JP2005219971A - Silicon spherical powder and its manufacturng method - Google Patents
Silicon spherical powder and its manufacturng method Download PDFInfo
- Publication number
- JP2005219971A JP2005219971A JP2004029749A JP2004029749A JP2005219971A JP 2005219971 A JP2005219971 A JP 2005219971A JP 2004029749 A JP2004029749 A JP 2004029749A JP 2004029749 A JP2004029749 A JP 2004029749A JP 2005219971 A JP2005219971 A JP 2005219971A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- silicon
- thermal plasma
- spherical powder
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Silicon Compounds (AREA)
Abstract
Description
本発明は、電子デバイスなどの用途に使用可能な、球状化率の高いシリコン粉末およびその製造方法に関するものである。 The present invention relates to a silicon powder having a high spheroidization rate that can be used for applications such as electronic devices and a method for producing the same.
従来、いわゆる球状粉末と呼ばれるものは、溶湯をガス、遠心力などで吹き飛ばすアトマイズと呼ばれる手法で製造されていた。このような手法で製造された粉末は、比較的球状を呈してはいるものの、溶湯を引きちぎる際に無理な力が掛かっているために、個々の粉末にはサテライトと呼ばれる衛星状の小さな微小球が付着したり、真円度が低かったりする問題があった。そして、溶湯流という分布を持った流束を用いるために粒径のバラツキが広く、凝固に要する落下距離が粒子毎に異なっているという問題があった。 Conventionally, what is called a spherical powder has been manufactured by a technique called atomization in which molten metal is blown off by gas, centrifugal force, or the like. Although the powder produced by such a method has a relatively spherical shape, an excessive force is applied to tear off the molten metal. Therefore, each powder has small satellite-like microspheres called satellites. There is a problem that the sticking occurs or the roundness is low. In addition, since a flux having a distribution of molten metal flow is used, there is a problem that the particle size varies widely and the drop distance required for solidification varies from particle to particle.
また、Siのように反応性の高い元素の場合には、溶湯の保持に用いる耐火物との反応の問題があり、安定した溶解、アトマイズそのものが、まず極めて困難であった。このため、球状化率が高く粒径の揃ったシリコンの球を製造する場合には単結晶片から研磨するという方法が採られている。この手法の場合には、研磨のされる粗球に仕上げるまでの工程が最も大変であり、もし何らかの方法で粗球を容易に製造することができれば、製造工程は格段に簡略化される。しかし、後述の本発明が提案するような高い球状化率のシリコン球状粉末を、効率よく達成するような手法は、確認されていない。 Further, in the case of a highly reactive element such as Si, there is a problem of reaction with a refractory used for holding a molten metal, and stable melting and atomization itself are extremely difficult at first. For this reason, when manufacturing silicon spheres with a high spheroidization rate and uniform particle size, a method of polishing from a single crystal piece is employed. In the case of this method, the process to finish the rough sphere to be polished is the most difficult, and if the rough sphere can be easily manufactured by any method, the manufacturing process is greatly simplified. However, a method for efficiently achieving a silicon spherical powder having a high spheroidization rate as proposed by the present invention described later has not been confirmed.
球状素子を用いた電子デバイス分野の場合、例えば太陽電池という用途がある。太陽電池素子を球状化することにより、微小な部品に取り付ける場合でも、受光面積を広く取ることが可能になるというもので、携帯電話やイヤホンなどの小型の低消費電力機器を動作させるために利用することが検討されている。 In the field of electronic devices using spherical elements, there are applications such as solar cells. By making the solar cell element spherical, it is possible to increase the light receiving area even when it is attached to minute parts, and it is used to operate small low power consumption devices such as mobile phones and earphones. To be considered.
