JP2005215198A - Optical modulation element holder, optical apparatus and projector - Google Patents

Optical modulation element holder, optical apparatus and projector Download PDF

Info

Publication number
JP2005215198A
JP2005215198A JP2004020247A JP2004020247A JP2005215198A JP 2005215198 A JP2005215198 A JP 2005215198A JP 2004020247 A JP2004020247 A JP 2004020247A JP 2004020247 A JP2004020247 A JP 2004020247A JP 2005215198 A JP2005215198 A JP 2005215198A
Authority
JP
Japan
Prior art keywords
frame
cooling fluid
cooling
modulation element
light modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004020247A
Other languages
Japanese (ja)
Inventor
Motoyuki Fujimori
基行 藤森
Masami Murata
雅巳 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004020247A priority Critical patent/JP2005215198A/en
Publication of JP2005215198A publication Critical patent/JP2005215198A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical modulation element holder where an optical modulation element can be efficiently cooled by cooling fluid, and to provide an optical apparatus and a projector. <P>SOLUTION: The optical modulation element holder 4402 is provided with a pair of frame members 4405 and 4406 for holding a liquid crystal panel 441, and translucency substrates 442A and 443A separately arranged on the outer surfaces of the pair of frame members 4405 and 4406. A cooling chamber is formed in the pair of frame members 4405 and 4406 by closing the openings 4405A and 4406A of the pair of frame members 4405 and 4406 with the liquid crystal panel 441 and the translucency substrates 442A and 443A. The pair of frame members 4405 and 4406 is provided with an inflow port for making the cooling fluid flow into the cooling chamber, an outflow port for making the cooling liquid flowing outside the cooling chamber and a communication port for connecting the cooling chambers so as to communicate each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光変調素子保持体、光学装置、およびプロジェクタに関する。   The present invention relates to a light modulation element holder, an optical device, and a projector.

従来、光源から射出された光束を画像情報に応じて変調して光学像を形成する複数の光変調装置と、各光変調装置で変調された光束を合成して射出する色合成光学装置と、色合成光学装置にて合成された光束を拡大投射する投射光学装置とを備えるプロジェクタが知られている。
このうち、光変調装置としては、例えば、一対の基板間に液晶等の電気光学材料が密閉封入されたアクティブマトリックス駆動方式の光変調素子が一般的に採用される。具体的に、この光変調素子を構成する一対の基板は、光束射出側に配置され、液晶に駆動電圧を印加するためのデータ線、走査線、スイッチング素子、画素電極等が形成された駆動基板と、光束入射側に配置され、共通電極、ブラックマトリックス等が形成された対向基板とで構成されている。
また、この光変調素子の光束入射側および光束射出側には所定の偏光軸を有する光束を透過させる入射側偏光板および射出側偏光板がそれぞれ配置される。
ここで、光源から射出された光束が光変調素子に照射された場合には、液晶層による光吸収とともに、駆動基板に形成されたデータ線および走査線や、対向基板に形成されたブラックマトリックス等による光吸収により、光変調素子の温度が上昇しやすい。また、光源から射出された光束、および光変調素子を透過した光束のうち、所定の偏光軸を有していない光束は、入射側偏光板および射出側偏光板によって吸収され、偏光板に熱が発生しやすい。
Conventionally, a plurality of light modulation devices that form an optical image by modulating a light beam emitted from a light source according to image information, a color combining optical device that combines and emits a light beam modulated by each light modulation device, There is known a projector including a projection optical device that enlarges and projects a light beam synthesized by a color synthesis optical device.
Among these, as the light modulation device, for example, an active matrix drive type light modulation element in which an electro-optic material such as liquid crystal is hermetically sealed between a pair of substrates is generally employed. Specifically, a pair of substrates constituting this light modulation element is disposed on the light beam emission side, and a drive substrate on which data lines, scanning lines, switching elements, pixel electrodes and the like for applying a drive voltage to the liquid crystal are formed. And a counter substrate that is disposed on the light beam incident side and on which a common electrode, a black matrix, and the like are formed.
An incident-side polarizing plate and an emitting-side polarizing plate that transmit a light beam having a predetermined polarization axis are arranged on the light beam incident side and the light beam emission side of the light modulation element, respectively.
Here, when the light beam emitted from the light source is applied to the light modulation element, the light absorption by the liquid crystal layer, the data lines and scanning lines formed on the drive substrate, the black matrix formed on the counter substrate, etc. The temperature of the light modulation element is likely to rise due to light absorption by the light. Of the luminous flux emitted from the light source and the luminous flux transmitted through the light modulation element, the luminous flux that does not have a predetermined polarization axis is absorbed by the incident-side polarizing plate and the outgoing-side polarizing plate, and heat is applied to the polarizing plate. Likely to happen.

このため、このような光学素子を内部に有するプロジェクタは、光学素子の温度上昇を緩和するために、冷却流体を用いた冷却装置を備えた構成が提案されている(例えば、特許文献1参照)。
すなわち、特許文献1に記載の冷却装置は、対向する端面が開口された略直方体状の筐体から構成され、前記開口をガラス板によりそれぞれ閉塞することで内部に冷却流体を密閉封入する冷却室が形成されている。そして、この冷却室内には、上述した光変調素子、入射側偏光板、および射出側偏光板が所定の間隔で離間配置され、冷却流体内に浸漬されている。このような構成により、光源から照射される光束により光変調素子、入射側偏光板、および射出側偏光板に生じる熱を直接、冷却流体に放熱させている。
For this reason, a projector having such an optical element is proposed to have a cooling device using a cooling fluid in order to mitigate the temperature rise of the optical element (see, for example, Patent Document 1). .
In other words, the cooling device described in Patent Document 1 is formed of a substantially rectangular parallelepiped housing having opposite end faces opened, and a cooling fluid is hermetically sealed with a cooling fluid inside by closing the openings with glass plates. Is formed. In the cooling chamber, the light modulation element, the incident-side polarizing plate, and the emission-side polarizing plate described above are spaced apart at a predetermined interval and are immersed in the cooling fluid. With such a configuration, heat generated in the light modulation element, the incident-side polarizing plate, and the emission-side polarizing plate by the light beam emitted from the light source is directly radiated to the cooling fluid.

特開平1−302386号公報JP-A-1-302386

しかしながら、特許文献1に記載の冷却装置では、冷却室内に冷却流体が密閉封入されるので、発熱した光変調素子および偏光板により冷却流体が温められやすく、温められた冷却流体が冷却室内に滞留してしまう。
したがって、光変調素子と冷却流体との温度差が小さくなり、光変調素子を効率的に冷却することが困難である、という問題がある。
However, in the cooling device described in Patent Document 1, since the cooling fluid is hermetically sealed in the cooling chamber, the cooling fluid is easily heated by the generated light modulation element and the polarizing plate, and the heated cooling fluid stays in the cooling chamber. Resulting in.
Therefore, there is a problem that the temperature difference between the light modulation element and the cooling fluid becomes small, and it is difficult to efficiently cool the light modulation element.

本発明の目的は、冷却流体により光変調素子を効率的に冷却できる光変調素子保持体、光学装置、およびプロジェクタを提供することにある。
An object of the present invention is to provide a light modulation element holder, an optical device, and a projector that can efficiently cool a light modulation element with a cooling fluid.

