JP2005219079A - Method for welding casting member - Google Patents

Method for welding casting member Download PDF

Info

Publication number
JP2005219079A
JP2005219079A JP2004028415A JP2004028415A JP2005219079A JP 2005219079 A JP2005219079 A JP 2005219079A JP 2004028415 A JP2004028415 A JP 2004028415A JP 2004028415 A JP2004028415 A JP 2004028415A JP 2005219079 A JP2005219079 A JP 2005219079A
Authority
JP
Japan
Prior art keywords
welding
strain
peening
value
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004028415A
Other languages
Japanese (ja)
Other versions
JP3939302B2 (en
Inventor
Takao Kashiwatani
孝夫 柏谷
Shusaku Kudo
修作 工藤
Yasuji Ota
又嗣 太田
Yutaka Tachibana
裕 橘
Mutsuhito Saito
睦仁 齊藤
Masakazu Nara
雅一 奈良
Noboru Kiji
昇 木治
Akira Kato
加藤  明
Shuichi Fujita
秀一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Ishikawajima Inspection and Instrumentation Co Ltd
Original Assignee
Hokkaido Electric Power Co Inc
Ishikawajima Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc, Ishikawajima Inspection and Instrumentation Co Ltd filed Critical Hokkaido Electric Power Co Inc
Priority to JP2004028415A priority Critical patent/JP3939302B2/en
Publication of JP2005219079A publication Critical patent/JP2005219079A/en
Application granted granted Critical
Publication of JP3939302B2 publication Critical patent/JP3939302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for welding a casting member with which the removal of stress with a peening at repair-welding time can surely be performed without entrusting experiences of a skilled worker. <P>SOLUTION: This welding method is performed by providing with; a welding step S1 for welding the welding part 1a in the casting member 1 composed of a cast iron or a cast steel; a peening step S4 for peening the welded part 1a; and strain measuring steps S2, S5 for measuring the strain near the welded part developed with the welding. The strain near the welded part during welding and in the peening is continuously measured and the peening is started before the strain measured just after welding exceeds a prescribed maximum value and the peening is continued until the strain is lowered to not more than the minimum value of the prescribed value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鋳鉄又は鋳鋼からなる鋳造部材の溶接方法に関する。   The present invention relates to a method for welding a cast member made of cast iron or cast steel.

鋳鉄はC2.5〜4.0%、Si0.5〜3.0%を主要含有成分とする低融点の鉄合金である。また、鋳鉄の溶接としては、被覆アーク溶接と酸素アセチレンガス溶接が主として行われている。鋳鉄の溶接は、一般には鋳造欠陥の補修、肉盛り、大型機械の溶接補修などに用いられる。
しかし、鋳鉄は溶接性がきわめて悪い問題点がある。すなわち、鋳鉄を溶接すると、熱影響部は白銑化する。白銑は硬くて脆い上に母材原質部に比べ収縮量が著しく大きいので、収縮の際に大きな残留応力が発生して割れやすい。
Cast iron is a low-melting-point iron alloy mainly containing C2.5 to 4.0% and Si 0.5 to 3.0%. Moreover, as welding of cast iron, covering arc welding and oxygen acetylene gas welding are mainly performed. Cast iron welding is generally used for repairing casting defects, building up, welding repair of large machines, and the like.
However, cast iron has a problem of poor weldability. That is, when cast iron is welded, the heat-affected zone turns white. Birch is hard and brittle and has a significantly larger amount of shrinkage than the base metal base, and therefore, a large residual stress is generated during shrinkage and is easily cracked.

一方、鋳鋼は鋼の鋳造品であり、鋳鉄に比較すると溶接しやすいが、同様に収縮の際に大きな残留応力が発生して割れやすい問題点がある。   On the other hand, cast steel is a cast product of steel and is easier to weld than cast iron, but similarly, there is a problem that a large residual stress is generated during shrinkage and is easily broken.

鋳鉄又は鋳鋼の溶接時に発生する熱応力を緩和するために、従来から熱処理(予熱、後熱)やピーニングが主に用いられている。
熱処理(予熱、後熱)により、溶接部近傍が局部加熱されたときに生じる熱応力を軽減できる。しかし、大型機械の溶接補修の場合、製造時には熱処理による応力除去が可能であるが、現地に据付後の大型機械の場合、熱処理の適用は困難であり、溶接補修部にエアーハンマなどによるピーニングが施される。ピーニングは、溶接後に溶接補修部を局部的に圧縮変形させるものである。
Conventionally, heat treatment (preheating and postheating) and peening have been mainly used to relieve thermal stress generated during welding of cast iron or cast steel.
By heat treatment (preheating, postheating), the thermal stress generated when the vicinity of the weld is locally heated can be reduced. However, in the case of welding repairs for large machines, it is possible to remove stress by heat treatment during manufacturing, but for large machines after installation on site, it is difficult to apply heat treatment, and peening with an air hammer or the like is applied to the weld repair part. Applied. Peening is to locally compress and deform the weld repair portion after welding.

なお、鋳鉄又は鋳鋼の溶接に関し、非特許文献1〜3に一般的な開示がされている。また、溶接時の熱応力を緩和する手段として、特許文献1、2が開示されている。   Note that non-patent documents 1 to 3 generally disclose welding of cast iron or cast steel. Patent Documents 1 and 2 are disclosed as means for relaxing thermal stress during welding.

