JP2005218958A - Catalyst for hydrogenating aromatic compound, and method for hydrogenating aromatic compound - Google Patents

Catalyst for hydrogenating aromatic compound, and method for hydrogenating aromatic compound Download PDF

Info

Publication number
JP2005218958A
JP2005218958A JP2004029348A JP2004029348A JP2005218958A JP 2005218958 A JP2005218958 A JP 2005218958A JP 2004029348 A JP2004029348 A JP 2004029348A JP 2004029348 A JP2004029348 A JP 2004029348A JP 2005218958 A JP2005218958 A JP 2005218958A
Authority
JP
Japan
Prior art keywords
aromatic compound
catalyst
alumina
mesoporous silica
benzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004029348A
Other languages
Japanese (ja)
Inventor
Kazu Okumura
和 奥村
Hiroyuki Tokai
博之 東海
Miki Niwa
幹 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University NUC
Original Assignee
Tottori University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University NUC filed Critical Tottori University NUC
Priority to JP2004029348A priority Critical patent/JP2005218958A/en
Publication of JP2005218958A publication Critical patent/JP2005218958A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for hydrogenating an aromatic compound, which exhibits high activity when the aromatic compound is hydrogenated. <P>SOLUTION: This catalyst for hydrogenating the aromatic compound contains a carrier obtained by incorporating alumina in meso-porous silica having pores of 1-5 nm diameter and 700-2,000 m<SP>2</SP>/g specific surface area and a noble metal which is deposited on the carrier and selected from palladium and platinum. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、芳香族化合物の水素化反応触媒および芳香族化合物の水素化方法に関する。   The present invention relates to an aromatic compound hydrogenation reaction catalyst and an aromatic compound hydrogenation method.

ディーゼルエンジン用燃料は、ディーゼルエンジン内で空気と混合して自然発火させるため、飽和炭化水素を多く含んだ自然発火性能(セタン価)の高い燃料が必要とされる。このため、芳香族化合物を水素化反応させてセタン価の高い燃料を製造する研究が進められている。   Since the fuel for diesel engines is spontaneously ignited by mixing with air in the diesel engine, a fuel with high spontaneous ignition performance (cetane number) containing a lot of saturated hydrocarbons is required. For this reason, research is underway to produce a high cetane fuel by hydrogenating aromatic compounds.

また、近年の自動車排ガスに含まれる芳香族化合物の規制強化により芳香族化合物の水素化反応においてより高活性な触媒の開発が急務となっている。   Moreover, development of a catalyst with higher activity in the hydrogenation reaction of aromatic compounds has become an urgent task due to the recent tightening of restrictions on aromatic compounds contained in automobile exhaust gas.

従来、芳香族化合物(例えばベンゼン)の水素化反応にはアルミナまたはシリカアルミナの担体にパラジウム(Pd)、白金(Pt)を担持した触媒が使用されている。特に、非特許文献1には担体として酸性質を有するシリカアルミナを用いた触媒が高活性を示すことが開示されている。この理由としては、担体の酸性質が芳香族化合物であるベンゼンの吸着を促進すること、酸点によってPdの電子状態が変化すること、が挙げられている。しかしながら、これらの方法ではベンゼンの水素化反応によるシクロヘキサンへの転換率が必ずしも十分満足するものではなかった。   Conventionally, a catalyst in which palladium (Pd) or platinum (Pt) is supported on an alumina or silica alumina support has been used for the hydrogenation reaction of an aromatic compound (for example, benzene). In particular, Non-Patent Document 1 discloses that a catalyst using silica alumina having acid properties as a carrier exhibits high activity. The reason for this is that the acid property of the carrier promotes the adsorption of benzene, which is an aromatic compound, and that the electronic state of Pd changes depending on the acid point. However, in these methods, the conversion rate to cyclohexane by the hydrogenation reaction of benzene is not always satisfactory.

一方、本出願人により出願され、公開された特許文献1にはアミン化合物(例えばアニリン)と炭酸ジメチルとを反応させてカーバメート化合物(例えばメチル−N−フェニルカーバメート)の製造において、前記原料を直径1〜5nmの細孔および700〜2000m2/gの比表面積を有し、アルミナを含有するメソポーラスシリカの存在下で反応させることにより前記カーバメート化合物を高い収率で製造できることが開示されている。
D.Poondi and M.A.Vannice,J.Catal.,Vol.161,p.742(1996) 特開2002−220100
On the other hand, in Patent Document 1 filed and published by the present applicant, an amine compound (for example, aniline) and dimethyl carbonate are reacted to produce a carbamate compound (for example, methyl-N-phenylcarbamate). It is disclosed that the carbamate compound can be produced in a high yield by reacting in the presence of mesoporous silica containing alumina having pores of 1 to 5 nm and a specific surface area of 700 to 2000 m 2 / g.
D. Poondi and MAVannice, J. Catal., Vol. 161, p. 742 (1996) JP 2002-220100 A

本発明は、芳香族化合物の水素化反応において高い活性度を示す芳香族化合物の水素化反応触媒を提供するものである。   The present invention provides an aromatic compound hydrogenation reaction catalyst that exhibits high activity in the aromatic compound hydrogenation reaction.

本発明は、芳香族化合物と水素とを高い転換率で反応させることが可能な芳香族化合物の水素化方法を提供するものである。   The present invention provides a method for hydrogenating an aromatic compound capable of reacting an aromatic compound with hydrogen at a high conversion rate.

本発明に係る芳香族化合物の水素化反応触媒は、直径1〜5nmの細孔および700〜2000m2/gの比表面積を有するメソポーラスシリカにアルミナを含有させた担体と、この担体に担持されたパラジウム、白金のいずれから選ばれる貴金属とを含むことを特徴とするものである。 An aromatic compound hydrogenation reaction catalyst according to the present invention is supported by mesoporous silica containing alumina in mesoporous silica having pores having a diameter of 1 to 5 nm and a specific surface area of 700 to 2000 m 2 / g, and supported on this carrier. And a noble metal selected from palladium and platinum.

本発明に係る芳香族化合物の水素化方法は、前記水素化反応触媒の存在下、芳香族化合物と水素を50〜250℃の温度の下にて反応させることを特徴とするものである。   The method for hydrogenating an aromatic compound according to the present invention is characterized in that the aromatic compound and hydrogen are reacted at a temperature of 50 to 250 ° C. in the presence of the hydrogenation reaction catalyst.

本発明によれば、特定の細孔および比表面積を有するメソポーラスシリカにアルミナを含有させた担体にパラジウム、白金のいずれから選ばれる貴金属を担持させることによって、芳香族化合物を水素化反応させる際に高い活性度を示す芳香族化合物の水素化反応触媒を提供できる。   According to the present invention, when an aromatic compound is hydrogenated by supporting a noble metal selected from palladium and platinum on a support in which alumina is contained in mesoporous silica having specific pores and specific surface areas. An aromatic compound hydrogenation reaction catalyst exhibiting high activity can be provided.

また、本発明によれば前記特定の水素化反応触媒の存在下で芳香族化合物と水素とを反応させる際に高い転換率で環式炭化水素を製造することが可能な芳香族化合物の水素化方法を提供できる。   Further, according to the present invention, hydrogenation of an aromatic compound capable of producing a cyclic hydrocarbon at a high conversion rate when the aromatic compound and hydrogen are reacted in the presence of the specific hydrogenation reaction catalyst. Can provide a method.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に係る芳香族化合物の水素化触媒は、直径1〜5nmの細孔および700〜2000m2/gの比表面積を有するメソポーラスシリカにアルミナを含有させた担体と、この担体に担持されたパラジウム、白金のいずれから選ばれる貴金属とを含む。 An aromatic compound hydrogenation catalyst according to the present invention comprises a carrier in which alumina is contained in mesoporous silica having pores having a diameter of 1 to 5 nm and a specific surface area of 700 to 2000 m 2 / g, and palladium supported on the carrier. And a noble metal selected from any of platinum.

前記メソポーラスシリカにおいて、前記細孔および比表面積を規定することによって高い触媒活性を発現することが可能になる。前記細孔および比表面積は、それぞれ直径2〜3nm、800〜1500m2/gであることがより好ましい。 In the mesoporous silica, high catalytic activity can be expressed by defining the pores and specific surface area. The pores and specific surface area are more preferably 2 to 3 nm in diameter and 800 to 1500 m 2 / g, respectively.