本発明の目的は、例えば球状素子太陽電池等の用途に最適なシリコン球状粉末と、それを製造するための有効な方法を提供することである。つまり、シリコン球状粉末の球状化率を高め得る手法であって、例えばこれを上記の粗球粉末として、続く研磨等の真球状化処理を行なえば、製造工程が簡略化できる。 An object of the present invention is to provide a silicon spherical powder that is most suitable for use in, for example, a spherical element solar cell and an effective method for producing the same. In other words, this is a technique that can increase the spheroidization rate of the silicon spherical powder. For example, if this is used as the above-mentioned coarse sphere powder and a subsequent spheroidizing process such as polishing is performed, the manufacturing process can be simplified.
まず、本発明者は、上記の球状素子太陽電池等の用途にも最適なシリコン球状粉末として、必要かつ最適な球状化率(真球度)を見いだした。つまり、本発明の指定する高い真球度で定義される粉末粒子の球状化率が所定値以上であれば、上記の粗球粉末としても後工程での研磨に耐え得ることを見いだした。そして、この所定値以上の、しかも高い球状化率を、高い量産性と安定性により製造可能な方法は、原料をプラズマ中に投入して溶融させ、凝固させる方法の、その冷却効率を向上させることにある。 First, the present inventor has found a necessary and optimum spheroidization rate (sphericity) as a silicon spherical powder that is also optimal for applications such as the above-described spherical element solar cell. That is, the present inventors have found that the above-described coarse spherical powder can withstand polishing in the subsequent step if the spheroidization rate of the powder particles defined by the high sphericity specified by the present invention is a predetermined value or more. A method capable of producing a high spheroidizing ratio above the predetermined value with high mass productivity and stability improves the cooling efficiency of the method in which the raw material is introduced into the plasma and melted and solidified. There is.
すなわち、本発明のシリコン球状粉末は、実質的にSiでなる凝固ままの粉末であって、粉末粒子数に占める、下記式で定義された個々の真球度が95%以上の粉末粒子数の割合である球状化率が80%以上であることを特徴とするシリコン球状粉末である。
粉末粒子の真球度の定義式:個々の粉末粒子の断面において、
(最大径/断面積から算出される円相当径)×100
That is, the silicon spherical powder of the present invention is an as-solidified powder substantially made of Si, and occupies the number of powder particles in which the individual sphericity defined by the following formula occupies 95% or more. It is a silicon spherical powder characterized by having a spheroidization ratio of 80% or more.
Definition formula of sphericity of powder particles: In the cross section of individual powder particles,
(Equivalent circle diameter calculated from maximum diameter / cross-sectional area) × 100
そして、本発明のシリコン球状粉末の製造方法は、原料シリコン粉末を熱プラズマ中に投入して溶融させ、溶融した液滴を熱プラズマ外で凝固させる熱プラズマ処理により球状粉末を得るシリコン球状粉末の製造方法であって、熱プラズマのプラズマ動作ガスに水素ガスを添加することを特徴とするシリコン球状粉末の製造方法である。好ましくは、熱プラズマのプラズマ動作ガスは、アルゴン、ヘリウム、窒素から選ばれる1種以上のプラズマ動作ガスに、3vol%以上の水素ガスを添加したものである。 The method for producing a silicon spherical powder according to the present invention is a method for producing a silicon spherical powder by obtaining a spherical powder by a thermal plasma treatment in which raw material silicon powder is put into a thermal plasma and melted, and molten droplets are solidified outside the thermal plasma. A method for producing a silicon spherical powder, characterized in that hydrogen gas is added to a plasma operating gas of thermal plasma. Preferably, the plasma operating gas of the thermal plasma is one in which 3 vol% or more hydrogen gas is added to one or more plasma operating gas selected from argon, helium, and nitrogen.
また、本発明のシリコン球状粉末の製造方法は、原料シリコン粉末を熱プラズマ中に投入して溶融させ、溶融した液滴を熱プラズマ外で凝固させる熱プラズマ処理により球状粉末を得るシリコン球状粉末の製造方法であって、凝固は液滴に水素を含む冷却ガスを接触させて行なうことを特徴とするシリコン球状粉末の製造方法である。好ましくは、冷却ガスは、水素を3vol%以上含む。これらのシリコン球状粉末の製造方法は、上記の各方法を併合してもよい。 Also, the method for producing the silicon spherical powder of the present invention is a method for producing a spherical silicon powder by obtaining a spherical powder by thermal plasma treatment in which raw material silicon powder is put into thermal plasma and melted, and molten droplets are solidified outside the thermal plasma. A method for producing a silicon spherical powder characterized in that solidification is performed by bringing a cooling gas containing hydrogen into contact with droplets. Preferably, the cooling gas contains 3 vol% or more of hydrogen. These silicon spherical powders may be produced by combining the above methods.
