JP2005215318A - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
JP2005215318A
JP2005215318A JP2004021794A JP2004021794A JP2005215318A JP 2005215318 A JP2005215318 A JP 2005215318A JP 2004021794 A JP2004021794 A JP 2004021794A JP 2004021794 A JP2004021794 A JP 2004021794A JP 2005215318 A JP2005215318 A JP 2005215318A
Authority
JP
Japan
Prior art keywords
refractive index
optical element
glass
temperature
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004021794A
Other languages
Japanese (ja)
Inventor
Kazuya Saito
和也 斎藤
Edison Haruhiko Sekiya
エジソン 晴彦 関谷
Hiroshi Kakitsuda
洋 垣内田
Akira Ikushima
明 生嶋
Kensho Shimodaira
憲昭 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Gauken
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Toyota Gauken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Toyota Gauken filed Critical Asahi Glass Co Ltd
Priority to JP2004021794A priority Critical patent/JP2005215318A/en
Publication of JP2005215318A publication Critical patent/JP2005215318A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element, having glass as a structural element which causes a small change in the optical path length due to changes in the temperature and which has only small changes in the refractive index, accompanying fluctuations in the fictive temperature. <P>SOLUTION: The optical element comprises quartz glass, having 1.0 to 2.2mol% F concentration and substantially does not contain alkali metal oxide. Alternatively, the optical element comprises quartz glass, having 1.4 to 2.0mol% Cl concentration and does not substantially contain alkali metal oxide. Furthermore, the optical element comprises quartz glass having 6.0 to 9.0mol% Ge concentration and substantially does not contain alkali metal oxide. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、屈折率分布による光路長変化の分布が小さい石英ガラスを構成要素として有する光学素子に関する。   The present invention relates to an optical element having, as a constituent element, quartz glass having a small distribution of change in optical path length due to a refractive index distribution.

連続あるいは不連続に分布した光の中から特定の波長域を取り出す光学フィルタのひとつにエタロンがある。エタロンとは、例えば、ファブリーペロー干渉計において2枚の多重反射面の干渉を用いたものであり、これを特にファブリーペロー・エタロンとよぶ。その中でも、平行な両面を有する1枚の透明板からなり、透明板の両面が2つの反射面となるように構成されたエタロンをソリッドエタロンと呼ぶ。このような1枚の透明板からなるソリッドエタロンには、通常ガラスが使われるが、特に光路長の温度変化が小さいガラスとして、石英ガラスが多く用いられている。   An etalon is one of optical filters that extracts a specific wavelength region from light that is continuously or discontinuously distributed. The etalon is, for example, one that uses interference of two multiple reflecting surfaces in a Fabry-Perot interferometer, and this is particularly called a Fabry-Perot etalon. Among them, an etalon made of a single transparent plate having both parallel surfaces and configured so that both surfaces of the transparent plate become two reflecting surfaces is called a solid etalon. For such a solid etalon made of a single transparent plate, glass is usually used. In particular, quartz glass is often used as a glass having a small temperature change of the optical path length.

光通信分野をはじめとする、様々なエタロン使用用途において、波長確度に対する要求が強くなっている。光が伝播するガラスのその波長における屈折率をn、その温度における屈折率の温度変化率をdn/dT、その温度における線膨張係数をαとすると、光路長の温度変化dS/dTは、以下の式であらわせる。   In various uses of etalon including the optical communication field, there is a strong demand for wavelength accuracy. When the refractive index at the wavelength of the glass through which light propagates is n, the temperature change rate of the refractive index at that temperature is dn / dT, and the linear expansion coefficient at that temperature is α, the temperature change dS / dT of the optical path length is It is expressed by the following formula.

dS/dT=dn/dT+nα
一般に石英ガラスの常温の屈折率は熱履歴により変化する。仮想温度とはそのガラスが熱履歴を経て最終的に凍結した状態と等価な状態になる凍結温度として定義され、仮想温度と屈折率との関係はR. Brucknerにより詳細に調べられている(R. Bruckner, J. Non−Cryst. Sol. 5, 123 (1970)、以下、非特許文献1という)。
dS / dT = dn / dT + nα
In general, the refractive index of quartz glass at room temperature varies depending on the thermal history. The fictive temperature is defined as the freezing temperature at which the glass finally becomes frozen after undergoing a thermal history, and the relationship between the fictive temperature and the refractive index is R.I. It is examined in detail by Bruckner (R. Bruckner, J. Non-Cryst. Sol. 5, 123 (1970), hereinafter referred to as Non-Patent Document 1).