前記アルミナは、前記担体にアルミニウム換算で0.1〜6.0モル/kg含有されることが好ましい。この担体に含有されるアルミナをアルミニウム換算で0.1モル/kg未満にすると、芳香族化合物を水素化する際に十分な触媒活性を発現することが困難になる。一方、前記担体に含有されるアルミナをアルミニウム換算で6.0モル/kgを超えると、やはり芳香族化合物を水素化する際に十分な触媒活性を発現することが困難になる。担持される貴金属がパラジウムである場合には、アルミナ含有量はアルミニウム換算で2.0〜2.5モル/kgにすることがより好ましい。   The alumina is preferably contained in the support in an amount of 0.1 to 6.0 mol / kg in terms of aluminum. When the alumina contained in this support is less than 0.1 mol / kg in terms of aluminum, it becomes difficult to exhibit sufficient catalytic activity when hydrogenating the aromatic compound. On the other hand, if the alumina contained in the support exceeds 6.0 mol / kg in terms of aluminum, it is difficult to exhibit sufficient catalytic activity when hydrogenating the aromatic compound. When the noble metal to be supported is palladium, the alumina content is more preferably 2.0 to 2.5 mol / kg in terms of aluminum.

前記貴金属は、前記担体に0.01〜10重量%担持されることが好ましい。前記貴金属の担持量を0.01重量%未満にすると、芳香族化合物と水素の反応を十分にかつ円滑に行うことが困難になる。一方、前記貴金属の担持量が10重量%を超えると、貴金属の使用量当りの反応速度が低下して経済的に好ましくない。より好ましい前記貴金属の担持量は、前記担体に対して0.1〜5重量%である。   The noble metal is preferably supported on the carrier in an amount of 0.01 to 10% by weight. When the amount of the noble metal supported is less than 0.01% by weight, it becomes difficult to sufficiently and smoothly carry out the reaction between the aromatic compound and hydrogen. On the other hand, if the amount of the precious metal supported exceeds 10% by weight, the reaction rate per amount of the precious metal used decreases, which is not economically preferable. A more preferable loading amount of the noble metal is 0.1 to 5% by weight with respect to the carrier.

本発明に係る芳香族化合物の水素化触媒は、例えば次のような方法により製造することができる。   The hydrogenation catalyst for aromatic compounds according to the present invention can be produced, for example, by the following method.

まず、一般式Cm2m+1N(CH33X(ただし、mは8〜20、好ましくは12〜6の整数、XはOH,Cl、BrまたはIを示す)にて表わされるアルキルトリメチルアンモニウム塩の存在下でコロイダルシリカを水熱合成することによりメソポーラスシリカを作る。つづいて、このメソポーラスシリカをアルミニウム化合物のアルコール溶液に添加し、酸素含有雰囲気で加熱処理することによりアルミナを含有するメソポーラスシリカを作る。この後、得られたアルミナを含有するメソポーラスシリカにPd、Ptの貴金属化合物の水溶液を添加し、所望温度下で攪拌しながら蒸発乾固させて水素化触媒を製造する。 First, it is represented by the general formula C m H 2m + 1 N (CH 3 ) 3 X (where m is an integer of 8 to 20, preferably 12 to 6, and X represents OH, Cl, Br or I). Mesoporous silica is produced by hydrothermal synthesis of colloidal silica in the presence of alkyltrimethylammonium salt. Subsequently, this mesoporous silica is added to an alcohol solution of an aluminum compound and heat-treated in an oxygen-containing atmosphere to produce mesoporous silica containing alumina. Thereafter, an aqueous solution of a noble metal compound of Pd and Pt is added to the obtained mesoporous silica containing alumina, and evaporated to dryness while stirring at a desired temperature to produce a hydrogenation catalyst.

前記アルキルトリメチルアンモニウム塩は、テンプレート分子として作用し、例えばテトラデシルトリメチルアンモニウムブロミド、デシルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムブロミド、ヘキサデシルトリメチルアンモニウムブロミド等を挙げることができる。特に、高い触媒活性を発現させる観点から、テンプレート分子としてテトラデシルトリメチルアンモニウムブロミドが好ましい。   The alkyltrimethylammonium salt acts as a template molecule, and examples thereof include tetradecyltrimethylammonium bromide, decyltrimethylammonium bromide, dodecyltrimethylammonium bromide, and hexadecyltrimethylammonium bromide. In particular, tetradecyltrimethylammonium bromide is preferable as a template molecule from the viewpoint of expressing high catalytic activity.

前記アルミニウム化合物としては、例えば硝酸アルミニウム、硫酸アルミニウム、塩化アルミニウム、アルミニウムイソプロポキシド等を用いることができる。   As the aluminum compound, for example, aluminum nitrate, aluminum sulfate, aluminum chloride, aluminum isopropoxide or the like can be used.

前記アルコールとしては、例えばメチルアルコール、エチルアルコールのような低炭素数のアルコールが好ましい。   The alcohol is preferably a low carbon number alcohol such as methyl alcohol or ethyl alcohol.

前記貴金属化合物としては、例えばパラジウムアンミン錯体([Pd(NH34]Cl2)、塩化パラジウム、硝酸パラジウム、白金アンミン錯体([Pt(NH34]Cl2)、H2PtCl6等を用いることができる。 Examples of the noble metal compound include palladium ammine complex ([Pd (NH 3 ) 4 ] Cl 2 ), palladium chloride, palladium nitrate, platinum ammine complex ([Pt (NH 3 ) 4 ] Cl 2 ), H 2 PtCl 6 and the like. Can be used.

本発明に係る触媒は、粉末状、粒状またはハニカム状の形態で用いられる。粒状の触媒は、30〜50メッシュの大きさにすることが好ましい。   The catalyst according to the present invention is used in the form of powder, granules or honeycomb. The granular catalyst is preferably 30 to 50 mesh.

次に、本発明に係る芳香族化合物の水素化方法を説明する。   Next, the method for hydrogenating an aromatic compound according to the present invention will be described.

前述した直径1〜5nmの細孔および700〜2000m2/gの比表面積を有するメソポーラスシリカにアルミナを含有させた担体とこの担体に担持されたパラジウム、白金のいずれから選ばれる貴金属とを含む触媒の存在下、芳香族化合物と水素を50〜250℃の温度の下にて反応させて芳香族化合物を水素化する。 A catalyst comprising a support in which alumina is contained in mesoporous silica having a pore with a diameter of 1 to 5 nm and a specific surface area of 700 to 2000 m 2 / g, and a noble metal selected from palladium and platinum supported on the support. The aromatic compound is hydrogenated by reacting the aromatic compound with hydrogen at a temperature of 50 to 250 ° C.

前記芳香族化合物としては、例えばベンゼンもしくはトルエン、キシレンなどのアルキルベンゼン、またはナフタレン等を用いることができる。   As the aromatic compound, for example, benzene, toluene, alkylbenzene such as xylene, naphthalene, or the like can be used.

前記水素化反応系において、水素は芳香族化合物に対して過剰(例えばモル比で芳香族化合物:水素=1:5〜15)にすることが好ましい。   In the hydrogenation reaction system, it is preferable that hydrogen is in excess with respect to the aromatic compound (for example, aromatic compound: hydrogen = 1: 5 to 15 in molar ratio).

前記水素化反応時の温度が前記範囲を逸脱すると、芳香族化合物の転化効率(環式脂肪族炭化水素への転化効率)を低下させる虞がある。より好ましい水素化反応時の温度は、150〜250℃である。   If the temperature during the hydrogenation reaction deviates from the above range, the conversion efficiency of the aromatic compound (conversion efficiency to cycloaliphatic hydrocarbons) may be reduced. A more preferable temperature during the hydrogenation reaction is 150 to 250 ° C.

前記水素化反応系において、加熱部材が外部に配置された反応管に前記触媒を充填し、この反応管で前記芳香族化合物と水素を反応させる前に、前記反応管に酸素、空気のような酸素含有ガスを流通させ、400〜600℃の温度にて前記触媒を加熱する前処理を施すことが好ましい。このような前処理を施すことによって、前記触媒の活性をより向上することが可能になる。前記加熱処理温度が、前記範囲を逸脱すると、触媒の活性をより高めることが困難になる。   In the hydrogenation reaction system, the catalyst is filled in a reaction tube having a heating member arranged outside, and before the aromatic compound and hydrogen are reacted in the reaction tube, oxygen, air, or the like is added to the reaction tube. It is preferable to perform a pretreatment in which an oxygen-containing gas is circulated and the catalyst is heated at a temperature of 400 to 600 ° C. By performing such pretreatment, the activity of the catalyst can be further improved. When the heat treatment temperature deviates from the above range, it becomes difficult to further increase the activity of the catalyst.

