JP2005217867A - Directional coupler - Google Patents

Directional coupler Download PDF

Info

Publication number
JP2005217867A
JP2005217867A JP2004023200A JP2004023200A JP2005217867A JP 2005217867 A JP2005217867 A JP 2005217867A JP 2004023200 A JP2004023200 A JP 2004023200A JP 2004023200 A JP2004023200 A JP 2004023200A JP 2005217867 A JP2005217867 A JP 2005217867A
Authority
JP
Japan
Prior art keywords
directional coupler
circuit
resonators
quarter
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004023200A
Other languages
Japanese (ja)
Inventor
Kenichi Iio
憲一 飯尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2004023200A priority Critical patent/JP2005217867A/en
Publication of JP2005217867A publication Critical patent/JP2005217867A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a directional coupler that carries excellent design properties and suits to a high integration, and to provide an apparatus using the same. <P>SOLUTION: In the appended drawing, 1a to 1d are resonators, wherein input/output terminals 2a to 2d and quarter-wave lines 3 to 6 are connected to each resonator by electric field connection. The amount of the electric field connection is set to Qeo, QeA, and QeB by using an external Q which are employed in filter design. Resonators are connected to the four input/output terminals in this way, and a circuit, in which these four pass-band filters are linked by a quarter-wave line, is formed on a wiring board or formed of a waveguide, a dielectric block or the like, thus a circuit or an apparatus providing intended characteristics of the directional coupler being obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、マイクロ波、ミリ波といった高周波領域で使用する方向性結合器、それを備えた高周波モジュール、および通信装置に関するものである。   The present invention relates to a directional coupler used in a high frequency region such as a microwave and a millimeter wave, a high frequency module including the directional coupler, and a communication device.

近年、高い周波数領域、特に準ミリ波やミリ波といった分野の研究が注目され、その実用化が検討されている。このような高周波化における問題点の一つに、線路不連続部における電磁界の乱れといった問題があった。こういった問題は、例えば、導波管回路で特にそのH面を利用した方向性結合器においては、分岐部の特性が全体の特性に大きな影響を与えるため設計が非常に困難であり、特にマイクロストリップ回路で一般的な4分の1波長線路を使った2分岐線路型といわれる方向性結合器はあまり報告されていない。   In recent years, research in a high frequency region, particularly in a field such as a quasi-millimeter wave and a millimeter wave, has attracted attention, and its practical application has been studied. One of the problems in increasing the frequency is that the electromagnetic field is disturbed in the line discontinuity. For example, in the case of a directional coupler using the H plane in a waveguide circuit, for example, the design of the branching part has a great influence on the overall characteristics, and the design is very difficult. A directional coupler called a two-branch line type using a quarter-wave line that is common in microstrip circuits has not been reported.

また、こういった理由から導波管、特にそのH面を使った方向性結合器においては2つの方形導波管のH面となる導体壁を共用する結合用隔壁を備え、この導体壁に穴等を設けて二つの導波管を電磁界結合させることによる方向性結合器が多用されている。しかし、端子位置が全て同じ向きになるため、回路全体の配置に自由度が少なく、高集積化に対して問題となる場合があった。
特開平4−286202号公報 特開平5−90810号公報 特開平11−308025号公報
For this reason, a waveguide, particularly a directional coupler using the H-plane, has a coupling partition wall that shares the conductor walls that are the H-planes of the two rectangular waveguides. A directional coupler by providing a hole or the like and electromagnetically coupling two waveguides is often used. However, since all the terminal positions are in the same direction, there are few degrees of freedom in the arrangement of the entire circuit, which may be a problem for high integration.
JP-A-4-286202 JP-A-5-90810 Japanese Patent Laid-Open No. 11-308025

本発明は、設計性に優れ、高集積化に向いた方向性結合器およびそれを用いた装置を提供するものである。   The present invention provides a directional coupler excellent in design and suitable for high integration and a device using the same.

本発明は、2つの4分の1波長線路と入出力端子の3つの線路の接続部すなわち分岐部に帯域通過フィルタ(BPF)を挿入することによって、上記の課題を解決するものである。すなわち、4個の4分の1波長線路を組み合わせることによって機能する2分岐線路型方向性結合器において、その分岐部の少なくとも一箇所に共振器、もしくは共振器を複数個連ねることによって構成される帯域通過フィルタが配置されたことに特徴を有するものである。   The present invention solves the above-mentioned problem by inserting a band-pass filter (BPF) into a connection portion, that is, a branching portion between two quarter-wave lines and three lines of input / output terminals. That is, in a two-branch line type directional coupler that functions by combining four quarter-wave lines, it is configured by connecting a resonator or a plurality of resonators at least at one point of the branching portion. It is characterized in that a band pass filter is arranged.