R. Bruckner, J. Non−Cryst. Sol. 5, 123 (1970)R. Bruckner, J. et al. Non-Cryst. Sol. 5, 123 (1970)

エタロンの波長確度を高めるためには、屈折率n、屈折率の温度変化率dn/dT、線膨張係数αを厳密に制御する必要がある。上述の通り、石英ガラスでは、αが小さいためdS/dTを小さくし得るが、仮想温度によって屈折率nが変化することが知られており、通常、屈折率の分布を制御するために長時間にわたる徐冷を必要としていた。   In order to increase the wavelength accuracy of the etalon, it is necessary to strictly control the refractive index n, the temperature change rate dn / dT of the refractive index, and the linear expansion coefficient α. As described above, quartz glass can reduce dS / dT because α is small. However, it is known that the refractive index n varies depending on the fictive temperature, and it usually takes a long time to control the refractive index distribution. Required slow cooling.

本発明は、温度変化による光路長変化が小さく、かつ仮想温度ばらつきに伴う屈折率の変化が小さいガラスを構成要素として有する光学素子であって、従来のような長時間にわたる徐例などの屈折率分布の制御を行わずとも製造できる光学素子を得ることを目的とする。   The present invention is an optical element having glass as a constituent element that has a small change in optical path length due to a temperature change and a small change in refractive index due to a variation in virtual temperature. An object is to obtain an optical element which can be manufactured without controlling the distribution.

本発明は、F濃度がモル百分率表示で1.0〜2.2mol%であり、かつアルカリ金属酸化物を実質的に含有しない石英ガラスからなることを特徴とする光学素子を提供する。また、Cl濃度がモル百分率表示で1.4〜2.0mol%であり、かつアルカリ金属酸化物を実質的に含有しない石英ガラスからなることを特徴とする光学素子を提供する。さらに、Ge濃度がモル百分率表示で6.0〜9.0mol%であり、かつアルカリ金属酸化物を実質的に含有しない石英ガラスからなることを特徴とする光学素子を提供する。   The present invention provides an optical element characterized by being made of quartz glass having an F concentration of 1.0 to 2.2 mol% in terms of mole percentage and substantially not containing an alkali metal oxide. Further, the present invention provides an optical element comprising a quartz glass having a Cl concentration of 1.4 to 2.0 mol% in terms of mole percentage and substantially not containing an alkali metal oxide. Furthermore, the present invention provides an optical element comprising a quartz glass having a Ge concentration of 6.0 to 9.0 mol% in terms of mole percentage and substantially not containing an alkali metal oxide.

本発明によれば、仮想温度による屈折率変化が小さいため、屈折率分布による光路長変化の分布が小さいガラスを構成要素とする光学素子が得られる。   According to the present invention, since the refractive index change due to the fictive temperature is small, an optical element having glass as a constituent element with a small distribution of optical path length variation due to the refractive index distribution can be obtained.

本発明の光学素子においては本発明のガラス以外のものを構成要素として有する可能性を排除せず、そのようなものとして例えば本発明のガラスからなる2枚のガラス板を使用するエタロンが挙げられる。また、本発明のガラスのみを構成要素として有するようなものとしては、たとえば、本発明のガラスからなる光ファイバグレーティング、光学レンズ、プリズム等が挙げられる。   The optical element of the present invention does not exclude the possibility of having a component other than the glass of the present invention as a constituent element, such as an etalon using two glass plates made of the glass of the present invention. . Moreover, as what has only the glass of this invention as a component, the optical fiber grating, optical lens, prism etc. which consist of glass of this invention are mentioned, for example.

