JP2005216574A - High-frequency induction heating method, heating method of support body for electronic photograph photoreceptor, and heating method of electronic photograph photoreceptor - Google Patents

High-frequency induction heating method, heating method of support body for electronic photograph photoreceptor, and heating method of electronic photograph photoreceptor Download PDF

Info

Publication number
JP2005216574A
JP2005216574A JP2004019301A JP2004019301A JP2005216574A JP 2005216574 A JP2005216574 A JP 2005216574A JP 2004019301 A JP2004019301 A JP 2004019301A JP 2004019301 A JP2004019301 A JP 2004019301A JP 2005216574 A JP2005216574 A JP 2005216574A
Authority
JP
Japan
Prior art keywords
heating
support
frequency induction
length
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004019301A
Other languages
Japanese (ja)
Inventor
Momosuke Takaichi
桃介 高市
Akira Shimada
明 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004019301A priority Critical patent/JP2005216574A/en
Publication of JP2005216574A publication Critical patent/JP2005216574A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent local concentration of an eddy current with a simple tooling change and to suppress the width of temperature irregularity to around 10°C in heating a plurality of kinds of metallic cylinder drums different in length by using high-frequency induction heating. <P>SOLUTION: This application is related to a method for heating a metallic cylinder drum by using high-frequency induction heating, and, for more detail, related to a method for heating a tubular support body for an electronic photograph photoreceptor and a tubular electronic photograph photoreceptor, and, for still more detail, a setup method in response to a cylinder length difference in high-frequency induction heating. In the application, a tool formed of the same material as that of the support body and having the same outside diameter as that thereof is attached to a photosensitive drum support body; and the total of the axial length of the tool and the length of the photosensitive drum support body is set equal to the length of a high-frequency current generation effective range of a high-frequency induction coil to prevent temperature irregularity due to local concentration of an eddy current. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は高周波誘導加熱を用いて金属性のシリンダードラムを加熱する方法に関するものであり、詳しくは筒状の電子写真感光体用支持体、及び筒状の電子写真感光体を加熱する方法に関するもので、更に詳しくは高周波誘導加熱におけるシリンダー長さ違い対応段取り方法に関するものである。   The present invention relates to a method of heating a metallic cylinder drum using high-frequency induction heating, and more particularly to a support for a cylindrical electrophotographic photosensitive member and a method for heating a cylindrical electrophotographic photosensitive member. More specifically, the present invention relates to a setup method for dealing with different cylinder lengths in high frequency induction heating.

本発明で言う金属製のシリンダードラムとは、電子写真感光体用支持体に係るものである。また本発明で言う電子写真感光体とは、従来公知の有機光導体の電子写真プロセスによる写真方式に係るものである。   The metal cylinder drum referred to in the present invention relates to a support for an electrophotographic photosensitive member. The electrophotographic photosensitive member referred to in the present invention relates to a photographic system by a conventionally known organic photoconductor electrophotographic process.

電子写真感光体の製造方法としては、例えば支持体としてアルミニウム等の円筒形金属製シリンダーを用いる場合、該シリンダーの表面に有機溶剤等を媒体とした電子写真感光体塗料を浸漬、スプレー、ローラー等の塗布手段を用いてコーティングを行い、これを加熱することにより塗膜を乾燥、及び若しくは硬化させることで感光層のコーティング膜を有する電子写真感光体部材を得る方法が一般的である。   As a method for producing an electrophotographic photoreceptor, for example, when a cylindrical metal cylinder such as aluminum is used as a support, an electrophotographic photoreceptor coating medium using an organic solvent or the like is immersed on the surface of the cylinder, spray, roller, etc. In general, a method of obtaining an electrophotographic photosensitive member having a coating film of a photosensitive layer by coating with a coating means and drying and / or curing the coating film by heating.

上記製造方法のうち塗膜を乾燥、及び若しくは硬化させる加熱方法として熱風加熱乾燥法や、電磁誘導加熱の原理を用いた加熱方法が知られている(特許文献1、2等)。しかし、特許文献1で開示されたシリンダー内面から熱風を噴出して内部加熱を行う方法は、棒状の熱風吹き出し装置を、シリンダーの長さ以上のストロークを持たせてコンベア−の定位置で精度良く上下させねばならず、自動機械が複雑化し、装置の高額化、信頼性の低下をもたらすものであった。また特許文献2で開示されたシリンダーの外側に螺旋状に巻きつけた電磁誘導コイルを用いた誘導加熱方法は、螺旋状の電磁誘導コイルをシリンダーの長さ以上のストロークを持たせてコンベアの定位置で精度良く上下させねばならず、やはり自動機械が複雑化し、装置の高額化、信頼性低下をもたらすものであった。
特開平10−239868号公報 特開平9−114111号公報
Among the above production methods, as a heating method for drying and / or curing a coating film, a hot air heating drying method and a heating method using the principle of electromagnetic induction heating are known (Patent Documents 1, 2 and the like). However, the method of jetting hot air from the inner surface of the cylinder disclosed in Patent Document 1 performs internal heating with a rod-shaped hot air blowing device having a stroke longer than the length of the cylinder and accurately at a fixed position of the conveyor. It had to be moved up and down, and the automatic machine became complicated, resulting in an increase in the cost of the apparatus and a decrease in reliability. In addition, the induction heating method using an electromagnetic induction coil spirally wound around the outside of a cylinder disclosed in Patent Document 2 has a stroke longer than the length of the cylinder and the conveyor is fixed. The position had to be moved up and down with high precision, and the automatic machine was complicated, resulting in an increase in the cost of the apparatus and a decrease in reliability.
Japanese Patent Laid-Open No. 10-239868 JP-A-9-114111