本発明の光変調素子保持体は、光源から射出された光束を画像情報に応じて変調して光学像を形成する光変調素子を保持し、内部に冷却流体が封入される冷却室が形成され、前記冷却室内の冷却流体により前記光変調素子を冷却する光変調素子保持体であって、前記光変調素子の画像形成領域に応じてそれぞれ開口が形成され前記光変調素子を挟持する一対の枠状部材と、前記一対の枠状部材における対向する面と反対の面側にそれぞれ配置される透光性基板とを含んで構成され、前記冷却室は、前記一対の枠状部材の前記開口における前記対向する面側、および前記対向する面と反対の面側が前記光変調素子および前記透光性基板にてそれぞれ閉塞されることにより前記一対の枠状部材の双方の内部にそれぞれ形成され、前記一対の枠状部材には、前記冷却室に前記冷却流体を流入させる流入口と、前記冷却室内部の前記冷却流体を外部に流出させる流出口と、前記各冷却室を連通接続する連通口とが形成されていることを特徴とする。   The light modulation element holding body of the present invention holds a light modulation element that forms an optical image by modulating a light beam emitted from a light source according to image information, and a cooling chamber in which a cooling fluid is enclosed is formed. A pair of frames for holding the light modulation element, each having an opening formed in accordance with an image forming region of the light modulation element, wherein the light modulation element holding body cools the light modulation element with a cooling fluid in the cooling chamber. Each of the pair of frame-shaped members and a light-transmitting substrate disposed on the opposite side of the opposite surface of the pair of frame-shaped members, and the cooling chamber is formed in the opening of the pair of frame-shaped members. The opposing surface side and the surface side opposite to the opposing surface are respectively closed by the light modulation element and the translucent substrate, respectively, and are respectively formed inside both the pair of frame members, A pair of frame-shaped parts Are formed with an inflow port for allowing the cooling fluid to flow into the cooling chamber, an outflow port for allowing the cooling fluid in the cooling chamber to flow out to the outside, and a communication port for connecting the cooling chambers in communication. It is characterized by that.

ここで、一対の枠状部材に、流入口および流出口が形成されているとは、例えば、以下の構成が例示できる。
例えば、一対の枠状部材のうちいずれか一方の枠状部材に流入口を形成し、他方の枠状部材に流出口を形成する構成が例示できる。
また、例えば、一対の枠状部材のうちいずれか一方の枠状部材に、流入口および流出口の双方を形成する構成が例示できる。
また、一対の枠状部材に形成される連通口の数は、特に限定されず、少なくとも1つ形成されていればよい。
Here, for example, the following configuration can be exemplified as the inflow port and the outflow port formed in the pair of frame-shaped members.
For example, the structure which forms an inflow port in any one frame-shaped member among a pair of frame-shaped members, and forms an outflow port in the other frame-shaped member can be illustrated.
For example, the structure which forms both an inflow port and an outflow port in any one frame-shaped member among a pair of frame-shaped members can be illustrated.
The number of communication ports formed in the pair of frame-shaped members is not particularly limited as long as at least one communication port is formed.

本発明によれば、一対の枠状部材は流入口および流出口を有するので、例えば、冷却流体を流通可能な流体循環部材にて流入口および流出口を接続すれば、冷却流体を対流させることが容易となり、光変調素子により温められた冷却流体が冷却室内に滞留することを回避できる。したがって、光変調素子により冷却流体が温められて光変調素子と冷却流体との温度差が小さくなることがなく、冷却流体により光変調素子を効率的に冷却でき、本発明の目的を達成できる。
また、開口が光変調素子の画像形成領域に応じて設けられているので、各冷却室に充填された冷却流体は、光変調素子の画像形成領域に接触する。このことにより、光変調素子の画像形成領域内の温度分布が均一化され、局所的な過熱を回避し、光変調素子にて鮮明な光学像を形成できる。
さらに、一対の枠状部材には、内部にそれぞれ冷却室が形成され、各冷却室が連通口により連通接続されるので、連通口を介して一方の冷却室から他方の冷却室へ、または他方の冷却室から一方の冷却室へと冷却流体を流通させることができる。このため、光変調素子の光束入射側および光束射出側を略同一の温度である冷却流体により冷却でき、光変調素子における光束入射側および光束射出側の温度の均一化を図れる。
また、一対の枠状部材に連通口が形成されているので、例えば、流体循環部材にて各冷却室を連通接続する構成と比較して、光変調素子保持体をコンパクトにでき、光変調素子保持体の小型化および軽量化が可能な構成となる。
さらにまた、連通口を形成することで、流入口および流出口を各冷却室に応じて2つずつ設けなくてもよく、光変調素子保持体に各1つのみの流入口および流出口を設ける構成を採用できる。このことにより、流入口および流出口を各冷却室に応じて2つずつ設ける構成に比較して、流入口および流出口を接続する流体循環部材の引き回し本数を低減できる。したがって、流入口および流出口への流体循環部材の接続作業を容易に実施できるとともに、光変調素子保持体周りのスペース効率の向上が図れる。
According to the present invention, the pair of frame-shaped members have the inlet and the outlet, so that, for example, if the inlet and the outlet are connected by a fluid circulation member capable of circulating the cooling fluid, the cooling fluid is convected. This makes it possible to prevent the cooling fluid warmed by the light modulation element from staying in the cooling chamber. Therefore, the cooling fluid is warmed by the light modulation element and the temperature difference between the light modulation element and the cooling fluid is not reduced, and the light modulation element can be efficiently cooled by the cooling fluid, and the object of the present invention can be achieved.
Further, since the opening is provided in accordance with the image forming area of the light modulation element, the cooling fluid filled in each cooling chamber comes into contact with the image forming area of the light modulation element. As a result, the temperature distribution in the image forming region of the light modulation element is made uniform, local overheating is avoided, and a clear optical image can be formed by the light modulation element.
Further, the pair of frame-shaped members are respectively formed with cooling chambers, and the respective cooling chambers are connected to each other through the communication ports, so that from one cooling chamber to the other cooling chamber or the other through the communication ports. The cooling fluid can be circulated from one cooling chamber to the other cooling chamber. For this reason, the light incident side and the light emitting side of the light modulation element can be cooled by the cooling fluid having substantially the same temperature, and the temperature of the light incident side and the light emission side of the light modulation element can be made uniform.
Further, since the communication ports are formed in the pair of frame-shaped members, for example, the light modulation element holding body can be made compact compared with the configuration in which the cooling chambers are connected in communication with the fluid circulation member, and the light modulation element The holding body can be reduced in size and weight.
Furthermore, by forming the communication port, it is not necessary to provide two inlets and outlets depending on each cooling chamber, and only one inlet and outlet are provided in the light modulation element holder. Configuration can be adopted. Accordingly, the number of the fluid circulation members that connect the inlet and the outlet can be reduced as compared with the configuration in which two inlets and outlets are provided for each cooling chamber. Therefore, the work of connecting the fluid circulation member to the inlet and the outlet can be easily performed, and the space efficiency around the light modulation element holder can be improved.

本発明の光変調素子保持体では、前記流入口および前記流出口は、前記一対の枠状部材のうちいずれか一方の枠状部材における対向する側端部の対向位置にそれぞれ形成され、前記連通口は、前記流入口が形成される側端部側に設けられ前記流入口を介して内部に流入した前記冷却流体を、前記一方の枠状部材における前記冷却室、および他方の前記枠状部材における前記冷却室に分流する分流口と、前記流出口が形成される側端部側に設けられ前記他方の枠状部材における前記冷却室内を流通する冷却流体を前記一方の枠状部材における前記冷却室内に流入させる合流口とで構成されていることが好ましい。
ここで、分流口および合流口の数は、特に限定されず、少なくとも1つずつ形成されていればよい。
本発明によれば、流入口および流出口が一方の枠状部材における対向する側端部の対向位置にそれぞれ形成されるので、各冷却室内における冷却流体の流通方向を一方向に設定でき、各冷却室内における冷却流体の流通を円滑に実施でき、冷却流体の対流速度を速めることができる。したがって、光変調素子と各冷却室内の冷却流体との温度差を維持し、冷却流体により光変調素子をさらに効率的に冷却できる。
In the light modulation element holding body of the present invention, the inflow port and the outflow port are respectively formed at opposed positions of opposing side end portions of any one of the pair of frame-shaped members, and the communication The opening is provided on the side end portion side where the inflow port is formed, and the cooling fluid that has flowed into the inside through the inflow port, the cooling chamber in the one frame-shaped member, and the other frame-shaped member And the cooling fluid flowing through the cooling chamber in the other frame-shaped member provided on the side end portion side where the outflow port is formed and the cooling fluid in the one frame-shaped member It is preferable that it is comprised with the junction port made to flow in into a room | chamber interior.
Here, the numbers of the diversion openings and the merge openings are not particularly limited as long as they are formed at least one by one.
According to the present invention, since the inflow port and the outflow port are respectively formed at the opposed positions of the opposed side end portions of one frame-shaped member, the flow direction of the cooling fluid in each cooling chamber can be set in one direction, The cooling fluid can be circulated smoothly in the cooling chamber, and the convection speed of the cooling fluid can be increased. Therefore, the temperature difference between the light modulation element and the cooling fluid in each cooling chamber can be maintained, and the light modulation element can be further efficiently cooled by the cooling fluid.

