to 150 ° C.
As preferable specific examples of Ar 1 , Ar 2 , Ar 3 and Ar 4 ,
Figure 2005220088
[Wherein R 3 and R 4 are groups independently selected from the group consisting of alkyl groups having preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 6 carbon atoms. , Each may be linear or branched. Examples thereof, -CH 3, -C 2 H 5 , -CH 2 CH 2 CH 3, -CH (CH 3) 2, -CH 2 (CH 2) 2 CH 3, -C (CH 3) 3, -CH 2 (CH 2) 3 CH 3, etc. -CH 2 (CH 2) 4 CH 3 and the like. ]
Are independently selected groups. In addition, these aromatic rings and heterocyclic rings can have an arbitrary substituent as necessary. Examples of these substituents include alkyl groups, alkoxy groups, ester groups, and halogen groups.
In addition, when Ar 1 and Ar 2 or Ar 3 and Ar 4 are bonded, the structure example including N 1 where Ar 1 and Ar 2 or Ar 3 and Ar 4 are bonded is shown.
Figure 2005220088
And so on.

とRにおけるアルキル基およびAr〜Arにおける置換基としてのアルキル基としては、炭素数が好ましくは1〜20、より好ましくは1〜10、さらにより好ましくは1〜6であり、それぞれ直鎖状であっても、枝分かれしていても良い。その例としては、−CH、−C、−CHCHCH、−CH(CH
−CH(CHCH、−C(CH、−CH(CHCH
−CH(CHCHなどを挙げることができる。
とRにおけるアリール基としては、置換基を有することもあるモノ、ジ、トリあるいはテトラフェニル基、置換基を有することもあるナフタリン基、アンスラセン基などを挙げることができ、前記置換基としては前記アルキル基、そのアルコキシ基、後述のエステル基、ハロゲン基などを挙げることができる。
とRのアリール基における置換基およびAr〜Arの置換基としてのアルコキシ基としては、炭素数が好ましくは1〜20、より好ましくは1〜10、さらにより好ましくは1〜6であり、それぞれ直鎖状であっても、枝分かれしていても良い。その例としては、
−OCH、−OC、−OCHCHCH、−OCH(CH
−OCH(CHCH、−OC(CH、−OCH(CHCH
−OCH(CHCH、−OCなどを挙げることができる。
とRのアリール基における置換基およびAr〜Arにおける置換基としてのエステル基としては、炭素数1〜10、好ましくは1〜6よりなるアルキルエステルあるいはアリールエステルを挙げることができ、その例としては、
−COOCH、−COOC、−COOCHCHCH
−COOCH(CH、−COOCH(CHCH
−COOC(CH、−COOCH(CHCH
−COOCH(CHCH、−COOCなどを挙げることができる。
とRのアリール基における置換基およびAr〜Arにおける置換基としてのハロゲン基としては、すべてのハロゲン元素を挙げることができる。
The alkyl group in R 1 and R 2 and the alkyl group as a substituent in Ar 1 to Ar 4 preferably have 1 to 20, more preferably 1 to 10, still more preferably 1 to 6 carbon atoms, Each may be linear or branched. Examples thereof, -CH 3, -C 2 H 5 , -CH 2 CH 2 CH 3, -CH (CH 3) 2,
-CH 2 (CH 2) 2 CH 3, -C (CH 3) 3, -CH 2 (CH 2) 3 CH 3,
Such as -CH 2 (CH 2) 4 CH 3 and the like.
Examples of the aryl group in R 1 and R 2 include a mono, di, tri, or tetraphenyl group that may have a substituent, a naphthalene group that may have a substituent, an anthracene group, and the like. Examples thereof include the alkyl group, an alkoxy group thereof, an ester group described later, and a halogen group.
The alkoxy group as the substituent in the aryl group of R 1 and R 2 and the substituent of Ar 1 to Ar 4 preferably has 1 to 20, more preferably 1 to 10, and even more preferably 1 to 6 carbon atoms. Each of them may be linear or branched. For example,
-OCH 3, -OC 2 H 5, -OCH 2 CH 2 CH 3, -OCH (CH 3) 2,
-OCH 2 (CH 2) 2 CH 3, -OC (CH 3) 3, -OCH 2 (CH 2) 3 CH 3,
-OCH 2 (CH 2) 4 CH 3, and the like -OC 6 H 5.
Examples of the substituent in the aryl group of R 1 and R 2 and the ester group as the substituent in Ar 1 to Ar 4 include alkyl esters or aryl esters having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms. For example,
-COOCH 3, -COOC 2 H 5, -COOCH 2 CH 2 CH 3,
-COOCH (CH 3) 2, -COOCH 2 (CH 2) 2 CH 3,
-COOC (CH 3) 3, -COOCH 2 (CH 2) 3 CH 3,
-COOCH 2 (CH 2) 4 CH 3, and the like -COOC 6 H 5.
Examples of the halogen group as the substituent in the aryl group of R 1 and R 2 and the substituent in Ar 1 to Ar 4 include all halogen elements.

本発明のケイ素含有多価アミンの具体的化合物を下記に例示する。

Figure 2005220088
Figure 2005220088
Figure 2005220088
Specific examples of the silicon-containing polyvalent amine of the present invention are exemplified below.
Figure 2005220088
Figure 2005220088
Figure 2005220088

本発明の化合物は、例えばAlq(発光材料兼電子輸送材料)との素子構成で素子を作成することにより、効率のよいホール輸送性能を示すことを見出し、ホール輸送材料としての用途を開発できた。さらに、この化合物が3.0eVより大きなエネルギーギャップを有するという特徴を活かし、近年、研究が進められている燐光素子、好ましくは青色燐光素子に用いることにより、燐光素子の高効率化を実現することができた。エネルギーギャップが広いと、それに伴い三重項励起準位も高くなることが期待できる。三重項励起準位向上が燐光素子の高効率化に重要であることから、エネルギーギャップを広くすることで燐光素子の高効率化につながる。 The compound of the present invention has been found to exhibit efficient hole transport performance by creating a device with a device configuration of, for example, Alq 3 (light emitting material / electron transport material), and can be used as a hole transport material. It was. Furthermore, taking advantage of the feature that this compound has an energy gap larger than 3.0 eV, it is possible to achieve high efficiency of the phosphorescent device by using it in a phosphorescent device which has been studied recently, preferably a blue phosphorescent device. I was able to. If the energy gap is wide, it can be expected that the triplet excitation level will increase accordingly. Since the improvement of the triplet excitation level is important for improving the efficiency of the phosphorescent device, widening the energy gap leads to higher efficiency of the phosphorescent device.