そこで本発明者らは、電子写真感光体やその基体の加熱方法として、高周波誘導加熱の原理を用いる方法に着目した。この方法は、詳しくは、図1で示すように、ループ状の輪に囲まれるような鞍形状をした高周波誘導加熱用のコイルを、電子写真感光体ドラム支持体の半周を囲む形で配置し、その鞍形状コイルに高周波電流を流し、支持体を回転させながら高周波誘導加熱することで感光層塗膜を乾燥・硬化させる方法である。この方法によれば、一般的な熱風乾燥方法に比べ、塗膜は支持体側から加熱されるために蒸発した溶剤は表面から抜け易く、更に熱風の偏向流れによる乾燥ムラ等の弊害も起こらない。また設定温度までの到達速さ、温度ムラの少なさ等、高周波誘導加熱方法は熱風乾燥方法に比べ優れている部分が多くある。以上のように、ループ状の鞍形コイルを用いた高周波誘導加熱による電子写真感光体の加熱方法は、安価で簡素、しかも品質に優れた乾燥・硬化装置を実現することができる。しかしいっぽう、工夫すべき事柄として、感光ドラム支持体の軸方向長さと、高周波誘導コイル高さ方向の高周波電流発生有効範囲を、製品によりその都度精密にそろえる必要がある。以下、その理由を説明する。   Therefore, the present inventors paid attention to a method using the principle of high-frequency induction heating as a method for heating the electrophotographic photosensitive member and its substrate. Specifically, as shown in FIG. 1, this method arranges a high-frequency induction heating coil having a bowl shape surrounded by a loop-shaped ring so as to surround a half circumference of the electrophotographic photosensitive drum support. The photosensitive layer coating film is dried and cured by applying a high-frequency current to the saddle-shaped coil and performing high-frequency induction heating while rotating the support. According to this method, compared with a general hot air drying method, since the coating film is heated from the support side, the evaporated solvent is easy to escape from the surface, and there is no adverse effect such as drying unevenness due to the deflected flow of hot air. In addition, the high-frequency induction heating method has many parts that are superior to the hot-air drying method, such as the speed to reach the set temperature and the low temperature unevenness. As described above, the heating method of the electrophotographic photosensitive member by high frequency induction heating using the loop-shaped saddle coil can realize a drying / curing apparatus that is inexpensive, simple, and excellent in quality. However, as a matter to be devised, it is necessary to precisely align the axial length of the photosensitive drum support and the effective range of high-frequency current generation in the height direction of the high-frequency induction coil for each product. The reason will be described below.

図1はループ状の鞍形コイルを用いた高周波誘導加熱による、筒状金属性支持体の加熱方法の例である。図1で表したように高周波誘導加熱用のループ状の鞍形コイルを、塗工した直後の電子写真用感光体支持体の半周を囲む形で配置し、コイルに高周波電流を流し、支持体を回転させながら高周波誘導加熱すると、感光層塗膜を乾燥・硬化することができる。ここで支持体の軸方向長さは、高周波誘導コイルの高さ方向において高周波電流発生有効範囲と同一でなければならない。理由は、図6で表すように筒状金属性支持体端部が、高周波誘導コイルの電流発生範囲内側にあることで、筒状金属端部に渦電流が集中作用してしまうからである。この渦電流の集中作用は、ループ状鞍型高周波誘導コイルの有効長さに比べ、軸方向に長い金属基体からなる支持体を加熱すると、支持体の中央部温度と支持体の端部との温度ムラが著しく異なる結果になってしまう。また、支持体が誘導コイルより長すぎると、はみ出した支持体部分は渦電流が作用せず、温度が上昇していかない。   FIG. 1 shows an example of a method for heating a cylindrical metallic support by high-frequency induction heating using a loop-shaped saddle coil. As shown in FIG. 1, a loop-shaped saddle-shaped coil for high-frequency induction heating is arranged so as to surround the half circumference of the electrophotographic photoreceptor support immediately after coating, and a high-frequency current is passed through the coil to support the support. The photosensitive layer coating film can be dried and cured by high frequency induction heating while rotating. Here, the axial length of the support must be the same as the high-frequency current generation effective range in the height direction of the high-frequency induction coil. The reason is that, as shown in FIG. 6, the end of the cylindrical metallic support is inside the current generation range of the high-frequency induction coil, so that eddy currents concentrate on the end of the cylindrical metal. The concentration effect of this eddy current is that when the support made of a metal base that is long in the axial direction is heated compared to the effective length of the loop-shaped saddle type high frequency induction coil, the temperature of the center of the support and the end of the support This results in markedly different temperature variations. On the other hand, if the support is too longer than the induction coil, eddy currents do not act on the protruding support and the temperature does not rise.

