JP2005217156A - Manufacturing method of three-dimensional injection molded circuit - Google Patents

Manufacturing method of three-dimensional injection molded circuit Download PDF

Info

Publication number
JP2005217156A
JP2005217156A JP2004021508A JP2004021508A JP2005217156A JP 2005217156 A JP2005217156 A JP 2005217156A JP 2004021508 A JP2004021508 A JP 2004021508A JP 2004021508 A JP2004021508 A JP 2004021508A JP 2005217156 A JP2005217156 A JP 2005217156A
Authority
JP
Japan
Prior art keywords
molded product
circuit
resin
low boiling
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004021508A
Other languages
Japanese (ja)
Inventor
Akihisa Hosoe
晃久 細江
Takahiko Kitamura
貴彦 北村
Shinji Inasawa
信二 稲澤
Shinya Nishikawa
信也 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004021508A priority Critical patent/JP2005217156A/en
Publication of JP2005217156A publication Critical patent/JP2005217156A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a three-dimensional injection molding circuit including a step of performing secondary molding to the surface of a primary molded product other than that on which a circuit is to be formed by using a resin, and eluting the resin in the secondary molding whereby a desired conductor circuit pattern can be formed with high accuracy. <P>SOLUTION: The manufacturing method of the three-dimensional injection molding circuit includes steps of forming a resin layer made of the resin soluble in a low boiling point solvent to the surface other than that on which the circuit of the primary molded product configuring a board of the circuit is to be formed to obtain a secondary molded product, applying a catalysis to part of the surface of the secondary molded product on which the circuit is to be formed, solving and removing the resin layer by making the vapor of the low boiling point solvent and / or liquid drops of the low boiling point solvent by the secondary molding, and forming a conductor circuit layer to the part with the catalysis applied thereto by electroless plating. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、射出成型品の表面に立体的に配線(導体回路)を形成した三次元射出成型回路部品の製造方法に関する。   The present invention relates to a method for manufacturing a three-dimensional injection molded circuit component in which wiring (conductor circuit) is three-dimensionally formed on the surface of an injection molded product.

電子機器の小型化のために、又電子機器の組立性の向上のために、機器内の配線の合理化技術が求められている。この要求に応えるために、射出成型品の表面に立体的に導体回路(配線)を形成した三次元射出成型回路部品(Molded Interconnect Device:MID)が提案されている。   In order to reduce the size of electronic devices and to improve the assembly of electronic devices, there is a need for a technology for rationalizing wiring in the devices. In order to meet this requirement, a three-dimensional injection molded circuit component (MID) in which a conductor circuit (wiring) is three-dimensionally formed on the surface of an injection molded product has been proposed.

三次元射出成型回路部品は、合成樹脂射出成型品と配線部品とを一体化した立体配線基板であって、自由な三次元性を持ち、配線の合理化のみならず、電子部品の小型化や、表面実装を可能とする。例えば、三次元射出成型回路部品を機器内の隙間に配置することにより、集積密度を向上させることができる。三次元射出成型回路部品は、このような優れた特徴を有するので、発光ダイオード(LED)等の半導体パッケージ、三次元プリント配線板、携帯電話のアンテナ部品等に広く応用されている。   Three-dimensional injection molded circuit components are three-dimensional wiring boards that integrate synthetic resin injection molded products and wiring components, have free three-dimensionality, not only rationalize wiring, but also miniaturization of electronic components, Enables surface mounting. For example, the integration density can be improved by arranging three-dimensional injection molded circuit components in a gap in the device. Since the three-dimensional injection molded circuit component has such excellent features, it is widely applied to semiconductor packages such as light emitting diodes (LEDs), three-dimensional printed wiring boards, mobile phone antenna components, and the like.

三次元射出成型回路部品の製造方法としては、めっきグレードの樹脂の成型品に表面に導体のめっき膜を形成し、この膜上にレジストを塗布してフォトリソグラフィーにより回路形成を行う一回成型法が挙げられる。しかし、この一回成型法は、フォトリソグラフィーによるので、垂直面への回路形成が困難であり導体回路形成の自由度が低く、又エッチングにより回路を形成するため、導体の厚さを厚くすることが困難であるとの問題がある。   A three-dimensional injection molded circuit component manufacturing method is a one-time molding method in which a plating film of a conductor is formed on the surface of a plating-grade resin molded product, a resist is coated on the film, and a circuit is formed by photolithography. Is mentioned. However, since this one-time molding method is based on photolithography, it is difficult to form a circuit on a vertical surface, and the degree of freedom in forming a conductor circuit is low. In addition, the circuit is formed by etching, so the thickness of the conductor must be increased. There is a problem that is difficult.

そこで、易めっき性樹脂と難めっき性樹脂の2種類の樹脂を用いるいわゆる二回成型法が提案されている。この方法は、易めっき性樹脂を射出成型して−次成型品を成型し、該一次成型品の回路を形成すべき部分以外の表面に、難めっき性樹脂を射出成型して、その後回路を形成すべき部分にめっきを施す方法であって、難めっき性樹脂被覆層は、めっきの際のめっきレジストの役割を果す。   Therefore, a so-called two-time molding method using two types of resins, an easily plating resin and a difficult plating resin, has been proposed. In this method, an easy-plating resin is injection-molded to form a secondary molded product, and a hard-plating resin is injection-molded on the surface other than the portion where the circuit of the primary molded product is to be formed. In this method, plating is performed on a portion to be formed, and the hard-to-platable resin coating layer serves as a plating resist during plating.

二回成型法によれば、垂直面にも容易に回路を形成することができるため、立体的な回路成型を容易に行うことができ、導体の厚さも、エッチングを用いる一回成型法に比べて厚くすることができ、許容電流が大きな回路部品を得ることができる。   According to the two-time molding method, a circuit can be easily formed on a vertical surface, so that three-dimensional circuit molding can be easily performed, and the thickness of the conductor is also smaller than that of the one-time molding method using etching. Thus, a circuit component having a large allowable current can be obtained.

しかし、この二回成型法では、二次成型した難めっき性樹脂被覆層がそのまま製品に残るので、電子部品の小型化、軽量化に限界が生じるとの問題がある。又難めっき性樹脂として耐熱性、電機絶縁性、機械的強度、耐薬品性等に優れた樹脂材料を用いる必要があるため、製造コストを高くする問題もある。   However, in this two-time molding method, since the second-molded difficult-to-platable resin coating layer remains in the product as it is, there is a problem that there is a limit to the reduction in size and weight of electronic components. Moreover, since it is necessary to use a resin material excellent in heat resistance, electrical insulation, mechanical strength, chemical resistance, etc. as a hard-plating resin, there is also a problem of increasing the manufacturing cost.

このような二回成型法の問題を解決するため、特開平11−145583号公報(特許文献1)には、二次成型した部分が製品に残らないように、工程の途中で溶出させる方法が提案されている。すなわち、(1)めっきグレード樹脂からなる一次成型品の表面の、回路を形成すべき部分以外の部分に、水溶性のオキシアルキレン基含有ポリピニルアルコール系樹脂を射出して二次成型品を成型する、(2)露出している回路部分にバラジウム、金などによる触媒を付与する、(3)二次成型によって成型した部分(水溶性のオキシアルキレン基含有ポリピニルアルコール系樹脂層)を湯中に溶出させる、(4)触媒付与部分をめっきして回路を形成する、との工程を順次行う二回成型法が開示されている。   In order to solve such a problem of the two-time molding method, Japanese Patent Application Laid-Open No. 11-145583 (Patent Document 1) discloses a method of eluting in the middle of the process so that the secondary molded part does not remain in the product. Proposed. That is, (1) a secondary molded product is formed by injecting a water-soluble oxyalkylene group-containing polypinyl alcohol resin into a portion of the surface of a primary molded product made of a plating grade resin other than a portion where a circuit is to be formed. (2) Applying a catalyst such as palladium or gold to the exposed circuit portion, (3) A portion formed by secondary molding (water-soluble oxyalkylene group-containing polypinyl alcohol-based resin layer) A double molding method is disclosed in which the steps of elution in hot water and (4) plating of the catalyst-applied portion to form a circuit are sequentially performed.

しかしこの方法では、水溶性のオキシアルキレン基含有ポリビニルアルコール系樹脂を用いて二次成型部分(被覆層)を形成しているため、触媒付与工程や触媒活性化工程で使用する塩酸や硫酸などの無機酸を含有する処理液により、当法被覆層が膨潤し、部分的に溶解する。その結果、所望の導体回路パターンを精度良く形成することが困難となり、特に、回路ピッチが微細になるほど、この傾向が顕著になるという問題があり、その解決が望まれていた。
特開平11−145583号公報(請求項1)
However, in this method, since the secondary molded part (coating layer) is formed using a water-soluble oxyalkylene group-containing polyvinyl alcohol resin, hydrochloric acid, sulfuric acid, etc. used in the catalyst application step and the catalyst activation step are used. The coating layer is swollen and partially dissolved by the treatment liquid containing the inorganic acid. As a result, it becomes difficult to form a desired conductor circuit pattern with high accuracy. In particular, there is a problem that this tendency becomes more prominent as the circuit pitch becomes finer, and the solution has been desired.
JP-A-11-145583 (Claim 1)

本発明は、一次成型品の、回路を形成すべき部分以外の表面に、樹脂により二次成型を施し、該二次成型した樹脂を溶出する工程を有する三次元射出成型回路部品の製造方法であって、所望の導体回路パターンを精度良く形成することが可能な方法を提供することを課題とする。   The present invention is a method for producing a three-dimensional injection molded circuit component comprising a step of subjecting a surface of a primary molded product to a surface other than a portion where a circuit is to be formed, and performing a secondary molding with a resin and eluting the secondary molded resin. Therefore, it is an object to provide a method capable of accurately forming a desired conductor circuit pattern.

本発明者は、二次成型に低沸点溶剤に可溶な樹脂を用い、該樹脂の溶出を、該低沸点溶剤の蒸気及び/又は該低沸点溶剤の液滴と接触させて行うことにより、所望の導体回路パターンを精度良く形成することが可能となることを見出し、本発明を完成した。   The present inventor uses a resin that is soluble in a low-boiling solvent for secondary molding, and elution of the resin is performed by contacting the vapor of the low-boiling solvent and / or droplets of the low-boiling solvent, It has been found that a desired conductor circuit pattern can be formed with high accuracy, and the present invention has been completed.

本発明は、請求項1として、回路部品の基板を構成する一次成型品の、回路を形成すべき部分以外の表面に、低沸点溶剤に可溶な樹脂からなる樹脂層を形成して二次成型品を得る工程、該二次成型品の表面の回路を形成すべき部分に触媒を付与する工程、触媒の付与後、該二次成型品を、該低沸点溶剤の蒸気及び/又は該低沸点溶剤の液滴と接触させて該樹脂層を溶解、除去する工程、及び、樹脂層の溶解、除去後、該触媒付与部分に無電解めっきにより導体回路層を形成する工程を有することを特徴とする三次元射出成型回路部品の製造方法を提供する。   According to the present invention, as a first aspect, a secondary resin layer is formed by forming a resin layer made of a resin soluble in a low boiling point solvent on a surface other than a portion where a circuit is to be formed of a primary molded product constituting a circuit component substrate. A step of obtaining a molded product, a step of applying a catalyst to a portion of the surface of the secondary molded product where a circuit is to be formed, and after applying the catalyst, the secondary molded product is treated with the vapor of the low boiling point solvent and / or the low A step of dissolving and removing the resin layer by contacting with a droplet of a boiling point solvent, and a step of forming a conductive circuit layer by electroless plating on the catalyst application portion after the resin layer is dissolved and removed. A method for manufacturing a three-dimensional injection molded circuit component is provided.