以下に合成例、実施例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものではない。   Hereinafter, the present invention will be described with reference to synthesis examples and examples, but the present invention is not limited thereto.

合成例1〔ビス(4−ブロモフェニル)ジフェニルシランの合成〕

Figure 2005220088
1,4−ジブロモベンゼン(25g,106mmol)および乾燥ジエチルエーテル250mlを加え、さらに、−70℃下、n−ブチルリチウムヘキサン1.6M溶液(69ml,106mmol)を滴下により加え、この溶液を徐々に室温まで戻し、さらに2時間撹拌した。再びこの溶液を−70℃に冷却し、ジフェニルジクロロシラン(11.2ml,53mmol)を滴下により加え、この溶液を徐々に室温に戻し、10℃以上で12時間撹拌し、析出物をろ別、有機層を水洗後、硫酸マグネシウムで乾燥させ、硫酸マグネシウムを除去後、減圧下溶媒留去、濃縮物をトルエン50ml−メタノール50mlで再結晶精製し、真空乾燥して、白色結晶のビス(4−ブロモフェニル)ジフェニルシラン18.21gを得た(収率70%)。化学構造はH−NMR、元素分析にて同定した。 Synthesis Example 1 [Synthesis of bis (4-bromophenyl) diphenylsilane]
Figure 2005220088
1,4-Dibromobenzene (25 g, 106 mmol) and 250 ml of dry diethyl ether were added, and 1.6M n-butyllithium hexane 1.6M solution (69 ml, 106 mmol) was added dropwise at −70 ° C., and this solution was gradually added. It returned to room temperature and stirred for further 2 hours. The solution was cooled again to -70 ° C, diphenyldichlorosilane (11.2 ml, 53 mmol) was added dropwise, the solution was gradually returned to room temperature, stirred at 10 ° C or higher for 12 hours, and the precipitate was filtered off. The organic layer was washed with water and dried over magnesium sulfate. After removing the magnesium sulfate, the solvent was distilled off under reduced pressure. The concentrate was recrystallized and purified with 50 ml of toluene-50 ml of methanol, dried in vacuo, and bis (4- Bromophenyl) diphenylsilane 18.21g was obtained (yield 70%). The chemical structure was identified by 1 H-NMR and elemental analysis.

合成例2〔4,4′−ジ−(ジフェニルアミノ)−テトラフェニルシランの合成〕

Figure 2005220088
合成例1により得られた化合物(3.0g,6.07mmol),ジフェニルアミン(2.16g,12.7mmol)、塩化パラジウム(21.53mg,0.121mmol)をo−キシレン70mlに加え、70℃まで加熱して原料を溶解させた後、さらにトリt−ブチルホスフィン(98.2mg,0.485mmol)のo−キシレン10ml溶液を加えた。この溶液を140℃まで加熱して30分撹拌し、塩化パラジウムがほぼ溶解していることを目視で確認後、一旦120℃まで冷却し、ナトリウムt−ブトキシド(1.63g,17.0mmol)をすばやく加え再び140℃まで加熱し、3時間撹拌した。次に40℃まで冷却し、不溶物をろ別後、減圧下溶媒を留去し、濃縮物をトルエン/ヘキサン=1/4溶液にてシリカゲルクロマトグラフィー精製を行い、さらに、アセトン30ml−メタノール40ml溶液にて分散洗浄後、真空乾燥し、白色結晶の4,4′−(ジフェニルアミノ)−テトラフェニルシラン3.21gを得た(収率79%)。化学構造はH−NMR、元素分析にて同定した。このH−NMRチャートは図15に示す。
さらにトレイン−サブリメーション法により昇華精製を行った(精製収率69%)。 Synthesis Example 2 [Synthesis of 4,4'-di- (diphenylamino) -tetraphenylsilane]
Figure 2005220088
The compound obtained in Synthesis Example 1 (3.0 g, 6.07 mmol), diphenylamine (2.16 g, 12.7 mmol) and palladium chloride (21.53 mg, 0.121 mmol) were added to 70 ml of o-xylene, and 70 ° C. The raw materials were dissolved by heating until 10 ml of o-xylene solution of tri-t-butylphosphine (98.2 mg, 0.485 mmol) was added. The solution was heated to 140 ° C. and stirred for 30 minutes. After visually confirming that palladium chloride was almost dissolved, the solution was once cooled to 120 ° C., and sodium t-butoxide (1.63 g, 17.0 mmol) was added. The mixture was quickly added and again heated to 140 ° C. and stirred for 3 hours. Next, the mixture was cooled to 40 ° C., insolubles were filtered off, the solvent was distilled off under reduced pressure, the concentrate was purified by silica gel chromatography using a toluene / hexane = 1/4 solution, and further 30 ml of acetone-40 ml of methanol. After being dispersed and washed with the solution, it was vacuum-dried to obtain 3.21 g of 4,4 ′-(diphenylamino) -tetraphenylsilane as white crystals (yield 79%). The chemical structure was identified by 1 H-NMR and elemental analysis. This H-NMR chart is shown in FIG.
Further, sublimation purification was performed by a train-sublimation method (purification yield 69%).