いっぽう、良好な品質の電子写真用感光体を得るための感光層塗膜の乾燥・硬化温度条件は、その温度ムラ範囲を極力少なく押えることが必須であり、支持体の加熱温度ムラが大きい場合は、求められる感光層塗膜の乾燥・硬化温度条件から大幅に逸脱してしまうことになる。   On the other hand, the drying / curing temperature condition of the photosensitive layer coating to obtain a good quality electrophotographic photoreceptor is required to suppress the temperature unevenness range as much as possible, and the heating temperature unevenness of the support is large. Significantly deviates from the required drying / curing temperature conditions for the photosensitive layer coating film.

しかし、電子写真用の感光体ドラムは、その画像形成装置により感光体ドラム製品の長さは様々である。この課題の一般的な対策として、長さ違いドラムそれぞれ専用の高周波誘導コイルを用意し、交換して使う方法がある。   However, the length of electrophotographic photosensitive drums varies depending on the image forming apparatus. As a general countermeasure for this problem, there is a method in which a high-frequency induction coil dedicated to each drum of different lengths is prepared and used by replacing it.

しかし、
感光ドラム支持体の軸方向長さと、高周波誘導コイル高さ方向の高周波電流発生有効範囲長さを、製品によりその都度そろえるのは、乾燥・硬化装置の段取り替え、即ち誘導コイルの載せ替え、誘導コイルと感光ドラム支持体の位置調整に時間が掛かり、製品の長さ違い対応段取りに難点があった。
But,
The axial length of the photosensitive drum support and the effective range length of the high-frequency current generation in the height direction of the high-frequency induction coil are aligned each time depending on the product. It took time to adjust the position of the coil and the photosensitive drum support, and there was a difficulty in setting up the products with different lengths.

この発明では、感光ドラム支持体に支持体と同じ材質、同じ外径の治具を取付け、治具の軸方向長さと感光ドラム支持体長さの合計が、高周波誘導コイルの高周波電流発生有効範囲長さと同じになるようにした。   In the present invention, a jig having the same material and the same outer diameter as the support is attached to the photosensitive drum support, and the total length of the jig in the axial direction and the length of the photosensitive drum support is the length of the high frequency current generation effective range of the high frequency induction coil. To be the same.

以上説明したように本発明によれば、容易な段取り替えで渦電流の局部集中を防止でき、ムラの幅を10℃程度におさえることができる。   As described above, according to the present invention, local concentration of eddy currents can be prevented by easy changeover, and the width of unevenness can be suppressed to about 10 ° C.

上記の目的を達成するため本発明では、支持体にアルミニウム製の円筒形シリンダーを用いた電子写真用感光体の製造方法のなかで、塗布された感光層及び表面保護層の加熱乾燥および硬化方法において、熱風を用いることなく、電磁誘導コイルを用いることによって、加熱される支持体そのものの発熱から、塗膜を加熱乾燥および硬化することを特徴とする方法を用いた。   In order to achieve the above object, in the present invention, among the methods for producing an electrophotographic photoreceptor using an aluminum cylindrical cylinder as a support, a method for heating and drying the coated photosensitive layer and the surface protective layer. In the method, a method characterized in that the coating film was heated and dried and cured from the heat generated by the heated support itself by using an electromagnetic induction coil without using hot air.

すなわち電磁誘導コイルによる磁力線を感光層支持体であるアルミニウムシリンダーに作用させ、その結果発生する渦電流の作用で、支持体を直接加熱することで、極めて短時間に加熱設定温度まで到達できる高周波電磁誘導コイルによる加熱方法の原理を用いた。   In other words, the magnetic field generated by the electromagnetic induction coil is applied to the aluminum cylinder, which is the support for the photosensitive layer, and the support is directly heated by the action of the eddy current generated as a result. The principle of heating method by induction coil was used.

次に、安価で簡素、しかも容易な段取り替えで製品の長さ違い対応可能な方法を具体的に説明する。まず図1に示されるように、シリンダーを一本の電磁誘導コイルでシリンダー外周を半円周状に180度以内で囲み、これを上下二対用意し、更に感光ドラム支持体長手方向の軸に平行に対向するよう繋いだ。このような鞍形状をしたコイルは「一筆書き」の様に一本で成立させ、軽量かつ精度良く製作することが容易であることが特徴である。以下、このコイルを便宜上「ループ状コイル」と呼ぶ。   Next, a method that can cope with different product lengths by simple, easy and easy setup change will be described in detail. First, as shown in FIG. 1, a cylinder is surrounded by a single electromagnetic induction coil within 180 degrees in a semicircular shape, and two pairs of upper and lower parts are prepared, and the longitudinal axis of the photosensitive drum support is provided as an axis. They are connected in parallel. Such a saddle-shaped coil is characterized in that it is formed in a single manner as in “one-stroke writing”, and is lightweight and easy to manufacture with high accuracy. Hereinafter, this coil is referred to as a “loop coil” for convenience.