特許文献1の「高Cr鋳鉄品の溶接補修方法」は、鋳造欠陥が生じた高Cr鋳鉄品を、600〜800℃の温度に予熱し、溶接補修する際に600℃以上の温度に保持し、溶接終了後においても600℃以上の温度で直後熱処理を行い、その後1時間当たり50℃以下の冷却速度で室温まで徐冷するものである。   Patent Document 1 “Welding Repair Method for High Cr Cast Iron Products” preheats a high Cr cast iron product with casting defects to a temperature of 600 to 800 ° C., and maintains the temperature at 600 ° C. or higher when repairing the weld. Even after the end of welding, the heat treatment is immediately performed at a temperature of 600 ° C. or higher and then gradually cooled to room temperature at a cooling rate of 50 ° C. or lower per hour.

特許文献2の「肉盛溶接方法」は、割れ感受性の高い材料からなる母材表面に、多パスで高強度金属を肉盛溶接する方法において、母材表面を覆う初層を形成するために、各パスの入熱を所定値以下に制限して各パスの溶接ビードに細かい割れを発生させる溶接条件を用いて、母材表面にまず溶接ビードを並行にかつ隣合う溶接ビードを離間させて形成し、次いで隣合う溶接ビード間を両溶接ビードと重なるように溶接ビードを形成するものである。   In the method of overlaying welding a high-strength metal in multiple passes on the surface of a base material made of a material having high cracking sensitivity, the “building-up welding method” of Patent Document 2 is for forming an initial layer covering the surface of the base material. Using welding conditions that limit the heat input of each pass to a predetermined value or less and generate fine cracks in the weld beads of each pass, first separate the weld beads in parallel and the adjacent weld beads on the base metal surface. Then, a weld bead is formed so as to overlap the weld beads between adjacent weld beads.

特開平07−214313号公報、「高Cr鋳鉄品の溶接補修方法」Japanese Patent Application Laid-Open No. 07-214313, “Welding repair method for high Cr cast iron products” 特開2000−102866号公報、「肉盛溶接方法」JP 2000-102866 A, “Overlay welding method”

“溶接技術の基礎”、溶接学会編、産報出版、P115“Basics of Welding Technology”, Welding Society, Industrial Bulletin Publishing, P115 “鋳鉄および鋳鋼”、溶接・接合便覧、溶接学会編、丸善、P860-867“Cast Iron and Cast Steel”, Welding and Joining Handbook, Welding Society, Maruzen, P860-867 “鋳鉄の溶接”、溶接だより技術ガイド、神戸製鋼所、2000.11 No.367、P1−8“Welding of cast iron”, technical guide from welding, Kobe Steel, 2000.11 No. 367, P1-8

上述したように、一般的に、鋳鉄又は鋳鋼に溶接を行うと溶接収縮による変形や残留応力などにより、溶接割れの発生が懸念される。またこれを回避するため、大型の鋳造品の場合、工場での製造時には大型炉を用いた熱処理等により応力除去が可能であるが、据付後の大型の鋳造品の溶接補修の場合は、炉を用いた熱処理等は適用が困難であり、多くの場合、溶接収縮を緩和し溶接割れを防止するために溶接補修部にエアーハンマなどによるピーニングが施される。   As described above, generally, when welding is performed on cast iron or cast steel, there is a concern about the occurrence of weld cracking due to deformation due to welding shrinkage, residual stress, or the like. In order to avoid this, in the case of large castings, stress can be removed by heat treatment using a large furnace at the time of manufacturing in the factory, but in the case of welding repair of large castings after installation, In many cases, peening with an air hammer or the like is performed on the weld repair portion in order to reduce welding shrinkage and prevent weld cracking.

しかし、ピーニングは溶接部が高温のうちに実施する必要があり、溶接終了後ピーニングを開始するまでの時間とそのピーニングの程度が重要な要素である。しかし、従来補修溶接時のピーニングは、熟練作業者の経験に委ねており、作業者の熟練度により結果が左右され、ピーニングを実施しても溶接割れを生じることがあった。そのため、熟練度の低い一般的な作業者によるピーニングにより応力除去を確実に行うことは困難であった。   However, the peening needs to be performed at a high temperature in the welded portion, and the time until the peening starts after the end of welding and the degree of peening are important factors. However, peening at the time of repair welding is left to the experience of a skilled worker, and the result depends on the skill level of the worker, and even if peening is performed, a weld crack may occur. Therefore, it has been difficult to surely remove stress by peening by a general worker with low skill level.

本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、熟練作業者の経験に委ねることなく、補修溶接時のピーニングによる応力除去を確実に行うことができる鋳造部材の溶接方法を提供することにある。   The present invention has been developed to solve such problems. That is, the objective of this invention is providing the welding method of the cast member which can perform reliably the stress removal by peening at the time of repair welding, without leaving to the experience of a skilled worker.

本発明によれば、鋳鉄又は鋳鋼からなる鋳造部材の溶接部を溶接する溶接ステップと、
前記溶接部をピーニングするピーニングステップと、
前記溶接によりひずみが発生する溶接部近傍のひずみを計測するひずみ計測ステップと、を備え、
溶接中およびピーニング中の溶接部近傍のひずみを連続的に計測し、
溶接直後に計測されたひずみが所定の最大値を超える前にピーニングを開始し、かつ該ひずみが所定値の最小値以下に低下するまでピーニングを継続する、ことを特徴とする鋳造部材の溶接方法が提供される。
According to the present invention, a welding step of welding a welded portion of a cast member made of cast iron or cast steel;
A peening step of peening the weld;
A strain measuring step for measuring strain in the vicinity of the weld where strain is generated by the welding, and
Continuously measure the strain near the weld during welding and peening,
A method for welding a cast member, characterized in that peening is started before the strain measured immediately after welding exceeds a predetermined maximum value and peening is continued until the strain falls below a minimum value of the predetermined value. Is provided.