本発明者らは、まずフッ素を添加しない通常の石英ガラスで、屈折率の仮想温度依存性を測定した。これによると、波長633nmにおける屈折率は、1.4572(仮想温度993℃)から1.4578(仮想温度1527℃)と変化した。屈折率と仮想温度はほぼ比例関係で変化しており、仮想温度あたりの屈折率変化(以下、dn/dTfと記す)は、この場合には1.12×10−6/℃であった。dn/dTfはその他に波長974nm、1320nm、1544nmでも調べられたが、差は1%未満と無視できるほどであった。 The present inventors first measured the dependence of the refractive index on the fictive temperature with ordinary quartz glass to which no fluorine was added. According to this, the refractive index at a wavelength of 633 nm changed from 1.4572 (virtual temperature 993 ° C.) to 1.4578 (virtual temperature 1527 ° C.). The refractive index and the fictive temperature changed in a substantially proportional relationship, and the refractive index change per fictive temperature (hereinafter referred to as dn / dTf) was 1.12 × 10 −6 / ° C. in this case. dn / dTf was also examined at other wavelengths of 974 nm, 1320 nm, and 1544 nm, but the difference was negligible at less than 1%.

本発明者らは、フッ素、塩素、ゲルマニウム元素を個別に濃度を変化させて石英ガラスに添加して屈折率の仮想温度依存性を調べた結果、濃度が低い場合には正の値であったdn/dTfが徐々に減少し、フッ素濃度では1.6mol%付近、塩素濃度では1.7mol%付近、ゲルマニウム濃度では7.5mol%付近においてゼロとなり、さらに濃度が高い場合には負の値になることを見出した。以下、モル百分率表示を単に%と記載する。   As a result of investigating the fictive temperature dependence of the refractive index by adding fluorine, chlorine, and germanium elements to the quartz glass by individually changing the concentration, the inventors found that the concentration was positive when the concentration was low. The dn / dTf gradually decreases and becomes zero at a fluorine concentration of around 1.6 mol%, a chlorine concentration of around 1.7 mol%, a germanium concentration of around 7.5 mol%, and becomes negative when the concentration is higher. I found out that Hereinafter, the mole percentage display is simply described as%.

Fで屈折率の仮想温度特性を制御するためには、含有量を1.0%以上とする。1.0%未満では、仮想温度低下に対する屈折率増加分が大きく、徐冷速度が速い場合に屈折率分布を生じやすい。より好ましくは1.4%以上である。また、Fは2.2%以下とする。2.2%超では、仮想温度低下に対する屈折率減少分が大きく、徐冷速度が速い場合に屈折率分布を生じやすい。より好ましくは1.8%未満である。Fは1.6±0.5%であることが最も好ましい。   In order to control the fictive temperature characteristic of the refractive index with F, the content is made 1.0% or more. If it is less than 1.0%, the refractive index increase with respect to the fictive temperature drop is large, and a refractive index distribution tends to occur when the slow cooling rate is fast. More preferably, it is 1.4% or more. F is 2.2% or less. If it exceeds 2.2%, the refractive index decrease with respect to the hypothetical temperature drop is large, and a refractive index distribution tends to occur when the slow cooling rate is high. More preferably, it is less than 1.8%. Most preferably, F is 1.6 ± 0.5%.

Clで屈折率の仮想温度特性を制御するためには、含有量を1.4%以上とする。1.4%未満では、仮想温度低下に対する屈折率増加分が大きく、徐冷速度が速い場合に屈折率分布を生じやすい。より好ましくは1.6%以上である。また、Clは2.0%以下とする。2.0%超では、仮想温度低下に対する屈折率減少分が大きく、徐冷速度が速い場合に屈折率分布を生じやすい。より好ましくは1.8%未満である。Clは1.7±0.5%であることが最も好ましい。   In order to control the virtual temperature characteristic of the refractive index with Cl, the content is set to 1.4% or more. If it is less than 1.4%, the refractive index increase with respect to the fictive temperature drop is large, and a refractive index distribution tends to occur when the slow cooling rate is fast. More preferably, it is 1.6% or more. Further, Cl is made 2.0% or less. If it exceeds 2.0%, the refractive index distribution is likely to occur when the refractive index decrease with respect to the hypothetical temperature drop is large and the slow cooling rate is high. More preferably, it is less than 1.8%. Most preferably, Cl is 1.7 ± 0.5%.