本発明の光変調素子保持体では、前記分流口は、その内側面の一部が前記流入口から流入する前記冷却流体の流入方向と交差するように前記流入口と連通接続し、前記内側面の一部には、前記流入口を介して流入した前記冷却流体を前記各冷却室に分流する突出部が形成されていることが好ましい。
本発明によれば、分流口は、その内側面の一部が流入口から流入する冷却流体の流入方向と交差するように流入口と連通接続し、内側面の一部に突出部が形成されているので、流入口から流入した冷却流体を各冷却室の双方に確実に流入させ、光変調素子の光束入射側および光束射出側の双方を冷却流体にて確実に冷却できる。
また、例えば、光変調素子の光束入射側および光束射出側の発熱量が異なる場合には、突出部を分流口の内側面の一部における所定の位置に形成することで、発熱量の多い側に多くの冷却流体を流入させることが可能となり、光変調素子の光束入射側および光束射出側を効率的に冷却できる。
In the light modulation element holding body of the present invention, the diversion port is connected to the inflow port so that a part of the inner surface intersects the inflow direction of the cooling fluid flowing in from the inflow port, and the inner side surface It is preferable that a protrusion is formed in a part of the cooling medium to divert the cooling fluid flowing in via the inflow port to the cooling chambers.
According to the present invention, the diversion port is connected in communication with the inflow port so that a part of the inner surface intersects the inflow direction of the cooling fluid flowing in from the inflow port, and a protrusion is formed on a part of the inner surface. Therefore, the cooling fluid that has flowed in from the inflow port can surely flow into both cooling chambers, and both the light beam incident side and the light beam emission side of the light modulation element can be reliably cooled with the cooling fluid.
In addition, for example, when the amount of heat generated on the light incident side and the light exit side of the light modulation element are different, the protruding portion is formed at a predetermined position on a part of the inner surface of the diversion port, so A large amount of cooling fluid can be allowed to flow into the light modulation element, and the light beam incident side and the light beam emission side of the light modulation element can be efficiently cooled.

本発明の光変調素子保持体では、前記流出口近傍には、前記流入口を介して前記一方の枠状部材における前記冷却室内に流入した冷却流体を前記流出口に向けて流通させかつ、前記合流口を介して前記他方の枠状部材における前記冷却室内から前記一方の枠状部材における前記冷却室内に流入した冷却流体を前記流出口に向けて流通させる整流部が形成されていることが好ましい。
本発明によれば、流出口近傍に整流部が形成されているので、流入口を介して一方の枠状部材における冷却室内に流入した冷却流体、および合流口を介して他方の枠状部材における冷却室から一方の枠状部材における冷却室内に流入した冷却流体の双方を流出口に向けて円滑に流通させることができる。したがって、他方の枠状部材における冷却室内で光変調素子にて一度温められた冷却流体が一方の枠状部材における冷却室内に流入した際、一方の枠状部材における冷却室内に拡がって流通することを抑制でき、光変調素子と冷却室内の冷却流体との温度差を維持し、冷却流体により光変調素子をさらに効率的に冷却できる。
In the light modulation element holding body of the present invention, in the vicinity of the outlet, the cooling fluid that has flowed into the cooling chamber of the one frame-like member is circulated toward the outlet through the inlet. It is preferable that a rectification unit is formed to flow the cooling fluid flowing from the cooling chamber in the other frame-shaped member into the cooling chamber in the one frame-shaped member toward the outlet through the junction port. .
According to the present invention, since the rectification part is formed in the vicinity of the outlet, the cooling fluid that has flowed into the cooling chamber in the one frame-like member through the inlet, and the other frame-like member through the junction port Both of the cooling fluid that has flowed from the cooling chamber into the cooling chamber of one frame-shaped member can be smoothly circulated toward the outlet. Therefore, when the cooling fluid once warmed by the light modulation element in the cooling chamber in the other frame-shaped member flows into the cooling chamber in one frame-shaped member, it spreads and circulates in the cooling chamber in one frame-shaped member. The temperature difference between the light modulation element and the cooling fluid in the cooling chamber can be maintained, and the light modulation element can be more efficiently cooled by the cooling fluid.

本発明の光変調素子保持体では、前記流入口および前記流出口は、前記一対の枠状部材のうちいずれか一方の枠状部材における一側端部にそれぞれ形成され、前記連通口は、前記一側端部に対向する側端部側に配置され、前記一方の枠状部材における前記冷却室内の前記一側端部側から前記一側端部に対向する側端部側に流通した冷却流体を他方の前記枠状部材における前記冷却室内に流入させる第1連通口と、前記一側端部側に配置され、前記他方の枠状部材における冷却室内の前記一側端部に対向する側端部側から前記一側端部側に流通した冷却流体を前記一方の枠状部材における冷却室内に流入させる第2連通口とで構成されていることが好ましい。
本発明によれば、流入口および流出口が一対の枠状部材のうちいずれか一方の枠状部材における一側端部にそれぞれ形成されているので、流入口および流出口への流体循環部材の接続作業を一方向に集約でき、該接続作業をさらに容易に実施できる。
また、連通口が第1連通口および第2連通口で構成されているので、流入口を介して一方の枠状部材における冷却室に流入し一側端部側からこの一側端部に対向する側端部側に流通した冷却流体は、第1連通口を介して他方の枠状部材における冷却室に流入する。また、他方の枠状部材における冷却室に流入し一側端部に対向する側端部側から一側端部側に流通した冷却流体は、第2連通口を介して一方の枠状部材における冷却室に流入し、流出口を介して外部に流出される。このことにより、流入口および流出口が一方の枠状部材における一側端部にそれぞれ形成されていても、各冷却室の双方に確実に冷却流体を流通させることができる。
In the light modulation element holding body of the present invention, the inflow port and the outflow port are respectively formed at one side end portion of one of the pair of frame-shaped members, and the communication port includes the communication port Cooling fluid that is disposed on the side end side facing the one side end portion and circulated from the one side end side in the cooling chamber in the one frame-shaped member to the side end side facing the one side end portion A first communication port for allowing the other frame-shaped member to flow into the cooling chamber, and a side end opposed to the one side end portion of the other frame-shaped member in the cooling chamber. It is preferable that the cooling fluid flowing from the part side to the one side end part side is constituted by a second communication port through which the cooling fluid flows into the cooling chamber of the one frame-shaped member.
According to the present invention, since the inflow port and the outflow port are respectively formed at one side end portion of one of the pair of frame-shaped members, the fluid circulation member to the inflow port and the outflow port is provided. Connection work can be concentrated in one direction, and the connection work can be more easily performed.
In addition, since the communication port is constituted by the first communication port and the second communication port, it flows into the cooling chamber of one frame-like member through the inflow port and faces this one side end portion from the one side end portion side. The cooling fluid that has flowed to the side end portion side that flows into the cooling chamber in the other frame-shaped member via the first communication port. In addition, the cooling fluid that flows into the cooling chamber in the other frame-like member and flows from the side end side facing the one-side end portion to the one side end portion side in the one frame-like member via the second communication port. It flows into the cooling chamber and flows out through the outlet. Thus, even if the inflow port and the outflow port are respectively formed at one side end portion of one frame-like member, the cooling fluid can be reliably circulated through both the cooling chambers.