本発明は、又請求項2として、回路部品の基板を構成する一次成型品の、回路を形成すべき部分以外の表面に、低沸点溶剤に可溶な樹脂からなる樹脂層を形成して二次成型品を得る工程、該二次成型品の表面の回路を形成すべき部分に触媒を付与する工程、触媒の付与後、該二次成型品の回路を形成すべき部分に無電解めっきを施す工程、及び、無電解めっきを施した後、該二次成型品を、該低沸点溶剤の蒸気及び/又は該低沸点溶剤の液滴と接触させて該樹脂層を溶解、除去する工程を有することを特徴とする三次元射出成型回路部品の製造方法を提供する。   According to a second aspect of the present invention, a resin layer made of a resin soluble in a low boiling point solvent is formed on the surface of a primary molded product constituting a circuit component substrate other than a portion where a circuit is to be formed. A step of obtaining a secondary molded product, a step of applying a catalyst to a portion of the surface of the secondary molded product where the circuit is to be formed, and after applying the catalyst, electroless plating is applied to a portion of the secondary molded product where the circuit is to be formed And a step of dissolving and removing the resin layer by bringing the secondary molded product into contact with vapor of the low boiling point solvent and / or droplets of the low boiling point solvent after performing electroless plating. A method for manufacturing a three-dimensional injection molded circuit component is provided.

上記の請求項1又は請求項2の構成における一次成型品は、回路部品の基板を構成するもので、無電解めっきをその表面に形成しやすい易めっき性の材質(めっきグレードとして市販されているもの等)からなる。このような易めっき性の材質は、エッチングにより細かな凹凸が成型品表面に形成されるように改良されたもので、一般に、無機系の充填剤が添加されたものであり、エッチング処理によりこの充填剤が溶解又は脱落することにより、成型品表面に凹凸が形成される。その結果、無電解めっきに必要な触媒の保持が可能となり、高い密着性をもっためっき被膜形成が可能となる。一次成型品の形状は、三次元射出成型回路部品の外形形状に合致するもので、該外形形状に合致するキャビティ内に、めっきグレードとして市販されている樹脂等を射出して成型することにより得られる。   The primary molded product in the configuration of claim 1 or 2 constitutes a circuit component substrate, and is an easily-platable material that is easy to form electroless plating on its surface (commercially available as a plating grade). Etc.). Such an easy-plating material is improved so that fine irregularities are formed on the surface of the molded product by etching. Generally, an inorganic filler is added, and this etching process is performed by etching. As the filler dissolves or falls off, irregularities are formed on the surface of the molded product. As a result, the catalyst necessary for electroless plating can be retained, and a plating film with high adhesion can be formed. The shape of the primary molded product conforms to the external shape of the three-dimensional injection molded circuit component, and is obtained by injecting and molding a resin or the like that is commercially available as a plating grade into a cavity that matches the external shape. It is done.

このようにして得られた一次成型品の表面には、低沸点溶剤に可溶な樹脂からなる樹脂層が形成(二次成型)され、二次成型品が得られる。該樹脂層は、回路を形成すべき部分以外の部分に形成される。すなわち、回路を形成すべき部分については、一次成型品の表面が二次成型後も露出し、他の部分については全て該樹脂層により覆われるようにする。   On the surface of the primary molded product thus obtained, a resin layer made of a resin soluble in a low-boiling solvent is formed (secondary molding) to obtain a secondary molded product. The resin layer is formed in a portion other than a portion where a circuit is to be formed. That is, for the part where the circuit is to be formed, the surface of the primary molded product is exposed even after the secondary molding, and all other parts are covered with the resin layer.

請求項1の構成においては、二次成型後、該二次成型品の表面の回路を形成すべき部分、すなわち該低沸点溶剤に可溶な樹脂の樹脂層が形成されていない部分に、無電解めっきのための触媒が付与される。該触媒しては、パラジウム、金などによる触媒が例示される。該触媒の付与は公知の方法で行うことができ、通常触媒の付与とともに触媒の活性化が行われる。例えば、錫、パラジウム系の混合触媒液に二次成型品を浸漬した後、塩酸、硫酸などの酸で活性化し、表面にパラジウムを析出させる方法、塩化第1錫等の比較的強い還元剤を表面に吸着させ、金などの貴金属イオンを含む触媒溶液に浸漬し、表面に金を析出させる方法等が挙げられる。   In the configuration of claim 1, after the secondary molding, the surface of the secondary molded product where the circuit should be formed, that is, the portion where the resin layer soluble in the low-boiling solvent is not formed is not present. A catalyst for electroplating is applied. Examples of the catalyst include catalysts based on palladium, gold and the like. Application | coating of this catalyst can be performed by a well-known method, and activation of a catalyst is performed with provision of a catalyst normally. For example, a method in which a secondary molded product is immersed in a mixed catalyst solution of tin and palladium and then activated with an acid such as hydrochloric acid and sulfuric acid to deposit palladium on the surface. A relatively strong reducing agent such as stannous chloride is used. Examples include a method of adsorbing on the surface, immersing in a catalyst solution containing noble metal ions such as gold, and depositing gold on the surface.

触媒を付与した後、該二次成型品は、該低沸点溶剤の蒸気及び/又は該低沸点溶剤の液滴と接触され、該樹脂層が溶解、除去される。請求項1の構成は、樹脂層の溶解、除去を、無電解めっきを施す前に行うことを特徴とする。樹脂層の溶解、除去を、無電解めっきやさらに電気めっきを施こした後に行う場合は、樹脂層上にもめっきが析出し、樹脂層の除去の際に回路部のめっきをひきちぎりいわゆるバリが生じる、樹脂層が製品に残留し精度の低下を招く、等の問題が生じやすい。又回路ピッチが狭い場合は、樹脂層の存在によりめっきの際のイオン供給が不十分になり、特にエッジのめっきが薄く、極端な場合には無めっきとなる問題等が生じる場合がある。しかし、請求項1の構成では、このような問題を生じないので好ましい。   After the application of the catalyst, the secondary molded product is brought into contact with the low boiling point solvent vapor and / or the low boiling point solvent droplets, and the resin layer is dissolved and removed. The structure of claim 1 is characterized in that the resin layer is dissolved and removed before electroless plating is performed. When the resin layer is dissolved and removed after electroless plating or further electroplating, the plating is also deposited on the resin layer, and the circuit layer is removed when the resin layer is removed. Problems such as the occurrence of a resin layer remaining in the product and a decrease in accuracy are likely to occur. If the circuit pitch is narrow, the presence of the resin layer may result in insufficient ion supply during plating, and the edge plating may be thin, and in extreme cases, there may be a problem of no plating. However, the configuration of claim 1 is preferable because such a problem does not occur.

樹脂層の溶解、除去に使用する低沸点溶剤としては、該樹脂層を溶解しかつ沸点が低いものであれば特に限定されないが、エタノール、n−プロパノール、イソプロパノール、1−ブタノール等のアルコール系溶剤、ヘキサン、オクタン、シクロヘキサン、トルエン等の炭化水素系溶剤が例示され、中でもイソプロピルアルコール(以下IPAとする。)が好ましい。有機溶剤を用いることにより、付与した触媒、例えばパラジウムが、樹脂層の溶解、除去工程で、溶解、除去されるとの問題が生じない。   The low boiling point solvent used for dissolving and removing the resin layer is not particularly limited as long as it dissolves the resin layer and has a low boiling point, but alcohol solvents such as ethanol, n-propanol, isopropanol, 1-butanol and the like. , Hexane, octane, cyclohexane, toluene and the like, and isopropyl alcohol (hereinafter referred to as IPA) is preferred. By using the organic solvent, there is no problem that the imparted catalyst, for example, palladium is dissolved and removed in the step of dissolving and removing the resin layer.

さらに本発明は、該樹脂層の溶解、除去を、二次成型品の低沸点溶剤への浸漬によらず、溶媒蒸気や溶媒の液滴と樹脂との接触によることを特徴とする。従来、二次成型品の樹脂層の除去は、該二次成型品を、樹脂を溶解する溶媒内に浸漬することにより行われていた。しかし、多数個の二次成型品について樹脂の溶解を一度に行う場合、浸漬によると、樹脂層の除去が充分に行えず、溶解残ができ、歩留まりが低い問題があった。   Furthermore, the present invention is characterized in that the resin layer is dissolved and removed by contact of the solvent vapor or solvent droplets with the resin, not by immersing the secondary molded product in a low boiling point solvent. Conventionally, the removal of the resin layer of the secondary molded product has been performed by immersing the secondary molded product in a solvent that dissolves the resin. However, when the resin is melted at once for a large number of secondary molded products, there is a problem in that the resin layer cannot be removed sufficiently and the residue remains, resulting in a low yield.

このような問題は、二次成型品同士が重なった部分に処理液が浸透しないことに起因すると考えられ、その対策として、多量の溶媒を使用する方法や激しい撹拌により二次成型品同士をほぐす方法が考えられる。しかし、多量の溶媒を使用すると、コスト高を招き、又大量の廃液が生じるため環境上の問題が生じる。又、激しい撹拌を行っても二次成型品同士を完全にほぐすことは困難であり、一方無理な撹拌を行うと、製品に傷をつけ歩留まり低下につながる。   Such a problem is considered to be caused by the treatment liquid not penetrating into the part where the secondary molded products overlap each other. As a countermeasure, the secondary molded products are loosened by a method using a large amount of solvent or by vigorous stirring. A method can be considered. However, when a large amount of solvent is used, the cost increases and a large amount of waste liquid is generated, which causes environmental problems. Further, even if vigorous stirring is performed, it is difficult to completely loosen the secondary molded products. On the other hand, if excessive stirring is performed, the product is damaged and the yield is reduced.

さらに、浸漬による場合、浸漬後の溶媒による洗浄が充分でないと、溶解した樹脂が、回路を形成すべき部分、すなわち触媒を付与した部分に再付着する場合もあり、この場合、導体の電気抵抗の異常や、後の無電解めっき等のめっき形成工程でめっき不良を引起こす問題もある。   Furthermore, in the case of dipping, if the washing with the solvent after dipping is not sufficient, the dissolved resin may re-adhere to the part where the circuit is to be formed, that is, the part to which the catalyst is applied. There is also a problem of causing plating defects in the plating forming process such as electroless plating and the like.

本発明者は、このような問題を解決するべく検討した結果、浸漬による方法より、溶媒蒸気や溶媒の液滴と樹脂との接触による方法が、少ない溶媒量で、高歩留まりが得られることを見出した。   As a result of studying to solve such problems, the present inventor has found that the method of contacting the solvent vapor or solvent droplets with the resin can achieve a high yield with a small amount of solvent, rather than the method of immersion. I found it.