このループ状コイルは、形状が支持体の外周半円周状180度以内であることが好ましく、これにより製造装置の搬送コンベアの加熱工程部で、加熱する支持体又はコイルを支持体の半径方向に摺動させることで、例えば図5に示される一本流しラインのように、支持体を連続してよどみなく搬送することが可能である。   It is preferable that the shape of the loop-shaped coil is within 180 degrees of the outer peripheral semicircular shape of the support body, whereby the support body or coil to be heated is heated in the radial direction of the support body in the heating process section of the conveyor of the manufacturing apparatus For example, a single support line shown in FIG. 5 can be used to convey the support continuously and without stagnation.

また、ループ状コイルは軽量かつ精度良く製作することが容易であることから、支持体の外表面近傍まで、極限では1mm近辺まで摺動させ近づけることが可能である。この際、コイルと支持体の距離が10mmを超えて離間すると、電磁誘導による磁力線から発生する渦電流が著しく減少するので、コイルと支持体の距離は10mm以下が好ましい。   Further, since the loop-shaped coil is lightweight and easy to manufacture with high precision, it can be slid close to the outer surface of the support body, to the vicinity of 1 mm in the limit. At this time, if the distance between the coil and the support exceeds 10 mm, the eddy current generated from the lines of magnetic force due to electromagnetic induction is remarkably reduced. Therefore, the distance between the coil and the support is preferably 10 mm or less.

コイルの内側両サイドに銅板を貼り合わせると、加熱効率を上げることが可能となり好ましい。更に、コイルに冷却水を通水したパイプ等を接続すれば、温度の精密な調整が可能になると共に、熱暴走による過昇温を防止することが可能となり好ましい。   It is preferable to attach a copper plate to both inner sides of the coil because heating efficiency can be increased. Furthermore, it is preferable to connect a pipe or the like through which cooling water is passed to the coil, because it is possible to precisely adjust the temperature and to prevent excessive temperature rise due to thermal runaway.

次に本発明の骨格を成す、長さ違い対応段取り方法について図1、図2、図3及び図4に基づいて説明する。   Next, a setup method corresponding to different lengths, which constitutes the skeleton of the present invention, will be described with reference to FIG. 1, FIG. 2, FIG. 3, and FIG.

まず、図1のようにループ状コイルの高周波電流発生有効範囲の最大長さを、加熱対象である感光ドラム支持体の種類のうちで最も長いドラムに合わせる。次に実際に加熱する、軸方向長さがループ状コイルより短い感光ドラム支持体と同じ材質、同じ外径の長さ調整用部材を製作する。その際図2で示すように、調整用部材の軸方向長さと、加熱したい感光ドラム支持体長さの合計が、高周波誘導コイルの高周波電流発生有効範囲長さと同じになるようにする。製作した長さ調整部材を、図2で示すように金属基体から成る該支持体の端部に挿入し、該支持体と挿入された部材とを併せた長さが該コイルの長手方向の寸法と同一になるようにする。   First, as shown in FIG. 1, the maximum length of the high-frequency current generation range of the loop coil is adjusted to the longest drum among the types of photosensitive drum supports to be heated. Next, a length adjusting member having the same material and the same outer diameter as the photosensitive drum support whose axial length is shorter than that of the loop coil is actually manufactured. At that time, as shown in FIG. 2, the total length of the adjusting member in the axial direction and the length of the photosensitive drum support to be heated are set to be the same as the effective range of the high frequency current generation of the high frequency induction coil. The manufactured length adjusting member is inserted into the end of the support made of a metal base as shown in FIG. 2, and the combined length of the support and the inserted member is the dimension in the longitudinal direction of the coil. To be the same.

その後該支持体を高周波誘導加熱し、温度分布の誤差が規定範囲内に収まっていることを確認する。以上の手順で長さ違い対応段取りは終了である。   Thereafter, the support is subjected to high-frequency induction heating, and it is confirmed that the temperature distribution error is within a specified range. With the above procedure, the setup for handling different lengths is completed.

次に長さ調整用部材の挿入場所について説明する。図6に表すような渦電流の局部集中を防ぐ意味では、長さ調整用部材の挿入場所は、図3で示すように該支持体の軸方向取付け基準面の反対側に挿入したほうが望ましい。図3の挿入位置であれば、部材と支持体の合計長さはコイルの有効長さより長くても差し支えない。   Next, the insertion place of the length adjusting member will be described. In order to prevent local concentration of eddy currents as shown in FIG. 6, it is desirable to insert the length adjusting member on the opposite side of the support reference surface in the axial direction as shown in FIG. In the insertion position of FIG. 3, the total length of the member and the support may be longer than the effective length of the coil.