本発明の光変調素子保持体では、前記一方の枠状部材における前記対向する面と反対の面には、前記開口周縁の前記一側端部側に、照射される光束の光軸方向に向けて窪む凹部が形成され、前記流入口および前記流出口は、前記凹部の側壁に貫通するようにそれぞれ形成され、前記凹部には、前記第2連通口および前記流出口と前記第1連通口および前記流入口とを平面的に区画し、前記第2連通口を介して前記他方の枠状部材における冷却室内から前記一方の枠状部材における冷却室内に流入した冷却流体を前記流出口に流通させる隔壁が形成されていることが好ましい。
本発明では、一方の枠状部材には対向する面と反対の面に凹部が形成され、該凹部には隔壁が形成されている。そして、対向する面と反対の面側に透光性基板が配置されることで、上述した隔壁により、一方の枠状部材における冷却室内部が、流入口および第1連通口が連通する領域と、第2連通口および流出口が連通する領域とに区画される。このことにより、第2連通口を介して他方の枠状部材における冷却室内から一方の枠状部材における冷却室内に流入した冷却流体を流出口に向けて円滑に流通させることができる。したがって、他方の枠状部材における冷却室内で光変調素子にて温められた冷却流体が一方の枠状部材における冷却室内に流入した際、一方の枠状部材における冷却室内に拡がって流通することを回避でき、光変調素子と冷却室内の冷却流体との温度差が小さくなることがなく、冷却流体により光変調素子をさらに効率的に冷却できる。
In the light modulation element holding body of the present invention, the surface opposite to the facing surface of the one frame-shaped member is directed toward the one end portion of the peripheral edge of the opening toward the optical axis direction of the irradiated light beam. And the inflow port and the outflow port are formed so as to penetrate through the side wall of the recess, respectively, and the second communication port, the outflow port, and the first communication port are formed in the recess. And the inflow port in a plane, and the cooling fluid flowing from the cooling chamber in the other frame-shaped member into the cooling chamber in the one frame-shaped member is circulated to the outflow port via the second communication port. It is preferable that a partition wall is formed.
In the present invention, one frame-like member has a recess formed on the surface opposite to the facing surface, and a partition is formed in the recess. And by arrange | positioning a translucent board | substrate on the surface side opposite to the surface which opposes, the cooling chamber inside in one frame-shaped member is the area | region where an inflow port and a 1st communication port communicate with the partition mentioned above. The second communication port and the outlet communicate with each other. Accordingly, the cooling fluid that has flowed into the cooling chamber of the one frame-shaped member from the cooling chamber of the other frame-shaped member through the second communication port can be smoothly circulated toward the outlet. Therefore, when the cooling fluid warmed by the light modulation element in the cooling chamber in the other frame-shaped member flows into the cooling chamber in one frame-shaped member, it spreads and circulates in the cooling chamber in one frame-shaped member. The temperature difference between the light modulation element and the cooling fluid in the cooling chamber is not reduced, and the light modulation element can be cooled more efficiently by the cooling fluid.

本発明の光変調素子保持体では、前記流入口は、前記一対の枠状部材のうちいずれか一方の枠状部材に形成され、前記一方の枠状部材における冷却室内部に前記冷却流体を流入させ、前記連通口は、前記一方の枠状部材における冷却室内部の前記冷却流体を、前記他方の枠状部材における冷却室内部に流通させ、前記流出口は、前記一対の枠状部材のうちいずれか他方の枠状部材に形成され、前記他方の枠状部材における冷却室内部の前記冷却流体を外部に流出させることが好ましい。
本発明によれば、流入口が一対の枠状部材のうちいずれか一方の枠状部材に形成され、流出口が一対の枠状部材のうちいずれか他方の枠状部材に形成されているので、連通口を少なくとも一つのみ形成することで、流入口を介して一方の枠状部材における冷却室内部に流入した冷却流体を連通口を介して他方の枠状部材における冷却室内に流入させ、流出口を介して外部に流出させることができる。したがって、一方の枠状部材における冷却室から他方の枠状部材における冷却室へと、各冷却室の双方に冷却流体を容易に流通させることができる。また、連通口を少なくとも一つのみ設ければ、各冷却室内部に冷却流体を流通させることが可能となり、光変調素子保持体の製造を容易に実施できるとともに、光変調素子保持体の小型化および軽量化が可能な構成となる。
In the light modulation element holding body of the present invention, the inlet is formed in one of the pair of frame members, and the cooling fluid flows into the cooling chamber in the one frame member. The communication port causes the cooling fluid in the cooling chamber in the one frame-shaped member to flow through the cooling chamber in the other frame-shaped member, and the outlet is the one of the pair of frame-shaped members. Preferably, the cooling fluid is formed in one of the other frame-shaped members, and the cooling fluid inside the cooling chamber in the other frame-shaped member is allowed to flow out.
According to the present invention, the inflow port is formed in one of the pair of frame members, and the outflow port is formed in the other frame member of the pair of frame members. By forming at least one communication port, the cooling fluid that has flowed into the cooling chamber in one frame-shaped member through the inflow port is caused to flow into the cooling chamber in the other frame-shaped member through the communication port, It can be discharged to the outside through the outflow port. Therefore, it is possible to easily circulate the cooling fluid in both the cooling chambers from the cooling chamber in one frame-shaped member to the cooling chamber in the other frame-shaped member. Further, if only at least one communication port is provided, it becomes possible to circulate a cooling fluid in each cooling chamber, and the light modulation element holder can be easily manufactured, and the light modulation element holder can be downsized. In addition, the weight can be reduced.

本発明の光変調素子保持体では、前記連通口は、前記一対の枠状部材のうちいずれか一方の枠状部材に形成され、前記一方の枠状部材における冷却室内部と連通する孔を有し、他方の枠状部材に向けて突出する筒状部と、前記他方の枠状部材に形成され、前記他方の枠状部材における冷却室内部と連通し、前記筒状部を挿通可能とする筒状部挿通孔とで構成されていることが好ましい。
本発明によれば、連通口は、筒状部および筒状部挿通孔で構成されているので、各枠状部材を組み立てる際に、他方の枠状部材における筒状部挿通孔に、一方の枠状部材における筒状部を挿通することで、各冷却室を容易に連通接続できる。
また、例えば、一方の枠状部材および他方の枠状部材にそれぞれ前記筒状部を設け、各筒状部を接続することで連通口を形成する構成と比較して、連通口を流通する冷却流体の漏れを簡単な構成で容易に防止できる。
In the light modulation element holder of the present invention, the communication port is formed in one of the pair of frame-shaped members and has a hole communicating with the inside of the cooling chamber in the one frame-shaped member. And a cylindrical portion protruding toward the other frame-shaped member and the other frame-shaped member, communicated with the cooling chamber inside the other frame-shaped member, and allowing the cylindrical portion to be inserted. It is preferable to be comprised by the cylindrical part insertion hole.
According to the present invention, since the communication port is constituted by the cylindrical portion and the cylindrical portion insertion hole, when assembling each frame-shaped member, one of the cylindrical portion insertion holes in the other frame-shaped member The cooling chambers can be easily connected to each other by inserting the cylindrical portion of the frame-shaped member.
In addition, for example, compared to a configuration in which the tubular portion is provided in each of the one frame-shaped member and the other frame-shaped member, and the communication ports are formed by connecting the respective tubular portions, cooling through the communication ports is performed. Fluid leakage can be easily prevented with a simple configuration.

本発明の光変調素子保持体では、前記他方の枠状部材および前記光変調素子の間に介在配置される弾性部材を備え、前記弾性部材には、前記筒状部を挿通可能とする挿通孔が形成されていることが好ましい。
本発明によれば、光変調素子保持体が弾性部材を備え、該弾性部材には挿通孔が形成されているので、光変調素子保持体を組み立てた際には、弾性部材が各枠状部材により押圧され、該弾性部材における挿通孔を筒状部および筒状部挿通孔の接続部分に圧接させることができる。したがって、連通口を流通する冷却流体の漏れを簡単な構成で確実に防止できる。
The light modulation element holding body of the present invention includes an elastic member interposed between the other frame-shaped member and the light modulation element, and the insertion hole through which the cylindrical portion can be inserted into the elastic member. Is preferably formed.
According to the present invention, the light modulation element holding body includes the elastic member, and the elastic member is formed with the insertion hole. Therefore, when the light modulation element holding body is assembled, the elastic member is each frame-shaped member. The insertion hole in the elastic member can be pressed into contact with the tubular portion and the connection portion of the tubular portion insertion hole. Therefore, the leakage of the cooling fluid flowing through the communication port can be reliably prevented with a simple configuration.