以上説明した本発明に係る芳香族化合物の水素化反応触媒は、直径1〜5nmの細孔および700〜2000m2/gの比表面積を有するメソポーラスシリカにアルミナを含有させた担体にパラジウム、白金のいずれから選ばれる貴金属を担持された構成で、高い酸量および担体上での貴金属の適度な分散性による高活性を示すため、芳香族化合物と水素とを反応させる際、高い芳香族化合物の転化率で水素化反応させるのに適する。 The aromatic compound hydrogenation reaction catalyst according to the present invention described above is composed of palladium and platinum on a carrier in which alumina is contained in mesoporous silica having a pore having a diameter of 1 to 5 nm and a specific surface area of 700 to 2000 m 2 / g. Conversion of high aromatic compounds when reacting aromatic compounds with hydrogen in a structure in which a precious metal selected from any of the above is supported and high activity due to high acid content and appropriate dispersibility of the precious metal on the support. Suitable for hydrogenation reaction at a rate.

特に、アルミナがアルミニウム換算で0.1〜6.0モル/kg含有されるメソポーラスシリカからなる担体を有する触媒は、酸量がより高く、高活性が発現されるため、芳香族化合物と水素とを反応させる際、一層高い芳香族化合物の転化率で水素化反応させるのに適する。   In particular, a catalyst having a support made of mesoporous silica containing 0.1 to 6.0 mol / kg of alumina in terms of aluminum has a higher acid amount and high activity, so that an aromatic compound, hydrogen, Is suitable for the hydrogenation reaction at a higher conversion rate of the aromatic compound.

また、本発明に係る芳香族化合物の水素化方法は、前述した高い酸量および担体上での貴金属の適度な分散性による高活性を示す触媒の存在下、芳香族化合物と水素を50〜250℃の温度の下にて反応させるため、芳香族化合物の水素化が促進されてその芳香族化合物の転化率を向上することができる。   Further, the method for hydrogenating an aromatic compound according to the present invention is a method in which an aromatic compound and hydrogen are mixed in an amount of 50 to 250 in the presence of a catalyst exhibiting high activity due to the high acid amount and appropriate dispersibility of the noble metal on the support. Since the reaction is performed at a temperature of ° C., hydrogenation of the aromatic compound is promoted, and the conversion rate of the aromatic compound can be improved.

以下、本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は、実施例および比較例での芳香族化合物であるベンゼンを水素化するための水素化装置を示す概略図である。   FIG. 1 is a schematic diagram showing a hydrogenation apparatus for hydrogenating benzene, which is an aromatic compound, in Examples and Comparative Examples.

水素供給配管1、酸素供給配管2および窒素供給配管3は、シリカゲルが充填された乾燥管4に連結されている。前記各配管1〜3には、開閉バルブ5〜7およびマスフローバルブ8〜10がそれぞれ介装されている。前記乾燥管4は、配管11を通して所定の触媒が充填された例えば充填個所の径が8mmの反応管12に連結されている。分岐継手13は、前記配管11に介挿されている。ベンゼン供給配管14は、前記分岐継手13に連結され、反応時においてベンゼンを前記水素供給配管1からの水素をと共に配管11を通して前記反応管12に供給する。開閉バルブ15およびマスフローバルブ16は、前記ベンゼン供給配管14に介装されている。加熱部材である筒状ヒータ17は、前記反応管12の触媒充填部を含む外周部に配置されている。   The hydrogen supply pipe 1, the oxygen supply pipe 2 and the nitrogen supply pipe 3 are connected to a drying pipe 4 filled with silica gel. The pipes 1 to 3 are provided with opening / closing valves 5 to 7 and mass flow valves 8 to 10, respectively. The drying pipe 4 is connected through a pipe 11 to a reaction pipe 12 filled with a predetermined catalyst, for example, having a diameter of 8 mm. The branch joint 13 is inserted in the pipe 11. The benzene supply pipe 14 is connected to the branch joint 13 and supplies benzene to the reaction pipe 12 through the pipe 11 together with hydrogen from the hydrogen supply pipe 1 during the reaction. The on-off valve 15 and the mass flow valve 16 are interposed in the benzene supply pipe 14. A cylindrical heater 17 as a heating member is disposed on the outer peripheral portion including the catalyst filling portion of the reaction tube 12.

(製造例1)
<メソポーラスシリカの製造>
まず、水酸化ナトリウム4.68gを脱イオン水117gで溶解した水酸化ナトリウム水溶液とシリカ粉末(Aldrich Chemical Company. Incの商品名:Ludox HS-40)35gをポリプロピレン容器に収容し、80℃の温浴槽で2時間攪拌した後、室温まで冷却してシリカ源溶液を調製した。
(Production Example 1)
<Production of mesoporous silica>
First, an aqueous solution of sodium hydroxide prepared by dissolving 4.68 g of sodium hydroxide with 117 g of deionized water and 35 g of silica powder (trade name of Aldrich Chemical Company. Inc .: Ludox HS-40) are placed in a polypropylene container and heated at 80 ° C. After stirring in a bath for 2 hours, the mixture was cooled to room temperature to prepare a silica source solution.

また、ビーカに脱イオン水を入れ、このビーカに28%濃度のアンモニア水溶液0.75gを加えた後、この溶液にテンプレートであるテトラデシルトリメチルアンモニウムブロミド13.2gを徐々に添加すると共に攪拌してテンプレート溶液を調製した。   Also, after adding deionized water to a beaker and adding 0.75 g of a 28% strength aqueous ammonia solution to this beaker, 13.2 g of tetradecyltrimethylammonium bromide as a template was gradually added to this solution and stirred. A template solution was prepared.

次いで、前記シリカ源溶液を分液ロートに入れ、このロートからシリカ源溶液を前記テンプレート溶液に17分間費やして加え、室温で8時間攪拌した。この溶液のpHを確認した後、ポリプロピレン容器(耐圧容器)に入れ、密封してオーブン内で100℃にて24時間攪拌した。   Next, the silica source solution was placed in a separating funnel, and the silica source solution was added to the template solution from the funnel over 17 minutes, and stirred at room temperature for 8 hours. After confirming the pH of this solution, it was put into a polypropylene container (pressure container), sealed, and stirred in an oven at 100 ° C. for 24 hours.

次いで、ポリプロピレン容器をオーブンから取り出し、室温まで冷却した後、ポリプロピレン容器内の溶液に30%濃度の酢酸をpHが11になるまで加え、再び密封してオーブン内で100℃にて24時間攪拌した。この操作を4回繰り返した。   Next, after removing the polypropylene container from the oven and cooling to room temperature, 30% strength acetic acid was added to the solution in the polypropylene container until the pH was 11, and the container was sealed again and stirred in the oven at 100 ° C. for 24 hours. . This operation was repeated 4 times.

前記操作で得られた懸濁物を濾紙を用いてろ過紙、濾紙上の固形物を熱湯3Lで洗浄した後、濾紙毎オーブン中で12時間乾燥させた。得られた固体を流速150mL/分の窒素気流中で室温から540℃まで2℃/分の速度で昇温し、この温度を1時間保持した後、窒素の供給を止め、流速150mL/分の酸素気流中で1時間焼成することによりメソポーラスシリカ(SiMCM−41)を製造した。   The suspension obtained in the above operation was washed with filter paper using a filter paper, and the solid matter on the filter paper was washed with 3 L of hot water, and then the filter paper was dried in an oven for 12 hours. The obtained solid was heated at a rate of 2 ° C./min from room temperature to 540 ° C. in a nitrogen stream at a flow rate of 150 mL / min. After maintaining this temperature for 1 hour, the supply of nitrogen was stopped and a flow rate of 150 mL / min was reached. Mesoporous silica (SiMCM-41) was produced by firing in an oxygen stream for 1 hour.

得られたメソポーラスシリカは、細孔直径が約2.5nm、細孔容積0.5cm3/g、比表面積834m2/gであった。 The obtained mesoporous silica had a pore diameter of about 2.5 nm, a pore volume of 0.5 cm 3 / g, and a specific surface area of 834 m 2 / g.