請求項1の構成においては、該樹脂層を溶解、除去した後、該触媒付与部分に無電解めっきにより導体回路層が形成される。さらに得られた無電解めっき層の上に異種の金属層を形成する場合、例えば耐食性向上のために金めっきをする場合や、導体回路層の強度や用途面から導体回路層の厚みを確保する必要がある場合等においては、無電解めっきに引き続いて、他金属の無電解めっきや電気めっき等が行われる。このようなめっきにより、導体回路層が形成され三次元射出成型回路部品が得られる。   In the structure of Claim 1, after melt | dissolving and removing this resin layer, a conductor circuit layer is formed in this catalyst provision part by electroless plating. Furthermore, when forming a dissimilar metal layer on the obtained electroless plating layer, for example, when plating gold for improving corrosion resistance, or ensuring the thickness of the conductor circuit layer from the viewpoint of strength and application of the conductor circuit layer When necessary, electroless plating of other metals, electroplating, or the like is performed subsequent to electroless plating. By such plating, a conductor circuit layer is formed to obtain a three-dimensional injection molded circuit component.

請求項2の構成においては、二次成型後、該二次成型品の回路を形成すべき部分に無電解めっきが施される。無電解めっきを施す前には、触媒付与(触媒の活性化も含む)が必要であり、上記と同様な方法により、触媒付与が行われる。   According to the second aspect of the present invention, after the secondary molding, electroless plating is performed on the portion of the secondary molded product where the circuit is to be formed. Before applying electroless plating, catalyst application (including catalyst activation) is required, and catalyst application is performed by the same method as described above.

上記の請求項1の構成の場合と同様に、無電解めっきに引き続いて電気めっき等が行われてもよい。無電解めっき、又は無電解めっき及びそれに引き続く他のめっき等により、導体回路層が形成された後、該二次成型品を、該低沸点溶剤の蒸気及び/又は該低沸点溶剤の液滴と接触させて、該樹脂層が溶解、除去され、三次元射出成型回路部品が得られる。又、例えば、無電解めっきを施した後、樹脂層の溶解、除去を行い、その後電気めっきを施し、導体回路層を形成して、三次元射出成型回路部品を得る方法も可能である。低沸点溶剤の蒸気及び/又は該低沸点溶剤の液滴との接触については、上記の請求項1の構成の場合と同様である。   As in the case of the configuration of the first aspect, electroplating or the like may be performed subsequent to electroless plating. After the conductive circuit layer is formed by electroless plating, or electroless plating and other subsequent plating, etc., the secondary molded product is made into vapor of the low boiling point solvent and / or droplets of the low boiling point solvent. By contacting, the resin layer is dissolved and removed, and a three-dimensional injection molded circuit component is obtained. Further, for example, after electroless plating, the resin layer is dissolved and removed, and then electroplating is performed to form a conductor circuit layer to obtain a three-dimensional injection molded circuit component. The contact with the low boiling point solvent vapor and / or the low boiling point solvent droplets is the same as in the case of the constitution of the first aspect.

なお、請求項2の構成においては、すなわち低沸点溶剤に可溶な樹脂の溶解、除去前に無電解めっき等のめっきが施されるので、該樹脂としては、その表面にめっきが形成されにくい難めっき性樹脂が好ましい。   In addition, in the configuration of claim 2, since plating such as electroless plating is performed before the dissolution and removal of the resin soluble in the low boiling point solvent, it is difficult to form the plating on the surface of the resin. A hard-to-platable resin is preferred.

請求項1及び請求項2の構成における、二次成型品と低沸点溶剤の蒸気及び/又は低沸点溶剤の液滴との接触の方法としては、該二次成型品を低沸点溶剤の環流雰囲気内に置く方法が例示される。すなわち、下部に該低沸点溶剤が貯められており、上部に凝縮器を設けた容器内の、該低沸点溶剤と凝縮器の間に、該二次成型品を置き、低沸点溶剤をヒータ等により加熱して該低沸点溶剤の蒸気を発生させ、該二次成型品を該低沸点溶剤の蒸気と接触させるとともに、上部の凝縮器から落下する低沸点溶剤の液滴とも接触させる方法が、好ましく例示される。   The method of contacting the secondary molded product with the low boiling point solvent vapor and / or the low boiling point solvent droplets in the constitutions of claim 1 and claim 2, wherein the secondary molded product is a reflux atmosphere of the low boiling point solvent. The method of putting in is illustrated. That is, the low-boiling point solvent is stored in the lower part, and the secondary molded product is placed between the low-boiling point solvent and the condenser in a container provided with a condenser in the upper part. The low boiling point solvent vapor is heated by heating, and the secondary molded product is brought into contact with the low boiling point solvent vapor, and the low boiling point solvent droplet falling from the upper condenser is also contacted. Preferably exemplified.

二次成型品と低沸点溶剤の蒸気及び/又は低沸点溶剤の液滴との接触は、該低沸点溶剤の蒸気及び液滴が通過可能である容器内に二次成型品を保持し、該容器を撹拌又は振動させながら行うことにより、二次成型品同士がほぐれ、蒸気や液滴との接触が充分に行われるので好ましい。請求項3は、この好ましい態様に該当し、上記の請求項1又は請求項2の三次元射出成型回路部品の製造方法であって、該二次成型品と、低沸点溶剤の蒸気及び/又は低沸点溶剤の液滴との接触を、該低沸点溶剤の蒸気及び液滴が通過可能である容器内に二次成型品を保持し、該容器を撹拌又は振動させながら行うことを特徴とする三次元射出成型回路部品の製造方法を提供するものである。   The contact between the secondary molded product and the low boiling point solvent vapor and / or the low boiling point solvent droplet holds the secondary molded product in a container through which the low boiling point solvent vapor and droplets can pass, It is preferable to stir or vibrate the container since the secondary molded products are loosened and contact with vapor and droplets is sufficiently performed. Claim 3 corresponds to this preferred embodiment, and is a method of manufacturing a three-dimensional injection molded circuit component according to claim 1 or claim 2 above, wherein the secondary molded product and the low boiling point solvent vapor and / or The contact with the low-boiling solvent droplets is carried out while holding the secondary molded product in a container through which the vapor and droplets of the low-boiling solvent can pass and stirring or vibrating the container. A method of manufacturing a three-dimensional injection molded circuit component is provided.

このような容器としては、蒸気や液滴を通過し、かつ該二次成型品が脱落しないように該二次成型品より小さい目を持つ網からなるカゴ状の容器(バレル)が好ましく例示される。   As such a container, a basket-like container (barrel) made of a net that passes through steam or droplets and has a smaller mesh than the secondary molded product so that the secondary molded product does not fall off is preferably exemplified. The

一次成型品は、通常、合成樹脂の射出成型により形成される。請求項4は、この態様に該当し、上記の三次元射出成型回路部品の製造方法であって、該一次成型品が、合成樹脂の射出成型により形成されたものであることを特徴とする三次元射出成型回路部品の製造方法を提供するものである。   The primary molded product is usually formed by injection molding of a synthetic resin. Claim 4 corresponds to this aspect, and is a method of manufacturing the above three-dimensional injection molded circuit component, wherein the primary molded product is formed by injection molding of a synthetic resin. The present invention provides a method for manufacturing an original injection molded circuit component.

一次成型に使用する合成樹脂としては、液晶ポリマー(LCP)、ポリフェニレンスルフィド(PPS)樹脂等のスーパーエンジニアリングプラスチック、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)等の熱可塑性ポリエステル樹脂、ポリアミド6、ポリアミド66、ポリアミド46、ポリアミド6T、ポリアミド9T等のポリアミド樹脂等が例示される。これらの合成樹脂としては、めっきグレードとして市販されているものが好ましい。   Synthetic resins used for the primary molding include super engineering plastics such as liquid crystal polymer (LCP) and polyphenylene sulfide (PPS) resins, thermoplastic polyester resins such as polybutylene terephthalate (PBT) and polyethylene terephthalate (PET), polyamide 6, Examples thereof include polyamide resins such as polyamide 66, polyamide 46, polyamide 6T, and polyamide 9T. As these synthetic resins, those commercially available as plating grades are preferable.

このような合成樹脂の射出成型等により形成された一次成型品の表面は、無電解めっきや二次成型される樹脂層との接着性を向上させるために、好ましくは粗面化される。請求項5は、この好ましい態様に該当し、上記の三次元射出成型回路部品の製造方法であって、該一次成型品の表面を粗面化した後、該樹脂層を形成することを特徴とする三次元射出成型回路部品の製造方法を提供するものである。   The surface of the primary molded product formed by injection molding or the like of such a synthetic resin is preferably roughened in order to improve the adhesion with the resin layer to be electrolessly plated or secondary molded. Claim 5 corresponds to this preferred embodiment, and is a method for producing the above three-dimensional injection molded circuit component, characterized in that the resin layer is formed after roughening the surface of the primary molded product. A method for manufacturing a three-dimensional injection molded circuit component is provided.

粗面化する方法としては、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ水溶液を50〜90℃に加熱し、その中に一次成型品を1〜60分間程度浸漬する方法が挙げられるが、その他の方法も適用することができる。請求項2の構成の場合には、合成樹脂に、所望により、無電解めっきのための触媒を添加しておくこともできる。   Examples of the surface roughening method include a method in which an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide is heated to 50 to 90 ° C., and the primary molded product is immersed therein for about 1 to 60 minutes. Other methods can also be applied. In the case of the configuration of claim 2, if desired, a catalyst for electroless plating can be added to the synthetic resin.

二次成型すなわち、低沸点溶剤に可溶な樹脂からなる樹脂層の形成は、例えば、形成すべき回路部分を除く表面に空隙がある形状のキャビティを有する金型内(二次金型)に一次成型品をセットし、該キャビティ内に該低沸点溶剤に可溶な樹脂を射出する方法により行われる。請求項6は、この好ましい態様に該当し、上記の三次元射出成型回路部品の製造方法であって、低沸点溶剤に可溶な樹脂からなる樹脂層の形成が、該樹脂の射出成型により行われることを特徴とする三次元射出成型回路部品の製造方法を提供するものである。   Secondary molding, that is, formation of a resin layer made of a resin that is soluble in a low boiling point solvent, for example, in a mold (secondary mold) having a cavity with a void on the surface excluding the circuit portion to be formed This is performed by a method in which a primary molded product is set and a resin soluble in the low-boiling solvent is injected into the cavity. Claim 6 corresponds to this preferred embodiment, and is a method of manufacturing the above three-dimensional injection molded circuit component, wherein the resin layer made of a resin soluble in a low boiling point solvent is formed by injection molding of the resin. The present invention provides a method for producing a three-dimensional injection molded circuit component.

前記のように、低沸点溶剤としてはIPAが好ましい。請求項7は、この好ましい態様に該当し、上記の三次元射出成型回路部品の製造方法であって、該低沸点溶剤がIPAであることを特徴とする三次元射出成型回路部品の製造方法を提供するものである。   As described above, IPA is preferable as the low boiling point solvent. Claim 7 corresponds to this preferred embodiment, and is a method of manufacturing a three-dimensional injection molded circuit component, wherein the low boiling point solvent is IPA. It is to provide.