上記本発明の方法によれば、溶接中およびピーニング中の溶接部近傍のひずみを連続的に計測し、この計測値に基づいてピーニングを行うので、熟練作業者の経験に委ねることなく、再現性の高い客観的なデータの基づいて確実にピーニングを行うことができる。
また、溶接直後に計測されたひずみが所定の最大値を超える前にピーニングを開始し、かつ該ひずみが所定値の最小値以下に低下するまでピーニングを継続するので、溶接後に発生するひずみを低く抑えることができ、補修溶接時のピーニングによる応力除去を確実に行うことができる。
According to the method of the present invention, the strain in the vicinity of the welded part during welding and peening is continuously measured, and peening is performed based on the measured value. It is possible to reliably perform peening based on highly objective data.
In addition, peening is started before the strain measured immediately after welding exceeds a predetermined maximum value, and peening is continued until the strain drops below the minimum value of the predetermined value. It is possible to suppress the stress by peening during repair welding.

本発明の好ましい実施形態によれば、前記ひずみ計測ステップにおいて、溶接部近傍の温度を同時に計測し、ひずみの計測値の温度補正を行う。
この方法により、温度補正ができ、ひずみを正確に計測することができる。
According to a preferred embodiment of the present invention, in the strain measurement step, the temperature in the vicinity of the weld is measured simultaneously, and the temperature correction of the strain measurement value is performed.
By this method, temperature correction can be performed and distortion can be accurately measured.

また、前記ひずみ計測ステップにおいて、ひずみゲージを用いて直交する2軸のひずみを計測し、温度補正をした後、応力に換算する。
この方法により、温度補正後の応力換算により、溶接部の内部応力を把握でき、再現性の高い客観的な応力データに基づいて確実にピーニングを行うことができる。
In the strain measurement step, two strains orthogonal to each other are measured using a strain gauge, and after temperature correction, the strain is converted into stress.
By this method, the internal stress of the welded portion can be grasped by the stress conversion after temperature correction, and peening can be surely performed based on objective stress data with high reproducibility.

また、前記ひずみ計測ステップにおいて、溶接によりひずみが発生する位置に、複数のひずみゲージを溶接部に対して対称位置に設け、その最大値、最小値又は平均値を用いる、ことが好ましい。
この方法により、ひずみゲージ毎の特性のばらつきの影響を低減し、信頼性の高い計測を行うことができる。
In the strain measurement step, it is preferable that a plurality of strain gauges are provided at positions symmetrical to the welded portion at positions where strain is generated by welding, and the maximum value, minimum value, or average value thereof is used.
By this method, it is possible to reduce the influence of variation in characteristics for each strain gauge and perform highly reliable measurement.

前記ひずみの所定の最大値は、応力換算値が鋳造部材の破断強度より十分低い値に設定するのがよい。
これにより、溶接部の発生応力は計測部より高いので、溶接部の発生応力を鋳造部材の破断強度より十分低い値に抑えることができる。
The predetermined maximum value of the strain is preferably set to a value whose stress converted value is sufficiently lower than the breaking strength of the cast member.
Thereby, since the generated stress of the welded portion is higher than that of the measuring portion, the generated stress of the welded portion can be suppressed to a value sufficiently lower than the breaking strength of the cast member.

また前記ひずみの所定の最小値は、溶接直前の値又は溶接直前と前記所定の最大値の中間値に設定するのがよい。
これにより、溶接を繰り返す場合でも、溶接部の発生応力を低く抑えることができる。
Further, the predetermined minimum value of the strain is preferably set to a value immediately before welding or an intermediate value between the value immediately before welding and the predetermined maximum value.
Thereby, even when welding is repeated, the generated stress of the welded portion can be kept low.

また、前記溶接部の溶接が、複数パス及び/又は複数層からなる場合、単パス又は単層の溶接毎に、前記ピーニングを行うことが好ましい。
この方法により、多層盛り溶接を行う場合でも、溶接部の発生応力を低く抑えることができる。
Moreover, when welding of the said welding part consists of multiple passes and / or multiple layers, it is preferable to perform the said peening for every single pass or single layer welding.
By this method, even when multi-layer welding is performed, the generated stress in the welded portion can be kept low.

上述したように、本発明の鋳造部材の溶接方法は、熟練作業者の経験に委ねることなく、補修溶接時のピーニングによる応力除去を確実に行うことができる、等の優れた効果を有する。   As described above, the casting member welding method of the present invention has excellent effects such as the ability to reliably remove stress by peening during repair welding without leaving the experience of skilled workers.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

本発明の方法は、以下の項目を定量的に把握することで、従来に比べ容易に鋳造部材の溶接施工を可能にするものである。
(1)データに基づくピーニングによるひずみの低減管理
(2)溶接終了後からピーニング開始までの時間
(3)ピーニングの実施時間
The method of the present invention makes it possible to weld a cast member more easily than in the past by quantitatively grasping the following items.
(1) Strain reduction management by peening based on data (2) Time from the end of welding to the start of peening (3) Time of peening