<アルミナ含有メソポーラスシリカの製造>
丸底フラスコに硝酸アルミニウム・9水和物0.3751gを入れ、メタノール50mLを加えて前記硝酸アルミニウム・9水和物を完全に溶解した後、前記メソポーラスシリカ1.00gを添加した。丸底フラスコ内の混合物を50℃で2時間攪拌してメタノールを蒸発させ、その後100℃で12時間乾燥させた。丸底フラスコ内の固体を蒸発皿に移し、大気中、500℃まで5℃/分の速度で昇温し、この温度を5時間保持することによりアルミナ含有メソポーラスシリカ(AlMCM−41)を製造した。得られたアルミナ含有メソポーラスシリカは、アルミナの含有量がAl換算で1.0モル/kgであった。
<Production of alumina-containing mesoporous silica>
0.3751 g of aluminum nitrate.9 hydrate was put in a round bottom flask, 50 mL of methanol was added to completely dissolve the aluminum nitrate.9 hydrate, and then 1.00 g of the mesoporous silica was added. The mixture in the round bottom flask was stirred at 50 ° C. for 2 hours to evaporate the methanol and then dried at 100 ° C. for 12 hours. The solid in the round bottom flask was transferred to an evaporating dish, heated to 500 ° C. at a rate of 5 ° C./min in the atmosphere, and alumina-containing mesoporous silica (AlMCM-41) was produced by maintaining this temperature for 5 hours. . The obtained alumina-containing mesoporous silica had an alumina content of 1.0 mol / kg in terms of Al.

<触媒の製造>
500mLビーカに前記アルミナ含有メソポーラスシリカおよびPd1mgを含む[Pd(NH34]Cl2溶液をその溶液1mLに対して前記アルミナ含有メソポーラスシリカが0.1gとなるように添加し、240℃のホットプレート上でその混合物を攪拌しながら蒸発乾固させることにより粉末状の触媒(Pd/Al−MCM−41)を製造した。この触媒のPd担持量は1重量%であった。
<Manufacture of catalyst>
A [Pd (NH 3 ) 4 ] Cl 2 solution containing 1 mg of the alumina-containing mesoporous silica and Pd was added to a 500 mL beaker so that the alumina-containing mesoporous silica was 0.1 g with respect to 1 mL of the solution. A powdery catalyst (Pd / Al-MCM-41) was produced by evaporating the mixture to dryness while stirring on a plate. The amount of Pd supported by this catalyst was 1% by weight.

(製造例2)
丸底フラスコに硝酸アルミニウム・9水和物0.9375gを入れ、メタノール50mLを加えて前記硝酸アルミニウム・9水和物を完全に溶解した後、製造例1のメソポーラスシリカ1.00gを添加した以外、同製造例1と同様な方法でアルミナ含有メソポーラスシリカ(AlMCM−41)を製造した。得られたアルミナ含有メソポーラスシリカは、アルミナの含有量がAl換算で2.5モル/kgであった。このアルミナ含有メソポーラスシリカを用いて製造例1と同様な方法で粉末状の触媒(Pd/Al−MCM−41)を製造した。
(Production Example 2)
Add 0.9375 g of aluminum nitrate nonahydrate to the round bottom flask, add 50 mL of methanol to completely dissolve the aluminum nitrate nonahydrate, and then add 1.00 g of the mesoporous silica of Production Example 1 Alumina-containing mesoporous silica (AlMCM-41) was produced in the same manner as in Production Example 1. The obtained alumina-containing mesoporous silica had an alumina content of 2.5 mol / kg in terms of Al. A powdery catalyst (Pd / Al-MCM-41) was produced in the same manner as in Production Example 1 using this alumina-containing mesoporous silica.

(製造例3)
丸底フラスコに硝酸アルミニウム・9水和物1.5000gを入れ、メタノール50mLを加えて前記硝酸アルミニウム・9水和物を完全に溶解した後、製造例1のメソポーラスシリカ1.00gを添加した以外、同製造例1と同様な方法でアルミナ含有メソポーラスシリカ(AlMCM−41)を製造した。得られたアルミナ含有メソポーラスシリカは、アルミナの含有量がAl換算で4.0モル/kgであった。このアルミナ含有メソポーラスシリカを用いて製造例1と同様な方法で粉末状の触媒(Pd/Al−MCM−41)を製造した。
(Production Example 3)
In addition to adding 1.000 g of aluminum nitrate nonahydrate to a round bottom flask, adding 50 mL of methanol to completely dissolve the aluminum nitrate nonahydrate, and then adding 1.00 g of the mesoporous silica of Production Example 1 In the same manner as in Production Example 1, alumina-containing mesoporous silica (AlMCM-41) was produced. The obtained alumina-containing mesoporous silica had an alumina content of 4.0 mol / kg in terms of Al. A powdery catalyst (Pd / Al-MCM-41) was produced in the same manner as in Production Example 1 using this alumina-containing mesoporous silica.

(製造例4)
丸底フラスコに硝酸アルミニウム・9水和物2.2507gを入れ、メタノール50mLを加えて前記硝酸アルミニウム・9水和物を完全に溶解した後、製造例1のメソポーラスシリカ1.00gを添加した以外、同製造例1と同様な方法でアルミナ含有メソポーラスシリカ(AlMCM−41)を製造した。得られたアルミナ含有メソポーラスシリカは、アルミナの含有量がAl換算で6.0モル/kgであった。このアルミナ含有メソポーラスシリカを用いて製造例1と同様な方法で粉末状の触媒(Pd/Al−MCM−41)を製造した。
(Production Example 4)
Into a round bottom flask, 2.2507 g of aluminum nitrate 9-hydrate was added, 50 mL of methanol was added to completely dissolve the aluminum nitrate 9-hydrate, and then 1.00 g of the mesoporous silica of Production Example 1 was added. Alumina-containing mesoporous silica (AlMCM-41) was produced in the same manner as in Production Example 1. The obtained alumina-containing mesoporous silica had an alumina content of 6.0 mol / kg in terms of Al. A powdery catalyst (Pd / Al-MCM-41) was produced in the same manner as in Production Example 1 using this alumina-containing mesoporous silica.

(実施例1)
製造例1により得られた粉末状の触媒(Pd/Al−MCM−41)を圧縮して30〜50メッシュに整粒した形態とした。この粒状触媒を前述した図1に示す水素化装置の反応管12に2mmの高さになるように充填した。つづいて、開閉バルブ5,7,15を閉じ、開閉バルブ6を開くと共に、マスフローバルブ9の開度を調節した。前記反応管12内の触媒をヒータ17により500℃に加熱した状態で、酸素を前記マスフローバルブ9が介装された配管2を通して乾燥管4に供給し、ここで酸素中の水分を吸着除去した後、分岐継手13が介装された配管11を通して前記反応管12に供給して、前記触媒を酸素気流中で1時間焼成(前処理)した。
(Example 1)
The powdered catalyst (Pd / Al-MCM-41) obtained in Production Example 1 was compressed into a particle size of 30 to 50 mesh. This granular catalyst was filled in the reaction tube 12 of the hydrogenation apparatus shown in FIG. 1 to a height of 2 mm. Subsequently, the opening / closing valves 5, 7, and 15 were closed, the opening / closing valve 6 was opened, and the opening degree of the mass flow valve 9 was adjusted. In a state where the catalyst in the reaction tube 12 is heated to 500 ° C. by the heater 17, oxygen is supplied to the drying tube 4 through the pipe 2 in which the mass flow valve 9 is interposed, and moisture in the oxygen is adsorbed and removed here. Thereafter, the catalyst was supplied to the reaction tube 12 through a pipe 11 provided with a branch joint 13 and the catalyst was calcined (pretreated) for 1 hour in an oxygen stream.

次いで、前記反応管12を室温まで冷却した後、開閉バルブ5,6,15を閉じ、開閉バルブ7を開くと共に、マスフローバルブ10の開度を調節した。窒素を前記マスフローバルブ10が介装された配管3を通して乾燥管4に供給し、ここで窒素中の水分を吸着除去した後、分岐継手13が介装された配管11を通して前記反応管12に供給してこの後の水素供給時に爆発の危険がある酸素をパージし、窒素雰囲気にした。   Next, after the reaction tube 12 was cooled to room temperature, the open / close valves 5, 6 and 15 were closed, the open / close valve 7 was opened, and the opening degree of the mass flow valve 10 was adjusted. Nitrogen is supplied to the drying pipe 4 through the pipe 3 in which the mass flow valve 10 is interposed, and after moisture in the nitrogen is adsorbed and removed, the nitrogen is supplied to the reaction pipe 12 through the pipe 11 in which the branch joint 13 is interposed. Then, oxygen was purged from the danger of explosion during the subsequent hydrogen supply, and the atmosphere was changed to nitrogen.