合成例3〔4,4′−ジ−(カルバゾイル)−テトラフェニルシランの合成〕

Figure 2005220088
合成例2においてジフェニルアミンの代わりにカルバゾール(2.13g,12.7mmol)を用いた以外はすべて同条件で反応、精製を行い、白色結晶の4,4′−ジ−(カルバゾイル)−テトラフェニルシラン1.41gを得た(収率35%)。化学構造はH−NMR、元素分析にて同定した。このH−NMRチャートは図16に示す。
さらにトレイン−サブリメーション法により昇華精製を行った(精製収率72%)。 Synthesis Example 3 [Synthesis of 4,4′-di- (carbazoyl) -tetraphenylsilane]
Figure 2005220088
Except that carbazole (2.13 g, 12.7 mmol) was used instead of diphenylamine in Synthesis Example 2, the reaction and purification were carried out under the same conditions, and 4,4′-di- (carbazoyl) -tetraphenylsilane was obtained as white crystals. 1.41 g was obtained (35% yield). The chemical structure was identified by 1 H-NMR and elemental analysis. This H-NMR chart is shown in FIG.
Further, sublimation purification was performed by a train-sublimation method (purification yield: 72%).

合成例4〔4,4′−ジ−(p,p′−ジトリルアミノ)−テトラフェニルシランの合成〕

Figure 2005220088
合成例2においてジフェニルアミンの代わりにp,p′−ジトリルアミン(2.51g,12.7mmol)を用いた以外はすべて同条件で反応、精製を行い、白色結晶の4,4′−ジ−(p,p′−ジトリルアミノ)−テトラフェニルシラン2.61gを得た(収率59%)。化学構造はH−NMR、元素分析にて同定した。このH−NMRチャートは図17に示す。
さらにトレイン−サブリメーション法により昇華精製を行った(精製収率75%)。 Synthesis Example 4 [Synthesis of 4,4′-di- (p, p′-ditolylamino) -tetraphenylsilane]
Figure 2005220088
Except that p, p'-ditolylamine (2.51 g, 12.7 mmol) was used instead of diphenylamine in Synthesis Example 2, the reaction and purification were carried out under the same conditions, and 4,4'-di- (p , P'-ditolylamino) -tetraphenylsilane (yield 59%). The chemical structure was identified by 1 H-NMR and elemental analysis. This H-NMR chart is shown in FIG.
Further, sublimation purification was performed by a train-sublimation method (purification yield: 75%).

合成例5〔4,4′−ジ−(p,p′−ジメトキシジフェニルアミノ)−テトラフェニルシランの合成〕

Figure 2005220088
合成例2においてジフェニルアミンの代わりにp,p′−ジメトキシジフェニルアミン(2.91g,12.7mmol)を用いた以外はすべて同条件で反応、精製を行い、白色結晶の4,4′−ジ−(p,p′−ジメトキシジフェニルアミノ)−テトラフェニルシラン4.11gを得た(収率86%)。化学構造はH−NMR、元素分析にて同定した。このH−NMRチャートは図18に示す。
さらにトレイン−サブリメーション法により昇華精製を行った(精製収率74%)。 Synthesis Example 5 [Synthesis of 4,4′-di- (p, p′-dimethoxydiphenylamino) -tetraphenylsilane]
Figure 2005220088
Except that p, p'-dimethoxydiphenylamine (2.91 g, 12.7 mmol) was used instead of diphenylamine in Synthesis Example 2, the reaction and purification were performed under the same conditions, and 4,4'-di- ( 4.11 g of p, p'-dimethoxydiphenylamino) -tetraphenylsilane was obtained (86% yield). The chemical structure was identified by 1 H-NMR and elemental analysis. This H-NMR chart is shown in FIG.
Further, sublimation purification was performed by a train-sublimation method (purification yield: 74%).

本発明の合成例2〜5で得られた化合物の電気化学特性および熱特性を測定した。   The electrochemical characteristics and thermal characteristics of the compounds obtained in Synthesis Examples 2 to 5 of the present invention were measured.

Figure 2005220088
なお、表中EgはUV吸収スペクトルの吸収端より算出したエネルギーギャップ値、Ipは大気中光電子分析にて測定したイオン化ポテンシャル値、EaはIp−Egにより算出した電子親和力値を示している。
Figure 2005220088
In the table, Eg represents an energy gap value calculated from the absorption edge of the UV absorption spectrum, Ip represents an ionization potential value measured by atmospheric photoelectron analysis, and Ea represents an electron affinity value calculated by Ip-Eg.

Figure 2005220088
なお、表中Tgはガラス転移温度、Tmは融解温度、Tdは分解温度を示している。
Figure 2005220088
In the table, Tg represents a glass transition temperature, Tm represents a melting temperature, and Td represents a decomposition temperature.

実施例1
洗浄および前処理を施したITO基板上に、真空蒸着により、合成例2で得られた化合物もしくは合成例3で得られた化合物もしくは合成例4で得られた化合物あるいは合成例5で得られた化合物を500Å、下記式

Figure 2005220088
で示されるAlq〔トリス(8−キノリノラト)アルミニウム(III)〕を600Å、LiFを5Å、Alを1000Å、順次積層し、ホール輸送性能を確認した。その結果を表3および図1に示す。 Example 1
The compound obtained in Synthesis Example 2, the compound obtained in Synthesis Example 3, the compound obtained in Synthesis Example 4, or the compound obtained in Synthesis Example 5 was obtained by vacuum deposition on the cleaned and pretreated ITO substrate. 500Å of compound, the following formula
Figure 2005220088
Then, Alq 3 [Tris (8-quinolinolato) aluminum (III)] represented by the formula (600), LiF (5%), and Al (1000%) were sequentially laminated to confirm the hole transport performance. The results are shown in Table 3 and FIG.