本発明によれば、これまで多くの技術の蓄積があるフィルタ設計手法を用いて方向性結合器が実現できるといったことによる高度な設計性、および不要波が除去でき、端子位置を自由に選べるといったフィルタの特徴を併せもつ方向性結合器およびそれを応用した高周波回路装置が得られる。   According to the present invention, it is possible to remove a high-level design property and unnecessary waves by being able to realize a directional coupler by using a filter design method that has accumulated a lot of technologies, and to freely select terminal positions. A directional coupler having the characteristics of a filter and a high-frequency circuit device to which the directional coupler is applied are obtained.

第一の実施形態に係る導波管H面回路による方向性結合器の構成を図1を参照して説明する。同図において1a〜dは共振器であって、それぞれの共振器には入出力端子2a〜dと4分の1波長線路3〜6が電磁界結合によって接続されている。この電磁界結合の量はフィルタ設計に用いる外部QをつかってQeo、QeA、QeBとしている。このように4つの入出力端子に共振器を接続し、これら4つの帯域通過フィルタを4分の1波長線路で結んだ回路が配線基板上あるいは導波管、誘電体ブロック等で構成されて、所期の方向性結合器の特性を呈する回路あるいは装置が得られる。   The structure of the directional coupler by the waveguide H surface circuit which concerns on 1st embodiment is demonstrated with reference to FIG. In the figure, reference numerals 1a to d denote resonators, and input / output terminals 2a to 2d and quarter-wave lines 3 to 6 are connected to the respective resonators by electromagnetic coupling. The amount of electromagnetic coupling is Qeo, QeA, and QeB using the external Q used for filter design. In this way, a resonator is connected to four input / output terminals, and a circuit in which these four band-pass filters are connected by a quarter-wave line is configured on a wiring board or a waveguide, a dielectric block, etc. A circuit or device exhibiting the desired directional coupler characteristics is obtained.

次に上記構成による4端子回路が方向性結合器となることを以下に説明する。まずここでは解析の簡略化のために面AA’、BB’に対して対称性をもつこととする。このことを利用すれば2つの対称面で切り取られる1端子1/4回路について解析することで回路全体の解析が可能となる。   Next, it will be described below that the four-terminal circuit having the above configuration serves as a directional coupler. First, in order to simplify the analysis, it is assumed that the plane has symmetry with respect to the planes AA ′ and BB ′. By utilizing this fact, it is possible to analyze the entire circuit by analyzing a one-terminal quarter circuit cut off at two symmetry planes.

まず図2に2つの対称面で切り取られた1端子回路の等価回路を示した。共振器はLC直列回路とした。入出力線路およびλ/4線路と共振器の結合は相互インダクタンスを用いてそれぞれMo、MA,MBとしている。この回路においてjA,jBは対称面の開放、短絡に応じて変化する量であり、次のように表されるものとした。
(1)AA’面;開放,BB’面;開放の場合、
jA=−jZAcot(θ/2),jB=−jZBcot(θ/2)
(2)AA’面;短絡,BB’面;開放の場合
jA=jZAcot(θ/2),jB=−jZBtan(θ/2)
(3)AA’面;開放,BB’面;短絡の場合
jA=−jZAtan(θ/2),jB=jZBcot(θ/2)
(4)AA’面;短絡,BB’面;短絡の場合
jA=jZAtan(θ/2),jB=jZBtan(θ/2)
(θは周波数に対するλ/4線路部の電気角を表す)
いま中心周波数のみを考え、図2の等価回路を用いれば、各対称面の開放、短絡に応じた規格化固有アドミタンスは式(1)となる。