次いで、開閉バルブ6,7を閉じ、開閉バルブ5,15を開くと共に、それらに対応するマスフローバルブ8、16の開度をそれぞれ調節した。前記反応管12内をヒータ17により100〜300℃に加熱した状態で、水素を前記マスフローバルブ8が介装された配管1を通して乾燥管4に供給し、ここで水素中の水分を吸着除去した後、分岐継手13が介装された配管11を通して前記反応管12内に8.18×10-4モル/分の流量で供給した。同時に、ベンゼンを前記マスフローバルブ16が介装された配管14、前記分岐継手13および配管11を通して前記反応管12に6.79×10-5モル/分の流量で供給した。この時のベンゼン:水素のモル比は、7.7:92.3である。このような100〜300℃に加熱され、触媒が充填された反応管12にベンゼンと水素を供給することにより、ベンゼンの水素化反応を行った。 Next, the opening and closing valves 6 and 7 were closed, the opening and closing valves 5 and 15 were opened, and the opening degrees of the mass flow valves 8 and 16 corresponding to them were adjusted. In the state where the inside of the reaction tube 12 is heated to 100 to 300 ° C. by the heater 17, hydrogen is supplied to the drying tube 4 through the pipe 1 in which the mass flow valve 8 is interposed, and moisture in the hydrogen is adsorbed and removed here. Thereafter, the reaction tube 12 was supplied at a flow rate of 8.18 × 10 −4 mol / min through the pipe 11 provided with the branch joint 13. At the same time, benzene was supplied to the reaction tube 12 at a flow rate of 6.79 × 10 −5 mol / min through the pipe 14 provided with the mass flow valve 16, the branch joint 13 and the pipe 11. At this time, the molar ratio of benzene: hydrogen is 7.7: 92.3. Hydrogenation reaction of benzene was performed by supplying benzene and hydrogen to the reaction tube 12 heated to 100 to 300 ° C. and filled with the catalyst.

(実施例2〜4)
製造例2〜4により得られた粉末状の触媒(Pd/Al−MCM−41)をそれぞれ圧縮して30〜50メッシュに整粒した形態としたものを用いた以外、実施例1と同様な方法によりベンゼンの水素化反応を行った。
(Examples 2 to 4)
The same as in Example 1 except that the powdered catalyst (Pd / Al-MCM-41) obtained in Production Examples 2 to 4 was compressed and sized to 30 to 50 mesh, respectively. Hydrogenation reaction of benzene was carried out by the method.

(比較例1)
500mLビーカに製造例1で得られたメソポーラスシリカ(SiMCM−41)を1.00g秤量し、このビーカに[Pd(NH34]Cl2の溶液10mLおよび脱イオン水200mLを加え、240℃のホットプレート上でその混合物を攪拌しながら蒸発乾固させることにより粉末状の触媒(Pd/Si−MCM−41)を製造した。この触媒のPd担持量は1重量%であった。
(Comparative Example 1)
1.00 g of the mesoporous silica (SiMCM-41) obtained in Production Example 1 was weighed into a 500 mL beaker, and 10 mL of a [Pd (NH 3 ) 4 ] Cl 2 solution and 200 mL of deionized water were added to the beaker. A powdery catalyst (Pd / Si-MCM-41) was produced by evaporating and drying the mixture on a hot plate. The amount of Pd supported by this catalyst was 1% by weight.

得られた粉末状の触媒(Pd/Al−MCM−41)を圧縮して30〜50メッシュに整粒した形態とした。この粒状触媒を前述した図1に示す水素化装置の反応管12に実施例1と同量になるように充填した。開閉バルブ6,7を閉じ、開閉バルブ5,15を開くと共に、それらに対応するマスフローバルブ8、16の開度をそれぞれ調節した。前記反応管12内をヒータ17により100〜300℃に加熱した状態で、水素を前記マスフローバルブ8が介装された配管1を通して乾燥管4に供給し、ここで水素中の水分を吸着除去した後、分岐継手13が介装された配管11を通して前記反応管12内に8.18×10-4モル/分の流量で供給した。同時に、ベンゼンを前記マスフローバルブ16が介装された配管14、前記分岐継手13および配管11を通して前記反応管12に6.79×10-5モル/分の流量で供給した。つまり、実施例1と同様な条件でベンゼンと水素を100〜300℃に加熱され、触媒が充填された反応管12に供給することにより、ベンゼンの水素化反応を行った。 The obtained powdered catalyst (Pd / Al-MCM-41) was compressed into a particle size of 30 to 50 mesh. The granular catalyst was charged into the reaction tube 12 of the hydrogenation apparatus shown in FIG. The on-off valves 6 and 7 were closed, the on-off valves 5 and 15 were opened, and the opening amounts of the mass flow valves 8 and 16 corresponding to them were adjusted. In the state where the inside of the reaction tube 12 is heated to 100 to 300 ° C. by the heater 17, hydrogen is supplied to the drying tube 4 through the pipe 1 in which the mass flow valve 8 is interposed, and moisture in the hydrogen is adsorbed and removed here. Thereafter, the reaction tube 12 was supplied at a flow rate of 8.18 × 10 −4 mol / min through the pipe 11 provided with the branch joint 13. At the same time, benzene was supplied to the reaction tube 12 at a flow rate of 6.79 × 10 −5 mol / min through the pipe 14 provided with the mass flow valve 16, the branch joint 13 and the pipe 11. That is, benzene and hydrogen were heated to 100 to 300 ° C. under the same conditions as in Example 1 and supplied to the reaction tube 12 filled with the catalyst to carry out the hydrogenation reaction of benzene.

(比較例2〜4)
シリカ−アルミナ担体にPdを1重量%担持した触媒(比較例2)、γ−アルミナ担体にPdを1重量%担持した触媒(比較例3)およびゼオライト(HZSM−5)の担体にPdを1重量%担持した触媒(比較例4)を用いた以外、比較例1と同様な方法によりベンゼンの水素化反応を行った。
(Comparative Examples 2 to 4)
A catalyst having 1% by weight of Pd supported on a silica-alumina support (Comparative Example 2), a catalyst having 1% by weight of Pd supported on a γ-alumina support (Comparative Example 3), and a zeolite (HZSM-5) support having 1 Pd. A benzene hydrogenation reaction was carried out in the same manner as in Comparative Example 1 except that the catalyst supported by weight% (Comparative Example 4) was used.

実施例1〜4および比較例1〜4での水素化反応において、反応管から排出されたガスを水素炎イオン化検出器(FID)を備えたガスクロマトグラフィーで分析してベンゼンがシクロヘキサンに転化される転化率を求めた。その結果を図2に示す。   In the hydrogenation reactions in Examples 1 to 4 and Comparative Examples 1 to 4, the gas discharged from the reaction tube was analyzed by gas chromatography equipped with a flame ionization detector (FID), and benzene was converted to cyclohexane. The conversion rate was determined. The result is shown in FIG.

図2から明らかなように触媒(Pd/Al−MCM−41)を用いた実施例1〜4によるベンゼンの水素化反応は、比較例1〜4に比べて極めて高いベンゼン転化率を示すことがわかる。反応温度140〜220℃の範囲では、より高いベンゼン転化率を示すことがわかる。   As is clear from FIG. 2, the hydrogenation reaction of benzene according to Examples 1 to 4 using a catalyst (Pd / Al-MCM-41) shows a very high benzene conversion rate as compared with Comparative Examples 1 to 4. Understand. It can be seen that a higher benzene conversion rate is exhibited in the reaction temperature range of 140 to 220 ° C.

特に、メソポーラスシリカを担体としてPdを担持した触媒を用いる比較例1では、ベンゼン転化率がシリカ−アルミナ担体を有する触媒を用いる比較例2より低く、本実施例1〜4のようにメソポーラスシリカにアルミナを含有させた担体を用いることがベンゼンの水素化反応において高いベンゼン転化率を発現できることがわかる。   In particular, Comparative Example 1 using a catalyst supporting Pd with mesoporous silica as a support has a lower benzene conversion rate than Comparative Example 2 using a catalyst having a silica-alumina support, and the mesoporous silica is used as in Examples 1-4. It can be seen that the use of a support containing alumina can exhibit a high benzene conversion rate in the hydrogenation reaction of benzene.