図1は、本発明の方法を実施するための装置構成図である。この図に示すように、本発明では、鋳造部材1の溶接部1aの近傍にひずみ検出用センサ(ひずみゲージ2と熱電対3)を取り付け、溶接装置4による溶接中およびピーニング装置5によるピーニング中にひずみを計測し、その変化を計測記録装置6を用いて常時モニタリングする。
なおこの図において、溶接装置4は、溶接電源4aと溶接トーチ4bとからなる。溶接は被覆アーク溶接(SMAW:Shielded Metal Arc Welding)又はMAG溶接(Metal Active Gas Welding)が好ましいが、本発明はこれらに限定されず、その他の溶接であってもよい。
またこの図において、ピーニング装置5は、コンプレッサ5aとエアーハンマ5bからなるが、本発明はこれらに限定されず、その他の手段であってもよい。
FIG. 1 is an apparatus configuration diagram for carrying out the method of the present invention. As shown in this figure, in the present invention, a strain detection sensor (a strain gauge 2 and a thermocouple 3) is attached in the vicinity of the welded portion 1a of the cast member 1, and during welding by the welding device 4 and during peening by the peening device 5. The strain is measured and the change is constantly monitored using the measurement recording device 6.
In this figure, the welding device 4 comprises a welding power source 4a and a welding torch 4b. Welding is preferably shielded metal arc welding (SMAW) or MAG welding (Metal Active Gas Welding), but the present invention is not limited to these and may be other welding.
Moreover, in this figure, although the peening apparatus 5 consists of the compressor 5a and the air hammer 5b, this invention is not limited to these, Other means may be sufficient.

図2は本発明の方法のフロー図である。この図に示すように、本発明の方法は、溶接ステップS1、ピーニングステップS4、及びひずみ計測ステップS2,S5を備える。
溶接ステップS1では、鋳鉄及び鋳鋼からなる鋳造部材1の溶接部1aを溶接装置4を用いて溶接する。ピーニングステップS4では、溶接部1aをピーニング装置5を用いてピーニングする。ひずみ計測ステップS2,S5では、溶接によりひずみが発生する溶接部近傍のひずみを計測記録装置6を用いて計測する。
FIG. 2 is a flow diagram of the method of the present invention. As shown in this figure, the method of the present invention includes a welding step S1, a peening step S4, and strain measurement steps S2 and S5.
In the welding step S <b> 1, the welded portion 1 a of the cast member 1 made of cast iron and cast steel is welded using the welding device 4. In the peening step S4, the welded portion 1a is peened using the peening apparatus 5. In the strain measurement steps S <b> 2 and S <b> 5, the measurement recording device 6 is used to measure the strain in the vicinity of the weld where strain is generated by welding.

また、計測記録装置6を用いて溶接中およびピーニング中の溶接部近傍のひずみを連続的に計測し、溶接ステップS1の後の溶接直後に計測されたひずみを所定の最大値と比較して、所定の最大値を超える前にピーニングを開始する(S3,S4)。
また、計測されたひずみが所定値の最小値以下に低下するまでピーニングを継続する(S6,S4)。
Further, the measurement recording device 6 is used to continuously measure the strain in the vicinity of the weld during welding and peening, and the strain measured immediately after welding after the welding step S1 is compared with a predetermined maximum value. Peening is started before exceeding a predetermined maximum value (S3, S4).
Further, the peening is continued until the measured strain falls below a predetermined minimum value (S6, S4).

さらに、ひずみ計測ステップS2において、ひずみゲージ2を用いて直交する2軸のひずみを計測し、温度補正をした後、応力に換算することで、溶接部に生じる残留応力(内部応力)を把握でき、再現性の高い客観的な応力データの基づいて確実にピーニングを行うことができる。
また、計測記録装置6を用いてひずみ計測データを解析することで、溶接部に割れが生じたかどうかの判別もできる。
Furthermore, in the strain measurement step S2, the residual stress (internal stress) generated in the welded portion can be grasped by measuring the strain of two orthogonal axes using the strain gauge 2, correcting the temperature, and converting it to stress. Therefore, peening can be performed reliably based on objective stress data with high reproducibility.
Further, by analyzing the strain measurement data using the measurement recording device 6, it is possible to determine whether or not a crack has occurred in the welded portion.

図3は、本発明により得られたデータの模式図である。この図において、横軸は経過時間、縦軸はひずみである。また図中の細線Aは開先中心から30mmの位置でのY方向(溶接線に直交する方向)のひずみ、太線Bは開先中心から50mmの位置でのY方向ひずみである。   FIG. 3 is a schematic diagram of data obtained by the present invention. In this figure, the horizontal axis represents elapsed time, and the vertical axis represents strain. Further, the thin line A in the figure is the strain in the Y direction (direction perpendicular to the weld line) at a position 30 mm from the groove center, and the thick line B is the Y direction strain at a position 50 mm from the groove center.

この図において、溶接を開始すると溶接部の熱膨張により、A、Bともひずみは負(圧縮状態)となる。次いで溶接部が冷却により収縮するにつれてA、Bともひずみは正(引張状態)となることがわかる。
また、A、Bのひずみの大きさは、開先中心に近いほど大きく、溶接部の実際のひずみはA、Bのひずみの大きさから予測でき、細線Aのひずみより大きくなることがわかる。
従って、本発明の方法により、溶接直後にピーニングを行うことにより、A、Bのひずみを低減でき、溶接部の実際のひずみも低減できることがわかる。
In this figure, when welding is started, strains in both A and B become negative (compressed state) due to thermal expansion of the welded portion. Next, it can be seen that the strains of both A and B become positive (tensile state) as the weld shrinks due to cooling.
Moreover, the magnitude | size of the distortion of A and B is so large that it is close to a groove center, and it turns out that the actual distortion of a welding part can be estimated from the magnitude | size of the distortion of A and B, and becomes larger than the distortion of the thin wire | line A.
Therefore, it can be seen that by performing the peening immediately after welding by the method of the present invention, the strains A and B can be reduced, and the actual strain of the welded portion can also be reduced.