いっぽう、図2と図4で示すように長さ調整用部材を該支持体の軸方向取付け基準面に取り付けた場合、渦電流の局部集中を防ぐため、該支持体が高周波誘導コイルの高周波電流発生有効範囲の外に出ないようにする。以上、該支持体の取付け場所は、軸方向取付け基準面でも、或いはその反対側に挿入しても、いずれの場合でも原理的に同じであるが、ループ状コイルの汎用性を考慮すると、温度分布特性上では、図3のように長さ調整用部材の挿入場所を、感光ドラム支持体の軸方向取付け基準面の反対側に挿入したほうが好ましい。但し、きちんと寸法調整ができた後であれば、作業性が良いのは図2および図4の部材が下側にある形態のほうである。
(実施例)
On the other hand, as shown in FIGS. 2 and 4, when the length adjusting member is attached to the axial mounting reference surface of the support, the support is used to prevent the eddy current from being concentrated locally. Keep out of the effective range. As described above, the mounting location of the support is the same in principle regardless of whether it is inserted on the axial mounting reference plane or on the opposite side, but considering the versatility of the loop coil, From the viewpoint of distribution characteristics, it is preferable to insert the length adjusting member into the opposite side of the reference mounting surface in the axial direction of the photosensitive drum support as shown in FIG. However, if the dimensions have been adjusted properly, the workability is better when the members in FIGS. 2 and 4 are on the lower side.
(Example)

次に本発明の実施例を説明する。支持体を加熱させる装置を以下のように構成し、装置条件を設定した。   Next, examples of the present invention will be described. An apparatus for heating the support was configured as follows, and apparatus conditions were set.

電磁誘導コイルは日本サーモニクス株式会社製IHコイルを使用し、150℃で維持するようPID制御(中心値75ボルト30アンペア)を実施した。高周波電源を用い、周波数は50KHZに設定した。コイルは、図1に示されるような「ループ状コイル」で高周波電流の発生有効長さ370mmで製作した。   As an electromagnetic induction coil, an IH coil manufactured by Nippon Thermonics Co., Ltd. was used, and PID control (a central value of 75 volts and 30 amps) was performed so as to be maintained at 150 ° C. A high frequency power supply was used and the frequency was set to 50 KHZ. The coil was a “loop coil” as shown in FIG. 1 and produced with an effective length of 370 mm for generating a high-frequency current.

コイルによりシリンダーは180度囲まれており、コイルには加熱効率を上げるためコイル内側両サイドに銅板を貼り合わせてあり、銅板と支持体シリンダー間の距離は1〜10mmの範囲で調整可能とし、本例では2mmで実施した。図示しないが、コイル内は冷却水を通水できる構造とし、熱暴走による過昇温を防止している。支持体シリンダーは100RPMで自転できるようにした。   The cylinder is surrounded by 180 degrees by the coil, and the coil is bonded with a copper plate on both sides of the coil to increase the heating efficiency, and the distance between the copper plate and the support cylinder can be adjusted within a range of 1 to 10 mm. In this example, 2 mm was used. Although not shown, the inside of the coil has a structure that allows cooling water to pass therethrough to prevent overheating due to thermal runaway. The support cylinder was allowed to rotate at 100 RPM.

支持体として外径がφ84mm、長さ370mm、肉厚3.0mmのアルミニウムシリンダーを用意した。実施例1では、支持体の軸方向長さと高周波誘導コイルの高周波電流発生有効範囲長さを同一にした。   An aluminum cylinder having an outer diameter of φ84 mm, a length of 370 mm, and a wall thickness of 3.0 mm was prepared as a support. In Example 1, the axial length of the support and the high frequency current generation effective range length of the high frequency induction coil were made the same.

以上の加熱装置、支持体を用いて加熱実験を実施した。図1は、高周波電磁誘導コイルによる加熱装置に配置されているシリンダーが、加熱されている状態の概念図である。この状態で、設定温度150℃で加熱した。温度測定は図9に示すようにシリンダー上、中、下の三箇所に貼り付けたサーモラベルを用いて測定した。結果は上が151℃、中が150℃、下が149℃で、温度ムラの幅は2℃だった。得られた加熱実験の結果を図10に示す。   A heating experiment was carried out using the above heating apparatus and support. FIG. 1 is a conceptual diagram showing a state in which a cylinder disposed in a heating device using a high-frequency electromagnetic induction coil is heated. In this state, heating was performed at a preset temperature of 150 ° C. As shown in FIG. 9, the temperature was measured using thermolabels attached to three locations on the cylinder, in the middle, and below. The result was 151 ° C. at the top, 150 ° C. at the inside, 149 ° C. at the bottom, and the width of the temperature unevenness was 2 ° C. The result of the obtained heating experiment is shown in FIG.

実施例2では、支持体の軸方向長さが、高周波誘導コイルの高周波電流発生有効範囲長さより短い場合で、且つ支持体に支持体と同じ材質、同じ外径の治具を取付け、治具の軸方向長さと支持体長さの合計が、高周波誘導コイルの高周波電流発生有効範囲長さと同じになるようにした。治具は肉厚が異なる4種類を用意し、肉厚違いによる温度データを採った。   In Example 2, when the axial length of the support is shorter than the effective range of the high-frequency current generation of the high-frequency induction coil, a jig having the same material and the same outer diameter as the support is attached to the support, The sum of the axial length and the length of the support was made to be the same as the effective range length of the high-frequency current generation of the high-frequency induction coil. Four types of jigs with different thicknesses were prepared, and temperature data for different thicknesses was taken.