Geで屈折率の仮想温度特性を制御するためには、含有量を6.0%以上とする。6.0%未満では、仮想温度低下に対する屈折率増加分が大きく、徐冷速度が速い場合に屈折率分布を生じやすい。より好ましくは6.5%以上である。また、Geは9.0%以下とする。9.0%超では、仮想温度低下に対する屈折率減少分が大きく、徐冷速度が速い場合に屈折率分布を生じやすい。より好ましくは8.5%未満である。Geは7.5±0.5%であることが最も好ましい。   In order to control the virtual temperature characteristic of the refractive index with Ge, the content is made 6.0% or more. If it is less than 6.0%, the refractive index increase with respect to the fictive temperature drop is large, and a refractive index distribution tends to occur when the slow cooling rate is fast. More preferably, it is 6.5% or more. Further, Ge is set to 9.0% or less. If it exceeds 9.0%, the amount of decrease in the refractive index with respect to the hypothetical temperature decrease is large, and a refractive index distribution tends to occur when the slow cooling rate is high. More preferably, it is less than 8.5%. Most preferably, Ge is 7.5 ± 0.5%.

本発明は、基本を石英ガラスとするのでSiOは90%以上含有することが好ましい。90%未満では線膨張係数αが増加して光路長の温度変化dS/dTが大きくなる、または透過率が低下する等の問題が生じる。より好ましくは92%以上、特に好ましくは95%以上である。SiOの含有量を多くする観点では、屈折率の仮想温度特性を制御する際に、できるだけ少量の添加で仮想温度特性を制御できるような成分を添加することが好ましい。したがって、仮想温度特性を制御するために添加する成分としてはフッ素または塩素が好ましい。 Since the present invention is based on quartz glass, SiO 2 is preferably contained in 90% or more. If it is less than 90%, the linear expansion coefficient α increases and the temperature change dS / dT of the optical path length increases, or the transmittance decreases. More preferably, it is 92% or more, and particularly preferably 95% or more. From the viewpoint of increasing the content of SiO 2 , it is preferable to add a component capable of controlling the fictive temperature characteristic with as little addition as possible when controlling the fictive temperature characteristic of the refractive index. Accordingly, fluorine or chlorine is preferable as a component added for controlling the fictive temperature characteristics.

以上のようにすることにより、仮想温度による屈折率変化(dn/dTf)を2×10−7/℃以下とすることができ、これを用いた光学素子は、仮想温度ばらつきによる屈折率変化が非常に小さく、好ましいものである。 As described above, the refractive index change (dn / dTf) due to the fictive temperature can be made to be 2 × 10 −7 / ° C. or less, and an optical element using this can change the refractive index due to fictive temperature variations. Very small and preferred.

本発明におけるガラスは本質的に上記成分からなるが、その他の成分を本発明の目的を損なわない範囲で含有してもよい。   The glass in the present invention consists essentially of the above components, but other components may be contained within a range not impairing the object of the present invention.

本発明のガラスはアルカリ金属(以下、Rと称する)酸化物を実質的に含有しない。すなわち、アルカリ金属酸化物のモル百分率表示含有量の合計ROが1%以下であることが好ましい。1%以上ではガラスが失透しやすくなり透明なガラスが得られにくくなる、または線膨張係数αが増加して光路長の温度変化dS/dTが大きくなる。ROは好ましくは0.1%以下、より好ましくは1×10−3%以下、特に好ましくは1×10−5%以下である。 The glass of the present invention contains substantially no alkali metal (hereinafter referred to as R) oxide. That is, the total R 2 O of the mole percentage display content of the alkali metal oxide is preferably 1% or less. If it is 1% or more, the glass tends to be devitrified and it becomes difficult to obtain a transparent glass, or the linear expansion coefficient α increases and the temperature change dS / dT of the optical path length increases. R 2 O is preferably 0.1% or less, more preferably 1 × 10 −3 % or less, and particularly preferably 1 × 10 −5 % or less.