また、製造例1〜3により得られた粉末状の触媒(Pd/Al−MCM−41)および比較例1で用いた触媒(Pd/Si−MCM−41)についてアンモニア昇温脱離測定により各担体(Al−MCM−41、Si−MCM−41)の酸性質を調べた。その結果を図3に示す。なお、図3の横軸は担体中のAl量、右縦軸は酸量、左縦軸はベンゼン転化率を示す。
図3から明らかなようにPdが担持された触媒において、ベンゼン転化率が最大になるAl量が2.5モル/kgである製造例2の担体は酸量が最大値を示すことがわかる。これに対し、ベンゼン転化率が本発明より低いAlを含まない比較例1の触媒の担体は酸量も極めて少ないことがわかる。
(実施例5)
前記製造例1で製造したアルミナの含有量がAl換算で1.0モル/kgのアルミナ含有メソポーラスシリカ(AlMCM−41)およびPt1mgを含む[Pt(NH34]Cl2溶液を、500mLビーカにその溶液1mLに対して前記アルミナ含有メソポーラスシリカが0.1gとなるように添加し、240℃のホットプレート上でその混合物を攪拌しながら蒸発乾固させることにより粉末状の触媒(Pt/Al−MCM−41)を製造した。この触媒のPt担持量は1重量%であった。
In addition, the powdered catalyst (Pd / Al-MCM-41) obtained in Production Examples 1 to 3 and the catalyst (Pd / Si-MCM-41) used in Comparative Example 1 were measured by ammonia temperature programmed desorption measurement. The acid properties of the supports (Al-MCM-41, Si-MCM-41) were examined. The result is shown in FIG. In FIG. 3, the horizontal axis represents the amount of Al in the support, the right vertical axis represents the acid amount, and the left vertical axis represents the benzene conversion rate.
As can be seen from FIG. 3, in the catalyst supporting Pd, the support of Production Example 2 in which the Al amount at which the benzene conversion rate becomes maximum is 2.5 mol / kg shows the maximum acid amount. On the other hand, it can be seen that the catalyst support of Comparative Example 1 which does not contain Al having a benzene conversion rate lower than that of the present invention also has an extremely low acid amount.
(Example 5)
A 500 mL beaker containing a [Pt (NH 3 ) 4 ] Cl 2 solution containing alumina-containing mesoporous silica (AlMCM-41) having an alumina content of 1.0 mol / kg in terms of Al and 1 mg of Pt in Production Example 1 above. The alumina-containing mesoporous silica was added to 0.1 mL per 1 mL of the solution, and the mixture was evaporated to dryness while stirring on a 240 ° C. hot plate to obtain a powdered catalyst (Pt / Al -MCM-41) was prepared. The amount of Pt supported by this catalyst was 1% by weight.

得られた粉末状の触媒を圧縮して30〜50メッシュに整粒した形態としたものを用いた以外、実施例1と同様な方法によりベンゼンの水素化反応を行った。   A hydrogenation reaction of benzene was carried out in the same manner as in Example 1 except that the powdered catalyst obtained was compressed into a size adjusted to 30 to 50 mesh.

(実施例6)
前記製造例2で製造したアルミナの含有量がAl換算で2.5モル/kgのアルミナ含有メソポーラスシリカ(AlMCM−41)を用いた以外、実施例5と同様な方法によりPt担持量が1重量%の粉末状の触媒(Pt/Al−MCM−41)を製造した。つづいて、この触媒を圧縮して30〜50メッシュに整粒した形態としたものを用いた以外、実施例1と同様な方法によりベンゼンの水素化反応を行った。
(Example 6)
The amount of Pt supported was 1 weight by the same method as in Example 5 except that alumina-containing mesoporous silica (AlMCM-41) having an alumina content of 2.5 mol / kg in terms of Al was used in Production Example 2 above. % Powdered catalyst (Pt / Al-MCM-41) was produced. Subsequently, a hydrogenation reaction of benzene was carried out in the same manner as in Example 1 except that the catalyst was compressed to a particle size of 30 to 50 mesh.

(実施例7)
前記製造例3で製造したアルミナの含有量がAl換算で4.0モル/kgのアルミナ含有メソポーラスシリカ(AlMCM−41)を用いた以外、実施例5と同様な方法によりPt担持量が1重量%の粉末状の触媒(Pt/Al−MCM−41)を製造した。つづいて、この触媒を圧縮して30〜50メッシュに整粒した形態としたものを用いた以外、実施例1と同様な方法によりベンゼンの水素化反応を行った。
(Example 7)
The amount of Pt supported was 1 weight by the same method as in Example 5 except that alumina-containing mesoporous silica (AlMCM-41) having an alumina content of 4.0 mol / kg in terms of Al was used in Production Example 3 above. % Powdered catalyst (Pt / Al-MCM-41) was produced. Subsequently, a hydrogenation reaction of benzene was carried out in the same manner as in Example 1 except that the catalyst was compressed to a particle size of 30 to 50 mesh.

(実施例8)
前記製造例4で製造したアルミナの含有量がAl換算で6.0モル/kgのアルミナ含有メソポーラスシリカ(AlMCM−41)を用いた以外、実施例5と同様な方法によりPt担持量が1重量%の粉末状の触媒(Pt/Al−MCM−41)を製造した。つづいて、この触媒を圧縮して30〜50メッシュに整粒した形態としたものを用いた以外、実施例1と同様な方法によりベンゼンの水素化反応を行った。
(Example 8)
The amount of Pt supported was 1 wt.% In the same manner as in Example 5 except that alumina-containing mesoporous silica (AlMCM-41) having an alumina content of 6.0 mol / kg in terms of Al was used. % Powdered catalyst (Pt / Al-MCM-41) was produced. Subsequently, a hydrogenation reaction of benzene was carried out in the same manner as in Example 1 except that the catalyst was compressed to a particle size of 30 to 50 mesh.

(比較例5)
前記製造例1で製造したメソポーラスシリカ(SiMCM−41)およびPt1mgを含む[Pt(NH34]Cl2溶液を、500mLビーカにその溶液1mLに対して前記メソポーラスシリカが0.1gとなるように添加し、240℃のホットプレート上でその混合物を攪拌しながら蒸発乾固させることにより粉末状の触媒(Pt/Si−MCM−41)を製造した。この触媒のPt担持量は1重量%であった。
(Comparative Example 5)
The mesoporous silica (SiMCM-41) produced in Production Example 1 and [Pt (NH 3 ) 4 ] Cl 2 solution containing 1 mg of Pt are placed in a 500 mL beaker so that the mesoporous silica is 0.1 g per 1 mL of the solution. And the mixture was evaporated to dryness on a hot plate at 240 ° C. with stirring to prepare a powdery catalyst (Pt / Si-MCM-41). The amount of Pt supported by this catalyst was 1% by weight.

得られた粉末状の触媒を圧縮して30〜50メッシュに整粒した形態としたものを用いた以外、比較例1と同様な方法によりベンゼンの水素化反応を行った。   A hydrogenation reaction of benzene was performed in the same manner as in Comparative Example 1, except that the powdered catalyst obtained was compressed into a size adjusted to 30 to 50 mesh.

(比較例6〜7)
シリカ−アルミナ担体にPtを1重量%担持した触媒(比較例6)およびγ−アルミナ担体にPtを1重量%担持した触媒(比較例7)を用いた以外、比較例1と同様な方法によりベンゼンの水素化反応を行った。
(Comparative Examples 6-7)
In the same manner as in Comparative Example 1 except that a catalyst (Comparative Example 6) carrying 1% by weight of Pt on a silica-alumina carrier and a catalyst (Comparative Example 7) carrying 1% by weight of Pt on a γ-alumina carrier were used. Hydrogenation reaction of benzene was performed.

実施例5〜8および比較例5〜7での水素化反応において、反応管から排出されたガスを水素炎イオン化検出器(FID)を備えたガスクロマトグラフィーで分析してベンゼンがシクロヘキサンに転化される転化率を求めた。その結果を図4に示す。   In the hydrogenation reactions in Examples 5-8 and Comparative Examples 5-7, the gas discharged from the reaction tube was analyzed by gas chromatography equipped with a flame ionization detector (FID), and benzene was converted to cyclohexane. The conversion rate was determined. The result is shown in FIG.

図4から明らかなように触媒(Pt/Al−MCM−41)を用いた実施例5〜8によるベンゼンの水素化反応は、比較例5〜7に比べて極めて高いベンゼン転化率を示すことがわかる。反応温度140〜220℃の範囲では、より高いベンゼン転化率を示すことがわかる。   As is apparent from FIG. 4, the hydrogenation reaction of benzene according to Examples 5 to 8 using a catalyst (Pt / Al-MCM-41) shows an extremely high benzene conversion rate as compared with Comparative Examples 5 to 7. Understand. It can be seen that a higher benzene conversion rate is exhibited in the reaction temperature range of 140 to 220 ° C.

特に、メソポーラスシリカを担体としてPtを担持した触媒を用いる比較例5では、ベンゼン転化率がシリカ−アルミナ担体を有する触媒を用いる比較例6より低く、本実施例5〜6のようにメソポーラスシリカにアルミナを含有させた担体を用いることがベンゼンの水素化反応において高いベンゼン転化率を発現できることがわかる。   In particular, Comparative Example 5 using a catalyst supporting Pt with mesoporous silica as a support has a lower benzene conversion rate than Comparative Example 6 using a catalyst having a silica-alumina support, and the mesoporous silica as in Examples 5-6 is used. It can be seen that the use of a support containing alumina can exhibit a high benzene conversion rate in the hydrogenation reaction of benzene.