本発明の光変調素子保持体では、前記一対の枠状部材には、前記対向する面と反対の面側における前記開口周縁に、照射される光束の光軸方向に向けて窪む凹部がそれぞれ形成され、前記連通口は、前記凹部を介して前記各冷却室を連通接続することが好ましい。
本発明では、一対の枠状部材には凹部がそれぞれ形成される。そして、対向する面と反対の面側に透光性基板がそれぞれ配置されることで、各凹部および各透光性基板の間に隙間がそれぞれ形成される。そしてまた、連通口は、これら隙間を介して各冷却室を連通接続する。このことにより、一対の枠状部材の外面に凹部を設けるだけで、連通口にて各冷却室を容易に連通接続できる。
また、一対の枠状部材の外面に凹部を設けるだけで、連通口にて各冷却室を連通接続できるので、例えば、一対の枠状部材の内部に各冷却室内の冷却流体を各冷却室外部へと流通可能な孔をそれぞれ形成し、前記各孔を介して連通口にて各冷却室を連通接続する構成と比較して、一対の枠状部材を容易に製造できる。
In the light modulation element holding body of the present invention, the pair of frame-like members each have a recess recessed toward the optical axis direction of the irradiated light beam at the periphery of the opening on the surface opposite to the facing surface. Preferably, the communication port is formed and connected to the cooling chambers via the recess.
In the present invention, the pair of frame-shaped members are each formed with a recess. And a clearance gap is each formed between each recessed part and each translucent board | substrate by each arrange | positioning a translucent board | substrate in the surface opposite to the surface which opposes. The communication port communicates and connects the cooling chambers through these gaps. Thus, the cooling chambers can be easily connected to each other through the communication port only by providing the recesses on the outer surfaces of the pair of frame members.
In addition, since the cooling chambers can be connected to each other by simply providing the recesses on the outer surfaces of the pair of frame-shaped members, for example, the cooling fluid in each cooling chamber can be connected to the outside of each cooling chamber inside the pair of frame-shaped members. A pair of frame-shaped members can be easily manufactured as compared with a configuration in which holes that can flow to each other are formed and the cooling chambers are connected to each other through the holes.

本発明の光変調素子保持体では、前記開口周縁には、前記凹部に向けて開口面積を大きくするように斜面が形成されていることが好ましい。
本発明では、開口周縁には斜面が形成されている。そして、この斜面は、凹部に向けて開口面積を大きくするように形成されている。すなわち、この斜面は、対向する面側に向けて開口面積を小さくするように形成されている。このことにより、各冷却室内の冷却流体を斜面に沿って流通させることができ、対向する面側に配置される光変調素子に効率的に冷却流体を流通させることができる。したがって、冷却流体により光変調素子をさらに効率的に冷却できる。
In the light modulation element holder of the present invention, it is preferable that a slope is formed on the periphery of the opening so as to increase the opening area toward the recess.
In the present invention, a slope is formed on the periphery of the opening. And this slope is formed so that opening area may become large toward a recessed part. That is, this slope is formed so as to reduce the opening area toward the facing surface side. Accordingly, the cooling fluid in each cooling chamber can be circulated along the inclined surface, and the cooling fluid can be efficiently circulated to the light modulation elements arranged on the facing surfaces. Therefore, the light modulation element can be further efficiently cooled by the cooling fluid.

本発明の光変調素子保持体では、前記凹部の側壁は、前記冷却室内の冷却流体を所定位置に案内可能に曲面状に形成されていることが好ましい。
本発明によれば、凹部の側壁にて、冷却室内の冷却流体を、例えば連通口および/または流出口に案内するように構成すれば、各冷却室内の冷却流体の流通をさらに円滑に実施でき、冷却流体の対流速度を速め、冷却流体により光変調素子をさらに効率的に冷却できる。
In the light modulation element holding body of the present invention, it is preferable that the side wall of the recess is formed in a curved surface so that the cooling fluid in the cooling chamber can be guided to a predetermined position.
According to the present invention, if the cooling fluid in the cooling chamber is guided to, for example, the communication port and / or the outlet at the side wall of the recess, the cooling fluid can be circulated more smoothly in each cooling chamber. The convection speed of the cooling fluid can be increased, and the light modulation element can be cooled more efficiently by the cooling fluid.

本発明の光学装置は、光源から射出された光束を画像情報に応じて変調して光学像を形成する光変調素子を含んで構成される光学装置であって、上述した光変調素子保持体と、前記光変調素子保持体の流入口および流出口と接続され、前記冷却流体を前記冷却室外部に案内し、再度、前記冷却室内部に導く複数の流体循環部材とを備えていることを特徴とする。
本発明によれば、光学装置は、上述した光変調素子保持体と、複数の流体循環部材とを備えているので、上述した光変調素子保持体と同様の作用・効果を享受できる。
また、光変調素子保持体の各冷却室内だけでなく、複数の流体循環部材にも冷却流体を封入することで、冷却流体の容量を大きくすることができ、光変調素子と冷却流体との熱交換能力を向上させることができる。
An optical device of the present invention is an optical device including a light modulation element that modulates a light beam emitted from a light source according to image information to form an optical image, and includes the above-described light modulation element holder and A plurality of fluid circulation members that are connected to the inlet and outlet of the light modulation element holding body, guide the cooling fluid to the outside of the cooling chamber, and guide the cooling fluid to the inside of the cooling chamber again. And
According to the present invention, since the optical device includes the above-described light modulation element holder and a plurality of fluid circulation members, it can enjoy the same operations and effects as the above-described light modulation element holder.
Further, by enclosing the cooling fluid not only in each cooling chamber of the light modulation element holder but also in a plurality of fluid circulation members, the capacity of the cooling fluid can be increased, and the heat of the light modulation element and the cooling fluid can be increased. The exchange ability can be improved.

本発明の光学装置では、入射した光束の光学特性を変換する少なくとも1つの光学変換素子を備え、前記光学変換素子は、透光性基板と、前記透光性基板上に形成され、入射した光束の光学特性を変換する光学変換膜とで構成され、前記光変調素子保持体を構成する透光性基板のうちの少なくともいずれかの透光性基板は、前記光学変換素子を構成する透光性基板であることが好ましい。
ここで、光学変換素子としては、例えば、偏光板、位相差板、あるいは視野角補正板等を採用できる。
本発明によれば、光変調素子保持体を構成する透光性基板のうち少なくともいずれかの透光性基板は、光学変換素子を構成する透光性基板であるので、光変調素子のみならず、光源から射出された光束によって光学変換膜に生じる熱も、透光性基板を介して冷却室を対流する冷却流体に放熱できる。
The optical device of the present invention includes at least one optical conversion element that converts an optical characteristic of an incident light beam, and the optical conversion element is formed on the light-transmitting substrate and the light-transmitting substrate. And at least one of the translucent substrates constituting the light modulation element holding body, the translucent substrate constituting the optical conversion element. A substrate is preferred.
Here, as the optical conversion element, for example, a polarizing plate, a phase difference plate, a viewing angle correction plate, or the like can be employed.
According to the present invention, since at least one of the translucent substrates constituting the light modulation element holding body is a translucent substrate constituting the optical conversion element, not only the light modulation element. The heat generated in the optical conversion film by the light beam emitted from the light source can also be radiated to the cooling fluid that convects the cooling chamber via the translucent substrate.

