JP2005217220A - Device for manufacturing semiconductor - Google Patents

Device for manufacturing semiconductor Download PDF

Info

Publication number
JP2005217220A
JP2005217220A JP2004022513A JP2004022513A JP2005217220A JP 2005217220 A JP2005217220 A JP 2005217220A JP 2004022513 A JP2004022513 A JP 2004022513A JP 2004022513 A JP2004022513 A JP 2004022513A JP 2005217220 A JP2005217220 A JP 2005217220A
Authority
JP
Japan
Prior art keywords
semiconductor manufacturing
manufacturing apparatus
chamber
gas
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004022513A
Other languages
Japanese (ja)
Other versions
JP4186827B2 (en
Inventor
Shinichi Muramatsu
信一 村松
Fumito Oka
史人 岡
Katsumi Nomura
克己 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004022513A priority Critical patent/JP4186827B2/en
Publication of JP2005217220A publication Critical patent/JP2005217220A/en
Application granted granted Critical
Publication of JP4186827B2 publication Critical patent/JP4186827B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor manufacturing device for fixing a formation speed, and for realizing high speed thick film formation by a remote plasma CVD method or the like. <P>SOLUTION: This semiconductor manufacturing device is configured to carry out any of film formation, etching and surface treatment, by introducing reactive gas 7 to a reaction chamber 8 and bringing it into contact with a substrate 9a. The reaction device is constituted of an excitation chamber 6 and the reaction chamber 8, and the ejection of the reactive gas is carried out from at least a main exhaust port 10 installed in the reaction chamber 8 and an auxiliary exhaust port 3b installed in the excitation chamber 3 as well. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体素子等を形成する半導体製造装置に関するものである。   The present invention relates to a semiconductor manufacturing apparatus for forming a semiconductor element or the like.

近年、非導電性の異種基板上、例えばガラス基板上等にシリコン薄膜を形成する研究が盛んに行われている。このガラス基板上に形成したシリコン薄膜の用途は広く、液晶デバイス用TFT(Thin Film Transistor)、薄膜太陽光発電素子などに用いることができる。   In recent years, research on forming a silicon thin film on a non-conductive dissimilar substrate such as a glass substrate has been actively conducted. The silicon thin film formed on this glass substrate can be used for a wide range of applications, such as TFTs for liquid crystal devices (Thin Film Transistors), thin film photovoltaic devices, and the like.

薄膜太陽光発電素子は、安価な基板上に低温プロセスでシリコン薄膜を形成し、これを光電変換装置に用いて、低コスト化を図るものである。シリコン薄膜としては非晶質シリコンのみでなく、結晶シリコンを用いることも検討されている。結晶シリコンを用いた薄膜太陽光発電素子は、非晶質シリコンを用いた薄膜太陽光発電素子で問題となっている光劣化が観測されず、さらに非晶質シリコンを用いた薄膜太陽光発電素子では感度のない、長波長光をも電気的エネルギーに変換することができる。この技術は薄膜太陽光発電素子のみではなく、光センサ等の光電変換素子への応用も可能であると期待されている。   The thin-film photovoltaic power generation element is intended to reduce the cost by forming a silicon thin film on an inexpensive substrate by a low-temperature process and using it for a photoelectric conversion device. As the silicon thin film, use of not only amorphous silicon but also crystalline silicon has been studied. The thin-film photovoltaic power generation element using crystalline silicon is not observed with the light degradation which is a problem in the thin-film photovoltaic power generation element using amorphous silicon, and the thin-film photovoltaic power generation element using amorphous silicon. Then, insensitive long wavelength light can be converted into electrical energy. This technology is expected to be applicable not only to thin-film photovoltaic elements but also to photoelectric conversion elements such as optical sensors.

これらシリコン(非単結晶シリコン)薄膜形成には、一般的にプラズマCVD法が用いられている。この手法によって、基板上に低温で非晶質または結晶シリコンが形成され得ることが知られており、低コスト化に有効であるとされている。   In general, a plasma CVD method is used to form these silicon (non-single crystal silicon) thin films. It is known that amorphous or crystalline silicon can be formed on a substrate at a low temperature by this method, and it is said that it is effective for cost reduction.

高速で成膜することが生産効率を向上させる上で有効であるが、通常用いられている対向電極型のプラズマCVD法では、投入電力を上げることで高速成膜が可能となる。しかし、投入電力を上げると電極が反応室内にある対向電極型のプラズマCVD装置では、必然的に、プラズマダメージと呼ばれる膜質の劣化が生じる。   High-speed film formation is effective for improving production efficiency, but the commonly used counter electrode type plasma CVD method enables high-speed film formation by increasing the input power. However, when the input power is increased, in the counter electrode type plasma CVD apparatus in which the electrode is in the reaction chamber, the film quality called plasma damage is inevitably deteriorated.

そこで、電極を反応室から分離できるプラズマCVD法の一種である、リモートプラズマCVD法が非単結晶シリコン薄膜形成に適用される(例えば、特許文献1、2参照)。この手法においては、励起室においてアルゴン等のキャリヤガスを励起し、これを下方の反応室に導入して反応性気体を活性化させて基板上に成膜する。処理後の反応性気体は反応室の下方から排気ポンプにて排気する。
特開平5−166755号公報 特開平11−233491号公報
Therefore, a remote plasma CVD method, which is a kind of plasma CVD method capable of separating an electrode from a reaction chamber, is applied to non-single crystal silicon thin film formation (see, for example, Patent Documents 1 and 2). In this method, a carrier gas such as argon is excited in an excitation chamber and introduced into a lower reaction chamber to activate a reactive gas and form a film on a substrate. The reactive gas after treatment is exhausted from below the reaction chamber by an exhaust pump.
JP-A-5-166755 JP-A-11-233491

上記のリモートプラズマCVD法によれば、例えばアルゴンをキャリヤガスとして用い、モノシランを反応ガスとして用いることにより、成膜速度2nm/sの高速成膜が出来た。当然、プラズマダメージのない高品質膜が得られた。また、膜中の水素量も5%程度であり、レーザ照射により結晶化することも容易であるという利点もあった。   According to the above remote plasma CVD method, for example, argon was used as a carrier gas, and monosilane was used as a reaction gas, so that high-speed film formation at a film formation rate of 2 nm / s was achieved. Naturally, a high quality film free from plasma damage was obtained. Further, the amount of hydrogen in the film is about 5%, and there is an advantage that crystallization is easy by laser irradiation.