低沸点溶剤に可溶な樹脂としては、IPAのような低沸点溶剤に可溶であれば特に限定されない。例えば、ポリアミド(A)とポリアミドポリアミン(B)とをアミド交換反応させてなるポリアミド樹脂であって、
(1)ポリアミド(A)が、
a)二量体含有量が65重量%以上のダイマー酸又はそのアミド生成可能な誘導体を、全カルボキシル基の20当量%以上含有するジカルボン酸成分と、
b)下記式(I)
The resin soluble in the low boiling point solvent is not particularly limited as long as it is soluble in the low boiling point solvent such as IPA. For example, a polyamide resin obtained by subjecting polyamide (A) and polyamide polyamine (B) to an amide exchange reaction,
(1) Polyamide (A)
a) a dicarboxylic acid component containing a dimer acid having a dimer content of 65% by weight or more or an amide-forming derivative thereof in an amount of 20 equivalent% or more of the total carboxyl groups;
b) The following formula (I)

Figure 2005217156

〔式中、Rは、それぞれ独立に水素原子又は炭素原子数1〜6のアルキル基であり、Yは、水素原子、RNH又はROH(Rは、炭素原子数1〜6のアルキレン基)である。〕で表されるピペラジン化合物、及び
下記式(II)
Figure 2005217156

[Wherein, R 1 is independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and Y is a hydrogen atom, RNH 2 or ROH (R is an alkylene group having 1 to 6 carbon atoms). It is. A piperazine compound represented by formula (II):

Figure 2005217156

〔式中、Rはそれぞれ独立に水素原子又は炭素原子数1〜6のアルキル基であり、Rは二価の脂肪族炭化水素基であり、Yは、水素原子、RNH又はROH(Rは、炭素原子数1〜6のアルキレン基)である。〕で表されるジピベリジル化合物からなる群より選ばれる少なくとも一種の含窒素複素環化合物を全アミノ基の20当量%以上含有するジアミン成分を、
全アミン当量の全カルボキシル当量に対する比が0.8:1〜1.3:1の範囲内で重縮合して得られるポリアミドであり、
(2)ポリアミドポリアミン(B)が、
c)二量体含有量が65重量%以上のダイマー酸又はそのアミド生成可能な誘導体を、全カルボキシル基の20当量%以上含有するジカルボン酸成分と、
d)ポリアルキレンポリアミンを、
全アミン当量の全カルボキシル当量に対する比が1.3:1〜3.0:1の範囲内で重縮合して得られるポリアミドポリアミンであり、かつ、
(3)アミド交換反応後に下記物性
i)軟化点が80〜190℃、
ii)酸価が0〜5mgKOH/g、
iii)アミン価が10〜100mgKOH/g、
iv)200℃で測定した溶融粘度が350〜80,000mPa・S、及び
v)濃度30重量%の酢酸水溶液100mlに60℃で30分間浸漬して測定した溶解速度が0.2mm/30分以上
を有することを特徴とするポリアミド樹脂が好ましく例示される。請求項8は、この好ましい態様に該当し、上記の三次元射出成型回路部品の製造方法であって、低沸点溶剤に可溶な樹脂が、上記のポリアミド(A)とポリアミドポリアミン(B)とをアミド交換反応させてなるポリアミド樹脂であることを特徴とする三次元射出成型回路部品の製造方法を提供するものである。
Figure 2005217156

[Wherein, R 1 is independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R 2 is a divalent aliphatic hydrocarbon group, and Y is a hydrogen atom, RNH 2 or ROH ( R is an alkylene group having 1 to 6 carbon atoms. A diamine component containing at least one nitrogen-containing heterocyclic compound selected from the group consisting of the dipiveridyl compounds represented by the formula:
A polyamide obtained by polycondensation within a ratio of total amine equivalent to total carboxyl equivalent of 0.8: 1 to 1.3: 1,
(2) Polyamide polyamine (B)
c) a dicarboxylic acid component containing a dimer acid having a dimer content of 65% by weight or more or an amide-forming derivative thereof in an amount of 20 equivalent% or more of the total carboxyl groups;
d) a polyalkylene polyamine,
A polyamide polyamine obtained by polycondensation within a ratio of total amine equivalent to total carboxyl equivalent of 1.3: 1 to 3.0: 1, and
(3) The following physical properties after the amide exchange reaction i) Softening point of 80-190 ° C.
ii) Acid value of 0-5 mg KOH / g,
iii) an amine value of 10 to 100 mg KOH / g,
iv) The melt viscosity measured at 200 ° C. is 350 to 80,000 mPa · S, and v) The dissolution rate measured by immersing in 100 ml of acetic acid aqueous solution having a concentration of 30% by weight at 60 ° C. for 30 minutes is 0.2 mm / 30 minutes or more. A polyamide resin characterized by having: Claim 8 corresponds to this preferred embodiment, and is a method for producing the above three-dimensional injection molded circuit component, wherein the resin soluble in the low boiling point solvent is the above-mentioned polyamide (A) and polyamide polyamine (B). The present invention provides a method for producing a three-dimensional injection molded circuit component, which is a polyamide resin obtained by subjecting amide exchange reaction.

ここでダイマー酸とは、オレイン酸、リノール酸、リノレン酸等の不飽和脂肪酸を粘土触媒により縮合させて得ることができる二量体化した重合脂肪酸である。ダイマー酸の主成分は二量体脂肪酸(以下二量体と言う。)であり、その他単量体や三量体等を含んでいる。ダイマー酸の製法は、例えば、米国特許第3157681号公報に記載されている。   Here, the dimer acid is a dimerized polymerized fatty acid which can be obtained by condensing unsaturated fatty acids such as oleic acid, linoleic acid and linolenic acid with a clay catalyst. The main component of dimer acid is dimer fatty acid (hereinafter referred to as dimer), and includes other monomers, trimers and the like. A method for producing dimer acid is described in, for example, US Pat. No. 3,157,681.

前記のポリアミド樹脂の原料であるダイマー酸は、二量体含有量が65重量%以上であるが、二量体の含有量は、好ましくは80重畳%以上、特に好ましくは90〜95重量%である。ダイマー酸は、酸の形で使用することができるが、この他、アミド生成可能な誘導体として使用することもできる。アミド生成可能な誘導体とは、ジアミン成分と反応してアミド結合を生成することが可能な誘導体を意味する。このような誘導体としては、ダイマー酸のエステル、ハロゲン化物、及び酸無水物がある。   The dimer acid that is a raw material of the polyamide resin has a dimer content of 65% by weight or more, and the dimer content is preferably 80% by overlap or more, particularly preferably 90 to 95% by weight. is there. Dimer acid can be used in the acid form, but can also be used as a derivative capable of forming an amide. An amide-forming derivative means a derivative that can react with a diamine component to form an amide bond. Such derivatives include esters of dimer acid, halides, and acid anhydrides.

ダイマー酸以外のジカルボン酸成分としては、シュウ酸、マロン酸、アジピン酸、コハク酸、スベリン酸、セパシン酸、アゼライン酸、ピメリン酸、テレフタル酸、イソフタル酸、フタル酸、ナフタリンジカルボン酸、1,4−または1,3−シクロへキサンジカルボン酸等及びこれらのアミド生成可能な誘導体が例示される。   Examples of dicarboxylic acid components other than dimer acid include oxalic acid, malonic acid, adipic acid, succinic acid, suberic acid, sepacic acid, azelaic acid, pimelic acid, terephthalic acid, isophthalic acid, phthalic acid, naphthalene dicarboxylic acid, 1,4 -Or 1,3-cyclohexanedicarboxylic acid and the like and derivatives thereof capable of forming amides are exemplified.

ジカルボン酸成分中の、ダイマー酸又はそのアミド生成可能な誘導体の含有量は、全カルボキシル基の20当量%以上、好ましくは50当量%以上、より好ましくは50〜90当量%、最も好ましくは55〜85当量%である。   The content of the dimer acid or its amide-forming derivative in the dicarboxylic acid component is 20 equivalent% or more, preferably 50 equivalent% or more, more preferably 50 to 90 equivalent%, most preferably 55 to 50% of the total carboxyl groups. 85 equivalent%.

式(I)又は式(II)で表される含窒素複素環化合物としては、ピペラジン、2,5−ジメチルピペラジン、2,5−ジエチルピペラジン、2−メチルピペラジン、2−エチルピペラジン、N−アミノエチル−ピペラジン、N−アミノプロピル−ピペラジン、1.3−ジ(4−ピペリジル)プロパン、1,2−ジ(4−ピペリジル)エタン、1,4−ジ(4−ピペリジル)ブタン、1−(N−ペンタヒドロキシエチル−4−ピペリジル)−3−(4−ピペリジル)プロパン等が例示される。   Examples of the nitrogen-containing heterocyclic compound represented by the formula (I) or formula (II) include piperazine, 2,5-dimethylpiperazine, 2,5-diethylpiperazine, 2-methylpiperazine, 2-ethylpiperazine, N-amino. Ethyl-piperazine, N-aminopropyl-piperazine, 1.3-di (4-piperidyl) propane, 1,2-di (4-piperidyl) ethane, 1,4-di (4-piperidyl) butane, 1- ( N-pentahydroxyethyl-4-piperidyl) -3- (4-piperidyl) propane and the like are exemplified.

ジアミン成分中の前記含窒素複素環化合物以外のジアミン化合物としては、エチレンジアミン、1,2−ジアミノプロパン、1,3−ジアミノプロパン、1,3−ジアミノブタン、テトラメチレンジアミン、ペンタメチレンジアミン、へキサメチレンジアミン、デカメチレンジアミン、オクタデカメチレンジアミン、メタキシリレンジアミン、パラキシレンジアミン、シクロヘキシレンジアミン、ビス(アミノエチル)ベンゼン、シクロへキシルピス(メチルアミン)、ジアミノ−ジシクロへキシルメタン、メチレンジアニリン、ポリオキシプロピレンジアミン、ダイマージアミンなどが例示される。   Examples of the diamine compound other than the nitrogen-containing heterocyclic compound in the diamine component include ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,3-diaminobutane, tetramethylenediamine, pentamethylenediamine, and hexane. Methylenediamine, decamethylenediamine, octadecamethylenediamine, metaxylylenediamine, paraxylenediamine, cyclohexylenediamine, bis (aminoethyl) benzene, cyclohexylpis (methylamine), diamino-dicyclohexylmethane, methylenedianiline, Examples thereof include polyoxypropylene diamine and dimer diamine.

該ジアミン成分は、該含窒素複素環化合物を、全アミノ基の20当量%以上、好ましくは20〜90当量%、より好ましくは25〜75当量%含有する。   The diamine component contains the nitrogen-containing heterocyclic compound in an amount of 20 equivalent% or more, preferably 20 to 90 equivalent%, more preferably 25 to 75 equivalent% of the total amino group.

ポリアミド(A)は、前記のジカルボン酸成分とジアミン成分とを、全アミン当量の全カルボキシル当量に対する比が0.8:1〜1.3:1、好ましくは0.9:1〜1.2:1の範囲内で、加熱して重縮合させることにより得ることができる。加熱条件としては、例えば、100〜300℃で3〜10時間程度加熱する方法が挙げられる。加熱は、減圧下に行ってもよい。   In the polyamide (A), the ratio of the total amine equivalent to the total carboxyl equivalent of the dicarboxylic acid component and the diamine component is 0.8: 1 to 1.3: 1, preferably 0.9: 1 to 1.2. Within the range of: 1, it can be obtained by polycondensation by heating. Examples of the heating conditions include a method of heating at 100 to 300 ° C. for about 3 to 10 hours. Heating may be performed under reduced pressure.