Figure 2005220088
Figure 2005220088

実施例2
洗浄および前処理を施したITO基板上に、下記式

Figure 2005220088
で示されるTPDPES〔ポリエーテルスルホン化合物分子量は10,000〜30,000(PES−1)〕20mgおよび下記式
Figure 2005220088
で示されるTBPAH〔トリス(4−ブロモフェニル)アルミニウムヘキサクロロアンチモネート〕2mgを1,2−ジクロロエタン4mlに溶解した液をスピンコートすることにより厚さ200Åに成膜した。さらに、その上に、真空蒸着により、合成例2で得られた化合物もしくは合成例4で得られた化合物あるいは合成例5で得られた化合物を300Å、Alqを600Å、LiFを5Å、Alを1000Å、順次積層し、ホール輸送性能を確認した。その結果を表4および図2に示す。 Example 2
On the cleaned and pretreated ITO substrate, the following formula
Figure 2005220088
20 mg of TPDPES [polyether sulfone compound molecular weight is 10,000 to 30,000 (PES-1)] and the following formula
Figure 2005220088
A film in which 2 mg of TBPAH [tris (4-bromophenyl) aluminum hexachloroantimonate] represented by the formula (1) was dissolved in 4 ml of 1,2-dichloroethane was spin-coated to form a film having a thickness of 200 mm. Further, by vacuum evaporation, the compound obtained in Synthesis Example 2 or the compound obtained in Synthesis Example 4 or the compound obtained in Synthesis Example 5 is 300Å, Alq 3 is 600Å, LiF is 5Å, and Al is added. 1000 順次 was sequentially laminated, and the hole transport performance was confirmed. The results are shown in Table 4 and FIG.

Figure 2005220088
Figure 2005220088

実施例3
洗浄および前処理を施したITO基板上に、前記TPDPES20mgおよび前記TBPAH2mgを1,2−ジクロロエタン4mlに溶解した液をスピンコートすることにより厚さ200Å成膜した。さらに、その上に、真空蒸着により、合成例2で得られた化合物もしくは合成例4で得られた化合物を300Å、下記式

Figure 2005220088
で示されるCBP〔4,4′−ジカルバソリルビフェニル〕、下記式
Figure 2005220088
で示されるFIrpic{ビス〔2−(4,6−ジフルオロフェニル)ピリジナト〕ピコリナトイリジウム(III)}(6wt%)を300Å、下記式
Figure 2005220088
で示されるBalq〔ビス(2−メチル−8−キノリノラト)4−フェニルフェノラトアルミニウム(III)〕を300Å、LiFを5Å、Alを1000Å、順次積層し、青色燐光素子構造に於けるホール輸送性能を評価した。なお、前記CBP(ホスト材料)および前記FIrpic(発光材料)は共蒸着により成膜した。その結果を表5および図3〜5に示す。 Example 3
A 200-mm-thick film was formed by spin-coating a solution prepared by dissolving 20 mg of TPDPES and 2 mg of TBPAH in 4 ml of 1,2-dichloroethane on an ITO substrate that had been cleaned and pretreated. Furthermore, 300 Å of the compound obtained in Synthesis Example 2 or the compound obtained in Synthesis Example 4 by the vacuum vapor deposition, the following formula
Figure 2005220088
CBP [4,4′-dicarbazolylbiphenyl] represented by the following formula:
Figure 2005220088
FIrpic {bis [2- (4,6-difluorophenyl) pyridinato] picorinatoiridium (III)} (6 wt%) represented by the formula:
Figure 2005220088
Hole transport performance in a blue phosphor structure by sequentially laminating Balq [bis (2-methyl-8-quinolinolato) 4-phenylphenolatoaluminum (III)] represented by the following formula: 300 mm, LiF: 5 mm, Al: 1000 mm. Evaluated. The CBP (host material) and the FIrpic (light emitting material) were formed by co-evaporation. The results are shown in Table 5 and FIGS.

Figure 2005220088
なお、括弧内の数値は印加電圧の値(単位はV)を示している。
Figure 2005220088
In addition, the numerical value in a parenthesis has shown the value (a unit is V) of the applied voltage.

比較例1
実施例3において合成例2で得られた化合物あるいは合成例4で得られた化合物の代わりにα−NPDを用いた以外はすべて同条件で素子作製を行い、実施例3と同様に青色燐光素子構造に於けるホール輸送性能を評価した。その結果を表6および図6〜8に示す。

Figure 2005220088
なお、括弧内の数値は印加電圧の値(単位はV)を示している。 Comparative Example 1
In Example 3, a device was manufactured under the same conditions except that α-NPD was used instead of the compound obtained in Synthesis Example 2 or the compound obtained in Synthesis Example 4, and a blue phosphorescent device was obtained in the same manner as in Example 3. The hole transport performance in the structure was evaluated. The results are shown in Table 6 and FIGS.
Figure 2005220088
In addition, the numerical value in a parenthesis has shown the value (a unit is V) of the applied voltage.

実施例4
実施例3においてFIrpicの代わりに下記式

Figure 2005220088
で示されるIr(ppy)〔トリス(2−フェニルピリジナト)イリジウム(III)〕を用いた以外はすべて同条件で素子作製を行い、緑色燐光素子構造に於けるホール輸送性能を評価した。その結果を表7および図9〜11に示す。 Example 4
In Example 3, instead of FIrpic, the following formula
Figure 2005220088
The device was fabricated under the same conditions except that Ir (ppy) 3 [Tris (2-phenylpyridinato) iridium (III)] represented by the following formula was used, and the hole transport performance in the green phosphor structure was evaluated. . The results are shown in Table 7 and FIGS.

Figure 2005220088
なお、括弧内の数値は印加電圧の値(単位はV)を示している。
Figure 2005220088
In addition, the numerical value in a parenthesis has shown the value (a unit is V) of the applied voltage.

比較例2
実施例4において合成例2で得られた化合物あるいは合成例4で得られた化合物の代わりにα−NPDを用いた以外はすべて同条件で素子作製を行い、実施例4と同様に緑色燐光素子構造に於けるホール輸送性能を評価した。その結果を表8および図12〜14に示す。
Comparative Example 2
In Example 4, a device was fabricated under the same conditions except that α-NPD was used instead of the compound obtained in Synthesis Example 2 or the compound obtained in Synthesis Example 4, and a green phosphorescent device was obtained in the same manner as in Example 4. The hole transport performance in the structure was evaluated. The results are shown in Table 8 and FIGS.