本発明の光学装置では、前記光変調素子は、複数で構成され、前記光変調素子保持体は、前記複数の光変調素子に対応して複数で構成され、前記複数の流体循環部材における前記冷却流体の流路中に設置され、内部に流入した前記冷却流体を前記複数の流体循環部材を介して前記複数の光変調素子保持体毎に分岐して送出する流体分岐部と、前記複数の光変調素子保持体が取り付けられる複数の光束入射側端面を有し、前記複数の光変調素子にて変調された各色光を合成して射出する色合成光学装置とを備え、前記流体分岐部は、前記色合成光学装置の前記複数の光束入射側端面と交差する端面のうちいずれか一方の端面に取り付けられていることが好ましい。
本発明によれば、光学装置は流体分岐部を備え、該流体分岐部は、内部の冷却流体を複数の光変調素子保持体毎に分岐して送出するので、各光変調素子保持体の冷却室に流入する冷却流体の温度が偏ることなく、略同一の温度である冷却流体にて各光変調素子を冷却できる。
また、光変調素子保持体の各冷却室内、および複数の流体循環部材だけでなく、流体分岐部内部にも冷却流体を封入することで、冷却流体の容量を大きくすることができ、光変調素子と冷却流体との熱交換能力を向上させることができる。
さらに、流体分岐部は、色合成光学装置において、複数の光束入射側端面と交差する端面のうちいずれか一方の端面に取り付けられるので、光学装置をコンパクトにでき、光学装置の小型化を図れる。
In the optical device according to the aspect of the invention, the light modulation element includes a plurality of light modulation elements, and the light modulation element holding body includes a plurality of light modulation elements corresponding to the plurality of light modulation elements, and the cooling in the plurality of fluid circulation members. A fluid branching unit that is installed in a fluid flow path and that branches and sends out the cooling fluid that has flown into the plurality of light modulation element holders via the plurality of fluid circulation members; and the plurality of lights A color synthesizing optical device that has a plurality of light beam incident side end faces to which a modulation element holding body is attached, and synthesizes and emits the respective color lights modulated by the plurality of light modulation elements, and the fluid branching section includes: It is preferable that the color synthesizing optical device is attached to any one of the end surfaces intersecting with the plurality of light beam incident side end surfaces.
According to the present invention, the optical device includes the fluid branching portion, and the fluid branching portion branches and sends the internal cooling fluid for each of the plurality of light modulation element holders. Each light modulation element can be cooled by the cooling fluid having substantially the same temperature without the temperature of the cooling fluid flowing into the chamber being biased.
In addition, the cooling fluid can be increased in capacity by enclosing the cooling fluid not only in each cooling chamber of the light modulation element holding body and in the plurality of fluid circulation members but also in the fluid branching portion. And the heat exchange capacity between the cooling fluid and the cooling fluid can be improved.
Furthermore, since the fluid branching portion is attached to any one of the end faces intersecting with the plurality of light incident side end faces in the color synthesizing optical device, the optical device can be made compact and the optical device can be miniaturized.

本発明の光学装置では、前記複数の光変調素子の発熱量に応じて、前記各光変調素子保持体に流通する前記冷却流体の流量を変更可能とする流量変更部を備えていることが好ましい。
ここで、流量変更部としては、例えば、冷却流体の流路中に弁を設け、該弁の位置を変更することで流路を狭めたり拡げたりする構成を採用できる。
本発明によれば、流量変更部を操作することにより、例えば、発熱量の大きい光変調素子に対して冷却流体の流量を大きくし、発熱量の小さい光変調素子に対して冷却流体の流量を小さくすることで、各光変調素子の温度の均一化を簡単な構成で容易にかつ、高精度に実施可能となる。したがって、各光変調素子にて形成される光学像の色合いを良好に維持することが可能となる。
In the optical device according to the aspect of the invention, it is preferable that the optical device includes a flow rate changing unit that can change the flow rate of the cooling fluid flowing through each of the light modulation element holding bodies according to the heat generation amount of the plurality of light modulation elements. .
Here, as the flow rate changing unit, for example, a configuration in which a valve is provided in the flow path of the cooling fluid and the flow path is narrowed or expanded by changing the position of the valve can be employed.
According to the present invention, by operating the flow rate changing unit, for example, the flow rate of the cooling fluid is increased for the light modulation element having a large calorific value, and the flow rate of the cooling fluid is set for the light modulation element having a small calorific value. By reducing the size, the temperature of each light modulation element can be made uniform with a simple configuration with high accuracy. Therefore, it is possible to maintain a good hue of the optical image formed by each light modulation element.

本発明の光学装置では、前記複数の流体循環部材は、管状部材から構成され、前記複数の光変調素子の発熱量に応じて管径寸法が異なるように形成されていることが好ましい。
本発明によれば、例えば、発熱量の大きい光変調素子に対して冷却流体を流通させる流体循環部材の管径寸法を大きくし、発熱量の小さい光変調素子に対して冷却流体を流通させる流体循環部材の管径寸法を小さくすることで、各光変調素子の温度の均一化を簡単な構成で容易に実施可能となる。したがって、各光変調素子にて形成される光学像の色合いを良好に維持することが可能となる。
In the optical device according to the aspect of the invention, it is preferable that the plurality of fluid circulation members are formed of tubular members and have different tube diameters according to the heat generation amounts of the plurality of light modulation elements.
According to the present invention, for example, the fluid circulation member that circulates the cooling fluid with respect to the light modulation element with a large calorific value is increased in diameter, and the fluid that circulates the cooling fluid with respect to the light modulation element with a small calorific value. By reducing the tube diameter of the circulation member, the temperature of each light modulation element can be easily made uniform with a simple configuration. Therefore, it is possible to maintain a good hue of the optical image formed by each light modulation element.

本発明の光学装置では、前記流体分岐部は、前記複数の流体循環部材と接続し前記冷却流体を内部に流入させる冷却流体流入部、および前記冷却流体を外部に流出させる冷却流体流出部を有し、前記冷却流体流入部および前記冷却流体流出部は、前記冷却流体を流通可能な管形状を有し、一方の端部が前記流体分岐部の内部に向けて突出していることが好ましい。
本発明では、流体分岐部は、冷却流体流入部および冷却流体流出部を有する。そして、冷却流体流入部および冷却流体流出部の一方の端部は、流体分岐部の内部に向けて突出している。このことにより、流体分岐部の内部に蓄積された冷却流体のみを外部へと流出させることができる。例えば、流体分岐部内部が全て冷却流体にて満たされていない場合でも、空気を混入させることなく、冷却流体のみを外部へと流出させることができる。
また、冷却流体流出部のみならず、冷却流体流入部も流体分岐部の内部に向けて突出しているので、冷却流体の対流方向が変わった場合、すなわち、冷却流体流入部にて内部の冷却流体を外部に流出させ、冷却流体流出部にて冷却流体を内部に流入させる場合でも、冷却流体流入部にて内部に蓄積された冷却流体のみを外部へと流出させることができる。
In the optical device according to the aspect of the invention, the fluid branching portion includes a cooling fluid inflow portion that is connected to the plurality of fluid circulation members and allows the cooling fluid to flow into the inside, and a cooling fluid outflow portion that causes the cooling fluid to flow out to the outside. And it is preferable that the said cooling fluid inflow part and the said cooling fluid outflow part have a pipe shape which can distribute | circulate the said cooling fluid, and one edge part protrudes toward the inside of the said fluid branch part.
In the present invention, the fluid branch portion has a cooling fluid inflow portion and a cooling fluid outflow portion. One end portion of the cooling fluid inflow portion and the cooling fluid outflow portion protrudes toward the inside of the fluid branch portion. As a result, only the cooling fluid accumulated in the fluid branching portion can flow out. For example, even when the inside of the fluid branch portion is not completely filled with the cooling fluid, only the cooling fluid can flow out to the outside without mixing air.
Further, since not only the cooling fluid outflow portion but also the cooling fluid inflow portion protrudes toward the inside of the fluid branching portion, when the convection direction of the cooling fluid changes, that is, the internal cooling fluid at the cooling fluid inflow portion. Even when the cooling fluid is allowed to flow out and the cooling fluid is allowed to flow into the inside at the cooling fluid outflow portion, only the cooling fluid accumulated therein can be flowed out to the outside at the cooling fluid inflow portion.

本発明のプロジェクタは、光源装置と、上述した光学装置と、前記光学装置にて形成された光学像を拡大投射する投射光学装置とを備えていることが好ましい。
本発明によれば、プロジェクタは、光源装置と、上述した光学装置と、投射光学装置とを備えているので、上述した光学装置と同様の作用・効果を享受できる。
また、上述した光学装置を備えることで、光変調素子の熱劣化を防止でき、プロジェクタの高寿命化を図れる。
The projector of the present invention preferably includes a light source device, the above-described optical device, and a projection optical device that magnifies and projects an optical image formed by the optical device.
According to the present invention, since the projector includes the light source device, the optical device described above, and the projection optical device, the projector can enjoy the same operations and effects as the optical device described above.
In addition, by providing the above-described optical device, it is possible to prevent thermal deterioration of the light modulation element and to extend the life of the projector.