ポリアミドポリアミン(B)は、前記と同様なジカルボン酸成分とポリアルキレンポリアミンとを、全アミン当量の全カルボキシル当量に対する比が1.3:1〜3.0:1の範囲内で重縮合して得られる。ポリアルキレンポリアミンとしては、例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミンなどが挙げられる。ポリアミドポリアミン(B)は、例えば、特公昭37−18898号公報に記載されている合成法により製造することができる。   Polyamide polyamine (B) is obtained by polycondensing the same dicarboxylic acid component and polyalkylene polyamine as described above within a ratio of the total amine equivalent to the total carboxyl equivalent of 1.3: 1 to 3.0: 1. can get. Examples of the polyalkylene polyamine include diethylenetriamine, triethylenetetramine, and tetraethylenepentamine. The polyamide polyamine (B) can be produced, for example, by a synthesis method described in Japanese Patent Publication No. 37-18898.

ポリアミド(A)とポリアミドポリアミン(B)は、通常150〜300℃、好ましくは200〜250℃の高温下で、通常1時間以上、好ましくは5時間以上、より好ましくは10時間以上、溶融混合することにより、アミド交換反応により、前記のポリアミド樹脂が生成する。   The polyamide (A) and the polyamide polyamine (B) are usually melt-mixed at a high temperature of 150 to 300 ° C., preferably 200 to 250 ° C., usually for 1 hour or longer, preferably 5 hours or longer, more preferably 10 hours or longer. Thus, the polyamide resin is produced by an amide exchange reaction.

このようにして得られるポリアミド樹脂は、アミド交換反応後に下記物性
i)軟化点が80〜190℃、好ましくは120〜180℃、より好ましくは135〜170℃、
ii)酸価が0〜5mgKOH/g、
iii)アミン価が10〜100mgKOH/g、
iv)200℃で測定した溶融粘度が350〜80,000mPa・S、好ましくは500〜10,000mPa・S、より好ましくは1,000〜8,000mPa・S、及び
v)濃度30重畳%の酢酸水溶液100mlに60℃で30分間浸漬して測定した溶解速度が0.2mm/30分以上、好ましくは0.3mm/30分以上
を有するものである。
The polyamide resin thus obtained has the following physical properties after the amide exchange reaction.
i) Softening point of 80-190 ° C, preferably 120-180 ° C, more preferably 135-170 ° C,
ii) acid value of 0-5 mg KOH / g,
iii) an amine value of 10 to 100 mg KOH / g,
iv) a melt viscosity measured at 200 ° C. of 350 to 80,000 mPa · S, preferably 500 to 10,000 mPa · S, more preferably 1,000 to 8,000 mPa · S, and
v) It has a dissolution rate of 0.2 mm / 30 minutes or more, preferably 0.3 mm / 30 minutes or more, measured by immersing in 100 ml of 30% acetic acid aqueous solution at 60 ° C. for 30 minutes.

低沸点溶剤に可溶な樹脂としては、上記のような樹脂に、水酸化アルミニウム等のフィラーを添加したものも用いることができる。   As the resin soluble in the low-boiling solvent, a resin obtained by adding a filler such as aluminum hydroxide to the above resin can also be used.

本発明は、一次成型品の、回路を形成すべき部分以外の表面に、樹脂により二次成型を施し、該二次成型した樹脂を溶出する工程を有する三次元射出成型回路部品の製造方法であり、所望の導体回路パターンを精度良く形成することが可能となり、回路ピッチの微細化にも対応することができる。又有機溶剤を大量に使用する必要もなく、多数の回路部品を同時に製造することも可能となる。   The present invention is a method for producing a three-dimensional injection molded circuit component comprising a step of subjecting a surface of a primary molded product to a surface other than a portion where a circuit is to be formed, and performing a secondary molding with a resin and eluting the secondary molded resin. In addition, a desired conductor circuit pattern can be formed with high accuracy, and the circuit pitch can be miniaturized. Further, it is not necessary to use a large amount of an organic solvent, and a large number of circuit components can be manufactured simultaneously.

次に、図を用いて本発明を実施するための最良の形態を説明する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings.

図1は、本発明の一例を示す工程図である。図1の例は、本発明の請求項1の構成に該当する。先ず、液晶ポリエステル樹脂(LCP)のめっきグレード等の合成樹脂を射出成型して一次成型品1を得る(図1(a))。次に、水酸化ナトリウム等のアルカリ水溶液を50〜90℃に加熱し、その中にこの一次成型品を1〜60分間程度浸漬する方法により、その表面を粗面化する(図1(b))。   FIG. 1 is a process diagram showing an example of the present invention. The example of FIG. 1 corresponds to the configuration of claim 1 of the present invention. First, a synthetic resin such as a liquid crystal polyester resin (LCP) plating grade is injection molded to obtain a primary molded product 1 (FIG. 1A). Next, an alkaline aqueous solution such as sodium hydroxide is heated to 50 to 90 ° C., and the surface is roughened by a method of immersing the primary molded product in the solution for about 1 to 60 minutes (FIG. 1B). ).

粗面化の後、一次成型品の回路を形成すべき部分2を除く全表面に、IPA等の低沸点溶剤に可溶な樹脂を射出成型して、該樹脂の樹脂層3を形成して二次成型品を得る(図1(c))。このようにして得られた二次成型品の回路を形成すべき部分2に、触媒4の付与(触媒の活性化を含む。)を行い(図1(d))、その後、樹脂層3の溶解、除去が行われる(図1(e))。   After the surface roughening, a resin soluble in a low boiling point solvent such as IPA is injection-molded on the entire surface except the portion 2 where the circuit of the primary molded product is to be formed, and the resin layer 3 of the resin is formed. A secondary molded product is obtained (FIG. 1 (c)). The catalyst 4 is applied (including catalyst activation) to the portion 2 where the circuit of the secondary molded product thus obtained is to be formed (FIG. 1 (d)), and then the resin layer 3 Dissolution and removal are performed (FIG. 1 (e)).

樹脂層3の溶解、除去は、IPAにより、蒸気洗浄装置を用いて行われる。図2は、ここで用いられる蒸気洗浄装置を示す概念図である。この蒸気洗浄装置の下部にはIPA槽5があり、又上部にはIPA蒸気を凝縮し液滴として装置内に戻すための冷却管10が設けられている。二次成型品7は、IPA槽5と冷却管10の間に設けられたバレル8内に入れられる。   The resin layer 3 is dissolved and removed by IPA using a steam cleaning device. FIG. 2 is a conceptual diagram showing a steam cleaning apparatus used here. An IPA tank 5 is provided at the lower part of the steam cleaning apparatus, and a cooling pipe 10 is provided at the upper part for condensing the IPA vapor and returning it to the apparatus as droplets. The secondary molded product 7 is put in a barrel 8 provided between the IPA tank 5 and the cooling pipe 10.

バレル8は、二次成型品7よりも小さい目を有する網により形成されたカゴであり、二次成型品7を保持するとともに、IPA蒸気及び液滴が容易に通過する。バレル8は、モータ9の回転軸上に設けられ、モータ9により回転され、バレル8内の二次成型品7は、バレル8の回転により撹拌される。   The barrel 8 is a cage formed by a net having an eye smaller than that of the secondary molded product 7, and holds the secondary molded product 7 and allows IPA vapor and droplets to pass through easily. The barrel 8 is provided on the rotating shaft of the motor 9 and is rotated by the motor 9, and the secondary molded product 7 in the barrel 8 is agitated by the rotation of the barrel 8.

IPA槽5中のIPAはヒータ6により加熱されてIPA蒸気となる。又、IPA蒸気は、冷却管10により凝縮されて装置内に落下する。バレル8内の二次成型品7は、このIPA蒸気及び液滴と接触し、樹脂層3が溶解、除去される。   The IPA in the IPA tank 5 is heated by the heater 6 to become IPA vapor. The IPA vapor is condensed by the cooling pipe 10 and falls into the apparatus. The secondary molded product 7 in the barrel 8 comes into contact with the IPA vapor and droplets, and the resin layer 3 is dissolved and removed.

樹脂層3の溶解、除去により、回路を形成すべき部分2に、触媒4を有する二次成型品が得られる(図1(e))。この触媒4の上に、無電解めっき、さらに電気めっきが施され、めっき層11、すなわち導体回路が形成され(図1(f))、三次元射出成型回路部品が得られる。   By dissolving and removing the resin layer 3, a secondary molded product having the catalyst 4 in the portion 2 where a circuit is to be formed is obtained (FIG. 1 (e)). Electroless plating and further electroplating are performed on the catalyst 4 to form a plating layer 11, that is, a conductor circuit (FIG. 1 (f)), and a three-dimensional injection molded circuit component is obtained.

図3は、本発明の他の一例を示す工程図である。図3の例は、本発明の請求項2の構成に該当する。先ず、一次成型品1を得る工程(図3(a))、一次成型品の表面を粗面化する工程(図3(b))、及び、粗面化の後、一次成型品の回路を形成すべき部分2を除く全表面に、IPA等の低沸点溶剤に可溶な樹脂を射出成型して、該樹脂の樹脂層3を形成して二次成型品を得る工程(図3(c))は、図1の例と同じである。さらに、図3の例においても、このようにして得られた二次成型品の回路を形成すべき部分2に、触媒4の付与(触媒の活性化を含む。)が行われている(図3(d))。   FIG. 3 is a process diagram showing another example of the present invention. The example of FIG. 3 corresponds to the configuration of claim 2 of the present invention. First, a step of obtaining the primary molded product 1 (FIG. 3A), a step of roughening the surface of the primary molded product (FIG. 3B), and a circuit of the primary molded product after roughening. A step of obtaining a secondary molded product by injection molding a resin soluble in a low-boiling solvent such as IPA over the entire surface except the portion 2 to be formed (FIG. 3 (c) )) Is the same as the example of FIG. Further, also in the example of FIG. 3, the application of the catalyst 4 (including the activation of the catalyst) is performed on the portion 2 where the circuit of the secondary molded product thus obtained is to be formed (FIG. 3). 3 (d)).

図3の例においては、触媒4の付与の後、回路を形成すべき部分2にめっきが施され、めっき層12が形成される(図3(e))。めっき層12の形成は、例えば、図1の例と同様に、無電解めっき、それに引き続く電気めっきにより行われ、めっき層12が形成された後、樹脂層3の溶解、除去が行われ(図3(f))、三次元射出成型回路部品が得られる。樹脂層3の溶解、除去は、図1の例の場合と同様、IPAにより、蒸気洗浄装置を用いて行われる。用いられる蒸気洗浄装置も、図1の例の場合と同様である。なお、他の態様として、無電解めっきを行った後、樹脂層3の溶解、除去を行い、その後電気めっきを行う方法も採用できる。   In the example of FIG. 3, after application of the catalyst 4, plating is performed on the portion 2 where a circuit is to be formed, and a plating layer 12 is formed (FIG. 3E). The plating layer 12 is formed by, for example, electroless plating and subsequent electroplating, as in the example of FIG. 1, and after the plating layer 12 is formed, the resin layer 3 is dissolved and removed (see FIG. 1). 3 (f)), a three-dimensional injection molded circuit component is obtained. The resin layer 3 is dissolved and removed by IPA using a steam cleaning device, as in the example of FIG. The steam cleaning apparatus used is the same as that in the example of FIG. As another embodiment, a method of performing electroplating after dissolving and removing the resin layer 3 after performing electroless plating can also be adopted.