本発明によれば、例えば電子デバイス用などに適したシリコン球状粉末とすることができる。そして、このような、球状化率の高いシリコン球状粉末を、安定して量産することが可能となる。 According to the present invention, for example, a silicon spherical powder suitable for an electronic device can be obtained. Such silicon spherical powder having a high spheroidization rate can be stably mass-produced.
本発明の第一の特徴は、上記の球状素子太陽電池等の用途に最適なシリコン球状粉末として、必要かつ最適な球状化率(真球度)を見いだしたところにある。つまり、凝固ままの状態において、該粉末粒子数に占める、個々の真球度が95%以上の粉末粒子数の割合が80%以上を占める球状化率であれば、上記の粗球粉末としても、後工程での研磨を簡略化できる。そして、このような球状化率のシリコン球状粉末であれば、例えば太陽電池の素子の分野においては十分な受光面積を、下記する通りでもある高い安定性かつ量産性をもって、達成することができる。 The first feature of the present invention is that a necessary and optimum spheroidization rate (sphericity) has been found as a silicon spherical powder that is optimal for applications such as the above-described spherical element solar cell. That is, if the spheroidization ratio in which the ratio of the number of powder particles having an individual sphericity of 95% or more in the solidified state occupies 80% or more is used as the above coarse sphere powder, Polishing in a later process can be simplified. And if it is a silicon spherical powder of such a spheroidization rate, in the field | area of the element of a solar cell, for example, sufficient light-receiving area can be achieved with the high stability and mass productivity which are as follows.
なお、本発明の球状化率を特定するために導入する、個々の粉末粒子の真球度は、下記で定義することが必要である。すなわち、個々の粉末粒子の断面において、
(最大径/断面積から算出される円相当径)×100
で算出される値である。
In addition, it is necessary to define the sphericity of each powder particle introduced in order to specify the spheroidization ratio of the present invention as follows. That is, in the cross section of individual powder particles,
(Equivalent circle diameter calculated from maximum diameter / cross-sectional area) × 100
Is a value calculated by.
そして、本発明の第二の特徴は、このような球状化率の高いシリコン球状粉末を高い量産性と安定性をもって製造するために、原料をプラズマ中に投入して溶融・凝固させる熱プラズマ処理を導入して、しかもその冷却効率を向上させたところにある。つまり、プラズマという強力な熱源と冷却能力の高い水素の効果を併用する点である。プラズマを用いることにより、金属系に限定されず、セラミックスやシリコンといった高融点、高反応性の物質の球状粉末を得ることができ、かつ水素の効果を併用することによって、その効率を飛躍的に高めることができる。以下に詳述する。 The second feature of the present invention is a thermal plasma treatment in which a raw material is introduced into a plasma and melted and solidified in order to produce such a silicon spherical powder having a high spheroidization rate with high mass productivity and stability. In addition, the cooling efficiency has been improved. In other words, a powerful heat source called plasma and the effect of hydrogen with high cooling capacity are used in combination. By using plasma, it is not limited to metal systems, it is possible to obtain spherical powders of high melting point, highly reactive substances such as ceramics and silicon, and by combining the effect of hydrogen, the efficiency is dramatically improved. Can be increased. This will be described in detail below.
まず、上記の80%以上といった、高い球状化率のシリコン球状粉末を製造可能な方法は幾つかが考えられるが、その中でも量産性と安定性の高い製造方法は、原料をプラズマ中に投入して溶融させ、凝固させる熱プラズマ処理方法、具体的には原料をプラズマ中で落下させながら溶融、凝固させる処理方法である。 First, there are several methods that can produce silicon spherical powder with a high spheroidization rate, such as the above 80% or more. Among them, the production method with high mass productivity and stability is to put the raw material into the plasma. A thermal plasma treatment method for melting and solidifying, specifically, a treatment method for melting and solidifying while dropping the raw material in the plasma.