また、遷移金属酸化物も含有しないことが好ましく、含有するとしてもその合計含有量は0.1%以下であることが好ましい。0.1%超では透過率が低下する可能性がある。より好ましくは1×10−5%以下である。 Moreover, it is preferable not to contain a transition metal oxide, and even if it contains, it is preferable that the total content is 0.1% or less. If it exceeds 0.1%, the transmittance may decrease. More preferably, it is 1 × 10 −5 % or less.

本発明の光学素子は周知の各光学素子の製造方法によって製造される、
たとえば、本発明のガラスは、直接法、スート法(VAD法、OVD法、MCVD法)、プラズマ法、スパッタ法、ゾルゲル法、MOCVD法、等によって製造される。バルク状のガラスを得るためには、製造時の温度が低く、不純物の混入が避けられる点から、スート法が好ましい。薄膜状のガラスを得るためには、FHD(火炎堆積)法またはスパッタ法が好ましい。
The optical element of the present invention is manufactured by a known method for manufacturing each optical element.
For example, the glass of the present invention is produced by a direct method, a soot method (VAD method, OVD method, MCVD method), plasma method, sputtering method, sol-gel method, MOCVD method, or the like. In order to obtain a bulk glass, the soot method is preferable because the temperature at the time of production is low and contamination with impurities is avoided. In order to obtain a thin glass, FHD (flame deposition) method or sputtering method is preferable.

スート法によってFあるいはClを含有する本発明のガラスを製造する方法としてはたとえば、ガラス形成原料となるSi前駆体を火炎加水分解もしくは熱分解させて得られるSiOガラス微粒子(スート)を堆積、成長させて、多孔質SiOガラス体を得る。得られた多孔質SiOガラス体をFあるいはClを含有する雰囲気にて処理した後、ガラス化温度以上まで加熱してFあるいはClを含有させたSiOガラス体を得る製造方法がある。スート法によってGeを含有する本発明のガラスを製造する方法としてはたとえば、ガラス形成原料となるSi前駆体とGe前駆体を火炎加水分解もしくは熱分解させて得られるGeを含有するSiOガラス微粒子(スート)を堆積、成長させて、Geを含有する多孔質SiOガラス体を得る。得られた多孔質ガラス体をガラス化温度以上まで加熱して、Geを含有させたSiOガラス体を得る製造方法がある。スート法はその作り方により、MCVD法、OVD法、およびVAD法などがある。 Examples of the method for producing the glass of the present invention containing F or Cl by the soot method include depositing SiO 2 glass fine particles (soot) obtained by flame hydrolysis or thermal decomposition of a Si precursor as a glass forming raw material, Growing to obtain a porous SiO 2 glass body. There is a manufacturing method in which the obtained porous SiO 2 glass body is treated in an atmosphere containing F or Cl, and then heated to a vitrification temperature or higher to obtain an SiO 2 glass body containing F or Cl. As a method for producing the glass of the present invention containing Ge by the soot method, for example, SiO 2 glass fine particles containing Ge obtained by flame hydrolysis or thermal decomposition of Si precursor and Ge precursor as a glass forming raw material (Soot) is deposited and grown to obtain a porous SiO 2 glass body containing Ge. There is a production method in which the obtained porous glass body is heated to a vitrification temperature or higher to obtain a SiO 2 glass body containing Ge. Depending on how to make the soot method, there are an MCVD method, an OVD method, a VAD method, and the like.