鋳鉄や鋳鋼の冷間溶接では、被覆アーク溶接により短ビード法(ビード長さ:10〜15mm)+溶接直後ピーニングが通常行われている。従来は、溶接時間(ビード長)およびピーニング条件(溶接終了後ピーニングを開始するまでの時間、ピーニング強さ、ピーニング時間など)は作業者の管理に任されており、上述したように高度な熟練技能が必要であった。     In cold welding of cast iron or cast steel, short bead method (bead length: 10 to 15 mm) + peening immediately after welding is usually performed by covering arc welding. Conventionally, the welding time (bead length) and peening conditions (time until peening is started after the end of welding, peening strength, peening time, etc.) are left to the management of the worker, and as described above, highly skilled Skill was necessary.

これに対して本発明では、ひずみをモニタリングし管理することができ、これにより、溶接時間、ピーニング条件を安定させることが可能となり、高度な技能を必要としないで補修作業が可能になる。また、溶接時間、ピーニング条件が安定することにより溶接品質を向上させることができる。     On the other hand, in the present invention, strain can be monitored and managed. This makes it possible to stabilize welding time and peening conditions, and repair work can be performed without requiring advanced skills. Moreover, welding quality can be improved by stabilizing welding time and peening conditions.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

図4に使用した試験体の形状とひずみの計測個所を示す。この図において、(A)は平面図、(B)はA-A線における断面図である。
試験体は、表1に示す化学組成の鋳鋼材(以下SC480と呼ぶ)を用い、鋳鋼材を板厚40mmに切断後、補修用の開先を模擬した溝開先を加工した。
FIG. 4 shows the shape of the specimen used and the measurement location of strain. In this figure, (A) is a plan view and (B) is a cross-sectional view taken along the line AA.
The test specimen was a cast steel material having the chemical composition shown in Table 1 (hereinafter referred to as SC480), and after cutting the cast steel material to a plate thickness of 40 mm, a groove groove simulating a groove for repairing was processed.

Figure 2005219079
Figure 2005219079

また、溶接による局部的なひずみを計測するため、開先中心から30mmの位置(E1,E1’)の両面と50mmの位置(E2,E2’)の両面に2軸の高温用ひずみゲージを取り付けた。また、試験体全体のひずみを計測するため開先から100mmの位置(E3,E3’)に2軸の一般ひずみゲージを取り付けた。すなわち、ひずみの測定は、開先を中心に上下対称位置および表裏の両面で行った。   In addition, in order to measure local strain due to welding, biaxial high-temperature strain gauges are attached to both sides of the 30 mm position (E1, E1 ′) and 50 mm (E2, E2 ′) from the groove center. It was. In addition, a biaxial general strain gauge was attached to a position (E3, E3 ') 100 mm from the groove in order to measure the strain of the entire test specimen. That is, the strain was measured at both the top and bottom symmetrical positions and both the front and back sides with the groove as the center.

温度の計測は、熱電対を用いて試験体中央のひずみゲージに隣接する位置(図示せず)で行った。ひずみ、温度の計測は、溶接開始から試験体が室温に冷却されるまで連続で行った。収縮量については、溶接前後の開先を挟んだ2点間および溶接線方向の距離の変化量を計測した。   The temperature was measured at a position (not shown) adjacent to the strain gauge at the center of the specimen using a thermocouple. The strain and temperature were measured continuously from the start of welding until the specimen was cooled to room temperature. Regarding the amount of shrinkage, the amount of change in the distance between two points across the groove before and after welding and in the weld line direction was measured.

被覆アーク溶接(SMAW)用の溶接材料として、JIS Z 3212 D5016の被覆アーク溶接棒を用いた。表2に被覆アーク溶接棒の化学組成を示す。   As a welding material for coated arc welding (SMAW), a coated arc welding rod of JIS Z 3212 D5016 was used. Table 2 shows the chemical composition of the coated arc welding rod.

Figure 2005219079
Figure 2005219079

被覆アーク溶接において、図5Aに示す多層盛り溶接を行った。この溶接において予熱は行わず、パス間温度を50℃以下に管理した。ピーニングは1層ごとに実施する場合(ピーニングあり)と、全く行わない場合(ピーニングなし)の2条件で試験を行った。   In the covering arc welding, the multi-layer welding shown in FIG. 5A was performed. In this welding, preheating was not performed, and the interpass temperature was controlled to 50 ° C. or lower. The peening was tested under two conditions, one for each layer (with peening) and no peening (without peening).

また溶接条件は、パス数19、電流145〜160A、速度15〜17cm/minの同一条件とした。   The welding conditions were the same with 19 passes, a current of 145 to 160 A, and a speed of 15 to 17 cm / min.

図6に被覆アーク溶接のひずみ測定結果を示す。この図において、(A)はピーニングあり、(B)はピーニングなしの場合である。また各図において、横軸は経過時間、縦軸はひずみである。また図中の細線A,A’は開先中心から30mmの位置でのY方向(溶接線に直交する方向)のひずみ、太線B,B’は開先中心から50mmの位置でのY方向ひずみである。   FIG. 6 shows the strain measurement results of the coated arc welding. In this figure, (A) shows the case with peening, and (B) shows the case without peening. In each figure, the horizontal axis represents elapsed time, and the vertical axis represents strain. Also, thin lines A and A 'in the figure are strains in the Y direction (direction perpendicular to the weld line) at a position 30 mm from the groove center, and thick lines B and B' are strains in the Y direction at a position 50 mm from the groove center. It is.