しかしながら、従来のリモートプラズマCVD法では、太陽電池作製のため2μm程度の比較的厚い膜を形成しようとすると、成膜が進むとともに成膜速度が低下するという問題が明らかになった。すなわち、従来のリモートプラズマCVD装置の場合、厚膜形成時には、徐々に形成速度が低下するため、高速成膜が出来ないとともに、膜厚の制御も困難であった。   However, in the conventional remote plasma CVD method, when a relatively thick film having a thickness of about 2 μm is formed for manufacturing a solar cell, a problem that the film formation speed decreases as the film formation proceeds. That is, in the case of a conventional remote plasma CVD apparatus, when forming a thick film, the forming speed gradually decreases, so that high-speed film formation cannot be performed and it is difficult to control the film thickness.

そこで、本発明の目的は、上記課題を解決し、リモートプラズマCVD法等により、形成速度が一定で、且つ高速の厚膜形成が出来る半導体製造装置を提供することにある。   Accordingly, an object of the present invention is to provide a semiconductor manufacturing apparatus capable of solving the above-described problems and forming a thick film at a constant forming speed and at a high speed by a remote plasma CVD method or the like.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係る半導体製造装置は、反応性気体を反応室に導入し励起させて試料に接触させ、成膜、エッチング、表面処理のいずれかを行う装置において、反応装置が励起室と反応室からなり、上記反応性気体の排気が少なくとも上記励起室と反応室に設けた2つの排気口から行われる構成としたことを特徴とする。   According to a first aspect of the present invention, there is provided a semiconductor manufacturing apparatus in which a reactive gas is introduced into a reaction chamber and excited to contact a sample to perform any one of film formation, etching, and surface treatment. It comprises a reaction chamber, and the reactive gas is exhausted from at least two exhaust ports provided in the excitation chamber and the reaction chamber.

請求項2の発明は、請求項1に記載の半導体製造装置であり、反応性気体の励起源が対向電極型ではなく外部励起型であり、励起室でキャリヤガスを放電し、反応室で反応性気体を活性化し必要な反応を行う装置において、上記2つの排気口が上記励起室と反応室にそれぞれ設けられていることを特徴とする。   The invention according to claim 2 is the semiconductor manufacturing apparatus according to claim 1, wherein the reactive gas excitation source is not the counter electrode type but the external excitation type, the carrier gas is discharged in the excitation chamber, and the reaction is performed in the reaction chamber. In an apparatus for activating a reactive gas and performing a necessary reaction, the two exhaust ports are provided in the excitation chamber and the reaction chamber, respectively.

請求項3の発明は、請求項2に記載の半導体製造装置において、上記励起室に設けられ排気口からの排気量が、他の反応室に設けられた排気口からの排気量より少ないことを特徴とする。   According to a third aspect of the present invention, in the semiconductor manufacturing apparatus according to the second aspect, the exhaust amount from the exhaust port provided in the excitation chamber is smaller than the exhaust amount from the exhaust port provided in another reaction chamber. Features.

請求項4の発明は、請求項2に記載の半導体製造装置において、上記励起室に設けられた排気口がその排気量を制御できる機構を有することを特徴とする。   According to a fourth aspect of the present invention, in the semiconductor manufacturing apparatus according to the second aspect, the exhaust port provided in the excitation chamber has a mechanism capable of controlling the exhaust amount.

請求項5の発明は、請求項2から4のいずれかに記載の半導体製造装置において、上記反応性気体がそのいずれかに水素原子を有することを特徴とする。   According to a fifth aspect of the present invention, in the semiconductor manufacturing apparatus according to any one of the second to fourth aspects, the reactive gas has a hydrogen atom in any of them.

請求項6の発明は、請求項2から4のいずれかに記載の半導体製造装置において、上記キャリヤガスが水素原子を含有せず、上記反応性気体が水素原子を含有することを特徴とする。   According to a sixth aspect of the present invention, in the semiconductor manufacturing apparatus according to any one of the second to fourth aspects, the carrier gas does not contain a hydrogen atom, and the reactive gas contains a hydrogen atom.

請求項7の発明は、請求項2から6のいずれかに記載の半導体製造装置において、上記反応性気体が基板上に薄膜を生じさせる材料系であることを特徴とする。   A seventh aspect of the present invention is the semiconductor manufacturing apparatus according to any one of the second to sixth aspects, wherein the reactive gas is a material system that forms a thin film on a substrate.

請求項8の発明は、請求項7に記載の半導体製造装置において、上記反応性気体が基板上にシリコン系薄膜を生じさせる材料系であることを特徴とする。   The invention according to claim 8 is the semiconductor manufacturing apparatus according to claim 7, wherein the reactive gas is a material system for forming a silicon-based thin film on the substrate.

請求項9の発明は、請求項6に記載の半導体製造装置において、上記反応性気体がモノシランを主成分とする材料系であり、キャリヤガスがAr、Ne、He、N2のいずれかの不活性ガスからなることを特徴とする。 The invention according to claim 9 is the semiconductor manufacturing apparatus according to claim 6, wherein the reactive gas is a material system mainly composed of monosilane, and the carrier gas is any one of Ar, Ne, He, and N 2. It consists of an active gas.