F濃度の測定法は以下の通りである。ガラスを無水炭酸ナトリウムにより加熱融解し、得られた融液に蒸留水および塩酸を融液に対する体積比でそれぞれ1ずつ加えて試料液を調整する。試料液の起電力をフッ素イオン選択性電極および比較電極としてラジオメータトレーディング社製No.945−220およびNo.945−468をそれぞれ用いてラジオメータにより測定し、フッ素イオン標準溶液を用いてあらかじめ作成した検量線に基づいて、フッ素含有量を求める(日本化学会誌、1972(2),350)。なお本法による検出限界は10ppmである。   The method for measuring the F concentration is as follows. The glass is heated and melted with anhydrous sodium carbonate, and distilled water and hydrochloric acid are added to the obtained melt at a volume ratio of 1 to the melt to adjust the sample solution. The electromotive force of the sample solution was used as a fluorine ion selective electrode and a reference electrode. 945-220 and no. 945-468, respectively, are measured with a radiometer, and the fluorine content is obtained based on a calibration curve prepared in advance using a fluorine ion standard solution (The Chemical Society of Japan, 1972 (2), 350). The detection limit by this method is 10 ppm.

Cl濃度は、試料を溶解後、比色定量法(チオシアン酸第二水銀による吸光光度法)により、測定した。Ge濃度は、試料を溶解後、高周波プラズマ発光分析法により、測定した。   The Cl concentration was measured by colorimetric determination (absorption photometry with mercuric thiocyanate) after dissolving the sample. The Ge concentration was measured by high frequency plasma emission spectrometry after dissolving the sample.

SiOおよびFを表にモル百分率表示で示す割合で含有する例1〜4のガラスをVAD法により作製した。すなわち、SiClを原料としてVAD法により多孔質石英ガラス体を作製し、この多孔質石英ガラス体をSiF雰囲気下で900〜1250℃に3時間保持してガラス化した。ガラス化後、20mm四方、2mm厚みに試料を切断した。試料を600〜1500℃の温度範囲にて所定時間熱処理しては急冷することにより、仮想温度を調整し、仮想温度の異なるサンプルをそれぞれのF濃度で6〜8個作製した。この調整方法については、例えば、Kakiuchida et al, Journal of Applied Physics 93, 777(2003)に掲載されているものと同じである。 Glasses of Examples 1 to 4 containing SiO 2 and F at a ratio shown by mole percentage in the table were produced by the VAD method. That is, a porous quartz glass body was produced by the VAD method using SiCl 4 as a raw material, and the porous quartz glass body was vitrified by holding at 900 to 1250 ° C. for 3 hours in an SiF 4 atmosphere. After vitrification, the sample was cut into 20 mm square and 2 mm thickness. The sample was heat-treated in a temperature range of 600 to 1500 ° C. for a predetermined time and then rapidly cooled to adjust the fictive temperature, and 6 to 8 samples having different fictive temperatures were produced at respective F concentrations. This adjustment method is the same as that described in, for example, Kakiuchida et al, Journal of Applied Physics 93, 777 (2003).

所望の仮想温度の試料が得られた後、熱処理に伴う表面汚染や添加した元素の表面からの離脱が正確な屈折率値の測定に影響することを考慮して、最低20μm以上表面層が除去されるまで研磨を施した。20μm以上の除去では測定される屈折率の値にほとんど影響しないことを確認している。なお、研磨の表面仕上がり状態を原子間力顕微鏡で確認したところ、中心線表面粗さ(Ra)が1nm以下、平均すると約0.5nmであった。   After obtaining a sample at the desired fictive temperature, the surface layer is removed by at least 20μm or more in consideration of the fact that surface contamination due to heat treatment and separation of added elements from the surface affect the accurate measurement of the refractive index value. Polished until finished. It has been confirmed that removal of 20 μm or more has little influence on the measured refractive index value. In addition, when the surface finish state of grinding | polishing was confirmed with the atomic force microscope, the centerline surface roughness (Ra) was 1 nm or less, and it was about 0.5 nm on the average.