従来、シリコン球状粉末は、単結晶片から直接研磨することで球形状に製造してもいたが、特にこのような手法のための単結晶片を製造するまでには、莫大な工数が割かれていた。また、研磨前の粗球粉末として、アトマイズ法による球状粉末の製造もあるが、シリコンの場合には、既述の通りの溶湯とるつぼや湯道の反応性の問題があって、アトマイズは困難であった。また、仮にアトマイズによる粗球粉末の作製が出来たとしても、その球状化率は劣っていた。 Conventionally, silicon spherical powder has been manufactured into a spherical shape by polishing directly from a single crystal piece. However, enormous man-hours are required to manufacture a single crystal piece for such a technique. It was. In addition, as a rough sphere powder before polishing, spherical powder can be produced by the atomizing method, but in the case of silicon, atomization is difficult due to the problem of the reactivity of the molten metal crucible and runner as described above. Met. Moreover, even if it was possible to produce coarse sphere powder by atomization, the spheroidization rate was inferior.
そこで、このアトマイズ法の問題点について更に追求したところ、アトマイズ法によるシリコン粗球粉末は、その球状化率の悪さに加えて、概ね凝固応力が強く残存しているために、上記の単結晶片に比べると極めて割れ易く、特には中途半端に球状化が進行した粒子が最も割れ易い傾向であることを知見した。これは、中途半端に球状化した粒子では冷却が不均一になり、このため残存する応力場が不均一になっているためと推測される。また、球状化率が一桁の非常に低いシリコン粒子では、そもそも殆どがアトマイズの時点で溶けていなかったため、若干割れにくい傾向にはあったが、球状を呈していない時点で使用が困難である。 Therefore, when the problems of the atomizing method were further pursued, the silicon coarse sphere powder produced by the atomizing method had a strong solidification stress in addition to the poor spheroidization rate. It was found that the particles that are extremely fragile compared to the above, especially the particles that have been spheroidized halfway tend to be most easily broken. This is presumed to be due to the non-uniform cooling of the half-spheroidized particles and the non-uniform residual stress field. In addition, silicon particles with a very low spheroidization rate, which was one order of magnitude, did not melt at the time of atomization, so they tended to be somewhat difficult to break, but they were difficult to use when they were not spherical. .
よって、本発明では、プラズマという強力な熱源を使用することで、高融点のシリコンであっても十分な溶融化を達成するものであり、上記の溶融不足による根本的な球状化率の低下課題を解消できるものである。そして、最初より粉末形状のシリコン原料を出発として、それらを熱プラズマ中に投入すれば十分な溶融が遂行し、あとは熱プラズマから脱した溶滴がその落下中に凝固することで、アトマイズによる無理な力の加わらない、表面張力を利用した球状化も進行するのである。 Therefore, in the present invention, by using a powerful heat source called plasma, sufficient melting can be achieved even with high melting point silicon, and the problem of fundamental reduction in spheroidization rate due to insufficient melting described above Can be eliminated. Then, starting from powdered silicon raw materials from the beginning, if they are put into thermal plasma, sufficient melting will be performed, and then the droplets released from the thermal plasma will solidify during the fall, so that by atomization Spheroidization using surface tension without excessive force is also progressing.
しかし、特に大径の粉末作製になってくると、原料が溶融から凝固までの落下に要する距離が著しく長くなり、凝固が完了する前に容器や堆積した被処理物と接触してしまうと球状を維持できなかったり、極端な場合には融着して回収が出来なかったりすることがある。これを回避するためには落下塔(距離)を長くする必要があるが、粒径が大きくなると数十mに及ぶ落下塔が必要となる場合があり、現実的に利用することは非常に困難である。 However, especially when a large-diameter powder is produced, the distance required for the raw material to drop from melting to solidification becomes extremely long, and if it comes into contact with the container or the deposited workpiece before solidification is completed, May not be maintained or, in extreme cases, may not be recovered by fusing. In order to avoid this, it is necessary to lengthen the fall tower (distance), but if the particle size becomes large, a fall tower of several tens of meters may be required, and it is very difficult to actually use it. It is.