<発明の要点>
シリコン膜は通常、モノシランもしくはジシランを分解して形成されるが、その際、二分子もしくはそれ以上の水素が放出される。しかし、これは、アルゴンに比べて比重が小さいため、通常、反応室の上部に設置され、励起室に徐々に蓄積される。それに従い、時間とともに励起室でのプラズマ状態が変化する。特に、アルゴンガスで安定な放電が維持されるように設計された装置において、水素のようなプラズマ状態のまったく異なるガスの割合が増えると、放電の維持が難しくなる。成膜の初期においては先にも述べたように2nm/sの成膜速度が得られていることから、その時点でのガス組成を保つ機能を装置に付加することで成膜速度を一定に保つことができると考えられる。すなわち、成膜時の反応ガス種の組成を一定に保つことにより、高速で高品質の薄膜を形成できる。
<Key points of the invention>
The silicon film is usually formed by decomposing monosilane or disilane, and at this time, two molecules or more of hydrogen are released. However, since this has a lower specific gravity than argon, it is usually installed at the top of the reaction chamber and gradually accumulates in the excitation chamber. Accordingly, the plasma state in the excitation chamber changes with time. In particular, in an apparatus designed to maintain a stable discharge with argon gas, it becomes difficult to maintain the discharge when the proportion of a gas having completely different plasma states such as hydrogen increases. Since the film formation speed of 2 nm / s is obtained at the initial stage of film formation, the film formation speed is kept constant by adding a function for maintaining the gas composition at that time to the apparatus. It is thought that it can be kept. That is, a high-quality thin film can be formed at a high speed by keeping the composition of the reactive gas species at the time of film formation constant.

本発明によれば、反応室側の主排気口とは別に、励起室側に補助排気口を設け、この補助排気口から、例えばシリコン膜の成膜時に励起室の上部に徐々に蓄積するところの水素を排気するようにしたので、励起室でのガス組成の変化を実質的に生じさせず、且つ成膜速度を低下させることなく、シリコン膜を成膜することが可能になった。   According to the present invention, an auxiliary exhaust port is provided on the excitation chamber side separately from the main exhaust port on the reaction chamber side, and from the auxiliary exhaust port, for example, when the silicon film is formed, the gas gradually accumulates on the upper portion of the excitation chamber. As a result, the silicon film can be formed without substantially changing the gas composition in the excitation chamber and without reducing the film formation rate.

従って、本発明の半導体製造装置によれば、例えば太陽電池作製のための厚いシリコン膜を、成膜速度の一定化された膜厚制御の容易な状態で、成膜速度の低下を伴わないで高速に形成することが出来る。   Therefore, according to the semiconductor manufacturing apparatus of the present invention, for example, a thick silicon film for manufacturing a solar cell can be easily controlled with a constant film formation speed without causing a decrease in film formation speed. It can be formed at high speed.

以下、本発明を図示の実施の形態に基いて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

図1に本発明の実施形態に係る半導体製造装置の構成を示す。この半導体製造装置は、内部に導入された反応性ガスを励起してプラズマ化させる筒状の励起室3と、この励起室の下方にこの励起室3と連通して設けられた反応室(処理室)8とを備えている。   FIG. 1 shows a configuration of a semiconductor manufacturing apparatus according to an embodiment of the present invention. This semiconductor manufacturing apparatus includes a cylindrical excitation chamber 3 that excites a reactive gas introduced therein into plasma, and a reaction chamber (process) provided below the excitation chamber and in communication with the excitation chamber 3. Room) 8.

励起室3は長さ40cm程度の管状をしており、その上部にキャリヤガス1の導入口3aを備えている。また、励起室3には、その中央であるところの、反応室との境界及びキャリヤガス導入位置の管端から20cmの等距離の位置に、高周波導入部(導波管)3Cが設けられており、これにマイクロ波電源5から2.45GHzのマイクロ波がマッチング装置4を経て導入される構成となっている。   The excitation chamber 3 has a tubular shape with a length of about 40 cm, and is provided with an inlet 3a for the carrier gas 1 in the upper part thereof. The excitation chamber 3 is provided with a high-frequency introduction section (waveguide) 3C at the center of the excitation chamber 3 at a distance of 20 cm from the boundary with the reaction chamber and the tube end of the carrier gas introduction position. In this configuration, a microwave of 2.45 GHz is introduced from the microwave power source 5 through the matching device 4.

上記反応室8には、エッチングやアッシングなどに用いられる反応ガス(反応性気体)7の供給管が接続されている。反応室8の内部には基板ホルダ9が設けられており、これに支持された被処理物たる基板(試料)9aに対して反応ガス7が導かれる構成となっている。そして、基板ホルダ9の周辺を通過した気体は、反応室8の下方に設けた主排気口10から、図示してない排気ポンプにより排気装置に排出される。   The reaction chamber 8 is connected to a supply pipe for a reactive gas (reactive gas) 7 used for etching or ashing. A substrate holder 9 is provided inside the reaction chamber 8, and the reaction gas 7 is guided to a substrate (sample) 9 a that is an object to be processed supported by the substrate holder 9. Then, the gas that has passed through the periphery of the substrate holder 9 is discharged from the main exhaust port 10 provided below the reaction chamber 8 to an exhaust device by an exhaust pump (not shown).

上記励起室3の上部には、補助排気口3bが設けられ、励起室3の上部に徐々に蓄積する水素をこの補助排気口3bから排気して、成膜中においてガス組成が一定となるように構成されている。この励起室3に設けられた補助排気口3bには、その排気量を制御できる弁機構が設けられている。   An auxiliary exhaust port 3b is provided in the upper part of the excitation chamber 3, and hydrogen gradually accumulated in the upper part of the excitation chamber 3 is exhausted from the auxiliary exhaust port 3b so that the gas composition becomes constant during film formation. It is configured. The auxiliary exhaust port 3b provided in the excitation chamber 3 is provided with a valve mechanism capable of controlling the exhaust amount.