支持体として外径がφ84mm、長さ340mm、肉厚3.0mmのアルミニウムシリンダーを用意した。   An aluminum cylinder having an outer diameter of φ84 mm, a length of 340 mm, and a wall thickness of 3.0 mm was prepared as a support.

次に長さ30mmで、外径がφ84mm、肉厚がそれぞれ21.0mm、24.0mm、27.0mm、及び30.0mmの4種類の肉厚違いアルミニウム製治具を用意し、長さ調整用部材とした。長さ調整用部材の挿入場所は図3で示される方法の、支持体軸方向取付け基準面の反対側である、支持体上部に挿入した。   Next, four types of aluminum jigs with different thicknesses of 30 mm length, outer diameter of φ84 mm, and wall thicknesses of 21.0 mm, 24.0 mm, 27.0 mm, and 30.0 mm, respectively, are prepared and the length is adjusted. It was used as a member. The length adjustment member was inserted into the upper part of the support, which is the opposite side of the support axial direction mounting reference plane in the method shown in FIG.

上記の支持体と調整部材を実施例1と同様の加熱装置にセットし、加熱実験を各肉厚ごとに実施した。図3及び図7は、高周波電磁誘導コイルによる加熱装置に配置されているシリンダーが、加熱されている概念図である。この状態で、設定温度150℃で加熱した。温度測定は図11に示した様にシリンダーの上、中、下の三箇所に貼り付けたサーモラベルを用いて測定した。実施例2の結果を図12と表1に示す。図12及び表1から明らかなように、肉厚21mmの調整用部材が良い結果を残した。   The above support and adjusting member were set in the same heating apparatus as in Example 1, and a heating experiment was performed for each thickness. 3 and 7 are conceptual diagrams in which a cylinder disposed in a heating device using a high-frequency electromagnetic induction coil is heated. In this state, heating was performed at a preset temperature of 150 ° C. As shown in FIG. 11, the temperature was measured using thermolabels attached to the top, middle and bottom of the cylinder. The results of Example 2 are shown in FIG. As is apparent from FIG. 12 and Table 1, the adjustment member having a thickness of 21 mm left good results.

Figure 2005216574
Figure 2005216574

実施例3では下記の要領で電子写真感光体を作製した。   In Example 3, an electrophotographic photosensitive member was produced in the following manner.

支持体として外径がφ84mm、長さ340mm、肉厚3.0mmのアルミニウムシリンダーを用意した。これに浸漬塗布装置を用いて以下に示すような構成の層を順次積層塗布した。   An aluminum cylinder having an outer diameter of φ84 mm, a length of 340 mm, and a wall thickness of 3.0 mm was prepared as a support. A layer having the following constitution was sequentially laminated and applied to this using a dip coating apparatus.

(1)導電性被覆層:酸化スズ及び酸化チタンの粉末をフェノール樹脂に分散したものを主体とする層で、膜厚が18μm。   (1) Conductive coating layer: A layer mainly composed of tin oxide and titanium oxide powder dispersed in a phenol resin, and has a film thickness of 18 μm.

(2)下引層:変性ナイロン及び共重合ナイロンを主体とする層で、膜厚が1.0μm。   (2) Undercoat layer: A layer mainly composed of modified nylon and copolymer nylon, and has a thickness of 1.0 μm.

(3)電荷発生層:可視域に吸収を持つジスアゾ顔料をアクリル樹脂に分散したものを主体とする層で、膜厚が0.2μm。   (3) Charge generation layer: A layer mainly composed of a disazo pigment having absorption in the visible region dispersed in an acrylic resin, and has a film thickness of 0.2 μm.

(4)電荷輸送層:ホール搬送性を有するヒドラゾン化合物をポリカーボネート樹脂に溶解したものを主体とする層で、膜厚が25μm。   (4) Charge transport layer: A layer mainly composed of a hydrazone compound having hole transportability dissolved in a polycarbonate resin, and has a film thickness of 25 μm.

塗布後は長さ調整部材として長さ30mm、外径がφ84mm、肉厚が21.0mmの治具を用意し、支持体の上部に組付けた。この状態で、実施例2と同様に設定温度150℃で加熱乾燥し、成膜した。上記の塗布及び乾燥硬化を4回繰り返し、4層で構成される感光層を形成した。そして4層目の電荷輸送層を加熱乾燥した際に、感光体シリンダーの表面温度を測定した。   After application, a jig having a length of 30 mm, an outer diameter of φ84 mm, and a thickness of 21.0 mm was prepared as a length adjusting member, and assembled to the upper part of the support. In this state, similarly to Example 2, it was dried by heating at a set temperature of 150 ° C. to form a film. The above coating and drying / curing were repeated four times to form a photosensitive layer composed of four layers. When the fourth charge transport layer was heat-dried, the surface temperature of the photoreceptor cylinder was measured.