Figure 2005220088
なお、括弧内の数値は印加電圧の値(単位はV)を示している。
Figure 2005220088
In addition, the numerical value in a parenthesis has shown the value (a unit is V) of the applied voltage.

実施例5
洗浄および前処理を施したITO基板上に、前記TPDPES20mgおよび前記TBPAH2mgを1,2−ジクロロエタン4mlに溶解した液をスピンコートすることにより厚さ200Å成膜した。さらに、その上に、真空蒸着により、合成例4で得られた化合物を300Å、下記式

Figure 2005220088
で示されるCzTT〔4,4″−ジ(N−カルバゾリル)−2′,3′,5′,6′−テトラフェニル−p−ターフェニル〕、前記FIrpic(8wt%)を300Å、下記式
Figure 2005220088
で示されるt−BuTAZ〔3−(4′−ビフェニリル)−5−(4′−t−ブチルフェニル)−4−フェニル−1,2,4−トリアゾール〕を300Å、LiFを5Å、Alを1000Å、順次積層し、青色燐光素子構造に於ける高効率化を検討した。なお、前記CBP(ホスト材料)および前記FIrpic(発光材料)は共蒸着により成膜した。その結果を表9および図15〜17に示す。 Example 5
A 200-mm-thick film was formed by spin-coating a solution prepared by dissolving 20 mg of TPDPES and 2 mg of TBPAH in 4 ml of 1,2-dichloroethane on an ITO substrate that had been cleaned and pretreated. Furthermore, 300Å of the compound obtained in Synthesis Example 4 was formed by vacuum vapor deposition, and the following formula
Figure 2005220088
CzTT [4,4 ″ -di (N-carbazolyl) -2 ′, 3 ′, 5 ′, 6′-tetraphenyl-p-terphenyl] represented by the formula: 300 μl of the above FIrpic (8 wt%),
Figure 2005220088
T-BuTAZ [3- (4′-biphenylyl) -5- (4′-t-butylphenyl) -4-phenyl-1,2,4-triazole] represented by the formula: 300Å, LiF: 5Å, Al: 1000Å In order to increase the efficiency of the blue phosphor structure, the layers were sequentially stacked. The CBP (host material) and the FIrpic (light emitting material) were formed by co-evaporation. The results are shown in Table 9 and FIGS.

Figure 2005220088
Figure 2005220088

表3は、最も簡単なAlq(発光材料兼電子輸送材料)との二層型素子を作成することにより、本件ケイ素含有多価アミンがすぐれたホール輸送性能を示すことを確認したものである。表3の素子は駆動電圧が少し高いため、ホール注入層(TPDPES:TBPAH)を設けた素子構造にすることにより低電圧化を行った。その結果が表4である。表3に較べ表4では、発光開始電圧および最高輝度時の印加電圧の低下が見られ、それに伴い最高輝度も向上している。
さらに、本件ケイ素含有多価アミンを燐光素子に用いた場合のデータが表5である。
これまで用いられていたα−NPDのデータ(表6)と比較した場合、素子特性が向上していることが明らかである。
本件ケイ素含有多価アミンを緑色燐光素子に用いた場合のデータが表7である。
これまで用いられていたα−NPDのデータ(表8)と比較した場合、素子特性が向上していることが明らかである。
表9では、燐光材料のホスト材料にCzTTを用い、電子輸送層にはホールブロック性の高いt−BuTAZを用いたことにより、燐光材料とのHOMO、LUMOレベルが各材料間において最適化され、電荷の注入ロスが低減され、t−BuTAZのホールブロック効果により電荷の突き抜けが抑えられ、電荷の再結合が発光材料中で確実に行なわれる結果、最大外部量子効率が12%を超える高い性能を得ることができた。
本件ケイ素含有多価アミンを緑色燐光素子のホール輸送層に用いた場合においても高効率化を実現している。
本件ケイ素含有多価アミンは、エネルギーギャップが広いことを特徴とするが、それに伴い、表1に示すように電子親和力(Ea)の値がα−NPDに比べて小さくなっている。言い換えれば、最低空軌道(LUMO)レベルが高くなっている。
LUMOレベルが高くなることにより効果的に電子が発光層でブロックされ、高効率発光が得られることになる。
近年、発光材料として燐光材料が注目されるようになってから燐光素子(とくに青色)の高効率化が多々研究されている。本件ケイ素含有多価アミンを燐光素子のホール輸送層に用いた場合に高効率化を実現しているため、本件ケイ素含有多価アミンのホール輸送材料としての有用性は明白である。
Table 3 confirms that the silicon-containing polyvalent amine exhibits excellent hole transport performance by creating a two-layer device with the simplest Alq 3 (light emitting material / electron transport material). . Since the driving voltage of the elements shown in Table 3 was slightly high, the voltage was reduced by using an element structure provided with a hole injection layer (TPDPES: TBPAH). The results are shown in Table 4. In Table 4, as compared with Table 3, the emission start voltage and the applied voltage at the maximum luminance are decreased, and the maximum luminance is improved accordingly.
Further, Table 5 shows data obtained when the silicon-containing polyvalent amine was used in a phosphorescent device.
When compared with the α-NPD data (Table 6) used so far, it is apparent that the device characteristics are improved.
Table 7 shows data when the silicon-containing polyvalent amine was used in a green phosphorescent device.
When compared with the α-NPD data used so far (Table 8), it is apparent that the device characteristics are improved.
In Table 9, by using CzTT as the host material of the phosphorescent material and using t-BuTAZ having a high hole blocking property for the electron transport layer, the HOMO and LUMO levels with the phosphorescent material are optimized between the materials. Charge injection loss is reduced, charge penetration is suppressed by the hole blocking effect of t-BuTAZ, and charge recombination is reliably performed in the luminescent material. As a result, the maximum external quantum efficiency exceeds 12%. I was able to get it.
Even when the silicon-containing polyvalent amine is used in the hole transport layer of the green phosphorescent element, high efficiency is realized.
The present silicon-containing polyvalent amine is characterized by a wide energy gap, and accordingly, as shown in Table 1, the value of electron affinity (Ea) is smaller than that of α-NPD. In other words, the lowest empty orbit (LUMO) level is high.
By increasing the LUMO level, electrons are effectively blocked by the light emitting layer, and high efficiency light emission can be obtained.
In recent years, since phosphorescent materials have attracted attention as light-emitting materials, many studies have been made on improving the efficiency of phosphorescent elements (especially blue). When the present silicon-containing polyvalent amine is used in the hole transport layer of the phosphorescent device, high efficiency is realized, and therefore the usefulness of the present silicon-containing polyvalent amine as a hole transport material is clear.