屈折率測定は以下のように行った。測定装置にはMetricon社製プリズムカプラModel2010を用いた。測定波長は633、974、1320、1544nmの4種類を選択した。まず装置の絶対測定精度および繰り返し測定精度を調べるために、標準的に広く引用されているMallitson,J. Opt. Soc. Am. 55,1025 (1965)の論文に掲載されているものと同等の石英ガラスとして、元素の添加されていないかつ仮想温度が1200℃の石英ガラスについて、各波長について10回の繰り返し測定を行った。絶対精度としてはMallitsonの結果との差の平均値を、繰り返し精度としてはその標準偏差を算出した。その結果、
波長633nm 絶対精度:0.024、再現性:0.006%
波長974nm 絶対精度:0.030%、再現性:0.007%
波長1320nm 絶対精度:0.045%、再現性:0.020%
波長1544nm 絶対精度:0.029%、再現性:0.005%
が得られ、十分な絶対精度が得られる測定装置であることを確認した。
Refractive index measurement was performed as follows. As a measuring device, a prism coupler Model 2010 manufactured by Metricon was used. Four types of measurement wavelengths of 633, 974, 1320, and 1544 nm were selected. First, in order to examine the absolute measurement accuracy and repeat measurement accuracy of the apparatus, the standard widely cited by Mallitson, J. et al. Opt. Soc. Am. As a quartz glass equivalent to that described in the article of 55,1025 (1965), a quartz glass having no element added and a fictive temperature of 1200 ° C. was repeatedly measured 10 times for each wavelength. As an absolute accuracy, an average value of differences from the result of Mallitson was calculated, and as a repeatability accuracy, a standard deviation thereof was calculated. as a result,
Wavelength 633 nm Absolute accuracy: 0.024, reproducibility: 0.006%
Wavelength 974 nm Absolute accuracy: 0.030%, reproducibility: 0.007%
Wavelength 1320nm Absolute accuracy: 0.045%, Reproducibility: 0.020%
Wavelength 1544nm Absolute accuracy: 0.029%, Reproducibility: 0.005%
It was confirmed that this was a measuring device that could obtain sufficient absolute accuracy.

比較として何も元素を添加していない石英ガラス(例1)と、Fの濃度を変えて添加した石英ガラス(例2〜5)について、仮想温度による屈折率変化(dn/dTf)を測定した結果を表1に示した。   As a comparison, the refractive index change (dn / dTf) due to fictive temperature was measured for quartz glass to which no element was added (Example 1) and quartz glass to which F concentration was added (Examples 2 to 5). The results are shown in Table 1.

同様にClの濃度を変えて添加した石英ガラス(例6〜9)について、仮想温度による屈折率変化(dn/dTf)を測定した結果を表2に示した。   Similarly, the results of measuring the refractive index change (dn / dTf) due to the fictive temperature of quartz glass (Examples 6 to 9) added by changing the concentration of Cl are shown in Table 2.

同様にGeの濃度を変えて添加した石英ガラス(例10〜13)について、仮想温度による屈折率変化(dn/dTf)を測定した結果を表3に示した。なお、いずれも(dn/dTf)の単位は/℃である。   Table 3 shows the results of measuring the refractive index change (dn / dTf) due to the fictive temperature for quartz glass (Examples 10 to 13) added with the Ge concentration changed similarly. In both cases, the unit of (dn / dTf) is / ° C.

Figure 2005215318
Figure 2005215318

Figure 2005215318
Figure 2005215318

Figure 2005215318
Figure 2005215318

以上のように、本発明の範囲の石英ガラスは、仮想温度による屈折率の変動が小さく、光学素子として適していることがわかる。   As described above, it is understood that the quartz glass within the scope of the present invention has a small refractive index variation due to a fictive temperature and is suitable as an optical element.

本発明によればアルカリ金属酸化物を必須成分とはしないガラスであって温度変化による光路長変化が小さいガラスを構成要素として有する光学素子、たとえば光ファイバグレーティング等のグレーティング構造を有する光学素子、エタロン等が得られる。本発明の光学素子は波長が850〜1700nmである光を使用する光通信用光学素子として、有用である。
According to the present invention, an optical element having a glass structure that does not contain an alkali metal oxide as an essential component and has a small optical path length change due to a temperature change, for example, an optical element having a grating structure such as an optical fiber grating, an etalon Etc. are obtained. The optical element of the present invention is useful as an optical element for optical communication using light having a wavelength of 850 to 1700 nm.