温度測定方法は、本実施例では非接触式の赤外線温度計を用い、図13に示した温度測定位置におけるシリンダー表面の温度分布を経時で測定した。念のため測定前に実施例1と2の測定で用いたサーモラベルと校正を試み、測定値の差がレンジで5℃の範囲内であることを確認した。その後シリンダーの上部、中部、下部を20秒ごとに測定した。得られた加熱実験の結果を図14と表2に示す。サーモラベルの測定値と比べ、非接触の赤外線温度計は被測定物表面の色や反射度の影響を受けやすく、測定値に若干のバラツキはあるが、許容範囲とした。図14並びに表2から明らかなように、感光層を塗膜された状態でも良好な温度上昇カーブと温度分布を得ることができた。   In this example, a non-contact infrared thermometer was used as the temperature measurement method, and the temperature distribution on the cylinder surface at the temperature measurement position shown in FIG. 13 was measured over time. As a precaution, the thermolabel used in the measurements of Examples 1 and 2 was calibrated before the measurement, and it was confirmed that the difference between the measured values was within the range of 5 ° C. Thereafter, the upper, middle and lower portions of the cylinder were measured every 20 seconds. The results of the heating experiment obtained are shown in FIG. Compared with the measured value of the thermolabel, the non-contact infrared thermometer is easily affected by the color and reflectivity of the surface of the object to be measured. As apparent from FIG. 14 and Table 2, a good temperature rise curve and temperature distribution could be obtained even when the photosensitive layer was coated.

Figure 2005216574
Figure 2005216574

(比較例1)
比較例1では、実施例2と同じ支持体を用い、調整用部材の取付け無しで高周波誘導加熱した。結果は、図6に示すように筒状金属性支持体の上端部が、高周波誘導コイルの電流発生範囲から30mm下側にあることで、筒状金属端部に渦電流が集中作用してしまい、支持体の中央部温度が150℃の時に、支持体の端部はサーモラベルの測定上限180℃を超えてしまった。温度上昇カーブから推測すると200℃に達している模様で、温度ムラが50℃と好ましくない結果になった。得られた加熱実験の結果を図15に示す。
(Comparative Example 1)
In Comparative Example 1, the same support as in Example 2 was used, and high-frequency induction heating was performed without attaching an adjustment member. As a result, as shown in FIG. 6, the upper end portion of the cylindrical metallic support is 30 mm below the current generation range of the high frequency induction coil, so that eddy currents concentrate on the cylindrical metal end portion. When the center temperature of the support was 150 ° C., the end of the support exceeded the measurement upper limit of 180 ° C. of the thermolabel. Presuming from the temperature rise curve, it seems that the temperature reached 200 ° C., and the temperature unevenness was 50 ° C., which was an undesirable result. The result of the obtained heating experiment is shown in FIG.

電磁誘導コイルで金属基体である支持体を加熱させる装置概念図Conceptual diagram of a device that heats a support that is a metal substrate with an electromagnetic induction coil 金属基体下部に長さ調整用部材を装着した概念図で長さの寸法記入Dimensioning the length with a conceptual diagram with a length adjustment member attached to the bottom of the metal substrate 金属基体上部に長さ調整用部材を装着した概念図Conceptual diagram with length adjustment member mounted on top of metal substrate 金属基体下部に長さ調整用部材を装着した概念図Conceptual diagram with a length adjustment member attached to the bottom of the metal substrate 一本流しラインの概念図Conceptual diagram of a single sink line 渦電流が局部集中している概念図Schematic diagram of localized eddy currents 加熱乾燥装置で、横から見た概念図Conceptual view from the side with a heating and drying device 加熱乾燥装置で、上から見た概念図Conceptual view from above with heating and drying equipment 実施例1に於けるドラムの温度測定位置を示す概略図Schematic showing the temperature measurement position of the drum in Example 1 実施例1に於けるドラム温度の測定結果を示すグラフThe graph which shows the measurement result of the drum temperature in Example 1 実施例2に於けるドラムの温度測定位置を示す概略図Schematic which shows the temperature measurement position of the drum in Example 2. FIG. 実施例2に於けるドラム温度の測定結果を示すグラフThe graph which shows the measurement result of the drum temperature in Example 2 実施例3に於けるドラム温度の測定位置を示す概略図Schematic showing the measurement position of the drum temperature in Example 3 実施例3に於けるドラム温度の測定結果を示すグラフThe graph which shows the measurement result of the drum temperature in Example 3 比較例1に於けるドラム温度の測定結果を示すグラフThe graph which shows the measurement result of the drum temperature in the comparative example 1

Claims (4)