図1は、実施例1の結果で、表3に対応した輝度−電圧特性を示すグラフである。FIG. 1 is a graph showing luminance-voltage characteristics corresponding to Table 3 as a result of Example 1. 図2は、実施例2の結果で、表4に対応した輝度−電圧特性を示すグラフである。FIG. 2 is a graph showing luminance-voltage characteristics corresponding to Table 4 as a result of Example 2. 図3は、実施例3の結果で、表5に対応した輝度−電圧特性を示すグラフである。FIG. 3 is a graph showing the luminance-voltage characteristics corresponding to Table 5 as a result of Example 3. 図4は、実施例1の結果で、表5に対応した視感効率−電圧特性を示すグラフである。FIG. 4 is a graph showing luminous efficiency-voltage characteristics corresponding to Table 5 as a result of Example 1. 図5は、実施例1の結果で、表5に対応した電流効率−電圧特性を示すグラフである。FIG. 5 is a graph showing current efficiency-voltage characteristics corresponding to Table 5 as a result of Example 1. 図6は、比較例1の結果で、表6に対応した輝度−電圧特性を示すグラフである。FIG. 6 is a graph showing the luminance-voltage characteristics corresponding to Table 6 as a result of Comparative Example 1. 図7は、比較例1の結果で、表6に対応した視感効率−電圧特性を示すグラフである。FIG. 7 is a graph showing luminous efficiency-voltage characteristics corresponding to Table 6 as a result of Comparative Example 1. 図8は、比較例1の結果で、表6に対応した電流効率−電圧特性を示すグラフである。FIG. 8 is a graph showing the current efficiency-voltage characteristics corresponding to Table 6 as a result of Comparative Example 1. 図9は、実施例4の結果で、表7に対応した輝度−電圧特性を示すグラフである。FIG. 9 is a graph showing luminance-voltage characteristics corresponding to Table 7 as a result of Example 4. 図10は、実施例4の結果で、表7に対応した視感効率−電圧特性を示すグラフである。FIG. 10 is a graph showing luminous efficiency-voltage characteristics corresponding to Table 7 as a result of Example 4. 図11は、実施例4の結果で、表7に対応した電流効率−電圧特性を示すグラフである。FIG. 11 is a graph showing the current efficiency-voltage characteristics corresponding to Table 7 as a result of Example 4. 図12は、比較例2の結果で、表8に対応した輝度−電圧特性を示すグラフである。FIG. 12 is a graph showing luminance-voltage characteristics corresponding to Table 8 as a result of Comparative Example 2. 図13は、比較例2の結果で、表8に対応した視感効率−電圧特性を示すグラフである。FIG. 13 is a graph showing luminous efficiency-voltage characteristics corresponding to Table 8 as a result of Comparative Example 2. 図14は、比較例2の結果で、表8に対応した電流効率−電圧特性を示すグラフである。FIG. 14 is a graph showing the current efficiency-voltage characteristics corresponding to Table 8 as a result of Comparative Example 2. 図15は、実施例5の結果で、表9に対応した輝度−電圧特性を示すグラフである。FIG. 15 is a graph showing the luminance-voltage characteristics corresponding to Table 9 as a result of Example 5. 図16は、実施例5の結果で、表9に対応した視感効率−電圧特性を示すグラフである。FIG. 16 is a graph showing luminous efficiency-voltage characteristics corresponding to Table 9 as a result of Example 5. 図17は、実施例5の結果で、表9に対応した電流効率−電圧特性を示すグラフである。FIG. 17 is a graph showing the current efficiency-voltage characteristics corresponding to Table 9 as a result of Example 5. 図18は、合成例2で得られた化合物H−NMRチャートである。18 is a compound 1 H-NMR chart obtained in Synthesis Example 2. FIG. 図19は、合成例3で得られた化合物H−NMRチャートである。19 is a compound 1 H-NMR chart obtained in Synthesis Example 3. FIG. 図20は、合成例4で得られた化合物H−NMRチャートである。20 is a compound 1 H-NMR chart obtained in Synthesis Example 4. FIG. 図21は、合成例5で得られた化合物H−NMRチャートである。21 is a compound 1 H-NMR chart obtained in Synthesis Example 5. FIG.