そこで、本発明では、水素の高い冷却能力に着目した。この水素の冷却能力には二通りの意味がある。ひとつは、単純に冷却ガスとして添加した場合で、水素を用いた場合の熱伝達係数が大きくなるために冷却速度が高まる効果である。もうひとつは、プラズマ動作ガスとして用いた場合で、プラズマ中で解離した水素イオンないしは水素原子が持つ極めて高い熱伝達能力が働く効果である。つまり、いずれの効果にせよ、熱プラズマ処理に水素の導入を併用することによって、高い球状化率を達成することが可能となり、しかも落下塔の高さをも低くすることもできる。このようなプロセスによって、球状化率が80%以上のシリコン球状化粉末を得ることが可能である。 Therefore, in the present invention, attention is paid to the high cooling capacity of hydrogen. This hydrogen cooling capacity has two meanings. One is the effect that the cooling rate is increased because the heat transfer coefficient when hydrogen is used is increased when it is simply added as a cooling gas. The other is when used as a plasma working gas, which is the effect of the extremely high heat transfer capability of hydrogen ions or hydrogen atoms dissociated in the plasma. That is, in any case, it is possible to achieve a high spheroidization rate by combining the introduction of hydrogen into the thermal plasma treatment, and it is also possible to reduce the height of the drop tower. By such a process, it is possible to obtain a silicon spheroidized powder having a spheroidization rate of 80% or more.
そして、上記の効果を達成するのに好ましくは、熱プラズマのプラズマ動作ガスは、アルゴン、ヘリウム、窒素から選ばれる1種以上のプラズマ動作ガスに、3vol%以上の水素ガスを添加するものであり、あるいはさらに、冷却ガスは、水素を3vol%以上含むものである。これら本発明のシリコン球状粉末の製造方法は、上記の各方法を併合してもよい。本発明の水素を利用した熱プラズマ処理のプロセスによって、例えば凝固に要する落下距離を、水素を導入しない場合に比して半分以下にすることもできる。 Preferably, in order to achieve the above effect, the plasma operating gas of the thermal plasma is one in which 3 vol% or more of hydrogen gas is added to one or more plasma operating gases selected from argon, helium, and nitrogen. Alternatively, the cooling gas contains 3 vol% or more of hydrogen. These methods for producing the spherical silicon powder of the present invention may be combined with the above methods. According to the thermal plasma treatment process using hydrogen of the present invention, for example, the drop distance required for solidification can be reduced to half or less as compared with the case where hydrogen is not introduced.
なお、本発明の方法で製造したシリコン球状粉末は、粒子中に残存している凝固応力の除去・緩和の目的で、適宜熱処理と組み合わせて使用することが望ましい。熱処理条件としては、1100℃以上での焼鈍が有効であるが、この前段階として、1000℃以下での予備酸化処理といった、表面皮膜の形成処理を組み合わせることも可能である。これにより、保護性の高い皮膜で表面を覆って粒子同士の焼結を防止するとともに、サテライトなどを取り除くことができる。 The silicon spherical powder produced by the method of the present invention is preferably used in combination with heat treatment as appropriate for the purpose of removing / relaxing the solidification stress remaining in the particles. As the heat treatment condition, annealing at 1100 ° C. or higher is effective, but as a previous step, it is possible to combine a surface film forming treatment such as a pre-oxidation treatment at 1000 ° C. or lower. Thereby, the surface can be covered with a highly protective film to prevent the particles from being sintered, and satellites and the like can be removed.