Claims (5)

F濃度がモル百分率表示で1.0〜2.2mol%であり、かつアルカリ金属酸化物を実質的に含有しない石英ガラスからなることを特徴とする光学素子。   An optical element characterized by being made of quartz glass having an F concentration of 1.0 to 2.2 mol% in terms of mole percentage and substantially not containing an alkali metal oxide. Cl濃度がモル百分率表示で1.4〜2.0mol%であり、かつアルカリ金属酸化物を実質的に含有しない石英ガラスからなることを特徴とする光学素子。   An optical element comprising a quartz glass having a Cl concentration of 1.4 to 2.0 mol% in terms of mole percentage and substantially not containing an alkali metal oxide. Ge濃度がモル百分率表示で6.0〜9.0mol%であり、かつアルカリ金属酸化物を実質的に含有しない石英ガラスからなることを特徴とする光学素子。   An optical element comprising a quartz glass having a Ge concentration of 6.0 to 9.0 mol% in terms of mole percentage and substantially not containing an alkali metal oxide. 光学素子がエタロンである請求項1〜3に記載の光学素子。   The optical element according to claim 1, wherein the optical element is an etalon. 光学素子がグレーティング構造を有するものである請求項1〜3に記載の光学素子。
The optical element according to claim 1, wherein the optical element has a grating structure.
JP2004021794A 2004-01-29 2004-01-29 Optical element Pending JP2005215318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021794A JP2005215318A (en) 2004-01-29 2004-01-29 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021794A JP2005215318A (en) 2004-01-29 2004-01-29 Optical element

Publications (1)

Publication Number Publication Date
JP2005215318A true JP2005215318A (en) 2005-08-11

Family

ID=34905320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021794A Pending JP2005215318A (en) 2004-01-29 2004-01-29 Optical element

Country Status (1)

Country Link
JP (1) JP2005215318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964522B2 (en) 2006-08-31 2011-06-21 Corning Incorporated F-doped silica glass and process of making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964522B2 (en) 2006-08-31 2011-06-21 Corning Incorporated F-doped silica glass and process of making same

Similar Documents

Publication Publication Date Title
Kamitsos et al. Raman and Infrared Structural Investigation of x Rb2O⊙(1− x) GeO2 Glasses
Tran et al. Heavy metal fluoride glasses and fibers: a review
JP5744492B2 (en) High refractive and highly transparent optical glass
Ehrt Deep-UV materials
JP2022510686A (en) High refractive index phosphate glass
US20130123092A1 (en) Tio2-containing quartz glass substrate and method for producing same
JP2022142777A (en) Glass ceramic having specific thermal expansion characteristics
JP2003279749A (en) Polarizing glass
CN103572218B (en) A kind of photic preparation method stablizing non-linear Chalcogenide films
TW201609581A (en) Crystallized glass
US6550277B1 (en) Quartz glass body for optical component and process for manufacture thereof
EP1979279A1 (en) Synthetic quartz glass with fast axes of birefringence distributed in concentric-circle tangent directions and process for producing the same
JP2005215318A (en) Optical element
KR20060017756A (en) Lead-free optical glass and optical fiber
TW202311183A (en) Borate and silicoborate optical glasses with high refractive index and low liquidus temperature
US20130103342A1 (en) Method of Measuring Fictive Temperature of Optical Glass
Satoh et al. Sol–gel preparation and optical properties of SiO2–Ta2O5 glass
Kamil et al. Optical and Structural Properties of Er3+-doped SiO2-ZrO2 Glass-Ceramic Thin Film
JP4114039B2 (en) Synthetic quartz glass
Koike et al. Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass
Luo et al. Analysis of partial crystallization in Yb3+ doped aluminophosphosilicate fiber preforms prepared with organic chelate precursor doping technique
JP2005215319A (en) Quartz glass substrate for polysilicon tft lcd
JP2004021089A (en) Optical element
Liepmann et al. Optical and physical properties of UV-transmitting fluorocrown glasses
JP2004345903A (en) Method for manufacturing quartz glass, quartz glass, optic component and optical fiber