要するに、この図1の半導体製造装置は、反応ガス(反応性気体)7を反応室8に導入し励起させて試料たる基板19に接触させ、成膜、エッチング、表面処理のいずれかを行う装置であって、反応装置が励起室6と反応室8からなり、上記反応性気体の排気が、少なくとも反応室8に設けた主排気口10の他に、励起室3に設けた補助排気口3bからも行われる構成となっている。   In short, the semiconductor manufacturing apparatus of FIG. 1 introduces a reaction gas (reactive gas) 7 into the reaction chamber 8 and excites it to contact the substrate 19 as a sample to perform any one of film formation, etching, and surface treatment. The reaction apparatus includes an excitation chamber 6 and a reaction chamber 8, and the reactive gas is exhausted at least in addition to the main exhaust port 10 provided in the reaction chamber 8, and the auxiliary exhaust port 3 b provided in the excitation chamber 3. It is configured to be performed from.

次に、この半導体製造装置の作用を、成膜の場合を例にして説明する。   Next, the operation of this semiconductor manufacturing apparatus will be described by taking the case of film formation as an example.

既に述べたように、本発明の半導体製造装置は、キャリヤガスを励起する励起室に、成膜中においてガス組成が一定となるように補助的な排気口を設けた構成を主な特徴とする。   As described above, the semiconductor manufacturing apparatus of the present invention is mainly characterized in that an auxiliary exhaust port is provided in the excitation chamber for exciting the carrier gas so that the gas composition is constant during film formation. .

リモートプラズマCVD法では、キャリヤガスを励起室で励起し、これをガスの排気の流れに従って、通常直下にある反応室に導入し、反応室内に導入された反応ガス種を活性化させて成膜し、その後基板下部の排気口から排出されるという構造をとる。したがって、従来は、反応ガス種が分解し水素のような軽いガスが発生する状況では、励起室のガス組成の変化は避けられなかつた。当初は、ガスの拡散により、励起室中、特に放電部付近まではガス組成は反応室内と同様で、一様になると考えていた。   In the remote plasma CVD method, a carrier gas is excited in an excitation chamber, and this is introduced into a reaction chamber directly below according to the flow of gas exhaust, and the reaction gas species introduced into the reaction chamber are activated to form a film. After that, the gas is discharged from the exhaust port at the bottom of the substrate. Therefore, conventionally, a change in the gas composition of the excitation chamber has been unavoidable in a situation where a reactive gas species is decomposed and a light gas such as hydrogen is generated. Initially, it was thought that due to gas diffusion, the gas composition was the same as that in the reaction chamber and uniform in the excitation chamber, particularly near the discharge section.

しかし、本発明者等が反応室成膜時の放電管への膜堆積状態を観察したところ、反応室8と直接つながっている部分の励起室3内の5cm程度のみにしか膜堆積は見られなかった。励起室3は長さ40cm程度の管状をしており、放電部分はその中央、反応室との境界及びキャリヤガス導入位置の管端から20cmの等距離の位置にある。したがって、放電はキャリヤガスのみで維持されていると考えられる。しかし、反応が進むと励起室3の上部に水素が徐々に蓄積すると考えられる。   However, when the present inventors observed the film deposition state on the discharge tube during film formation in the reaction chamber, the film deposition was observed only in about 5 cm in the excitation chamber 3 in the portion directly connected to the reaction chamber 8. There wasn't. The excitation chamber 3 has a tubular shape with a length of about 40 cm, and the discharge portion is located at the center, at the boundary with the reaction chamber, and at an equidistant position of 20 cm from the tube end of the carrier gas introduction position. Therefore, it is considered that the discharge is maintained only by the carrier gas. However, it is considered that hydrogen gradually accumulates in the upper part of the excitation chamber 3 as the reaction proceeds.

そこで、励起室3の上部、キャリヤガス導入部の近傍に補助排気口3bを設けた。これによって、励起室3でのガス組成の変化を実質的に生じさせず、且つ成膜速度を低下させることのない成膜が可能になった。もちろん、補助排気口3bからの排気を、反応室8側の主排気口10からの排気と同様に行うと、導入したキャリヤガスの有効利用が妨げられることから、あくまでも補助的な役割に止める必要がある。   Therefore, an auxiliary exhaust port 3b is provided in the upper part of the excitation chamber 3 and in the vicinity of the carrier gas introduction part. This makes it possible to form a film without causing a substantial change in the gas composition in the excitation chamber 3 and without reducing the film formation rate. Of course, if the exhaust from the auxiliary exhaust port 3b is performed in the same manner as the exhaust from the main exhaust port 10 on the reaction chamber 8 side, the effective use of the introduced carrier gas is hindered, so it is necessary to stop it in an auxiliary role. There is.

このような成膜速度の安定化は、シリコン薄膜形成時のみではなく、ArとNH3をキャリヤガス導入口3aから導入し、反応室8にSiH4を導入してSiN膜を形成する場合でも同様であった。 Such stabilization of the film forming speed is not only when forming a silicon thin film, but also when Ar and NH 3 are introduced from the carrier gas inlet 3a and SiH 4 is introduced into the reaction chamber 8 to form a SiN film. It was the same.

またNH3ではなくNO2を使い、SiO2を形成する場合においても同じ効果が得られた。 The same effect was obtained when SiO 2 was formed using NO 2 instead of NH 3 .

同様の反応は、非晶質もしくは結晶質のカーボン系薄膜を炭素の水素化物(CH4、C26、C24、C22)を用いて形成する場合もまったく同様であった。 The same reaction is exactly the same when an amorphous or crystalline carbon thin film is formed using carbon hydride (CH 4 , C 2 H 6 , C 2 H 4 , C 2 H 2 ). It was.

上記の現象は、リモートプラズマCVD法に限られることではなく、反応室外からの対向電極による放電や、触媒CVD法など、通常の対向電極型CVD法ではなく、非対称な放電方式を取る場合には有効である。通常の対向電極型CVD法においても、同様の現象は生じていると思われるが、反応室内の電極配置、及びガスの流れ方向の影響で、上記のような現象は顕著でないと考えられる。   The above phenomenon is not limited to the remote plasma CVD method. When an asymmetrical discharge method is used instead of the normal counter electrode type CVD method such as discharge from the counter electrode from the outside of the reaction chamber or catalytic CVD method. It is valid. The same phenomenon is considered to occur in the ordinary counter electrode type CVD method, but the above phenomenon is considered not to be significant due to the influence of the electrode arrangement in the reaction chamber and the gas flow direction.