Figure 2005217867
ここに、
Figure 2005217867
とした。 First, FIG. 2 shows an equivalent circuit of a one-terminal circuit cut along two symmetry planes. The resonator is an LC series circuit. The coupling between the input / output line and the λ / 4 line and the resonator is Mo, MA, and MB, respectively, using mutual inductance. In this circuit, jA and jB are amounts that change in accordance with opening and shorting of the symmetry plane, and are expressed as follows.
(1) AA 'side; open, BB'side;
jA = −jZ A cot (θ / 2), jB = −jZ B cot (θ / 2)
(2) AA 'surface: Short circuit, BB' surface: Open
jA = jZ A cot (θ / 2), jB = −jZ B tan (θ / 2)
(3) AA 'surface: Open, BB' surface: Short circuit
jA = −jZ A tan (θ / 2), jB = jZ B cot (θ / 2)
(4) AA 'surface: Short circuit, BB' surface: Short circuit
jA = jZ A tan (θ / 2), jB = jZ B tan (θ / 2)
(Θ represents the electrical angle of the λ / 4 line section with respect to the frequency)
If only the center frequency is considered and the equivalent circuit of FIG. 2 is used, the normalized inherent admittance corresponding to the open and short of each symmetry plane is expressed by equation (1).
Figure 2005217867
here,
Figure 2005217867
It was.

なお式(1)のアドミタンスは入出力線路の特性アドミタンスで規格化されており1番目の上付き添え字は面AA’、2番目は面BB’に対応し、eにより開放、oにより短絡を表すものとしている。この規格化固有アドミタンスと散乱行列には

Figure 2005217867
の関係がある。回路全体の散乱行列は式(3)の散乱行列を用いて式(4)で表される。
Figure 2005217867
Note that the admittance in the formula (1) is standardized by the characteristic admittance of the input / output line. The first superscript corresponds to the surface AA ′, the second corresponds to the surface BB ′, and is opened by e and shorted by o. To represent. This normalized intrinsic admittance and scattering matrix
Figure 2005217867
There is a relationship. The scattering matrix of the entire circuit is expressed by Expression (4) using the scattering matrix of Expression (3).
Figure 2005217867

以上の手順によって散乱行列を求めた結果、本回路が方向性結合器として機能する条件、つまり端子(1)の整合条件(|S11|=0)および端子(1)−(2)間の分離条件(|S21|=0)は式(5)となる。

Figure 2005217867
また結合度を表すβは、
Figure 2005217867
が得られ、
Figure 2005217867
Figure 2005217867
が得られる。このようにしてブランチラインカプラにおける結合度|β|が与えられれば、共振器の外部Qは一義的に決まり、方向性結合器が実現できる。 As a result of obtaining the scattering matrix by the above procedure, the condition that this circuit functions as a directional coupler, that is, the matching condition (| S11 | = 0) of the terminal (1) and the separation between the terminals (1)-(2) The condition (| S21 | = 0) is expressed by Equation (5).
Figure 2005217867
Β representing the degree of binding is
Figure 2005217867
Is obtained,
Figure 2005217867
Figure 2005217867
Is obtained. If the degree of coupling | β | in the branch line coupler is given in this way, the external Q of the resonator is uniquely determined, and a directional coupler can be realized.

いま3dB結合の場合、すなわちβ=1/√2の場合には式(7),(8)よりただちに

Figure 2005217867
が得られる。 In the case of 3 dB coupling, that is, β = 1 / √2, immediately from equations (7) and (8)
Figure 2005217867
Is obtained.

図3は中心周波数を24GHz、(9)式のパラメータでQe0=20としたときの周波数特性計算結果である。横軸は周波数範囲として23GHzから25GHzとし、縦軸は散乱パラメータの絶対値をデシベル表示している。端子(1)からの入力は整合され、端子(2)からは出力されず、端子(3),(4)からは等しい電力が分配されているのがわかる。このように本回路構成により方向性結合器が得られることがわかる。   FIG. 3 shows the frequency characteristic calculation result when the center frequency is 24 GHz and Qe0 = 20 using the parameter of the equation (9). The horizontal axis represents the frequency range from 23 GHz to 25 GHz, and the vertical axis represents the absolute value of the scattering parameter in decibels. It can be seen that the inputs from terminal (1) are matched, not output from terminal (2), and equal power is distributed from terminals (3) and (4). Thus, it can be seen that a directional coupler can be obtained by this circuit configuration.