[第1実施形態]
以下、本発明の第1実施形態を図面に基づいて説明する。
〔プロジェクタの構成〕
図1は、プロジェクタ1の概略構成を模式的に示す図である。
プロジェクタ1は、光源から射出される光束を画像情報に応じて変調して光学像を形成し、形成した光学像をスクリーン上に拡大投射するものである。このプロジェクタ1は、外装ケース2と、冷却ユニット3と、光学ユニット4と、投射光学装置としての投射レンズ5とを備える。
なお、図1において、図示は省略するが、外装ケース2内において、冷却ユニット3、光学ユニット4、および投射レンズ5以外の空間には、電源ブロック、ランプ駆動回路等が配置されるものとする。
[First embodiment]
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a first embodiment of the invention will be described with reference to the drawings.
[Configuration of projector]
FIG. 1 is a diagram schematically showing a schematic configuration of the projector 1.
The projector 1 modulates a light beam emitted from a light source according to image information to form an optical image, and enlarges and projects the formed optical image on a screen. The projector 1 includes an exterior case 2, a cooling unit 3, an optical unit 4, and a projection lens 5 as a projection optical device.
Although not shown in FIG. 1, a power supply block, a lamp drive circuit, and the like are disposed in a space other than the cooling unit 3, the optical unit 4, and the projection lens 5 in the exterior case 2. .

外装ケース2は、合成樹脂等から構成され、冷却ユニット3、光学ユニット4、および投射レンズ5を内部に収納配置する全体略直方体状に形成されている。この外装ケース2は、図示は省略するが、プロジェクタ1の天面、前面、背面、および側面をそれぞれ構成するアッパーケースと、プロジェクタ1の底面、前面、側面、および背面をそれぞれ構成するロアーケースとで構成され、前記アッパーケースおよび前記ロアーケースは互いにねじ等で固定されている。
なお、外装ケース2は、合成樹脂製に限らず、その他の材料にて形成してもよく、例えば、金属等により構成してもよい。
また、図示は省略するが、この外装ケース2には、冷却ユニット3によりプロジェクタ1外部から冷却空気を内部に導入するための吸気口(例えば、図2に示す吸気口22)、およびプロジェクタ1内部で温められた空気を排出するための排気口が形成されている。
さらに、この外装ケース2には、図1に示すように、投射レンズ5の側方で外装ケース2の角部分に位置し、光学ユニット4の後述する光学装置のラジエータを他の部材と隔離する隔壁21が形成されている。
The exterior case 2 is made of synthetic resin or the like, and is formed in a substantially rectangular parallelepiped shape that accommodates and arranges the cooling unit 3, the optical unit 4, and the projection lens 5 inside. Although not shown, the outer case 2 includes an upper case that constitutes the top, front, back, and side surfaces of the projector 1, and a lower case that constitutes the bottom, front, side, and back surfaces of the projector 1, respectively. The upper case and the lower case are fixed to each other with screws or the like.
The exterior case 2 is not limited to being made of synthetic resin, but may be formed of other materials, for example, metal.
Although not shown, the exterior case 2 includes an intake port (for example, an intake port 22 shown in FIG. 2) for introducing cooling air from the outside of the projector 1 by the cooling unit 3, and the inside of the projector 1. An exhaust port is formed for exhausting air warmed by the air.
Further, as shown in FIG. 1, the exterior case 2 is positioned at a corner portion of the exterior case 2 on the side of the projection lens 5 and isolates a radiator of an optical device (to be described later) of the optical unit 4 from other members. A partition wall 21 is formed.

冷却ユニット3は、プロジェクタ1内部に形成される冷却流路に冷却空気を送り込み、プロジェクタ1内で発生する熱を冷却する。この冷却ユニット3は、投射レンズ5の側方に位置し、外装ケース2に形成された図示しない吸気口からプロジェクタ1外部の冷却空気を内部に導入して光学ユニット4の後述する光学装置の液晶パネルに冷却空気を吹き付けるシロッコファン31と、外装ケース2に形成された隔壁21内部に位置し、外装ケース2に形成された吸気口22(図2参照)からプロジェクタ1外部の冷却空気を内部に導入して光学ユニット4の後述するラジエータに冷却空気を吹き付ける軸流ファン32とを備える。
なお、この冷却ユニット3は、図示は省略するが、シロッコファン31および軸流ファン32の他、光学ユニット4の後述する光源装置、および図示しない電源ブロック、ランプ駆動回路等を冷却するための冷却ファンも有しているものとする。
The cooling unit 3 sends cooling air into a cooling flow path formed inside the projector 1 to cool heat generated in the projector 1. The cooling unit 3 is located on the side of the projection lens 5 and introduces cooling air outside the projector 1 from an air inlet (not shown) formed in the exterior case 2 into the liquid crystal of an optical device described later of the optical unit 4. The sirocco fan 31 that blows cooling air to the panel, and the cooling air outside the projector 1 are located inside the partition wall 21 formed in the outer case 2 and from the air inlet 22 (see FIG. 2) formed in the outer case 2 to the inside. An axial fan 32 that is introduced and blows cooling air to a later-described radiator of the optical unit 4 is provided.
Although not shown, the cooling unit 3 is a cooling unit for cooling a sirocco fan 31 and an axial fan 32, a light source device (to be described later) of the optical unit 4, a power supply block (not shown), a lamp driving circuit, and the like. It shall also have a fan.

光学ユニット4は、光源から射出された光束を、光学的に処理して画像情報に対応して光学像(カラー画像)を形成するユニットである。この光学ユニット4は、図1に示すように、外装ケース2の背面に沿って延出するとともに、外装ケース2の側面に沿って延出する平面視略L字形状を有している。なお、この光学ユニット4の詳細な構成については、後述する。
投射レンズ5は、複数のレンズが組み合わされた組レンズとして構成される。そして、この投射レンズ5は、光学ユニット4にて形成された光学像(カラー画像)を図示しないスクリーン上に拡大投射する。
The optical unit 4 is a unit that optically processes a light beam emitted from a light source to form an optical image (color image) corresponding to image information. As shown in FIG. 1, the optical unit 4 has a substantially L shape in plan view that extends along the back surface of the outer case 2 and extends along the side surface of the outer case 2. The detailed configuration of the optical unit 4 will be described later.
The projection lens 5 is configured as a combined lens in which a plurality of lenses are combined. The projection lens 5 enlarges and projects an optical image (color image) formed by the optical unit 4 on a screen (not shown).

〔光学ユニットの詳細な構成〕
光学ユニット4は、図1に示すように、インテグレータ照明光学系41、色分離光学系42、リレー光学系43、光学装置44、および、これら光学部品41〜44を収納配置する光学部品用筐体45とを備える。
インテグレータ照明光学系41は、光学装置44を構成する後述する液晶パネルの画像形成領域を略均一に照明するための光学系である。このインテグレータ照明光学系41は、図1に示すように、光源装置411と、第1レンズアレイ412と、第2レンズアレイ413と、偏光変換素子414と、重畳レンズ415とを備える。
[Detailed configuration of optical unit]
As shown in FIG. 1, the optical unit 4 includes an integrator illumination optical system 41, a color separation optical system 42, a relay optical system 43, an optical device 44, and an optical component housing that houses and arranges these optical components 41 to 44. 45.
The integrator illumination optical system 41 is an optical system for illuminating an image forming area of a liquid crystal panel, which will be described later, constituting the optical device 44 substantially uniformly. As shown in FIG. 1, the integrator illumination optical system 41 includes a light source device 411, a first lens array 412, a second lens array 413, a polarization conversion element 414, and a superimposing lens 415.