また、ドライエッチングにおいても同様の影響が見られるはずであるが、この場合には生成種の比重が導入した反応種に近い場合が多く、特に顕著な差異は見られなかった。   The same effect should be observed in dry etching, but in this case, the specific gravity of the generated species is often close to that of the introduced reactive species, and no particularly significant difference was observed.

本発明の実施例について説明する。なお、以下の実施例は本発明の一例を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described. In addition, the following Examples show an example of this invention and this invention is not limited to these.

[実施例1]
本実施例では、Arをキャリヤガスとして、SiH4を反応ガスとして用い、非晶質シリコン膜の堆積を行った。図1において、キャリヤガス1としてArを100sccmで励起室3に導入した。励起室3は直径5cm、長さ40cmの石英管製である。
[Example 1]
In this example, an amorphous silicon film was deposited using Ar as a carrier gas and SiH 4 as a reaction gas. In FIG. 1, Ar was introduced into the excitation chamber 3 at 100 sccm as the carrier gas 1. The excitation chamber 3 is made of a quartz tube having a diameter of 5 cm and a length of 40 cm.

この励起室3上部のキャリヤガス導入口3aの近傍に、補助排気2を行う補助排気口3bを設けた。   An auxiliary exhaust port 3b for performing the auxiliary exhaust 2 is provided in the vicinity of the carrier gas introduction port 3a above the excitation chamber 3.

またキャリヤガス導入口から20cmの位置に高周波導入部(導波管)3cを設け、2.45GHzのマイクロ波電源5からマッチング装置4を経て放電を発生させた。発生したプラズマはキャリヤガスの流れに従ってプラズマ領域6を形成し、反応室8にまで拡がる。   Further, a high-frequency introducing portion (waveguide) 3c was provided at a position 20 cm from the carrier gas introducing port, and a discharge was generated from the 2.45 GHz microwave power source 5 via the matching device 4. The generated plasma forms a plasma region 6 according to the flow of the carrier gas and spreads to the reaction chamber 8.

反応室8に反応ガス7としてSiH4を20sccmで導入し、250℃に保持した基板ホルダ9上のガラス基板9aに非晶質シリコン膜を形成した。反応室8の圧力は20Paとした。基板ホルダ9周辺を通過した気体は、下部の主排気口10から通常の排気装置に排出される。 SiH 4 was introduced into the reaction chamber 8 as a reaction gas 7 at 20 sccm, and an amorphous silicon film was formed on the glass substrate 9 a on the substrate holder 9 maintained at 250 ° C. The pressure in the reaction chamber 8 was 20 Pa. The gas that has passed through the periphery of the substrate holder 9 is discharged from the lower main exhaust port 10 to a normal exhaust device.

ここで補助排気2を閉じた状態での成膜速度を、図2に曲線Aにて示す。膜厚を評価したところ、約8分で成膜が進まなくなった。   Here, the film forming speed with the auxiliary exhaust 2 closed is shown by a curve A in FIG. When the film thickness was evaluated, the film formation did not progress in about 8 minutes.

これに対して、補助排気2の補助排気口3bを、下部の排気口10からの排気に対して1/10の排気量となるように、わずかに開け、成膜を行った。その結果、図2に曲線Bにて示すように、初期の成膜速度は少し低下したが、リニアな成膜速度が得られた。   On the other hand, the auxiliary exhaust port 3b of the auxiliary exhaust 2 was slightly opened to form a film so that the exhaust amount was 1/10 of the exhaust amount from the lower exhaust port 10. As a result, as shown by a curve B in FIG. 2, the initial film formation rate was slightly reduced, but a linear film formation rate was obtained.

SiH4の分解効率が明らかでないので、発生する水素分子の量も明らかでないが、仮に分解効率が50%であるとすると、10分間では200ccの水素が発生する。これは励起室3の容積の1/2にあたり、十分に影響が考えられる量である。これに対して、全体の1/10の補助排気は、水素ガスの蓄積を防止するには十分なものであった。ちなみに、形成した非晶質シリコン膜の光学的、電気的な特性は補助排気をしなかったものとまったく同じであった。 Since the decomposition efficiency of SiH 4 is not clear, the amount of generated hydrogen molecules is not clear, but if the decomposition efficiency is 50%, 200 cc of hydrogen is generated in 10 minutes. This is 1/2 of the volume of the excitation chamber 3 and is an amount that can be sufficiently affected. On the other hand, 1/10 of the total auxiliary exhaust was sufficient to prevent accumulation of hydrogen gas. Incidentally, the optical and electrical characteristics of the formed amorphous silicon film were exactly the same as those without the auxiliary exhaust.

[実施例2]
本実施例では、図1において、Arをキャリヤガス1として、SiH4を反応ガス7として用い、非晶質シリコン膜の堆積を行う際、マイクロ波電源5ではなく13.56MHzのRF電源を用いた。ただ、図1とは異なり、導波管は用いず、励起室を直接電極で挟んで放電させた。
[Example 2]
In this embodiment, in FIG. 1, when Ar is used as a carrier gas 1 and SiH 4 is used as a reaction gas 7 and an amorphous silicon film is deposited, an RF power source of 13.56 MHz is used instead of the microwave power source 5. It was. However, unlike FIG. 1, a waveguide was not used, and the excitation chamber was directly sandwiched between electrodes for discharge.

発生したプラズマはマイクロ波で放電させた場合と同様に、キャリヤガス1の流れに従ってプラズマ領域6を形成し、反応室8にまで拡がった。キャリヤガス1、反応ガス7の流量は、実施例1と同じとし、反応室8の圧力は50Paとした。   The generated plasma forms a plasma region 6 according to the flow of the carrier gas 1 and spreads to the reaction chamber 8 in the same manner as in the case of discharging with microwaves. The flow rates of the carrier gas 1 and the reaction gas 7 were the same as in Example 1, and the pressure in the reaction chamber 8 was 50 Pa.