次に第二の実施形態に係る方向性結合器の構成を図4を参照して説明する。図4は図1の方向性結合器で用いる共振器の代わりに3段の帯域通過フィルタを用いた構成である。図4においてD1,D2、D3は共振器を表しており、共振器間は電磁界結合している。結合量はk12およびk23をもちいて表している。このように分岐部の共振器の代わりに帯域通過フィルタを用いることは広帯域化に効果がある。例えば基本フィルタの特性として図5に示すように3段のフィルタを想定し、中心周波数24GHz、帯域幅1GHzのフィルタを設計する。古典的なフィルタ設計手法によれば、このとき得られる結合係数はk12=k23=0.038、Qe=24.8となる。このパラメータをつかって図5にはフィルタの周波数特性を計算した結果を示す。   Next, the structure of the directional coupler which concerns on 2nd embodiment is demonstrated with reference to FIG. FIG. 4 shows a configuration using a three-stage bandpass filter instead of the resonator used in the directional coupler of FIG. In FIG. 4, D1, D2, and D3 represent resonators, and the resonators are electromagnetically coupled. The amount of binding is expressed using k12 and k23. Thus, using a bandpass filter instead of the resonator at the branching portion is effective for widening the band. For example, assuming a three-stage filter as shown in FIG. 5 as the basic filter characteristics, a filter having a center frequency of 24 GHz and a bandwidth of 1 GHz is designed. According to the classic filter design method, the coupling coefficients obtained at this time are k12 = k23 = 0.038 and Qe = 24.8. FIG. 5 shows the result of calculating the frequency characteristics of the filter using these parameters.

このパラメータをもとに、外部Qが式(9)の関係を満たすように、
Qe0=QeA=24.8 (10)
QeB=17.5 (11)
k12=k23=0.038 (12)
としたときの図4のブランチラインカプラの周波数特性計算結果を図6に示す。入出力は整合され、端子(1)とは分離し、端子(3)、(4)へ等分配されるといった方向性結合器の特性が1GHzの帯域にわたって実現されている。また反射特性は基本としたフィルタ特性の反射特性をよく反映しており、このことからフィルタ設計を行うことで、方向性結合器の反射、分離特性も設計可能であることが分かる。
Based on this parameter, so that the external Q satisfies the relationship of equation (9),
Qe0 = QeA = 24.8 (10)
QeB = 17.5 (11)
k12 = k23 = 0.038 (12)
FIG. 6 shows the frequency characteristic calculation result of the branch line coupler of FIG. The characteristics of the directional coupler are realized over the 1 GHz band such that the input and output are matched, separated from the terminal (1), and equally distributed to the terminals (3) and (4). Further, the reflection characteristics well reflect the reflection characteristics of the basic filter characteristics. From this, it is understood that the reflection and separation characteristics of the directional coupler can be designed by designing the filter.

本発明の基本的な構成は上記のとおりであるが、これをH面空洞導波管型の回路で構成した例について詳説する。共振器および入出力端子には導波管を用い、導波管のサイズは8.636×4.318としている。各結合係数および外部Qはアイリス長によって式(10)〜(12)を満足するように調整されている。図8は有限要素法による計算結果である。   The basic configuration of the present invention is as described above, and an example in which this is configured by an H-plane cavity waveguide type circuit will be described in detail. Waveguides are used for the resonator and the input / output terminals, and the size of the waveguide is 8.636 × 4.318. Each coupling coefficient and the external Q are adjusted so as to satisfy the expressions (10) to (12) according to the iris length. FIG. 8 shows the calculation result by the finite element method.

第4の実施形態に係る方向性結合器を図9を参照して説明する。図9は図7の導波管型方向性結合器の入出力端子の向きを90度異なる向きにすることによって、全ての端子が異なる方向を向くように設計してある。図10は実際に試作し、測定した結果である。端子向きに自由度をもたせることによって、その先に続く回路の配置を最適にすることが可能となり、回路の高集積化が実現できる   A directional coupler according to the fourth embodiment will be described with reference to FIG. FIG. 9 is designed so that all the terminals are directed in different directions by changing the directions of the input / output terminals of the waveguide type directional coupler of FIG. 7 by 90 degrees. FIG. 10 shows the results of actual trial manufacture and measurement. By providing a degree of freedom in the terminal direction, it is possible to optimize the arrangement of the circuit that follows, and to achieve high integration of the circuit.