図6Bから、ピーニングなしの場合、溶接パスごとに溶接部近傍の引張のひずみ量が増大し、最終的には3000μsを超えることがわかる。従って、ピーニングなしの場合、溶接部の実際のひずみは細線Aのひずみより大きくなることから、溶接割れが発生するおそれがあることがわかる。
これに対して、図6Aから、ピーニングを行った場合は、ピーニングによる引張のひずみ低減を、特に開先から30mmの細線Aから明瞭に計測でき、最終的には3000μs未満に抑えることができることがわかる。
From FIG. 6B, it can be seen that in the case of no peening, the amount of tensile strain in the vicinity of the weld increases for each welding pass, and eventually exceeds 3000 μs. Therefore, it can be seen that, without peening, the actual strain of the welded portion is larger than the strain of the thin wire A, so that a weld crack may occur.
In contrast, from FIG. 6A, when peening is performed, the tensile strain reduction due to peening can be clearly measured, particularly from a thin line A 30 mm from the groove, and finally can be suppressed to less than 3000 μs. Understand.

MAG溶接用の溶接材料として、JISZ 3312 YSW15のソリッドワイヤを用いた。表2にMAG溶接用ソリッドワイヤの化学組成を示す。   As a welding material for MAG welding, a solid wire of JISZ 3312 YSW15 was used. Table 2 shows the chemical composition of the solid wire for MAG welding.

MAG溶接において、図5Bに示す多層盛り溶接を行った。この溶接において予熱は行わず、パス間温度を50℃以下に管理した。ピーニングは1層ごとに実施する場合(ピーニングあり)と、全く行わない場合(ピーニングなし)の2条件で試験を行った。   In MAG welding, multi-layer welding shown in FIG. 5B was performed. In this welding, preheating was not performed, and the interpass temperature was controlled to 50 ° C. or lower. The peening was tested under two conditions, one for each layer (with peening) and no peening (without peening).

また溶接条件は、パス数26、電流155〜160A、電圧22〜23V、速度20〜45cm/minの同一条件とした。   The welding conditions were the same as the number of passes 26, current 155 to 160 A, voltage 22 to 23 V, and speed 20 to 45 cm / min.

図7にMAG溶接のひずみ測定結果を示す。この図において、(A)はピーニングあり、(B)はピーニングなしの場合である。また各図において、横軸は経過時間、縦軸はひずみである。また図中の細線A,A’は開先中心から30mmの位置でのY方向(溶接線に直交する方向)のひずみ、太線B,B’は開先中心から50mmの位置でのY方向ひずみである。   FIG. 7 shows the strain measurement results of MAG welding. In this figure, (A) shows the case with peening, and (B) shows the case without peening. In each figure, the horizontal axis represents elapsed time, and the vertical axis represents strain. In the figure, thin lines A and A ′ are strains in the Y direction (direction perpendicular to the weld line) at a position 30 mm from the groove center, and thick lines B and B ′ are strains in the Y direction at a position 50 mm from the groove center. It is.

図7Bから、ピーニングなしの場合、溶接パスごとに溶接部近傍の引張のひずみ量が増大し、最終的には2000μsを超えることがわかる。従って、ピーニングなしの場合、溶接部の実際のひずみは細線Aのひずみより大きくなることから、溶接割れが発生するおそれがあることがわかる。
これに対して、図7Aから、ピーニングを行った場合は、ピーニングによる引張のひずみ低減を、特に開先から30mmの細線Aから明瞭に計測でき、最終的には2000μs未満に抑えることができることがわかる。
From FIG. 7B, it can be seen that in the case without peening, the amount of tensile strain in the vicinity of the weld increases for each welding pass, and eventually exceeds 2000 μs. Therefore, it can be seen that, without peening, the actual strain of the welded portion is larger than the strain of the thin wire A, so that a weld crack may occur.
In contrast, from FIG. 7A, when peening is performed, the tensile strain reduction due to peening can be clearly measured, particularly from a thin line A 30 mm from the groove, and finally can be suppressed to less than 2000 μs. Understand.

上述した被覆アーク溶接とMAG溶接は、ほぼ同じ条件であるがパスの総数はMAG溶接の26パスと比較して被覆アーク溶接は19パスと少なかった。
表3に、各層溶接後の開先中心から30mmのひずみ量(Y方向)をまとめたものを示す。ピーニングを行った場合は、ピーニング前後の2つの値を示した。
The above-mentioned clad arc welding and MAG welding were under substantially the same conditions, but the total number of passes was 19 passes compared with 26 passes of MAG welding.
Table 3 summarizes the strain amount (Y direction) of 30 mm from the groove center after each layer welding. When peening was performed, two values before and after peening were shown.

Figure 2005219079
Figure 2005219079

この表から、被覆アーク溶接、MAG溶接ともに、ピーニングを行うことによって、ひずみ量が半分程度に減少することがわかる。また溶接完了後のひずみ量についても、ピーニングを行った場合は、行わない場合と比較して半分程度であった。   From this table, it can be seen that both the coated arc welding and the MAG welding reduce the strain amount to about half by performing peening. Also, the amount of strain after completion of welding was about half when the peening was performed compared to when the peening was not performed.

表4に収縮量の計測結果を示す。   Table 4 shows the measurement results of the contraction amount.