これに対して、補助排気2の補助排気口3bを、下部の主排気口10からの排気に対して1/10の排気量となるように、わずかに開け、成膜を行った。その結果、初期の成膜速度は少し低下したが、リニアな成膜速度が得られた。   On the other hand, the auxiliary exhaust port 3b of the auxiliary exhaust 2 was slightly opened so that the exhaust amount was 1/10 of the exhaust amount from the lower main exhaust port 10, and film formation was performed. As a result, the initial film formation rate was slightly reduced, but a linear film formation rate was obtained.

一方、補助排気2を閉じた状態でも成膜速度の低下はあまり認められなかった。   On the other hand, even when the auxiliary exhaust 2 was closed, the film formation rate was not significantly reduced.

また30分以上の成膜で成膜速度の低下が認められた。これは、低周波でのキャリヤガスの分解効率が低いためと考えられる。   In addition, a decrease in film formation rate was observed after 30 minutes of film formation. This is considered because the decomposition efficiency of the carrier gas at a low frequency is low.

装置としては、さらに低周波の100kHzでの放電を用いた場合でも有効であった。   The device was effective even when using a discharge at a low frequency of 100 kHz.

[実施例3]
本実施例では、図3の如く励起室13中に反応ガス分解用の加熱ワイヤ14を設けた装置構成とし、反応ガスとしてSiH4、PH3、ArとH2を用い、ドーピングした非晶質シリコン膜の堆積を行った。
[Example 3]
In this embodiment, as shown in FIG. 3, an apparatus configuration in which a heating wire 14 for reaction gas decomposition is provided in an excitation chamber 13, and SiH 4 , PH 3 , Ar and H 2 are used as reaction gases and doped amorphous is used. A silicon film was deposited.

図3において、反応ガス11としてSiH4を100sccm、PH3(0.1%in H2)を10sccm、H2を20sccm、Arを30sccmで励起室13に導入した。励起室13の上部に反応ガス導入部13aとその近傍に補助排気12を行う補助排気口13bを設けた。励起室13中に反応ガス分解用の加熱ワイヤ14を設け、1800℃に加熱した。 In FIG. 3, SiH 4 was introduced into the excitation chamber 13 as a reaction gas 11 at 100 sccm, PH 3 (0.1% in H 2 ) at 10 sccm, H 2 at 20 sccm, and Ar at 30 sccm. A reaction gas introduction part 13a is provided in the upper part of the excitation chamber 13 and an auxiliary exhaust port 13b for performing the auxiliary exhaust 12 in the vicinity thereof. A heating wire 14 for reaction gas decomposition was provided in the excitation chamber 13 and heated to 1800 ° C.

発生した活性種は、ガスの流れに従って活性化領域15を形成し、反応室16にまで拡がる。反応室16中の、400℃に保持した基板ホルダ17上のガラス基板19に、結晶質シリコン膜を形成した。反応室圧力は1Paとした。基板ホルダ周辺を通過した気体は下部の主排気口18から通常の排気装置に排出される。   The generated active species form an activated region 15 according to the gas flow and spread to the reaction chamber 16. A crystalline silicon film was formed on the glass substrate 19 on the substrate holder 17 held at 400 ° C. in the reaction chamber 16. The reaction chamber pressure was 1 Pa. The gas that has passed around the substrate holder is discharged from the lower main exhaust port 18 to a normal exhaust device.

補助排気12の補助排気口13bの開度を、下部の主排気口18からの排気に対して1/5の排気量となるように開け、成膜を行った。その結果、リニアな成膜速度が得られた。本実施例の装置では、SiH4の分解効率が高いため、補助排気による反応ガス組成の一定化は非常に有効であった。 The opening of the auxiliary exhaust port 13b of the auxiliary exhaust 12 was opened so as to be 1/5 of the exhaust amount from the lower main exhaust port 18, and film formation was performed. As a result, a linear deposition rate was obtained. In the apparatus of this example, since the decomposition efficiency of SiH 4 was high, it was very effective to make the reaction gas composition constant by auxiliary exhaust.

[実施例4]
本実施例では、ArとNH3をキャリヤガスとして、SiH4を反応ガスとして用い、非晶質窒化シリコン膜の堆積を行った。堆積には実施例1と同様の装置を用いた。
[Example 4]
In this example, an amorphous silicon nitride film was deposited using Ar and NH 3 as a carrier gas and SiH 4 as a reaction gas. The same apparatus as in Example 1 was used for deposition.

図1において、キャリヤガス1としてArを20sccm、NH3を20sccm、励起室3に導入した。キャリヤガス導入口3aの近傍に補助排気2を行う補助排気口3bを設けた。 In FIG. 1, 20 sccm of Ar and 20 sccm of NH 3 were introduced into the excitation chamber 3 as the carrier gas 1. An auxiliary exhaust port 3b for performing auxiliary exhaust 2 is provided in the vicinity of the carrier gas introduction port 3a.

2.45GHzのマイクロ波電源5からマッチング装置4を経て放電を発生させた。発生したプラズマはキャリヤガスの流れに従ってプラズマ領域6を形成し、反応室8にまで拡がる。反応室8に反応ガス7としてSiH4を5sccmで導入し、250℃に保持した基板ホルダ9上のガラス基板9aに非晶質窒化シリコン膜を形成した。反応室圧力は20Paとした。 A discharge was generated from the 2.45 GHz microwave power source 5 via the matching device 4. The generated plasma forms a plasma region 6 according to the flow of the carrier gas and spreads to the reaction chamber 8. SiH 4 was introduced as a reaction gas 7 into the reaction chamber 8 at 5 sccm, and an amorphous silicon nitride film was formed on the glass substrate 9 a on the substrate holder 9 held at 250 ° C. The reaction chamber pressure was 20 Pa.