本発明のシリコン球状粉末の製造装置について説明する。図1は、該製造装置の構成の一例を示すものである。熱源としては、図1では高周波プラズマの例を示すが、直流プラズマにも適用可能である。但し、直流プラズマはプラズマの速度が速いために、原料粉末のプラズマ滞在時間が短く、溶融を促進するためには高周波プラズマを使用することが好ましい。原料シリコン粉末1を原料給粉機2から高周波プラズマトーチ3により発生させた熱プラズマ4中へ投入して溶融させる。そして、熱プラズマ4外へ脱した溶滴が冷却ガス6に接触しながら落下・凝固してシリコン球状粉末7となり、チャンバ8の底部回収容器9から被処理物として回収される。プラズマ動作ガス5は導入口10および11から導入される。冷却ガス6は導入口12から導入される。ガスは排気ポンプ13を通じて排気される。
The production apparatus for silicon spherical powder of the present invention will be described. FIG. 1 shows an example of the configuration of the manufacturing apparatus. As a heat source, FIG. 1 shows an example of high-frequency plasma, but it can also be applied to DC plasma. However, since direct current plasma has a high plasma speed, the residence time of the raw material powder is short, and it is preferable to use high frequency plasma in order to promote melting. The raw material silicon powder 1 is charged from the raw
図1の装置(チャンバ長1.5m)を使用して、シリコン球状粉末を作製した。投入する原料粉末としては、平均粒径150μmの半導体用シリコン片の粉砕粉および、1mm角に定寸切断した切断片を用いた。そして、これらの原料粉末を、流量1NL/minのArガスと混ざった状態で、毎分20gづつ熱プラズマ中に投入した。熱プラズマの発生には、出力100kWの大型高周波プラズマ発生装置を用い、動作ガスはArに水素の添加条件を変えて実験を実施した。 Using the apparatus of FIG. 1 (chamber length 1.5 m), silicon spherical powder was produced. As the raw material powder to be added, crushed powder of semiconductor silicon pieces having an average particle diameter of 150 μm and cut pieces cut into 1 mm squares were used. These raw material powders were put into thermal plasma at a rate of 20 g per minute in a state of being mixed with Ar gas having a flow rate of 1 NL / min. For the generation of the thermal plasma, a large-sized high-frequency plasma generator with an output of 100 kW was used, and the experiment was carried out by changing the operating gas with Ar added to hydrogen.
冷却ガスについては、同一チャンバ内で導入されている動作ガスが基本組成を構成しているものとできる。よって、冷却ガス中の水素濃度は、動作ガス中のそれに等しいものとでき、そして、冷却ガス用に新たな水素を追加導入すれば、冷却ガス中の水素濃度は、動作ガス組成に追加水素を加えた組成により算出されるものである。以上の操業条件により装置を10分間稼動した後、60分間冷却してから粉末を回収し、回収した粉末を樹脂に埋め込んで研磨し、粒子断面の球状化率を電子顕微鏡と画像解析により測定した。動作ガスおよび冷却ガスとしての水素の添加条件と、得られたシリコン粉末の球状化率の関係を表1に示す。 With respect to the cooling gas, the operating gas introduced in the same chamber may constitute the basic composition. Therefore, the hydrogen concentration in the cooling gas can be made equal to that in the working gas, and if new hydrogen is additionally introduced for the cooling gas, the hydrogen concentration in the cooling gas will be added to the working gas composition. It is calculated by the added composition. After operating the apparatus for 10 minutes under the above operating conditions, the powder was recovered after cooling for 60 minutes, and the recovered powder was embedded in a resin and polished, and the spheroidization rate of the particle cross section was measured by an electron microscope and image analysis. . Table 1 shows the relationship between the addition conditions of hydrogen as the working gas and the cooling gas and the spheroidization rate of the obtained silicon powder.