Figure 2005219079
Figure 2005219079

この表から、ピーニングを行わない場合、収縮量は、MAG溶接で0.45mm、被覆アーク溶接で0.68mmであった。1パスの溶着量が多い(総パス数が少ない)被覆アーク溶接の方が収縮量が大きくなった。
また、ピーニングを行った場合は、MAG溶接で0.27mm、被覆アーク溶接で0.40mmと収縮量が半分程度になることがわかった。
From this table, when peening was not performed, the shrinkage was 0.45 mm for MAG welding and 0.68 mm for coated arc welding. The amount of shrinkage was larger in the case of the coated arc welding in which the amount of welding in one pass was larger (the total number of passes was smaller).
In addition, when peening was performed, it was found that the shrinkage amount was about half, 0.27 mm for MAG welding and 0.40 mm for coated arc welding.

上述した試験結果から、以下のことが確認された。
(1)ひずみ、温度の計測は、溶接部近傍の開先中心から30mm程度の計測位置で計測できる。
(2)溶接によるひずみの増加およびピーニングによるひずみの低減が計測できる。
(3)温度もひずみゲージに隣接する位置で計測できる。
(4)ピーニングの効果として、ひずみ、収縮量の低減効果が確かめられた。
(5)ピーニングを実施しない場合と比較して、ひずみ量、収縮量ともの半分程度になる。
(6)温度・応力・ひずみの管理方法として、溶接部近傍(開先中心から30mm程度)でひずみ、温度の計測を行い、ひずみゲージに隣接する位置の温度を計測し、ひずみの計測値の温度補正を行うのがよい。
(7)ひずみは2軸で計測し、温度補正をした後、応力に換算し、応力が設定値以下であることを確認しながら溶接施工を行うのがよい。
From the test results described above, the following was confirmed.
(1) Strain and temperature can be measured at a measurement position of about 30 mm from the groove center near the weld.
(2) Increase in strain due to welding and reduction in strain due to peening can be measured.
(3) Temperature can also be measured at a position adjacent to the strain gauge.
(4) As an effect of peening, an effect of reducing strain and shrinkage was confirmed.
(5) Compared to the case where peening is not performed, both the amount of strain and the amount of shrinkage are about half.
(6) As a management method for temperature, stress, and strain, measure strain and temperature near the weld (about 30 mm from the center of the groove), measure the temperature at the position adjacent to the strain gauge, and measure the measured strain value. Temperature correction should be performed.
(7) Strain is measured biaxially, corrected for temperature, converted to stress, and welding is performed while confirming that the stress is below the set value.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明の方法を実施するための装置構成図である。It is an apparatus block diagram for enforcing the method of this invention. 本発明の方法のフロー図である。FIG. 3 is a flow diagram of the method of the present invention. 本発明により得られたデータの模式図である。It is a schematic diagram of the data obtained by this invention. 本発明の実施例における供試材の外形図である。It is an external view of the sample material in the Example of this invention. 本発明の実施例における溶接パスの積層を示す図である。It is a figure which shows the lamination | stacking of the welding pass in the Example of this invention. 本発明の第1実施例の結果を示す図である。It is a figure which shows the result of 1st Example of this invention. 本発明の第2実施例の結果を示す図である。It is a figure which shows the result of 2nd Example of this invention.

符号の説明Explanation of symbols

1 鋳造部材、1a 溶接部、2 ひずみゲージ、3 熱電対、
4 溶接装置、4a 溶接電源、4b 溶接トーチ、
5 ピーニング装置、5a コンプレッサ、5b エアーハンマ、
6 計測記録装置
1 cast member, 1a weld, 2 strain gauge, 3 thermocouple,
4 welding equipment, 4a welding power source, 4b welding torch,
5 Peening device, 5a Compressor, 5b Air hammer,
6 Measurement recording device

Claims (7)

鋳鉄又は鋳鋼からなる鋳造部材の溶接部を溶接する溶接ステップと、
前記溶接部をピーニングするピーニングステップと、
前記溶接によりひずみが発生する溶接部近傍のひずみを計測するひずみ計測ステップと、を備え、
溶接中およびピーニング中の溶接部近傍のひずみを連続的に計測し、
溶接直後に計測されたひずみが所定の最大値を超える前にピーニングを開始し、かつ該ひずみが所定値の最小値以下に低下するまでピーニングを継続する、ことを特徴とする鋳造部材の溶接方法。
A welding step of welding a weld of a cast member made of cast iron or cast steel;
A peening step of peening the weld;
A strain measuring step for measuring strain in the vicinity of the weld where strain is generated by the welding, and
Continuously measure the strain near the weld during welding and peening,
A method for welding a cast member, characterized in that peening is started before the strain measured immediately after welding exceeds a predetermined maximum value and peening is continued until the strain falls below a minimum value of the predetermined value. .
前記ひずみ計測ステップにおいて、溶接部近傍の温度を同時に計測し、ひずみの計測値の温度補正を行う、ことを特徴とする請求項1に記載の鋳造部材の溶接方法。   The method for welding a cast member according to claim 1, wherein, in the strain measurement step, the temperature in the vicinity of the welded portion is simultaneously measured, and the temperature of the measured strain value is corrected. 前記ひずみ計測ステップにおいて、ひずみゲージを用いて直交する2軸のひずみを計測し、温度補正をした後、応力に換算する、ことを特徴とする請求項1に記載の鋳造部材の溶接方法。   2. The method for welding cast members according to claim 1, wherein, in the strain measurement step, two orthogonal strains are measured using a strain gauge, the temperature is corrected, and then converted into stress. 前記ひずみ計測ステップにおいて、溶接によりひずみが発生する位置に、複数のひずみゲージを溶接部に対して対称位置に設け、その最大値、最小値又は平均値を用いる、ことを特徴とする請求項1に記載の鋳造部材の溶接方法。   2. The strain measurement step, wherein a plurality of strain gauges are provided at positions symmetrical with respect to a welded portion at a position where strain is generated by welding, and a maximum value, a minimum value, or an average value thereof is used. A method for welding a cast member as described in 1. 前記ひずみの所定の最大値は、応力換算値が鋳造部材の破断強度より十分低い値に設定する、ことを特徴とする請求項1に記載の鋳造部材の溶接方法。   The method for welding a cast member according to claim 1, wherein the predetermined maximum value of the strain is set such that a stress conversion value is sufficiently lower than a fracture strength of the cast member. 前記ひずみの所定の最小値は、溶接直前の値又は溶接直前と前記所定の最大値の中間値に設定する、ことを特徴とする請求項1に記載の鋳造部材の溶接方法。   2. The casting member welding method according to claim 1, wherein the predetermined minimum value of the strain is set to a value immediately before welding or an intermediate value between the value immediately before welding and the predetermined maximum value. 前記溶接部の溶接が、複数パス及び/又は複数層からなる場合、単パス又は単層の溶接毎に、前記ピーニングを行う、ことを特徴とする請求項1に記載の鋳造部材の溶接方法。
2. The method for welding a cast member according to claim 1, wherein, when welding of the welded portion includes a plurality of passes and / or a plurality of layers, the peening is performed for each single pass or single layer welding.
JP2004028415A 2004-02-04 2004-02-04 Casting member welding method Expired - Lifetime JP3939302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028415A JP3939302B2 (en) 2004-02-04 2004-02-04 Casting member welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028415A JP3939302B2 (en) 2004-02-04 2004-02-04 Casting member welding method