次に実施例により本発明をさらに具体的に説明するが、本発明の範囲は、実施例により限定されない。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited by an Example.

実施例1
(1次成型品の成型、粗面化)
液晶ポリエステル樹脂(LCP)〔商品名:ベクトラC810、ポリプラスチック(株)製〕を、射出成型機(型締力=100トン、スクリュー径=45mmφ)を用いて、射出圧50kg/cm、保圧時間10秒間、金型温度60℃の条件にて射出成型することにより、縦横約4mm、厚み約1.5mmの方形の一次成型品を得た。得られた一次成型品をエタノールで洗浄した後、80℃に設定した45%の水酸化ナトリウム水溶液中に5分間浸漬し、次いで、3%の塩酸で中和する方法により粗面化した。
Example 1
(Molding of primary molded product, roughening)
Liquid crystal polyester resin (LCP) [trade name: Vectra C810, manufactured by Polyplastics Co., Ltd.] was used to maintain an injection pressure of 50 kg / cm 2 using an injection molding machine (clamping force = 100 tons, screw diameter = 45 mmφ). A rectangular primary molded product having a length and width of about 4 mm and a thickness of about 1.5 mm was obtained by injection molding under conditions of a mold temperature of 60 ° C. for a pressure time of 10 seconds. The obtained primary molded product was washed with ethanol, then immersed in a 45% aqueous sodium hydroxide solution set at 80 ° C. for 5 minutes, and then roughened by neutralizing with 3% hydrochloric acid.

(二次成型品の成型)
粗面化した一次成型品を二次金型内にセットし、下記の低沸点溶剤に可溶な樹脂(以下レジスト樹脂とする。)を射出成型して、一次成型品の、回路を形成すべき部分を除く全表面に樹脂層を形成し、二次成型品を得た。なお、実施例及び比較例で得られる三次元射出成型回路部品の回路パターンの平面図、側面図を図4に示す。図4に示すように、該回路パターンでは、L/S=300/300である。
(Molding of secondary molded products)
Set the rough molded primary molded product in the secondary mold and injection-mold a resin soluble in the following low-boiling solvents (hereinafter referred to as resist resin) to form the circuit of the primary molded product. A resin layer was formed on the entire surface excluding the power portion to obtain a secondary molded product. FIG. 4 shows a plan view and a side view of circuit patterns of the three-dimensional injection molded circuit components obtained in the examples and comparative examples. As shown in FIG. 4, in the circuit pattern, L / S = 300/300.

用いたレジスト樹脂としては、ダイマー酸(0.65当量)、セバシン酸(0.35当量)、エチレンジアミン(0.53当量)、及びピペラジン(0.53当量)を重縮合して得られた、軟化点160℃、酸価1.0mgKOH/g、アミン価10.0mgKOH/g、溶融粘度3000mPa・S(210℃)のポリアミド(A)と、ダイマー酸(1.0当量)及びジエチレントリアミン(1.5当量)を重縮合して得られた、酸価1.0mgKOH/g、アミン価100.0mgKOH/g、溶融粘度100mPa・S(200℃)のポリアミドポリアミン(B)とを、A:B=80/20の重量比で配合し、230℃で12時間溶融混合、アミド交換反応させて得られた、軟化点150℃、酸価1.0mgKOH/g、アミン価25.0mgKOH/g、溶融粘度3000mPa・S(200℃)、有機酸に対する溶解速度0.3mm/30分のポリアミド樹脂に、水酸化アルミニウムのフィラー(昭和電工製、商品名:ハイジライトH−42、平均粒径1.1μm)を20体積%分散させたものを使用した。   The resist resin used was obtained by polycondensation of dimer acid (0.65 equivalent), sebacic acid (0.35 equivalent), ethylenediamine (0.53 equivalent), and piperazine (0.53 equivalent). Polyamide (A) having a softening point of 160 ° C., an acid value of 1.0 mgKOH / g, an amine value of 10.0 mgKOH / g, a melt viscosity of 3000 mPa · S (210 ° C.), dimer acid (1.0 equivalent) and diethylenetriamine (1. 5 equivalents), polyamidopolyamine (B) having an acid value of 1.0 mgKOH / g, an amine value of 100.0 mgKOH / g, and a melt viscosity of 100 mPa · S (200 ° C.), A: B = Blended at a weight ratio of 80/20, melt-mixed at 230 ° C. for 12 hours, and obtained by amide exchange reaction, softening point 150 ° C., acid value 1.0 mgKOH / g, amine value 25 Polyamide resin of 0 mg KOH / g, melt viscosity 3000 mPa · S (200 ° C.), dissolution rate with respect to organic acid 0.3 mm / 30 minutes, filler of aluminum hydroxide (made by Showa Denko, trade name: Hygilite H-42, average What dispersed 20 volume% of the particle size 1.1 micrometer) was used.

(脱脂、表面調整)
エースクリーンA−220(奥野製薬製、商品名)40g/Lを純水に溶解した処理液を45℃に設定し、得られた二次成型品(試料)を、該処理液中に15分間浸漬後、さらに45℃の湯に5分間浸漬、その後イオン交換水で十分洗浄して、脱脂した。
(Degreasing, surface adjustment)
A processing solution obtained by dissolving 40 g / L of A-screen A-220 (trade name, manufactured by Okuno Pharmaceutical Co., Ltd.) in pure water was set at 45 ° C., and the obtained secondary molded product (sample) was placed in the processing solution for 15 minutes. After soaking, it was further immersed in hot water at 45 ° C. for 5 minutes, and then thoroughly washed with ion-exchanged water and degreased.

コンディショナー3320(シプレー製、商品名)100ml/Lを純水に添加した処理液を45℃に設定し、脱脂した試料を、該処理液中に15分間浸漬後、イオン交換水で十分洗浄して、表面調整を行った。なお、この工程は導体形成部となるレジスト溝部に確実に処理液を浸透させるために減圧下で行うことが好ましく、本実施例でも減圧下で行った。   A treatment solution in which 100 ml / L of conditioner 3320 (product name of Shipley) was added to pure water was set at 45 ° C., and the degreased sample was immersed in the treatment solution for 15 minutes, and then thoroughly washed with ion-exchanged water. The surface was adjusted. Note that this step is preferably performed under reduced pressure in order to ensure that the processing liquid penetrates into the resist groove portion serving as the conductor forming portion, and was also performed under reduced pressure in this example.

(プレディップ)
塩化ナトリウム(180g/L)、塩酸(80ml/L)、及びOS−1505〔シプレイ・ファーイースト(株)製、商品名:塩酸(16%)、尿素(22%)及びDーソルビトール(10%)の水溶液〕(20ml/L)のそれぞれ同体積を混合して処理液を調製し、この処理液を45℃の温度に設定して、その中に、表面調整された試料を3分間浸漬して、プレディップを行った。
(Pre-dip)
Sodium chloride (180 g / L), hydrochloric acid (80 ml / L), and OS-1505 [manufactured by Shipley Far East Co., Ltd., trade names: hydrochloric acid (16%), urea (22%) and D-sorbitol (10%) The aqueous solution] (20 ml / L) was mixed in the same volume to prepare a treatment liquid. The treatment liquid was set at a temperature of 45 ° C., and the surface-adjusted sample was immersed in it for 3 minutes. , Did a pre-dip.

(触媒付与、触媒活性化)
塩化ナトリウム(180g/L)、塩酸(100ml/L)、OS−1505〔シプレイ・ファーイースト(株)製、商品名〕(20ml/L)、及びOS−1558〔シプレイ・ファーイースト(株)製、商品名:塩酸(12%)及び塩化第一銅(12%)を含有した塩化パラジウム水溶液〕(20ml/L)のそれぞれ同体積を混合して処理液を調製し、この処理液を30℃の温度に設定して、その中にプレディップされた試料を8分間浸漬し、その後、該試料をイオン交換水で洗浄して、触媒付与を行った。
(Catalyst application, catalyst activation)
Sodium chloride (180 g / L), hydrochloric acid (100 ml / L), OS-1505 [manufactured by Shipley Far East Co., Ltd., trade name] (20 ml / L), and OS-1558 [manufactured by Shipley Far East Co., Ltd.] , Trade name: Palladium chloride aqueous solution containing hydrochloric acid (12%) and cuprous chloride (12%)] (20 ml / L) were mixed in the same volume to prepare a treatment solution. The sample that had been pre-dipped therein was immersed for 8 minutes, and then the sample was washed with ion-exchanged water to give a catalyst.

触媒付与の後、OS−1560〔シプレイ・ファーイースト(株)製、商品名:硫酸(30%)及び硼弗化水素酸(15%)の水溶液〕(20ml/L)からなる処理液を30℃の温度に設定し、この処理液中に試料を2分間浸漬して触媒活性化を行い、その後、試料をイオン交換水で洗浄した。   After the catalyst was applied, a treatment solution consisting of OS-1560 [manufactured by Shipley Far East, trade name: aqueous solution of sulfuric acid (30%) and borohydrofluoric acid (15%)] (20 ml / L) The temperature was set to 0 ° C., the sample was immersed in this treatment solution for 2 minutes to activate the catalyst, and then the sample was washed with ion-exchanged water.

(レジスト樹脂の溶解、除去)
図2に示す蒸気洗浄装置に、触媒付与、触媒活性化がされた二次成型品を入れ、IPA蒸気及び液滴に30分間接触させて、レジスト樹脂の溶解、除去を行った。その後残留したレジスト樹脂中に分散されたフィラーを除去するために純水中で超音波洗浄を5分間実施した。
(Resolution and removal of resist resin)
In the steam cleaning apparatus shown in FIG. 2, the secondary molded product to which the catalyst was applied and the catalyst was activated was put, and contacted with the IPA vapor and droplets for 30 minutes to dissolve and remove the resist resin. Thereafter, in order to remove the filler dispersed in the remaining resist resin, ultrasonic cleaning was performed in pure water for 5 minutes.

(酸活性)
得られた試料を、45℃に設定した、50ml/Lの硫酸水溶液中に2分間浸漬し、その後イオン交換水で十分洗浄を行った。
(Acid activity)
The obtained sample was immersed in a 50 ml / L sulfuric acid aqueous solution set at 45 ° C. for 2 minutes, and then sufficiently washed with ion-exchanged water.

(無電解銅めっき)
OS−1598M(48ml/L)、OS−1598A(10ml/L)、OS−1598R(2ml/L)、OS−1120SR(2.1ml/L)、CupZ(23ml/L)、及びCupY(12ml/L)〔それぞれシプレイ・ファーイースト(株)製の無電解銅めっき液、商品名〕のそれぞれ同体積を混合してめっき液を調製し、次いで、めっき液を45℃の温度に設定して、その中に試料を15分間浸漬し、無電解銅めっきを行った。浸漬後、試料をイオン交換水で洗浄した。
(Electroless copper plating)
OS-1598M (48 ml / L), OS-1598A (10 ml / L), OS-1598R (2 ml / L), OS-1120SR (2.1 ml / L), CupZ (23 ml / L), and CupY (12 ml / L) L) [each electroless copper plating solution manufactured by Shipley Far East Co., Ltd., trade name] are mixed to prepare a plating solution, and then the plating solution is set to a temperature of 45 ° C., The sample was immersed in it for 15 minutes, and electroless copper plating was performed. After immersion, the sample was washed with ion exchange water.