Claims (7)

下記一般式(1)
Figure 2005220088
〔式中、RおよびRはアルキル基およびアリール基よりなる群からそれぞれ独立して選ばれた基であり、Ar、Ar、ArおよびArは、アリール基および複素環基よりなる群からそれぞれ独立して選ばれた基であり、また、ArとArおよび/またはArとArはそれぞれ一体となって複素環基を形成した基である。〕
で示されるケイ素含有多価アミン。
The following general formula (1)
Figure 2005220088
[Wherein, R 1 and R 2 are groups independently selected from the group consisting of an alkyl group and an aryl group, and Ar 1 , Ar 2 , Ar 3 and Ar 4 are each selected from an aryl group and a heterocyclic group. Each of these groups is independently selected from the group consisting of Ar 1 and Ar 2 and / or Ar 3 and Ar 4 together forming a heterocyclic group. ]
A silicon-containing polyvalent amine represented by
3.0eVよりも広いエネルギーギャップを有するものである請求項1記載のケイ素含有多価アミン。   The silicon-containing polyvalent amine according to claim 1, which has an energy gap wider than 3.0 eV. 請求項1または2記載のケイ素含有多価アミンよりなるホール輸送材料。   A hole transport material comprising the silicon-containing polyvalent amine according to claim 1. 請求項1または2記載のケイ素含有多価アミンを用いたことを特徴とする有機EL素子。   An organic EL device comprising the silicon-containing polyvalent amine according to claim 1. 請求項1または2記載のケイ素含有多価アミンをホール輸送層に用いたことを特徴とする有機EL素子。   An organic EL device comprising the silicon-containing polyvalent amine according to claim 1 or 2 as a hole transport layer. 発光材料が燐光材料である請求項5記載の有機EL素子。   The organic EL device according to claim 5, wherein the light emitting material is a phosphorescent material. その発光ピーク波長が480nmよりも短波長である青色発光を示す前記燐光材料である請求項6記載の有機EL素子。
The organic EL device according to claim 6, wherein the phosphorescent material exhibits blue light emission whose emission peak wavelength is shorter than 480 nm.
JP2004030627A 2004-02-06 2004-02-06 Silicon-containing polyvalent amine, hole transport material composed of the same and organic el element using the same material Pending JP2005220088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030627A JP2005220088A (en) 2004-02-06 2004-02-06 Silicon-containing polyvalent amine, hole transport material composed of the same and organic el element using the same material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030627A JP2005220088A (en) 2004-02-06 2004-02-06 Silicon-containing polyvalent amine, hole transport material composed of the same and organic el element using the same material

Publications (1)

Publication Number Publication Date
JP2005220088A true JP2005220088A (en) 2005-08-18

Family

ID=34995999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030627A Pending JP2005220088A (en) 2004-02-06 2004-02-06 Silicon-containing polyvalent amine, hole transport material composed of the same and organic el element using the same material

Country Status (1)