第5の実施形態に係る方向性結合器を図11を参照して説明する。図11では共振器を4段とし、中心周波数24GHz、周波数大域1.1GHz、結合度を−10dBとなるように選んでいる。このとき結合係数は式(8)より
k12=k34=3.81%
k23=3.01%
Qe0=24.2、QeA=72.6、QeB=23.0と選んでいる。この構成をH面導波管回路を使って設計した結果を図12に示す。このように等配分でなくとも設計が可能である。
A directional coupler according to the fifth embodiment will be described with reference to FIG. In FIG. 11, the resonator has four stages, the center frequency is 24 GHz, the frequency band is 1.1 GHz, and the coupling degree is selected to be −10 dB. At this time, the coupling coefficient is k12 = k34 = 3.81% from equation (8).
k23 = 3.01%
Qe0 = 24.2, QeA = 72.6, QeB = 23.0. The result of designing this configuration using an H-plane waveguide circuit is shown in FIG. In this way, the design is possible even if it is not equally distributed.

第6の実施形態に係る方向性結合器を図13を参照して説明する。図13は伝送線路およびλ/4線路をマイクロストリップ線路で構成し、分岐部の共振器として誘電体共振器を用いた例である。本出願で示した回路構成は外部Qというパラメータを使って設計するため、こういった2種類の異なる組み合わせであっても設計できる。この組み合わせはスロット線路と同軸線路、導波管とコプレーナ線路等の場合であっても可能である。また、図14は図13の方向性結合器の端子の一部をスロット線路で構成した回路の実施例である。   A directional coupler according to the sixth embodiment will be described with reference to FIG. FIG. 13 shows an example in which the transmission line and the λ / 4 line are configured by microstrip lines, and a dielectric resonator is used as a resonator at the branching portion. Since the circuit configuration shown in the present application is designed using a parameter called external Q, it is possible to design even these two different combinations. This combination is possible even in the case of a slot line and a coaxial line, a waveguide and a coplanar line, and the like. FIG. 14 shows an embodiment of a circuit in which some of the terminals of the directional coupler of FIG. 13 are constituted by slot lines.

本発明による方向性結合器の構造は上記のものに限られるものではなく、NRDガイド、あるいは図15のようにスロット線路を用いたものなどにも利用できる。図16は本発明に係る方向性結合器を従属接続し、ラダー型の2分岐線路型方向性結合器とした場合の実施例である。また図17は通信モジュールの受信機として本発明に係る方向性結合器を利用した例である。この方向性結合器をシステムに応用した場合には端子位置を任意に選ぶことができるため、回路の高集積化に効果がある。   The structure of the directional coupler according to the present invention is not limited to that described above, and can be used for an NRD guide or a slot line as shown in FIG. FIG. 16 shows an embodiment in which directional couplers according to the present invention are cascade-connected to form a ladder type two-branch line type directional coupler. FIG. 17 shows an example in which the directional coupler according to the present invention is used as a receiver of a communication module. When this directional coupler is applied to a system, the terminal position can be arbitrarily selected, which is effective for high circuit integration.

本発明の実施例を示す回路図Circuit diagram showing an embodiment of the present invention その一部の等価回路図Partial equivalent circuit diagram その特性の説明図Illustration of its characteristics 本発明の他の実施例を示す回路図Circuit diagram showing another embodiment of the present invention その特性の説明図Illustration of its characteristics その特性の説明図Illustration of its characteristics 本発明の他の実施例を示す平面図The top view which shows the other Example of this invention その特性の説明図Illustration of its characteristics 本発明の他の実施例を示す平面図The top view which shows the other Example of this invention その特性の説明図Illustration of its characteristics 本発明の他の実施例を示す斜視図The perspective view which shows the other Example of this invention. その特性の説明図Illustration of its characteristics 本発明の他の実施例を示す斜視図The perspective view which shows the other Example of this invention. 本発明の他の実施例を示す斜視図The perspective view which shows the other Example of this invention. 本発明の他の実施例を示す斜視図The perspective view which shows the other Example of this invention. 本発明の他の実施例を示すブロック図Block diagram showing another embodiment of the present invention 本発明の他の実施例を示す平面図The top view which shows the other Example of this invention

符号の説明Explanation of symbols

1:共振器
2:出力端子
3〜6:4分の1波長線路
1: Resonator 2: Output terminals 3-6: 1/4 wavelength line

Claims (3)