(電気銅めっき)
水洗後の試料に、上記と同様にして酸活性処理を施した後、電気銅めっきを行った。すなわち、硫酸銅(220g/L)と硫酸(60g/L)の同体積を混合してめっき液を調製し、次いで、めっき液を25℃の温度に設定して、その中に試料を浸漬し、2A/dmの電流密度で20分間通電することにより、厚み約15μmのめっき層を形成し、三次元射出成型回路部品を得た。
(Electro copper plating)
The water-washed sample was subjected to an acid activation treatment in the same manner as described above, and then subjected to electrolytic copper plating. That is, the same volume of copper sulfate (220 g / L) and sulfuric acid (60 g / L) were mixed to prepare a plating solution, and then the plating solution was set at a temperature of 25 ° C. and the sample was immersed therein. By energizing for 20 minutes at a current density of 2 A / dm 2 , a plating layer having a thickness of about 15 μm was formed to obtain a three-dimensional injection molded circuit component.

なお、上記の二次成型後の工程(例えば、レジスト樹脂の溶解、除去)においては、1000個の試料(二次成型品)を一度に処理した。これは、下記の比較例でも同様である。又、無電解銅めっき、電気銅めっきの方法としては、回転カゴに試料を入れて、カゴを回転させながらめっきを行うバレルめっき法を用いた。この方法は、二次成型品が小さい場合等では有効である。又、試料同士の動きを良くすること及びめっき液の攪拌を効率的に行う目的から、バレル内にめっき液を吹き込みながら行った。これにより異常析出による回路同士のブリッジ、品質のばらつきの抑制ができる。   In the step after the secondary molding (for example, dissolution and removal of resist resin), 1000 samples (secondary molded products) were processed at a time. The same applies to the following comparative examples. Moreover, as a method of electroless copper plating and electrolytic copper plating, a barrel plating method was used in which a sample was placed in a rotating basket and plating was performed while rotating the basket. This method is effective when the secondary molded product is small. Further, in order to improve the movement between samples and to efficiently stir the plating solution, the plating solution was blown into the barrel. Thereby, the bridge | bridging of circuits by abnormal precipitation and the dispersion | variation in quality can be suppressed.

上記の工程により、ねらい通りの三次元回路を形成することができた。外観歩留まりは95%であった。レジスト樹脂層の溶解除去に要したIPAは1Lで、同じ液で同様の操作を5回繰り返すことが可能であった。   Through the above process, the intended three-dimensional circuit could be formed. The appearance yield was 95%. The IPA required for dissolving and removing the resist resin layer was 1 L, and the same operation could be repeated five times with the same solution.

比較例1
1次成型品の成型、粗面化、二次成型品の成型、脱脂、表面調整、プレディップ及び触媒付与、触媒活性化は、実施例1と同様に行った。その後、レジスト樹脂の溶解、除去を、80℃に加温した3LのIPA中で、攪拌しながら30分間、試料を浸漬することにより実施した。溶解したレジスト樹脂成分の再付着が見られたため、同様の処理をさらに2回繰り返した。その後、実施例1と同様に超音波洗浄を5分間実施した後、実施例1と同様にして酸活性、無電解銅めっき及び電気銅めっきを行って、三次元射出成型回路部品を得た。
Comparative Example 1
The molding of the primary molded product, roughening, molding of the secondary molded product, degreasing, surface adjustment, pre-dip and catalyst application, and catalyst activation were performed in the same manner as in Example 1. Thereafter, the resist resin was dissolved and removed by immersing the sample in 3 L of IPA heated to 80 ° C. for 30 minutes with stirring. Since re-adhesion of the dissolved resist resin component was observed, the same treatment was repeated two more times. Thereafter, ultrasonic cleaning was performed for 5 minutes in the same manner as in Example 1, and then acid activity, electroless copper plating and electrolytic copper plating were performed in the same manner as in Example 1 to obtain a three-dimensional injection molded circuit component.

歩留まりは70%であった。不良の大半はレジスト残と回路の欠損であった。欠損が多発した理由は、処理時間が長いこと及び過剰な攪拌によるパラジウムの脱落にあると推測される。又、レジスト樹脂層の溶解除去に要したIPAは9Lで、処理時間も120分を要した。   The yield was 70%. Most of the defects were resist residues and missing circuits. It is presumed that the reason for the frequent occurrence of defects is that the treatment time is long and palladium is dropped due to excessive stirring. The IPA required for dissolving and removing the resist resin layer was 9 L, and the processing time was 120 minutes.

比較例2
1次成型品の成型、粗面化、二次成型品の成型、脱脂、表面調整、プレディップ及び触媒付与、触媒活性化は、実施例1と同様に行った。その後、レジスト樹脂の溶解、除去を、75℃に加温した3Lの30重量%の酢酸中で攪拌しながら、30分間、試料を浸漬することにより実施した。溶解したレジスト樹脂成分の再付着が見られたため、同様の処理をさらに2回繰り返した。その後、実施例1と同様に超音波洗浄を5分間実施した後、実施例1と同様にして酸活性、無電解銅めっき及び電気銅めっきを行って、三次元射出成型回路部品を得た。
Comparative Example 2
The molding of the primary molded product, roughening, molding of the secondary molded product, degreasing, surface adjustment, pre-dip and catalyst application, and catalyst activation were performed in the same manner as in Example 1. Thereafter, the resist resin was dissolved and removed by immersing the sample for 30 minutes while stirring in 3 L of 30% by weight acetic acid heated to 75 ° C. Since re-adhesion of the dissolved resist resin component was observed, the same treatment was repeated two more times. Thereafter, ultrasonic cleaning was performed for 5 minutes in the same manner as in Example 1, and then acid activity, electroless copper plating and electrolytic copper plating were performed in the same manner as in Example 1 to obtain a three-dimensional injection molded circuit component.

得られた三次元射出成型回路部品はめっきの析出性が悪く、レジストによるパターン通りに回路が描けず、歩留まりは10%であった。原因は、レジスト除去工程でパラジウムが酸に溶解したものと推測される。   The obtained three-dimensional injection-molded circuit component had poor plating depositability, a circuit could not be drawn according to the pattern of the resist, and the yield was 10%. The cause is presumed that palladium was dissolved in the acid in the resist removal step.

比較例3
1次成型品の成型、粗面化、二次成型品の成型、脱脂、表面調整、プレディップ及び触媒付与、触媒活性化は、実施例1と同様に行った。その後、実施例1と同様にして酸活性及び無電解銅めっきを行った。無電解銅めっき後、比較例1と同様にして、レジスト樹脂の溶解、除去を行った。溶解したレジスト樹脂成分の再付着が見られたため、同様の処理をさらに2回繰り返した。その後、実施例1と同様に超音波洗浄を5分間実施した後、実施例1と同様の条件で酸活性処理を行い、さらに実施例1と同様の条件で電気銅めっきを行って、三次元射出成型回路部品を得た。
Comparative Example 3
The molding of the primary molded product, roughening, molding of the secondary molded product, degreasing, surface adjustment, pre-dip and catalyst application, and catalyst activation were performed in the same manner as in Example 1. Thereafter, acid activity and electroless copper plating were performed in the same manner as in Example 1. After electroless copper plating, the resist resin was dissolved and removed in the same manner as in Comparative Example 1. Since re-adhesion of the dissolved resist resin component was observed, the same treatment was repeated two more times. Thereafter, ultrasonic cleaning was performed for 5 minutes in the same manner as in Example 1, and then an acid activation treatment was performed under the same conditions as in Example 1. Further, electrolytic copper plating was performed under the same conditions as in Example 1, and three-dimensional An injection molded circuit component was obtained.

歩留まりは50%であった。不良の内容は回路立ち上がり部に向かって、回路が細くなるというものであった。無電解銅めっき工程においてレジスト溝部のアスペクト比が大きいために、特に回路立ち上がり部分で銅イオンの供給が遅れ、めっきが十分に成長できないことによると考えられる。又、良品についても、回路のL/Sのばらつきが比較的大きかった。レジスト上に析出した銅めっきを引きちぎることによると推測される。   The yield was 50%. The content of the defect is that the circuit becomes thinner toward the rising edge of the circuit. In the electroless copper plating process, since the aspect ratio of the resist groove is large, the supply of copper ions is delayed particularly at the circuit rising portion, and the plating cannot be sufficiently grown. Moreover, the non-defective product also had a relatively large variation in circuit L / S. It is presumed that the copper plating deposited on the resist is torn off.

以上の、実施例、比較例の結果は、本発明の方法により、所望の導体回路パターンを精度良く形成することが可能となり、又有機溶剤を大量に使用する必要もなく、多数の回路部品を同時に製造することも可能となることを示している。   As a result of the above examples and comparative examples, the method of the present invention makes it possible to accurately form a desired conductor circuit pattern, and it is not necessary to use a large amount of an organic solvent. It also shows that it can be manufactured at the same time.

本発明の一例を示す工程図である。It is process drawing which shows an example of this invention. 本発明の実施に用いられる蒸気洗浄装置を示す概念図である。It is a conceptual diagram which shows the steam cleaning apparatus used for implementation of this invention. 本発明の他の一例を示す工程図である。It is process drawing which shows another example of this invention. 実施例、比較例の回路パターンの(A)平面図及び(B)側面図である。It is the (A) top view and (B) side view of the circuit pattern of an Example and a comparative example.