表1の結果より、本発明は優れた球状化率を達成していることがわかる。また表1において、割れ性とは、得られたシリコン粉末を研磨板に挟んで30秒間手動にて転動し、割れの度合いを評価したものである。○は実体顕微鏡観察(倍率×5)で割れが確認できなかったもの、△は割れたものと割れていないものが混在していたもの、×はほぼ全数が割れていたものであるが、やはり球状化率の優れる本発明のシリコン球状粉末は、均一な冷却工程により、割れが抑制されていることがわかる。なお、本発明のシリコン球状粉末の組織は、多結晶構造を有していた。 From the results in Table 1, it can be seen that the present invention achieves an excellent spheroidization rate. Moreover, in Table 1, the cracking property means that the obtained silicon powder is sandwiched between polishing plates and rolled manually for 30 seconds to evaluate the degree of cracking. ○ indicates that no cracks could be confirmed by observation with a stereomicroscope (magnification × 5), △ indicates that a mixture of cracks and non-cracks was present, and × indicates that almost all were cracked. It can be seen that the silicon spherical powder of the present invention having an excellent spheroidization rate is suppressed from cracking by a uniform cooling process. Note that the structure of the silicon spherical powder of the present invention had a polycrystalline structure.
本発明であれば、例えば電子デバイス等の用途に最適なシリコン球状粉末を、高い安定性と量産性をもって提供することができる。これにより得られたシリコン球状粉末は、高い球状化率を有することから、太陽電池素子などの分野に利用して、最適なものになり得る。 If it is this invention, the silicon spherical powder optimal for uses, such as an electronic device, for example can be provided with high stability and mass productivity. Since the silicon spherical powder obtained by this has a high spheroidization rate, it can be optimally used in the field of solar cell elements and the like.
1 原料シリコン粉末、2 原料給粉機、3 (高周波)プラズマトーチ、4 熱プラズマ、5 動作ガス、6 冷却ガス、7 シリコン球状粉末、8 チャンバ、9 底部回収容器、10 動作ガス導入口1、11 動作ガス導入口2、12 冷却ガス導入口、13 排気ポンプ
1 raw material silicon powder, 2 raw material powder feeder, 3 (high frequency) plasma torch, 4 thermal plasma, 5 working gas, 6 cooling gas, 7 silicon spherical powder, 8 chamber, 9 bottom recovery container, 10 working gas inlet 1, 11
Claims (6)
粉末粒子の真球度の定義式:個々の粉末粒子の断面において、
(最大径/断面積から算出される円相当径)×100 It is a solidified powder substantially made of Si and has a spheroidization ratio of 80% or more, which is the ratio of the number of powder particles having an individual sphericity of 95% or more as defined in the following formula in the number of powder particles Silicon spherical powder characterized by
Definition formula of sphericity of powder particles: In the cross section of individual powder particles,
(Equivalent circle diameter calculated from maximum diameter / cross-sectional area) × 100
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004029749A JP2005219971A (en) | 2004-02-05 | 2004-02-05 | Silicon spherical powder and its manufacturng method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004029749A JP2005219971A (en) | 2004-02-05 | 2004-02-05 | Silicon spherical powder and its manufacturng method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005219971A true JP2005219971A (en) | 2005-08-18 |
Family
ID=34995900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004029749A Pending JP2005219971A (en) | 2004-02-05 | 2004-02-05 | Silicon spherical powder and its manufacturng method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005219971A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010095421A (en) * | 2008-10-17 | 2010-04-30 | Sumco Corp | Method for producing polycrystalline silicon and polycrystalline silicon wafer |
JP2016185887A (en) * | 2015-03-27 | 2016-10-27 | 三井金属鉱業株式会社 | Method for manufacturing silicon containing powder |
CN108188389A (en) * | 2018-04-02 | 2018-06-22 | 湖南工业大学 | A kind of plasma powder spheroidization device and its methods and applications |
CN108273992A (en) * | 2018-04-02 | 2018-07-13 | 湖南工业大学 | A kind of high efficiency high frequency vibration divergence expression plasma powder spheroidization device and its methods and applications |
WO2018145750A1 (en) | 2017-02-09 | 2018-08-16 | Wacker Chemie Ag | Silicon particles for anode materials of lithium ion batteries |