4個の4分の1波長線路を組み合わせることによって機能する2分岐線路型方向性結合器において、その分岐部の少なくとも一箇所に共振器、もしくは共振器を複数個連ねることによって構成される帯域通過フィルタが配置されたことを特徴とする方向性結合器。   A two-branch line type directional coupler that functions by combining four quarter-wave lines, and a band pass configured by connecting a plurality of resonators or resonators at at least one location of the branching section A directional coupler in which a filter is arranged. 4個の4分の1波長線路を組み合わせることによって機能する請求項1記載の2分岐線路型方向性結合器において、共振器、もしくは共振器を複数個連ねたフィルタと入出力線路および2つのλ/4線路とが電磁界結合し、かつその結合量をそれぞれQe0,QeA、QeBとしたとき、これらのパラメータの間に、下記の関係があることを特徴とする方向性結合器。
Figure 2005217867
The two-branch line type directional coupler according to claim 1, which functions by combining four quarter-wave lines, and a resonator or a filter in which a plurality of resonators are connected, an input / output line, and two λ A directional coupler having the following relationship between these parameters when the / 4 line is electromagnetically coupled and the coupling amounts are Qe0, QeA, and QeB, respectively.
Figure 2005217867
ベンドもしくはそれに準じた回路を付加することなしに任意の2つの出力端子の向きが90度異なるように配置された方向性結合器。   A directional coupler arranged such that the orientation of any two output terminals differs by 90 degrees without adding a bend or a circuit equivalent thereto.
JP2004023200A 2004-01-30 2004-01-30 Directional coupler Pending JP2005217867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023200A JP2005217867A (en) 2004-01-30 2004-01-30 Directional coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004023200A JP2005217867A (en) 2004-01-30 2004-01-30 Directional coupler

Publications (1)

Publication Number Publication Date
JP2005217867A true JP2005217867A (en) 2005-08-11

Family

ID=34906309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023200A Pending JP2005217867A (en) 2004-01-30 2004-01-30 Directional coupler

Country Status (1)

Country Link
JP (1) JP2005217867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116345096A (en) * 2023-05-19 2023-06-27 电子科技大学 Terahertz 90-degree waveguide filter coupler with low-amplitude unevenness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116345096A (en) * 2023-05-19 2023-06-27 电子科技大学 Terahertz 90-degree waveguide filter coupler with low-amplitude unevenness
CN116345096B (en) * 2023-05-19 2023-08-04 电子科技大学 Terahertz 90-degree waveguide filter coupler with low-amplitude unevenness

Similar Documents

Publication Publication Date Title
EP1990863B1 (en) Dual band resonator and dual band filter
US20140306776A1 (en) Planar rf crossover structure with broadband characteristic
KR101311791B1 (en) Balun circuit using defected ground structure
US20090027141A1 (en) Filter circuit, filter circuit device, multilayered circuit board, and circuit module each including the filter circuit
CN108172958B (en) Periodic slow wave transmission line unit based on coplanar waveguide
KR101120043B1 (en) Microstrip line-suspended stripline transition structure and application module thereof
US9306264B2 (en) Transition between a microstrip protruding into an end of a closed waveguide having stepped sidewalls
Tang et al. Analysis and design of compact and wide-passband planar crossovers
JP4565145B2 (en) Ultra-wideband bandpass filter
JP6080584B2 (en) Directional coupler
US20180174735A1 (en) Dual-Band Radio Frequency Devices Incorporating Metamaterial Type Structures And Related Methods
CN108879043B (en) Three-mode balance filter adopting coupling branch loading slot line resonance structure
JP4550915B2 (en) FILTER CIRCUIT, FILTER CIRCUIT ELEMENT, MULTILAYER CIRCUIT BOARD AND CIRCUIT MODULE HAVING THE SAME
US10147992B2 (en) Planar via-less crossover having coplanar waveguide configurations and stub layers
JP2000357903A (en) Planar filter
JP6345371B1 (en) Dielectric filter
JP2005217867A (en) Directional coupler
CN116259938B (en) Miniaturized box-type coupling topological structure plane microstrip filter
TWI528624B (en) Balanced tri - band band - pass filter
Salah-Eddin et al. Defected-ground coupled microstrip lines and its application in wideband baluns
CN219553853U (en) Printed film radio frequency microstrip band-pass filter
JPH11308012A (en) Waveguide type filter
Kim et al. A novel flexible filter with enhanced coupling effect using mixed coupling
JP2008172456A (en) High-frequency band-pass filter
Singh et al. Wideband, compact microstrip band stop filter for triband operations