符号の説明Explanation of symbols

1 一次成型品
2 回路を形成すべき部分
3 樹脂層
4 触媒
5 IPA槽
6 ヒータ
7 二次成型品
8 バレル
9 モータ
10 冷却管
11、12 めっき層

DESCRIPTION OF SYMBOLS 1 Primary molded product 2 The part which should form a circuit 3 Resin layer 4 Catalyst 5 IPA tank 6 Heater 7 Secondary molded product 8 Barrel 9 Motor 10 Cooling pipe 11, 12 Plating layer

Claims (8)

回路部品の基板を構成する一次成型品の、回路を形成すべき部分以外の表面に、低沸点溶剤に可溶な樹脂からなる樹脂層を形成して二次成型品を得る工程、該二次成型品の表面の回路を形成すべき部分に触媒を付与する工程、触媒の付与後、該二次成型品を、該低沸点溶剤の蒸気及び/又は該低沸点溶剤の液滴と接触させて該樹脂層を溶解、除去する工程、及び、樹脂層の溶解、除去後、該触媒付与部分に無電解めっきにより導体回路層を形成する工程を有することを特徴とする三次元射出成型回路部品の製造方法。   A step of obtaining a secondary molded product by forming a resin layer made of a resin soluble in a low boiling point solvent on a surface other than a portion where a circuit is to be formed of a primary molded product constituting a circuit component substrate; A step of applying a catalyst to a portion of the surface of the molded product where a circuit is to be formed; after applying the catalyst, the secondary molded product is brought into contact with the low boiling solvent vapor and / or the low boiling solvent droplets; A three-dimensional injection molded circuit component comprising: a step of dissolving and removing the resin layer; and a step of forming a conductive circuit layer by electroless plating on the catalyst-applied portion after the resin layer is dissolved and removed. Production method. 回路部品の基板を構成する一次成型品の、回路を形成すべき部分以外の表面に、低沸点溶剤に可溶な樹脂からなる樹脂層を形成して二次成型品を得る工程、該二次成型品の表面の回路を形成すべき部分に触媒を付与する工程、触媒の付与後、該二次成型品の回路を形成すべき部分に無電解めっきを施す工程、及び、無電解めっきを施した後、該二次成型品を、該低沸点溶剤の蒸気及び/又は該低沸点溶剤の液滴と接触させて該樹脂層を溶解、除去する工程を有することを特徴とする三次元射出成型回路部品の製造方法。   A step of obtaining a secondary molded product by forming a resin layer made of a resin soluble in a low boiling point solvent on a surface other than a portion where a circuit is to be formed of a primary molded product constituting a circuit component substrate; A step of applying a catalyst to a portion of the surface of the molded product where the circuit is to be formed, a step of applying electroless plating to the portion of the secondary molded product where the circuit is to be formed, and a step of applying electroless plating. Then, the secondary molded article is brought into contact with the low boiling point solvent vapor and / or the low boiling point solvent droplets to dissolve and remove the resin layer, and the three-dimensional injection molding Circuit component manufacturing method. 二次成型品と、低沸点溶剤の蒸気及び/又は低沸点溶剤の液滴との接触を、該低沸点溶剤の蒸気及び液滴が通過可能である容器内に二次成型品を保持し、該容器を撹拌又は振動させながら行うことを特徴とする請求項1又は請求項2に記載の三次元射出成型回路部品の製造方法。   Holding the secondary molded product in a container through which the low-boiling solvent vapor and droplets can pass through contact between the secondary molded product and the low-boiling solvent vapor and / or low-boiling solvent droplets; The method for producing a three-dimensional injection molded circuit component according to claim 1 or 2, wherein the container is agitated or vibrated. 該一次成型品が、合成樹脂の射出成型により形成されたものであることを特徴とする請求項1ないし請求項3のいずれかに記載の三次元射出成型回路部品の製造方法。   4. The method for manufacturing a three-dimensional injection molded circuit component according to claim 1, wherein the primary molded product is formed by injection molding of a synthetic resin. 該一次成型品の表面を粗面化した後、該樹脂層を形成することを特徴とする請求項1ないし請求項4のいずれかに記載の三次元射出成型回路部品の製造方法。   The method for producing a three-dimensional injection molded circuit component according to any one of claims 1 to 4, wherein the resin layer is formed after the surface of the primary molded product is roughened. 低沸点溶剤に可溶な樹脂からなる樹脂層の形成が、該樹脂の射出成型により行われることを特徴とする請求項1ないし請求項5のいずれかに記載の三次元射出成型回路部品の製造方法。   6. The production of a three-dimensional injection molded circuit component according to claim 1, wherein the resin layer made of a resin soluble in a low boiling point solvent is formed by injection molding of the resin. Method. 該低沸点溶剤がイソプロピルアルコールであることを特徴とする請求項1ないし請求項6のいずれかに記載の三次元射出成型回路部品の製造方法。   The method for producing a three-dimensional injection molded circuit component according to any one of claims 1 to 6, wherein the low boiling point solvent is isopropyl alcohol. 低沸点溶剤に可溶な樹脂が、ポリアミド(A)とポリアミドポリアミン(B)とをアミド交換反応させてなるポリアミド樹脂であって、
(1)ポリアミド(A)が、
a)二量体含有量が65重量%以上のダイマー酸又はそのアミド生成可能な誘導体を、全カルボキシル基の20当量%以上含有するジカルボン酸成分と、
b)下記式(I)
Figure 2005217156

〔式中、Rは、それぞれ独立に水素原子又は炭素原子数1〜6のアルキル基であり、Yは、水素原子、RNH又はROH(Rは、炭素原子数1〜6のアルキレン基)である。〕で表されるピペラジン化合物、及び
下記式(II)
Figure 2005217156

〔式中、Rはそれぞれ独立に水素原子又は炭素原子数1〜6のアルキル基であり、Rは二価の脂肪族炭化水素基であり、Yは、水素原子、RNH又はROH(Rは、炭素原子数1〜6のアルキレン基)である。〕で表されるジピベリジル化合物からなる群より選ばれる少なくとも一種の含窒素複素環化合物を全アミノ基の20当量%以上含有するジアミン成分を、
全アミン当量の全カルボキシル当量に対する比が0.8:1〜1.3:1の範囲内で重縮合して得られるポリアミドであり、
(2)ポリアミドポリアミン(B)が、
c)二量体含有量が65重量%以上のダイマー酸又はそのアミド生成可能な誘導体を、全カルボキシル基の20当量%以上含有するジカルボン酸成分と、
d)ポリアルキレンポリアミンを、
全アミン当量の全カルボキシル当量に対する比が1.3:1〜3.0:1の範囲内で重縮合して得られるポリアミドポリアミンであり、かつ、
(3)アミド交換反応後に下記物性
i)軟化点が80〜190℃、
ii)酸価が0〜5mgKOH/g、
iii)アミン価が10〜100mgKOH/g、
iv)200℃で測定した溶融粘度が350〜80,000mPa・S、及び
v)濃度30重量%の酢酸水溶液100mlに60℃で30分間浸漬して測定した溶解速度が0.2mm/30分以上
を有することを特徴とする請求項1ないし請求項7のいずれかに記載の三次元射出成型回路部品の製造方法。

The resin soluble in the low boiling point solvent is a polyamide resin obtained by subjecting polyamide (A) and polyamide polyamine (B) to an amide exchange reaction,
(1) Polyamide (A)
a) a dicarboxylic acid component containing a dimer acid having a dimer content of 65% by weight or more or an amide-forming derivative thereof in an amount of 20 equivalent% or more of the total carboxyl groups;
b) The following formula (I)
Figure 2005217156

[Wherein, R 1 is independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and Y is a hydrogen atom, RNH 2 or ROH (R is an alkylene group having 1 to 6 carbon atoms). It is. A piperazine compound represented by formula (II):
Figure 2005217156

[Wherein, R 1 is independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R 2 is a divalent aliphatic hydrocarbon group, and Y is a hydrogen atom, RNH 2 or ROH ( R is an alkylene group having 1 to 6 carbon atoms. A diamine component containing at least one nitrogen-containing heterocyclic compound selected from the group consisting of the dipiveridyl compounds represented by the formula:
A polyamide obtained by polycondensation within a ratio of total amine equivalent to total carboxyl equivalent of 0.8: 1 to 1.3: 1,
(2) Polyamide polyamine (B)
c) a dicarboxylic acid component containing a dimer acid having a dimer content of 65% by weight or more or an amide-forming derivative thereof in an amount of 20 equivalent% or more of the total carboxyl groups;
d) a polyalkylene polyamine,
A polyamide polyamine obtained by polycondensation within a ratio of total amine equivalent to total carboxyl equivalent of 1.3: 1 to 3.0: 1, and
(3) The following physical properties after the amide exchange reaction i) Softening point of 80-190 ° C,
ii) Acid value of 0-5 mg KOH / g,
iii) an amine value of 10 to 100 mg KOH / g,
iv) The melt viscosity measured at 200 ° C. is 350 to 80,000 mPa · S, and v) The dissolution rate measured by immersing in 100 ml of acetic acid aqueous solution with a concentration of 30% by weight at 60 ° C. for 30 minutes is 0.2 mm / 30 minutes or more. The method for manufacturing a three-dimensional injection molded circuit component according to any one of claims 1 to 7, wherein:

JP2004021508A 2004-01-29 2004-01-29 Manufacturing method of three-dimensional injection molded circuit Pending JP2005217156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021508A JP2005217156A (en) 2004-01-29 2004-01-29 Manufacturing method of three-dimensional injection molded circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021508A JP2005217156A (en) 2004-01-29 2004-01-29 Manufacturing method of three-dimensional injection molded circuit

Publications (1)

Publication Number Publication Date
JP2005217156A true JP2005217156A (en) 2005-08-11

Family

ID=34905129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021508A Pending JP2005217156A (en) 2004-01-29 2004-01-29 Manufacturing method of three-dimensional injection molded circuit

Country Status (1)

Country Link
JP (1) JP2005217156A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410011A (en) * 2015-07-27 2017-02-15 广东德力光电有限公司 3D printing packaging method of flip chip
EP3170853A4 (en) * 2014-07-15 2017-08-02 Sumitomo Electric Industries, Ltd. Highly flowable polyamide resin
CN108235567A (en) * 2016-12-22 2018-06-29 东洋铝株式会社 Circuit board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3170853A4 (en) * 2014-07-15 2017-08-02 Sumitomo Electric Industries, Ltd. Highly flowable polyamide resin
CN106410011A (en) * 2015-07-27 2017-02-15 广东德力光电有限公司 3D printing packaging method of flip chip
CN108235567A (en) * 2016-12-22 2018-06-29 东洋铝株式会社 Circuit board

Similar Documents

Publication Publication Date Title
JP2012521486A (en) Plastic articles optionally with partial metal coating
TWI699454B (en) Manufacturing method of plated parts, plated parts, catalyst activity inhibitors and composite materials for electroless plating
JP6250903B2 (en) Manufacturing method of three-dimensional conductive pattern structure and three-dimensional molding material used therefor
JP2006229031A (en) Method of manufacturing wiring board
CN1238442C (en) Resin material for decoration and sweller for deterging and eliminating the resin material
JP2005217156A (en) Manufacturing method of three-dimensional injection molded circuit
KR20010062231A (en) Method for partially plating on a base
JPH04228578A (en) Electroless copper plating method and apparatus
JP2003509590A (en) Method for forming conductive pattern on electrically insulating substrate
JP4036571B2 (en) Substrate partial plating method
JP2006104504A (en) Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same
CN1083234C (en) Process for producing through-connected printed circuit board and multilayered printed circuit board
JP4053369B2 (en) Organic acid soluble polyamide resin, method for producing the same, and method for producing three-dimensional injection molded circuit components
JP4501442B2 (en) Manufacturing method of three-dimensional injection molded circuit components
JP4471088B2 (en) Organic acid-soluble polyamide resin composition and method for producing three-dimensional injection molded circuit component
JP2019131839A (en) Method of manufacturing plating film coated body, and pretreatment liquid
WO2012157135A1 (en) Method for manufacturing molded circuit board
JP4331840B2 (en) Fine plating method
JP4803420B2 (en) Injection molded circuit components and manufacturing method thereof
JP2007077439A (en) Method for metallizing surface of polyimide resin material
JP6828115B2 (en) Manufacturing method of plated parts
JP2019157142A (en) Plated resin molding and method for manufacturing the same
JP6989717B2 (en) Manufacturing method of plated parts
US20100080969A1 (en) Method for metallizing a component
TW201800334A (en) Method for recovering phosphoric acid from a spent phosphoric acid/alkali metal permanganate salt etching solution