CN108598453A (en) * | 2018-03-29 | 2018-09-28 | 天水佳吉化工有限公司 | A kind of production method of nanometer of submicron spherical silica flour |
-
2004
- 2004-02-05 JP JP2004029749A patent/JP2005219971A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010095421A (en) * | 2008-10-17 | 2010-04-30 | Sumco Corp | Method for producing polycrystalline silicon and polycrystalline silicon wafer |
JP2016185887A (en) * | 2015-03-27 | 2016-10-27 | 三井金属鉱業株式会社 | Method for manufacturing silicon containing powder |
WO2018145750A1 (en) | 2017-02-09 | 2018-08-16 | Wacker Chemie Ag | Silicon particles for anode materials of lithium ion batteries |
US12015148B2 (en) | 2017-02-09 | 2024-06-18 | Wacker Chemie Ag | Silicon particles for anode materials of lithium ion batteries |
CN108598453A (en) * | 2018-03-29 | 2018-09-28 | 天水佳吉化工有限公司 | A kind of production method of nanometer of submicron spherical silica flour |
CN108188389A (en) * | 2018-04-02 | 2018-06-22 | 湖南工业大学 | A kind of plasma powder spheroidization device and its methods and applications |
CN108273992A (en) * | 2018-04-02 | 2018-07-13 | 湖南工业大学 | A kind of high efficiency high frequency vibration divergence expression plasma powder spheroidization device and its methods and applications |
CN108273992B (en) * | 2018-04-02 | 2023-08-15 | 湖南工业大学 | Efficient high-frequency vibration divergent plasma powder spheroidizing device and method and application thereof |
CN108188389B (en) * | 2018-04-02 | 2023-08-15 | 湖南工业大学 | Plasma powder spheroidizing device and method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112317752B (en) | TiZrNbTa high-entropy alloy for 3D printing and preparation method and application thereof | |
CN109434117B (en) | Preparation method of spherical zirconium-niobium alloy powder for 3D printing | |
CN107309434B (en) | Preparation method and application of high-purity compact spherical molybdenum powder | |
KR20190032472A (en) | Preparation of Tungsten Monocarbide (WC) Spherical Powder | |
JP2024513855A (en) | Microwave plasma treatment of spheroidized copper or other metal powders | |
TW200845832A (en) | Plasma spraying of semiconductor grade silicon | |
JP2008133528A (en) | Thermal spray powder, method for forming thermal spray coating and plasma resistant member | |
JP2009287106A (en) | Method for producing titanium spherical powder, and titanium spherical powder | |
JP2004035398A (en) | Spheroidizing of silicon metal powder | |
Li et al. | Spheroidization of titanium carbide powders by induction thermal plasma processing | |
JPWO2003037553A1 (en) | Method and apparatus for producing metal powder | |
JP2010001563A (en) | Process to make core-shell structured nanoparticle | |
CN107486560A (en) | A kind of method that globular metallic powder is prepared in the case where malleation cools down atmosphere | |
JP2002346377A (en) | Method for preparing ceramics or metallic spherical powder by hot plasma and apparatus therefor | |
JP2020105593A (en) | Method for producing atomized metal powder | |
JP4425888B2 (en) | Nano-spherical particles having a composite structure, powder, and manufacturing method thereof | |
WO2007122684A1 (en) | Process for producing low-oxygen metal powder | |
Jin et al. | Preparation of spherical silica powder by oxygen–acetylene flame spheroidization process | |
JP2005219971A (en) | Silicon spherical powder and its manufacturng method | |
CN111515408B (en) | NiTi alloy powder and preparation method and application thereof | |
CN111422874B (en) | Method for producing spherical titanium carbide powder by one-step method | |
JP2009051724A (en) | High-strength columnar crystal silicon and plasma etching device part formed by the high-strength columnar crystal silicon | |
TW200424120A (en) | Method for the manufacture of a metal oxide powder or a semiconductor oxide powder, an oxide powder, a solid and its application | |
JP2012121776A (en) | Caf2-mgf2 binary sintered compact and method for producing plasma-proof fluoride sintered compact | |
WO2013115289A1 (en) | Polycrystalline silicon sputtering target |