基板ホルダ周辺を通過した気体は、下部の主排気口10から通常の排気装置に排出される。補助排気2の補助排気口3bの開度を、下部の主排気口10からの排気に対して1/10の排気量となるようにわずかに開け、成膜を行った。その結果、初期の成膜速度は少し低下したが、リニアな成膜速度が得られた。   The gas that has passed around the substrate holder is discharged from the lower main exhaust port 10 to a normal exhaust device. Film formation was performed by slightly opening the opening of the auxiliary exhaust port 3b of the auxiliary exhaust 2 so that the exhaust amount from the lower main exhaust port 10 was 1/10. As a result, the initial film formation rate was slightly reduced, but a linear film formation rate was obtained.

上記実施例においてはドーピングもPH3を用いたn型について示したが、この方法は他のドーパントあるいはp型でも同様に使用できる。また、膜中に他の元素、水素、酸素、さらに、炭素やゲルマニウムなどが入った合金膜であっても良い。 In the above embodiments, doping is shown for n-type using PH 3 , but this method can be similarly used for other dopants or p-type. Alternatively, an alloy film containing other elements, hydrogen, oxygen, carbon, germanium, or the like in the film may be used.

さらにNi、Crなどのシリコンの結晶化において、触媒作用を持つ元素が混入されていることも本発明の効果を妨げるものではない。   Further, in the crystallization of silicon such as Ni and Cr, the presence of an element having a catalytic action does not hinder the effect of the present invention.

さらに、半導体材料としては、同じIV族材料の炭素やゲルマニウムや、GaAs、InPをベースとするIII−V族の化合物、CdTeなどのII−VI族の化合物についても同様の成膜メカニズムであれば用いることが出来る。   Further, as a semiconductor material, the same group IV materials such as carbon and germanium, III-V group compounds based on GaAs and InP, and II-VI group compounds such as CdTe have the same film formation mechanism. Can be used.

また、ドライエッチングにおいては効果が見られなかったが、反応によって水素が多量に生成する場合には効果が期待されることは明らかである。さらに、他のガスで希釈した水素を用いる活性水素処理においても、本発明の適用で長時間一定の効果が得られるという結果が得られた。   Further, although no effect was observed in dry etching, it is clear that the effect is expected when a large amount of hydrogen is generated by the reaction. Furthermore, also in the active hydrogen treatment using hydrogen diluted with another gas, a result that a certain effect for a long time can be obtained by applying the present invention was obtained.

本発明の実施例1における半導体製造装置の断面模式図である。It is a cross-sectional schematic diagram of the semiconductor manufacturing apparatus in Example 1 of this invention. 本発明の実施例1における成膜時間と膜厚の関係を示す図である。It is a figure which shows the relationship between the film-forming time and film thickness in Example 1 of this invention. 本発明の実施例3における半導体製造装置の断面模式図である。It is a cross-sectional schematic diagram of the semiconductor manufacturing apparatus in Example 3 of this invention.

符号の説明Explanation of symbols

1 キャリヤガス
2 補助排気
3 励起室
3a キャリヤガス導入口
3b 補助排気口
3c 高周波導入部
4 マッチング装置
5 マイクロ波電源
6 プラズマ領域
7 反応ガス
8 反応室
9 基板ホルダ
9a 基板
10 主排気口
19 ガラス基板
DESCRIPTION OF SYMBOLS 1 Carrier gas 2 Auxiliary exhaust 3 Excitation chamber 3a Carrier gas introduction port 3b Auxiliary exhaust port 3c High frequency introduction part 4 Matching device 5 Microwave power source 6 Plasma region 7 Reactive gas 8 Reaction chamber 9 Substrate holder 9a Substrate 10 Main exhaust port 19 Glass substrate

Claims (9)

反応性気体を反応室に導入し励起させて試料に接触させ、成膜、エッチング、表面処理のいずれかを行う装置において、
反応装置が励起室と反応室からなり、上記反応性気体の排気が少なくとも上記励起室と反応室に設けた2つの排気口から行われる構成としたことを特徴とする半導体製造装置。
In an apparatus that introduces a reactive gas into a reaction chamber, excites it, contacts the sample, and performs any of film formation, etching, and surface treatment.
A semiconductor manufacturing apparatus characterized in that a reaction apparatus includes an excitation chamber and a reaction chamber, and the reactive gas is exhausted from at least two exhaust ports provided in the excitation chamber and the reaction chamber.
請求項1に記載の半導体製造装置であり、反応性気体の励起源が対向電極型ではなく外部励起型であり、励起室でキャリヤガスを放電し、反応室で反応性気体を活性化し必要な反応を行う装置において、
上記2つの排気口が上記励起室と反応室にそれぞれ設けられていることを特徴とする半導体製造装置。
2. The semiconductor manufacturing apparatus according to claim 1, wherein a reactive gas excitation source is not a counter electrode type but an external excitation type, a carrier gas is discharged in the excitation chamber, and the reactive gas is activated in the reaction chamber. In the apparatus for performing the reaction,
The semiconductor manufacturing apparatus, wherein the two exhaust ports are provided in the excitation chamber and the reaction chamber, respectively.
請求項2に記載の半導体製造装置において、
上記励起室に設けられ排気口からの排気量が、他の反応室に設けられた排気口からの排気量より少ないことを特徴とする半導体製造装置。
The semiconductor manufacturing apparatus according to claim 2,
A semiconductor manufacturing apparatus, wherein an exhaust amount from an exhaust port provided in the excitation chamber is smaller than an exhaust amount from an exhaust port provided in another reaction chamber.
請求項2に記載の半導体製造装置において、
上記励起室に設けられた排気口がその排気量を制御できる機構を有することを特徴とする半導体製造装置。
The semiconductor manufacturing apparatus according to claim 2,
A semiconductor manufacturing apparatus, wherein an exhaust port provided in the excitation chamber has a mechanism capable of controlling an exhaust amount thereof.
請求項2から4のいずれかに記載の半導体製造装置において、
上記反応性気体がそのいずれかに水素原子を有することを特徴とする半導体製造装置。
The semiconductor manufacturing apparatus according to any one of claims 2 to 4,
A semiconductor manufacturing apparatus, wherein the reactive gas has a hydrogen atom in any of them.
請求項2から4のいずれかに記載の半導体製造装置において、
上記キャリヤガスが水素原子を含有せず、上記反応性気体が水素原子を含有することを特徴とする半導体製造装置。
The semiconductor manufacturing apparatus according to any one of claims 2 to 4,
The semiconductor manufacturing apparatus, wherein the carrier gas does not contain a hydrogen atom, and the reactive gas contains a hydrogen atom.
請求項2から6のいずれかに記載の半導体製造装置において、
上記反応性気体が基板上に薄膜を生じさせる材料系であることを特徴とする半導体製造装置。
The semiconductor manufacturing apparatus according to any one of claims 2 to 6,
A semiconductor manufacturing apparatus, wherein the reactive gas is a material system for forming a thin film on a substrate.
請求項7に記載の半導体製造装置において、
上記反応性気体が基板上にシリコン系薄膜を生じさせる材料系であることを特徴とする半導体製造装置。
The semiconductor manufacturing apparatus according to claim 7.
A semiconductor manufacturing apparatus characterized in that the reactive gas is a material system for forming a silicon-based thin film on a substrate.
請求項6に記載の半導体製造装置において、
上記反応性気体がモノシランを主成分とする材料系であり、キャリヤガスがAr、Ne、He、N2のいずれかの不活性ガスからなることを特徴とする半導体製造装置。
The semiconductor manufacturing apparatus according to claim 6,
A semiconductor manufacturing apparatus, wherein the reactive gas is a material system mainly composed of monosilane, and the carrier gas is an inert gas of Ar, Ne, He, or N 2 .
JP2004022513A 2004-01-30 2004-01-30 Semiconductor manufacturing method Expired - Lifetime JP4186827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004022513A JP4186827B2 (en) 2004-01-30 2004-01-30 Semiconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022513A JP4186827B2 (en) 2004-01-30 2004-01-30 Semiconductor manufacturing method