Publications (2)

Publication Number Publication Date
JP2005219079A true JP2005219079A (en) 2005-08-18
JP3939302B2 JP3939302B2 (en) 2007-07-04

Family

ID=34995133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028415A Expired - Lifetime JP3939302B2 (en) 2004-02-04 2004-02-04 Casting member welding method

Country Status (1)

Country Link
JP (1) JP3939302B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006334604A (en) * 2005-05-31 2006-12-14 Ishikawajima Harima Heavy Ind Co Ltd Butt welding deformation-experiment test piece
EP2853336A1 (en) * 2013-09-30 2015-04-01 Airbus Operations GmbH Method of and system for fabricating a module through welding and peening the weld seam and/or the members
WO2015166732A1 (en) * 2014-04-30 2015-11-05 新東工業株式会社 Steel sheet pile manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006334604A (en) * 2005-05-31 2006-12-14 Ishikawajima Harima Heavy Ind Co Ltd Butt welding deformation-experiment test piece
JP4734513B2 (en) * 2005-05-31 2011-07-27 株式会社Ihi Butt weld deformation test specimen
EP2853336A1 (en) * 2013-09-30 2015-04-01 Airbus Operations GmbH Method of and system for fabricating a module through welding and peening the weld seam and/or the members
US20150090771A1 (en) * 2013-09-30 2015-04-02 Airbus Operations Gmbh Method and system for fabricating a module
WO2015166732A1 (en) * 2014-04-30 2015-11-05 新東工業株式会社 Steel sheet pile manufacturing method

Also Published As

Publication number Publication date
JP3939302B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
RU2635688C2 (en) Method for repair and manufacture of gas turbine engine components and gas turbine engine components repaired or manufactured with its use
JP5612844B2 (en) Judgment method of reheat cracking sensitivity
Marazani et al. Repair of cracks in metals: A review
Borrego et al. Mould steels repaired by laser welding
Kopas et al. Identification of mechanical properties of weld joints of AlMgSi07. F25 aluminium alloy
JP4702254B2 (en) Thick steel plate for laser cutting and its manufacturing method
JP6390731B2 (en) Fatigue crack initiation life evaluation test method for welded heat affected zone, method for producing flat plate test piece, and flat plate test piece
JP3939302B2 (en) Casting member welding method
JP6319022B2 (en) Railway vehicle bogie frame and manufacturing method thereof
JP2007021530A (en) Method for repairing steel casting by welding and steel casting having part repaired by welding
JP6686645B2 (en) Steel quality assurance method and fatigue property estimation method
JP2010201491A (en) Method for repairing heat-resistant steel casting by welding and heat resistant steel casting having part repaired by welding
JP2013107101A (en) Method for repairing metal component
JP5417875B2 (en) Steel quality assurance method and fatigue strength estimation method
Selvam et al. Experimental Investigation and Analysis of Smaw Processed Carbon Steel Pipes
JP2006021206A (en) Steel casting having part repaired by welding, and method for repairing steel casting by welding
JP2009202201A (en) Method for repairing and reinforcing steel structure under service by welding
Slot et al. Influence of material anisotropy on fatigue crack growth in C–Mn steels of existing structures
RU2421312C2 (en) Method of producing clad metal sheet
JP5050537B2 (en) Thick steel plate cutting method
Amalia et al. Tensile test analysis for steel welding connections as a basis for compiling welding procedure specification (WPS)
AU2021102151A4 (en) Method to identify the influence of non-metallic inclusions in segregated banded-zone during plate groove butt joint welding
JP2860072B2 (en) Automatic TIG welding method
JP4304892B2 (en) Welded joint
JP2012245555A (en) Industrial roll and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070327

R150 Certificate of patent or registration of utility model

Ref document number: 3939302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term