Country Link
JP (1) JP2005220088A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306864A (en) * 2004-03-26 2005-11-04 Fuji Photo Film Co Ltd Organic electroluminescent device and silicon compound
JP2006083167A (en) * 2004-08-19 2006-03-30 Chemiprokasei Kaisha Ltd Phenazacillin derivative, and hole-transporting material, hole injection material and light-emitting layer host material, and organic el element containing the same
JP2007096102A (en) * 2005-09-29 2007-04-12 Fujifilm Corp Organic electroluminescent element
JP2007137829A (en) * 2005-11-18 2007-06-07 Chemiprokasei Kaisha Ltd New triazine derivative and organic electroluminescence element using the same
JP2007531762A (en) * 2004-03-31 2007-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Triarylamine compounds used as charge transport materials
WO2007132986A1 (en) * 2006-05-17 2007-11-22 Dongjin Semichem Co., Ltd Silicon type compound having bisphenylcarbazol in molecule and method for preparing organic thin layer of organic light emitting devices using the same
WO2008090907A1 (en) * 2007-01-24 2008-07-31 Ube Industries, Ltd. Bis(3-arylamino)diphenyl metal compound and organic electroluminescent device containing the metal compound
JP2010525017A (en) * 2007-04-26 2010-07-22 ビーエーエスエフ ソシエタス・ヨーロピア Silanes containing phenothiazine-S-oxide or phenothiazine-S, S-dioxide groups and their use in OLEDs
KR101263503B1 (en) * 2006-04-28 2013-05-13 동우 화인켐 주식회사 Organosilane Compounds, Electroluminiscent Materials Comprising The Same, and Organic Electroluminiscent Device
KR101263505B1 (en) * 2006-04-28 2013-05-13 동우 화인켐 주식회사 Organosilane Compounds, Electroluminiscent Materials Comprising The Same, and Organic Electroluminiscent Device
KR101263525B1 (en) * 2006-04-28 2013-05-13 동우 화인켐 주식회사 Organosilane Compounds, Electroluminiscent Materials Comprising The Same, and Organic Electroluminiscent Device
US8716697B2 (en) 2004-02-20 2014-05-06 E I Du Pont De Nemours And Company Electronic devices made with crosslinkable compounds and copolymers
KR20140092963A (en) * 2013-01-04 2014-07-25 삼성디스플레이 주식회사 Silicon-based compound and organic light emitting diode comprising the same
WO2018211377A1 (en) * 2017-05-19 2018-11-22 株式会社半導体エネルギー研究所 Electronic device, light-emitting device, electronic apparatus, and illumination device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279237A (en) * 2000-03-31 2001-10-10 Fuji Photo Film Co Ltd Organic light-emitting element, new amine compound, new heterocyclic compound and organic light-emitting element using the same
JP2002100476A (en) * 2000-07-17 2002-04-05 Fuji Photo Film Co Ltd Light-emitting element and azole compound
JP2005097301A (en) * 2003-09-22 2005-04-14 Samsung Sdi Co Ltd 4,4'-bis(carbazol-9-yl)-biphenyl silicon compound and organic electroluminescent element utilizing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279237A (en) * 2000-03-31 2001-10-10 Fuji Photo Film Co Ltd Organic light-emitting element, new amine compound, new heterocyclic compound and organic light-emitting element using the same
JP2002100476A (en) * 2000-07-17 2002-04-05 Fuji Photo Film Co Ltd Light-emitting element and azole compound
JP2005097301A (en) * 2003-09-22 2005-04-14 Samsung Sdi Co Ltd 4,4'-bis(carbazol-9-yl)-biphenyl silicon compound and organic electroluminescent element utilizing the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716697B2 (en) 2004-02-20 2014-05-06 E I Du Pont De Nemours And Company Electronic devices made with crosslinkable compounds and copolymers
JP2005306864A (en) * 2004-03-26 2005-11-04 Fuji Photo Film Co Ltd Organic electroluminescent device and silicon compound
US8236990B2 (en) 2004-03-31 2012-08-07 E I Du Pont De Nemours And Company Triarylamine compounds, compositions and uses therefor
JP2007531762A (en) * 2004-03-31 2007-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Triarylamine compounds used as charge transport materials
JP4700442B2 (en) * 2004-08-19 2011-06-15 ケミプロ化成株式会社 A phenazacillin derivative, a hole transport material comprising the same, a hole injection material, a light emitting layer host material, and an organic EL device including the same.
JP2006083167A (en) * 2004-08-19 2006-03-30 Chemiprokasei Kaisha Ltd Phenazacillin derivative, and hole-transporting material, hole injection material and light-emitting layer host material, and organic el element containing the same
JP2007096102A (en) * 2005-09-29 2007-04-12 Fujifilm Corp Organic electroluminescent element
JP2007137829A (en) * 2005-11-18 2007-06-07 Chemiprokasei Kaisha Ltd New triazine derivative and organic electroluminescence element using the same
KR101263525B1 (en) * 2006-04-28 2013-05-13 동우 화인켐 주식회사 Organosilane Compounds, Electroluminiscent Materials Comprising The Same, and Organic Electroluminiscent Device
KR101263503B1 (en) * 2006-04-28 2013-05-13 동우 화인켐 주식회사 Organosilane Compounds, Electroluminiscent Materials Comprising The Same, and Organic Electroluminiscent Device
KR101263505B1 (en) * 2006-04-28 2013-05-13 동우 화인켐 주식회사 Organosilane Compounds, Electroluminiscent Materials Comprising The Same, and Organic Electroluminiscent Device
WO2007132986A1 (en) * 2006-05-17 2007-11-22 Dongjin Semichem Co., Ltd Silicon type compound having bisphenylcarbazol in molecule and method for preparing organic thin layer of organic light emitting devices using the same
WO2008090907A1 (en) * 2007-01-24 2008-07-31 Ube Industries, Ltd. Bis(3-arylamino)diphenyl metal compound and organic electroluminescent device containing the metal compound
JP5353245B2 (en) * 2007-01-24 2013-11-27 宇部興産株式会社 Bis (3-arylamino) diphenyl metal compound and organic electroluminescence device containing the metal compound
JP2010525017A (en) * 2007-04-26 2010-07-22 ビーエーエスエフ ソシエタス・ヨーロピア Silanes containing phenothiazine-S-oxide or phenothiazine-S, S-dioxide groups and their use in OLEDs
US7989091B2 (en) 2007-04-26 2011-08-02 Basf Se Silanes containing phenothiazine-S-oxide or phenothiazine-S,S-dioxide groups and the use thereof in OLEDs
KR20140092963A (en) * 2013-01-04 2014-07-25 삼성디스플레이 주식회사 Silicon-based compound and organic light emitting diode comprising the same
US9525145B2 (en) 2013-01-04 2016-12-20 Samsung Display Co., Ltd. Silicon-based compound and organic light emitting diode comprising the same
KR102040874B1 (en) 2013-01-04 2019-11-06 삼성디스플레이 주식회사 Silicon-based compound and organic light emitting diode comprising the same
WO2018211377A1 (en) * 2017-05-19 2018-11-22 株式会社半導体エネルギー研究所 Electronic device, light-emitting device, electronic apparatus, and illumination device
JPWO2018211377A1 (en) * 2017-05-19 2020-05-14 株式会社半導体エネルギー研究所 Electronic device, light emitting device, electronic device, and lighting device
US10950805B2 (en) 2017-05-19 2021-03-16 Semiconductor Energy Laboratory Co., Ltd. Electronic device, light-emitting device, electronic appliance, and lighting device
JP7257952B2 (en) 2017-05-19 2023-04-14 株式会社半導体エネルギー研究所 Electronic devices, display devices, electronic equipment, and lighting devices

Similar Documents

Publication Publication Date Title
JP7026405B2 (en) Organic compounds and organic electroluminescent devices containing them
JP5891253B2 (en) Organic electroluminescence device
JP4593470B2 (en) Organic electroluminescence device
KR101011857B1 (en) Benzofluoranthene derivative and organic light emitting device using the same
KR101719173B1 (en) Organic electroluminescent element
KR101996649B1 (en) Pyrene derivative compounds and organic light-emitting diode including the same
KR101771528B1 (en) Spiro compound and organic electroluminescent devices comprising the same
KR102053569B1 (en) Multicyclic compound and organic light emitting device comprising the same
KR101759482B1 (en) Heterocyclic compounds and organic light-emitting diode including the same
KR101861263B1 (en) Anthracene deriva tives and organic light-emitting diode including the same
KR101791022B1 (en) spiro compounds and organic light-emitting diode including the same
KR101529878B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR20200011383A (en) Polycyclic compound and organic light emitting device comprising the same
KR20210042873A (en) Organic light emitting device
JPWO2010082621A1 (en) Organic electroluminescence device
KR20160132344A (en) Novel compound and organic electroluminescent device comprising same
KR101512014B1 (en) New arylcarbazolylacridine-based organic electroluminescent compounds and organic electroluminescent device comprising the same
KR102245935B1 (en) Multicyclic compound and organic electronic device comprising same
KR101957902B1 (en) New compounds and organic light-emitting diode including the same
JP2005220088A (en) Silicon-containing polyvalent amine, hole transport material composed of the same and organic el element using the same material
KR101791023B1 (en) Fused aromatic compound and organic electroluminescent devices comprising the same
KR20170075645A (en) New organic compounds and organic electroluminescent device comprising the same
KR20150144487A (en) Noble amine compound comprising aromatic amine group and organic light-emitting diode including the same
KR101809898B1 (en) Heteroaryl amine derivatives and organic light-emitting diode including the same
KR20150129486A (en) An electroluminescent compound and an electroluminescent device comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413