Publications (2)

Publication Number Publication Date
JP2005217220A true JP2005217220A (en) 2005-08-11
JP4186827B2 JP4186827B2 (en) 2008-11-26

Family

ID=34905835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022513A Expired - Lifetime JP4186827B2 (en) 2004-01-30 2004-01-30 Semiconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP4186827B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165524A (en) * 2005-12-13 2007-06-28 Seiko Epson Corp Semiconductor device, manufacturing method thereof, electronic equipment, and manufacturing method thereof
CN102179175A (en) * 2011-03-18 2011-09-14 北京理工大学 Device and method for integrally modifying membrane module by using remote plasma
CN102773020A (en) * 2012-07-18 2012-11-14 北京理工大学 Method for wholly chemically grafting membrane component by utilizing remote plasma
WO2014024729A1 (en) 2012-08-09 2014-02-13 信越化学工業株式会社 Solar cell production method, and solar cell produced by same production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165524A (en) * 2005-12-13 2007-06-28 Seiko Epson Corp Semiconductor device, manufacturing method thereof, electronic equipment, and manufacturing method thereof
CN102179175A (en) * 2011-03-18 2011-09-14 北京理工大学 Device and method for integrally modifying membrane module by using remote plasma
CN102773020A (en) * 2012-07-18 2012-11-14 北京理工大学 Method for wholly chemically grafting membrane component by utilizing remote plasma
WO2014024729A1 (en) 2012-08-09 2014-02-13 信越化学工業株式会社 Solar cell production method, and solar cell produced by same production method
US9559221B2 (en) 2012-08-09 2017-01-31 Shin-Etsu Chemical Co., Ltd. Solar cell production method, and solar cell produced by same production method

Also Published As

Publication number Publication date
JP4186827B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
US6670543B2 (en) Thin-film solar cells and method of making
US8461027B2 (en) Method for producing nanostructures on metal oxide substrate, method for depositing thin film on same, and thin film device
KR100797018B1 (en) Semiconductor thin film, semiconductor device employing the same, methods for manufacturing the same and device for manufacturing a semiconductor thin film
TW200837968A (en) Manufacturing method of solar battery, and manufacturing device of solar battery
CN104094418A (en) Passivation film stack for silicon-based solar cells
US20130295709A1 (en) Method for manufacturing photoelectric conversion elements
JP2008124111A (en) Method for forming silicon thin film by plasma cvd method
Kondo et al. Novel aspects in thin film silicon solar cells–amorphous, microcrystalline and nanocrystalline silicon
US7186663B2 (en) High density plasma process for silicon thin films
JP2003173980A (en) Heat catalyst-containing cathode type pecvd apparatus, photoelectric transducer manufactured by using the same as well as its manufacturing method, heat catalyst- containing cathode type pecvd method, cvd apparatus using the same, film formed by the same method and device formed by using the same film
JP4186827B2 (en) Semiconductor manufacturing method
US20120325284A1 (en) Thin-film silicon tandem solar cell and method for manufacturing the same
RU2258764C1 (en) Method and a device for settling at least partially of a crystalline silicon layer on a subtrate
George et al. Silicon nitride ARC thin films by new plasma enhanced chemical vapor deposition source technology
JP2004221427A (en) Methods and apparatuses for manufacturing iron silicide film, photoelectric conversion element and photoelectric conversion device
JP2008177419A (en) Method for forming silicon thin film
JP2010287880A (en) Photovoltaic device, and method of manufacturing the same
JP2011530161A (en) Method for manufacturing photovoltaic cell structure
WO2014083241A1 (en) Method for fabricating a passivation film on a crystalline silicon surface
Schropp Hot wire chemical vapor deposition: recent progress, present state of the art and competitive opportunities
JP3201576B2 (en) Method for manufacturing semiconductor thin film and plasma CVD apparatus using the method
Menéndez et al. Deposition of thin films: PECVD process
JPH0697078A (en) Manufacture of amorphous silicon thin film
Ohshita et al. Effects of ions and electrons in electron-beam-excited plasma assisted CVD on nanocrystalline silicon film properties
JP2002164290A (en) Method of manufacturing polycrystalline silicone film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4