以上詳述したように本発明によれば、特定の細孔および比表面積を有するメソポーラスシリカにアルミナを含有させた担体にパラジウム、白金のいずれから選ばれる貴金属を担持させることによって、芳香族化合物を水素化反応させる際に高い活性度を示す芳香族化合物の水素化反応触媒を提供することができる。   As described above in detail, according to the present invention, an aromatic compound is obtained by supporting a noble metal selected from palladium and platinum on a support in which alumina is contained in mesoporous silica having specific pores and specific surface areas. It is possible to provide a hydrogenation reaction catalyst for an aromatic compound that exhibits high activity during the hydrogenation reaction.

また、本発明によれば前記特定の水素化反応触媒の存在下で芳香族化合物と水素とを反応させる際に高い転換率でセタン価の高い燃料等に有用な環式炭化水素を製造することが可能な芳香族化合物の水素化方法を提供することができる。   In addition, according to the present invention, a cyclic hydrocarbon useful for a high cetane number fuel or the like is produced at a high conversion rate when an aromatic compound and hydrogen are reacted in the presence of the specific hydrogenation reaction catalyst. It is possible to provide a method for hydrogenating an aromatic compound capable of.

実施例および比較例での芳香族化合物であるベンゼンを水素化するための水素化装置を示す概略図。Schematic which shows the hydrogenation apparatus for hydrogenating benzene which is an aromatic compound in an Example and a comparative example. 実施例1〜4および比較例1〜4での水素化反応によるベンゼン転化率を示す特性図。The characteristic view which shows the benzene conversion rate by the hydrogenation reaction in Examples 1-4 and Comparative Examples 1-4. 触媒(Pd/Al−MCM−41、Pd/Si−MCM−41)における担体中のAl量と担体の酸量およびベンゼン転化率との関係を示す特性図。The characteristic view which shows the relationship between the amount of Al in a support | carrier in the catalyst (Pd / Al-MCM-41, Pd / Si-MCM-41), the acid amount of a support | carrier, and a benzene conversion rate. 実施例5〜8および比較例5〜7での水素化反応によるベンゼン転化率を示す特性図。The characteristic view which shows the benzene conversion rate by the hydrogenation reaction in Examples 5-8 and Comparative Examples 5-7.

符号の説明Explanation of symbols

1…水素供給管、2…酸素供給管、3…窒素供給管、12…反応管、17…ヒータ。   DESCRIPTION OF SYMBOLS 1 ... Hydrogen supply pipe, 2 ... Oxygen supply pipe, 3 ... Nitrogen supply pipe, 12 ... Reaction pipe | tube, 17 ... Heater.

Claims (8)

直径1〜5nmの細孔および700〜2000m2/gの比表面積を有するメソポーラスシリカにアルミナを含有させた担体と、この担体に担持されたパラジウム、白金のいずれから選ばれる貴金属とを含むことを特徴とする芳香族化合物の水素化反応触媒。 A support in which alumina is contained in mesoporous silica having a pore having a diameter of 1 to 5 nm and a specific surface area of 700 to 2000 m 2 / g, and a noble metal selected from palladium and platinum supported on the support. An aromatic hydrogenation catalyst. 前記メソポーラスシリカは、一般式Cm2m+1N(CH33X(ただし、mは8〜20の整数、XはOH,Cl、BrまたはIを示す)にて表わされるアルキルトリメチルアンモニウム塩の存在下でコロイダルシリカを水熱合成することにより製造されることを特徴とする請求項1記載の芳香族化合物の水素化反応触媒。 The mesoporous silica of the general formula C m H 2m + 1 N ( CH 3) 3 X ( provided that, m is 8-20 of integral, X is OH, Cl, Br or an I) alkyltrimethylammonium expressed by 2. The catalyst for hydrogenation reaction of an aromatic compound according to claim 1, which is produced by hydrothermal synthesis of colloidal silica in the presence of a salt. 前記アルミナを含有するメソポーラスシリカは、一般式Cm2m+1N(CH33X(ただし、mは8〜20の整数、XはOH,Cl、BrまたはIを示す)にて表わされるアルキルトリメチルアンモニウム塩の存在下でコロイダルシリカを水熱合成することによりメソポーラスシリカを作り、このメソポーラスシリカをアルミニウム化合物のアルコール溶液に添加し、酸素含有雰囲気で加熱処理することにより製造されることを特徴とする請求項1記載の芳香族化合物の水素化反応触媒。 Mesoporous silica containing the alumina, expressed by the general formula C m H 2m + 1 N ( CH 3) 3 X ( provided that, m is 8-20 of integral, X is shown OH, Cl, Br or I) To produce mesoporous silica by hydrothermally synthesizing colloidal silica in the presence of alkyl trimethylammonium salt, and adding the mesoporous silica to an alcohol solution of an aluminum compound, followed by heat treatment in an oxygen-containing atmosphere. The aromatic hydrogenation reaction catalyst according to claim 1. 前記アルミナは、前記担体にアルミニウム換算で0.1〜6.0モル/kg含有されることを特徴とする請求項1または3記載の芳香族化合物の水素化反応触媒。   4. The aromatic compound hydrogenation catalyst according to claim 1, wherein the alumina is contained in the support in an amount of 0.1 to 6.0 mol / kg in terms of aluminum. 前記貴金属は、前記担体に0.05〜10重量%担持されることを特徴とする請求項1ないし4いずれか記載の芳香族化合物の水素化反応触媒。   The aromatic hydrogenation catalyst according to any one of claims 1 to 4, wherein 0.05 to 10% by weight of the noble metal is supported on the carrier. 請求項1ないし5いずれか記載の触媒の存在下、芳香族化合物と水素を50〜250℃の温度の下にて反応させることを特徴とする芳香族化合物の水素化方法。   A method for hydrogenating an aromatic compound, comprising reacting an aromatic compound and hydrogen at a temperature of 50 to 250 ° C in the presence of the catalyst according to any one of claims 1 to 5. 前記芳香族化合物は、ベンゼンであることを特徴とする請求項6記載の芳香族化合物の水素化方法。 The method for hydrogenating an aromatic compound according to claim 6, wherein the aromatic compound is benzene. 前記触媒は、加熱部材が外部に配置された反応管に充填され、この反応管で前記芳香族化合物と水素を反応させる前に、酸素含有ガスを流通させ、400〜600℃の温度にて加熱する前処理を施すことを特徴とする請求項6または7記載の芳香族化合物の水素化方法。   The catalyst is packed in a reaction tube having a heating member disposed outside, and before the aromatic compound and hydrogen are reacted in this reaction tube, an oxygen-containing gas is circulated and heated at a temperature of 400 to 600 ° C. The method for hydrogenating an aromatic compound according to claim 6 or 7, wherein a pretreatment is performed.
JP2004029348A 2004-02-05 2004-02-05 Catalyst for hydrogenating aromatic compound, and method for hydrogenating aromatic compound Pending JP2005218958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004029348A JP2005218958A (en) 2004-02-05 2004-02-05 Catalyst for hydrogenating aromatic compound, and method for hydrogenating aromatic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004029348A JP2005218958A (en) 2004-02-05 2004-02-05 Catalyst for hydrogenating aromatic compound, and method for hydrogenating aromatic compound

Publications (1)

Publication Number Publication Date
JP2005218958A true JP2005218958A (en) 2005-08-18

Family

ID=34995021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004029348A Pending JP2005218958A (en) 2004-02-05 2004-02-05 Catalyst for hydrogenating aromatic compound, and method for hydrogenating aromatic compound

Country Status (1)