高周波電磁誘導加熱装置で金属製の円筒体を外部より加熱する方法であって、該円筒体の上端部分及び下端部分の外周を、単線のコイルを用いて半円周状にそれぞれ180度以内で囲み、これら上下一対の半円周状コイルを該支持体長手方向の軸に平行に対向するように繋いだ高周波電磁誘導コイルを用いて、該円筒体を加熱する際に、該円筒体の端部に長さ調整用部材を挿入し、該円筒体と挿入された長さ調製用部材をあわせた長さが該コイルの長手方向の寸法と同一或いは長くなるようにすることを特徴とする金属製円筒体の高周波誘導加熱方法。   A method of heating a metal cylindrical body from the outside with a high-frequency electromagnetic induction heating device, wherein the outer periphery of the upper end portion and the lower end portion of the cylindrical body is respectively within 180 degrees in a semicircular shape using a single wire coil When the cylindrical body is heated using a high-frequency electromagnetic induction coil that surrounds and connects these upper and lower semicircular coils so as to face each other in parallel with the longitudinal axis of the support, A metal, characterized in that a length adjusting member is inserted into the portion so that the combined length of the cylindrical body and the inserted length adjusting member is equal to or longer than the longitudinal dimension of the coil A high frequency induction heating method for a cylindrical body. 前記長さ調整用部材の挿入場所が、該支持体の軸方向取付け基準面の反対側である請求項1記載の高周波誘導加熱方法。   The high frequency induction heating method according to claim 1, wherein an insertion place of the length adjusting member is on an opposite side of an axial mounting reference surface of the support. 請求項1又は請求項2に記載の高周波誘導加熱方法を用いて電子写真感光体用支持体を加熱することを特徴とする電子写真感光体用支持体の加熱方法。   A method for heating a support for an electrophotographic photosensitive member, comprising heating the support for an electrophotographic photosensitive member using the high-frequency induction heating method according to claim 1. 請求項1又は請求項2に記載の高周波誘導加熱方法を用いて電子写真感光体を加熱することを特徴とする電子写真感光体の加熱方法。   A method for heating an electrophotographic photosensitive member, comprising heating the electrophotographic photosensitive member using the high-frequency induction heating method according to claim 1.
JP2004019301A 2004-01-28 2004-01-28 High-frequency induction heating method, heating method of support body for electronic photograph photoreceptor, and heating method of electronic photograph photoreceptor Withdrawn JP2005216574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004019301A JP2005216574A (en) 2004-01-28 2004-01-28 High-frequency induction heating method, heating method of support body for electronic photograph photoreceptor, and heating method of electronic photograph photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004019301A JP2005216574A (en) 2004-01-28 2004-01-28 High-frequency induction heating method, heating method of support body for electronic photograph photoreceptor, and heating method of electronic photograph photoreceptor

Publications (1)

Publication Number Publication Date
JP2005216574A true JP2005216574A (en) 2005-08-11

Family

ID=34903552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004019301A Withdrawn JP2005216574A (en) 2004-01-28 2004-01-28 High-frequency induction heating method, heating method of support body for electronic photograph photoreceptor, and heating method of electronic photograph photoreceptor

Country Status (1)

Country Link
JP (1) JP2005216574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032511A (en) * 2016-08-24 2018-03-01 キヤノン株式会社 Heating method for member to be heated and method for manufacturing electrophotographic photoreceptor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032511A (en) * 2016-08-24 2018-03-01 キヤノン株式会社 Heating method for member to be heated and method for manufacturing electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
RU2428821C2 (en) Electric induction heat treatment of end of tubular material
JP2005216574A (en) High-frequency induction heating method, heating method of support body for electronic photograph photoreceptor, and heating method of electronic photograph photoreceptor
JP2006353076A (en) Rotor manufacturing method, rotor manufactured by this method, and motor using this rotor
JP4298423B2 (en) Method for producing electrophotographic photosensitive member
US6713736B2 (en) Method and apparatus for manufacturing cylindrical member
JP5526608B2 (en) Paint drying apparatus and paint drying method
JP5824981B2 (en) High frequency induction heating device and film label sticking device
JP3944074B2 (en) Manufacturing method of cylindrical member
JP2009134119A (en) Method for manufacturing cylindrical photoreceptor
JP6851749B2 (en) Method of heating the member to be heated and method of manufacturing the electrophotographic photosensitive member
JP2019083137A (en) Induction heating apparatus and manufacturing method of electrophotographic photoreceptor
JP5983219B2 (en) Method for producing electrophotographic photosensitive member
US20210068209A1 (en) Rotary heating apparatus, and methods of making and using same
JP6987601B2 (en) Induction heating device
JPH09114111A (en) Manufacture of electrophotographic photoreceptor and manufacturing device
JP2010194958A (en) Mold heating device
JP2010197663A (en) Method of manufacturing electrophotographic photoreceptor
JP6369109B2 (en) Paint drying apparatus and paint drying method
JP2003084589A (en) Fixing device
JP7199987B2 (en) induction heating device
EP3136183A1 (en) Fixing device using stainless steel material
JP2014048330A (en) Method and device for manufacturing electrophotographic photoreceptor
KR101891001B1 (en) Induction Heat coil apparatus, Induction Heat treatment equipment and Induction Heat treatment method
US11543001B2 (en) Coating method and manufacturing method for anti-vibration rubber for vehicle
JPH0272366A (en) Production of electrophotographic sensitive body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403