Country Link
JP (1) JP2005218958A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028885A1 (en) * 2004-09-08 2006-03-16 Exxonmobil Research And Engineering Company An improved noble metal-containing catalyst having a specific average pore diameter
WO2006028880A1 (en) * 2004-09-08 2006-03-16 Exxonmobil Research And Engineering Company An improved noble metal-containing catalyst containing a specific ratio of silica to aluminum in the framework
JP2013047166A (en) * 2011-08-29 2013-03-07 Jgc Catalysts & Chemicals Ltd Method for synthesizing alumina-containing mesoporous material and alumina-containing mesoporous material
JP2016205684A (en) * 2015-04-21 2016-12-08 日立アプライアンス株式会社 refrigerator
WO2023090303A1 (en) * 2021-11-16 2023-05-25 株式会社フルヤ金属 Catalyst carrier, catalyst, and methods respectively for producing those products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509999A (en) * 1993-05-10 1996-10-22 アクゾ ノーベル ナムローゼ フェンノートシャップ Hydrogenation of aromatic compounds in hydrocarbon feedstock
JP2002504857A (en) * 1997-06-16 2002-02-12 フォルトゥム・オイル・アンド・ガス・オサケユキテュア Hydrogenation catalyst with high resistance to sulfur contamination
JP2004535268A (en) * 2001-01-15 2004-11-25 アンスティテュ フランセ デュ ペトロール Catalyst containing silica and alumina and use of this catalyst in hydrocracking of hydrocarbon feedstocks
JP2006506430A (en) * 2002-11-20 2006-02-23 エクソンモービル リサーチ アンド エンジニアリング カンパニー Hydrogenation method
JP2006515584A (en) * 2002-12-06 2006-06-01 エービービー ルマス グローバル インコーポレイテッド Mesoporous materials with active metals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509999A (en) * 1993-05-10 1996-10-22 アクゾ ノーベル ナムローゼ フェンノートシャップ Hydrogenation of aromatic compounds in hydrocarbon feedstock
JP2002504857A (en) * 1997-06-16 2002-02-12 フォルトゥム・オイル・アンド・ガス・オサケユキテュア Hydrogenation catalyst with high resistance to sulfur contamination
JP2004535268A (en) * 2001-01-15 2004-11-25 アンスティテュ フランセ デュ ペトロール Catalyst containing silica and alumina and use of this catalyst in hydrocracking of hydrocarbon feedstocks
JP2006506430A (en) * 2002-11-20 2006-02-23 エクソンモービル リサーチ アンド エンジニアリング カンパニー Hydrogenation method
JP2006515584A (en) * 2002-12-06 2006-06-01 エービービー ルマス グローバル インコーポレイテッド Mesoporous materials with active metals

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ALBERTAZZI, S. ET AL.: "Hydrogenation of naphthalene on noble-metal-containing mesoporous MCM-41 aluminosilicates", J. MOL. CATAL. A CHEM., vol. Vol. 200, No. 1/2, JPN4006014291, 2003, pages 261 - 270, ISSN: 0000761945 *
ALBERTAZZI, S. ET AL.: "Hydrogenation of naphthalene on noble-metal-containing mesoporous MCM-41 aluminosilicates", J. MOL. CATAL. A CHEM., vol. Vol. 200, No. 1/2, JPNX006057235, 2003, pages 261 - 270, ISSN: 0000794203 *
CORMA, A. ET AL.: "Hydrogenation of Aromatics in Diesel Fuels on Pt/MCM-41 Catalysts", J. CATAL., vol. 169, no. 2, JPN4006014294, 1997, pages 480 - 489, XP004468774, ISSN: 0000761948, DOI: 10.1006/jcat.1997.1737 *
CORMA, A. ET AL.: "Hydrogenation of Aromatics in Diesel Fuels on Pt/MCM-41 Catalysts", J. CATAL., vol. 169, no. 2, JPNX006057238, 1997, pages 480 - 489, XP004468774, ISSN: 0000794206, DOI: 10.1006/jcat.1997.1737 *
PARK, K.-C. ET AL.: "Characteristics of Al-MCM-41 supported Pt catalysts: Effect of Al distribution in Al-MCM-41 on its c", CATAL. TODAY, vol. Vol. 74, No. 3/4, JPN4006014292, 2002, pages 281 - 290, ISSN: 0000761946 *
PARK, K.-C. ET AL.: "Characteristics of Al-MCM-41 supported Pt catalysts: Effect of Al distribution in Al-MCM-41 on its c", CATAL. TODAY, vol. Vol. 74, No. 3/4, JPNX006057236, 2002, pages 281 - 290, ISSN: 0000794204 *
REDDY, K. M. ET AL.: "Synthesis of mesoporous zeolites and their application for catalytic conversion of polycyclic aromat", CATAL. TODAY, vol. Vol. 31, No. 1/2, JPN4006014295, 1996, pages 137 - 144, ISSN: 0000761949 *
REDDY, K. M. ET AL.: "Synthesis of mesoporous zeolites and their application for catalytic conversion of polycyclic aromat", CATAL. TODAY, vol. Vol. 31, No. 1/2, JPNX006057239, 1996, pages 137 - 144, ISSN: 0000794207 *
WANG, J. ET AL.: "Acid function of Al-MCM-41 supported platinum catalysts in hydrogenation of benzene, toluene and o-x", CATAL. LETT., vol. Vol. 55, No. 3/4, JPN4006014293, 1998, pages 157 - 163, ISSN: 0000761947 *
WANG, J. ET AL.: "Acid function of Al-MCM-41 supported platinum catalysts in hydrogenation of benzene, toluene and o-x", CATAL. LETT., vol. Vol. 55, No. 3/4, JPNX006057237, 1998, pages 157 - 163, ISSN: 0000794205 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028885A1 (en) * 2004-09-08 2006-03-16 Exxonmobil Research And Engineering Company An improved noble metal-containing catalyst having a specific average pore diameter
WO2006028880A1 (en) * 2004-09-08 2006-03-16 Exxonmobil Research And Engineering Company An improved noble metal-containing catalyst containing a specific ratio of silica to aluminum in the framework
JP2013047166A (en) * 2011-08-29 2013-03-07 Jgc Catalysts & Chemicals Ltd Method for synthesizing alumina-containing mesoporous material and alumina-containing mesoporous material
JP2016205684A (en) * 2015-04-21 2016-12-08 日立アプライアンス株式会社 refrigerator
WO2023090303A1 (en) * 2021-11-16 2023-05-25 株式会社フルヤ金属 Catalyst carrier, catalyst, and methods respectively for producing those products

Similar Documents

Publication Publication Date Title
KR102156875B1 (en) Catalysts Having Metal Clusters Encapsulated in Structurally Collapsed Zeolite and Use Thereof
JP6604501B2 (en) Ammonia decomposition catalyst, method for producing the same, and apparatus using the same
KR102026498B1 (en) Zeolite and method for producing same, and cracking catalyst for paraffin
JP6143761B2 (en) Hydrogen production catalyst and method for producing hydrogen
EP1755770B1 (en) Method for the decomposition of n2o, catalyst therefor and preparation of this catalyst
JP6795804B2 (en) Ammonia oxidative decomposition-hydrogen production catalyst and hydrogen production equipment
Fu et al. Intermetallic compound PtMny-derived Pt− MnOx supported on mesoporous CeO2: Highly efficient catalysts for the combustion of toluene
JPH07509687A (en) Synthesis of zeolite films bonded to substrates, their structures and uses
WO2021115244A1 (en) Zirconium- or aluminum-modified amorphous mesoporous sio2-supported cobalt-based fischer-tropsch catalyst and preparation method therefor
JP2015227286A (en) Transition metal-containing zeolite
EP3233804A2 (en) Hierarchical aluminophosphates as catalysts for the beckmann rearrangement
JP2013237613A (en) Zeolite and method for producing same, and catalytic cracking catalyst for paraffin
CN114558612A (en) Hierarchical pore ZSM-5 molecular sieve packaged Pt-Ni bimetallic catalyst and preparation method and application thereof
CA2580930C (en) Titanium oxide and alumina alkali metal compositions
JPH08155303A (en) Exhaust gas purification catalyst carrier, production of the same and exhaust gas purification catalyst using the same and method for purifying exhaust gas
CN111725531A (en) High-selectivity copper-platinum alloy catalyst for hydrogen transfer system and preparation method thereof
Lu et al. Supported noble metal catalyst with a core-shell structure for enhancing hydrogenation performance
JP6566662B2 (en) Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus using ammonia oxidative decomposition catalyst
Sun et al. Fabrication of Pd 3@ Beta for catalytic combustion of VOCs by efficient Pd 3 cluster and seed-directed hydrothermal syntheses
CN111185214A (en) Alumina biomass charcoal composite material, preparation method and application thereof
CN113398935B (en) Ruthenium-nickel/graphene-composite oxide metal aerogel catalyst and preparation method and application thereof
JP2005218958A (en) Catalyst for hydrogenating aromatic compound, and method for hydrogenating aromatic compound
JP6171255B2 (en) NOx selective reduction catalyst, method for producing the same, and NOx purification method using the same
CN110139831A (en) Molecular sieve SSZ-108, its synthesis and purposes
Meng et al. Tailoring the pore size of zeolite Y as the support of diesel aromatic saturation catalyst

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061205