光源装置411は、放射状の光線を射出する光源ランプ416と、この光源ランプ416から射出された放射光を反射するリフレクタ417とを備える。光源ランプ416としては、ハロゲンランプやメタルハライドランプ、高圧水銀ランプが多用される。また、リフレクタ417としては、図1では、放物面鏡を採用しているが、これに限らず、楕円面鏡で構成し、光束射出側に該楕円面鏡により反射された光束を平行光とする平行化凹レンズを採用した構成としてもよい。
第1レンズアレイ412は、光軸方向から見て略矩形状の輪郭を有する小レンズがマトリクス状に配列された構成を有している。各小レンズは、光源装置411から射出される光束を、複数の部分光束に分割している。
第2レンズアレイ413は、第1レンズアレイ412と略同様な構成を有しており、小レンズがマトリクス状に配列された構成を有している。この第2レンズアレイ413は、重畳レンズ415とともに、第1レンズアレイ412の各小レンズの像を光学装置44の後述する液晶パネル上に結像させる機能を有している。
The light source device 411 includes a light source lamp 416 that emits a radial light beam, and a reflector 417 that reflects the emitted light emitted from the light source lamp 416. As the light source lamp 416, a halogen lamp, a metal halide lamp, or a high-pressure mercury lamp is frequently used. In FIG. 1, a parabolic mirror is used as the reflector 417. However, the reflector 417 is not limited to this. It is good also as a structure which employ | adopted the collimated concave lens as follows.
The first lens array 412 has a configuration in which small lenses having a substantially rectangular outline when viewed from the optical axis direction are arranged in a matrix. Each small lens splits the light beam emitted from the light source device 411 into a plurality of partial light beams.
The second lens array 413 has substantially the same configuration as the first lens array 412, and has a configuration in which small lenses are arranged in a matrix. The second lens array 413 has a function of forming an image of each small lens of the first lens array 412 on a liquid crystal panel (to be described later) of the optical device 44 together with the superimposing lens 415.

偏光変換素子414は、第2レンズアレイ413と重畳レンズ415との間に配置され、第2レンズアレイ413からの光を略1種類の偏光光に変換するものである。
具体的に、偏光変換素子414によって略1種類の偏光光に変換された各部分光は、重畳レンズ415によって最終的に光学装置44の後述する液晶パネル上にほぼ重畳される。偏光光を変調するタイプの液晶パネルを用いたプロジェクタでは、1種類の偏光光しか利用できないため、ランダムな偏光光を発する光源装置411からの光の略半分を利用できない。このため、偏光変換素子414を用いることで、光源装置411からの射出光を略1種類の偏光光に変換し、光学装置44での光の利用効率を高めている。
The polarization conversion element 414 is disposed between the second lens array 413 and the superimposing lens 415, and converts light from the second lens array 413 into substantially one type of polarized light.
Specifically, each partial light converted into substantially one type of polarized light by the polarization conversion element 414 is finally substantially superimposed on a liquid crystal panel (described later) of the optical device 44 by the superimposing lens 415. In a projector using a liquid crystal panel of a type that modulates polarized light, only one type of polarized light can be used, and therefore approximately half of the light from the light source device 411 that emits randomly polarized light cannot be used. For this reason, by using the polarization conversion element 414, the light emitted from the light source device 411 is converted into substantially one type of polarized light, and the light use efficiency in the optical device 44 is increased.

色分離光学系42は、図1に示すように、2枚のダイクロイックミラー421,422と、反射ミラー423とを備え、ダイクロイックミラー421,422によりインテグレータ照明光学系41から射出された複数の部分光束を、赤、緑、青の3色の色光に分離する機能を有している。
リレー光学系43は、図1に示すように、入射側レンズ431、リレーレンズ433、および反射ミラー432,434を備え、色分離光学系42で分離された赤色光を光学装置44の後述する赤色光用の液晶パネルまで導く機能を有している。
As shown in FIG. 1, the color separation optical system 42 includes two dichroic mirrors 421 and 422 and a reflection mirror 423, and a plurality of partial light beams emitted from the integrator illumination optical system 41 by the dichroic mirrors 421 and 422. Has a function of separating the light into three color lights of red, green, and blue.
As shown in FIG. 1, the relay optical system 43 includes an incident side lens 431, a relay lens 433, and reflection mirrors 432 and 434, and the red light separated by the color separation optical system 42 is red to be described later of the optical device 44. It has the function of leading to the light liquid crystal panel.

この際、色分離光学系42のダイクロイックミラー421では、インテグレータ照明光学系41から射出された光束の青色光成分が反射するとともに、赤色光成分と緑色光成分とが透過する。ダイクロイックミラー421によって反射した青色光は、反射ミラー423で反射し、フィールドレンズ418を通って光学装置44の後述する青色光用の液晶パネルに達する。このフィールドレンズ418は、第2レンズアレイ413から射出された各部分光側をその中心軸(主光線)に対して平行な光束に変換する。他の緑色光用、赤色光用の液晶パネルの光入射側に設けられたフィールドレンズ418も同様である。   At this time, the dichroic mirror 421 of the color separation optical system 42 reflects the blue light component of the light beam emitted from the integrator illumination optical system 41 and transmits the red light component and the green light component. The blue light reflected by the dichroic mirror 421 is reflected by the reflection mirror 423, passes through the field lens 418, and reaches a later-described liquid crystal panel for blue light of the optical device 44. The field lens 418 converts each partial light emitted from the second lens array 413 into a light beam parallel to the central axis (principal ray). The same applies to the field lens 418 provided on the light incident side of the other liquid crystal panel for green light and red light.

ダイクロイックミラー421を透過した赤色光と緑色光のうちで、緑色光はダイクロイックミラー422によって反射し、フィールドレンズ418を通って光学装置44の後述する緑色光用の液晶パネルに達する。一方、赤色光はダイクロイックミラー422を透過してリレー光学系43を通り、さらにフィールドレンズ418を通って光学装置44の後述する赤色光用の液晶パネルに達する。なお、赤色光にリレー光学系43が用いられているのは、赤色光の光路の長さが他の色光の光路長さよりも長いため、光の発散等による光の利用効率の低下を防止するためである。すなわち、入射側レンズ431に入射した部分光束をそのまま、フィールドレンズ418に伝えるためである。   Of the red light and green light transmitted through the dichroic mirror 421, the green light is reflected by the dichroic mirror 422, passes through the field lens 418, and reaches a later-described green light liquid crystal panel of the optical device 44. On the other hand, the red light passes through the dichroic mirror 422, passes through the relay optical system 43, passes through the field lens 418, and reaches a later-described red light liquid crystal panel of the optical device 44. The relay optical system 43 is used for red light because the optical path length of the red light is longer than the optical path lengths of the other color lights, thereby preventing a decrease in light use efficiency due to light divergence or the like. Because. That is, this is to transmit the partial light beam incident on the incident side lens 431 to the field lens 418 as it is.

光学装置44は、図1に示すように、光変調素子としての3枚の液晶パネル441(赤色光用の液晶パネルを441R、緑色光用の液晶パネルを441G、青色光用の液晶パネルを441Bとする)と、この液晶パネル441の光束入射側および光束射出側に配置される光学変換素子としての入射側偏光板442および射出側偏光板443と、色合成光学装置としてのクロスダイクロイックプリズム444とが一体的に形成されたものである。
なお、光学装置44は、具体的な構成は後述するが、液晶パネル441、入射側偏光板442、射出側偏光板443、およびクロスダイクロイックプリズム444以外に、メインタンク、流体圧送部、ラジエータ、流体循環部材、流体分岐部、光変調素子保持体、および中継タンクを備える。
As shown in FIG. 1, the optical device 44 includes three liquid crystal panels 441 (red liquid crystal panel 441R, green light liquid crystal panel 441G, blue light liquid crystal panel 441B as light modulation elements. The incident-side polarizing plate 442 and the emitting-side polarizing plate 443 as optical conversion elements disposed on the light incident side and the light emitting side of the liquid crystal panel 441, and a cross dichroic prism 444 as a color synthesizing optical device. Are integrally formed.
Although the specific configuration of the optical device 44 will be described later, in addition to the liquid crystal panel 441, the incident-side polarizing plate 442, the emission-side polarizing plate 443, and the cross dichroic prism 444, the main tank, the fluid pumping unit, the radiator, the fluid A circulation member, a fluid branching section, a light modulation element holding body, and a relay tank are provided.

液晶パネル441は、ガラスなどからなる一対の基板441C,441D(図8参照)に電気光学物質である液晶が密閉封入された構成を有している。このうち、基板441C(図8参照)は、液晶を駆動するための駆動基板であり、互いに平行に配列形成される複数のデータ線と、複数のデータ線と直交する方向に配列形成される複数の走査線と、走査線およびデータ線の交差に対応してマトリクス状に配列形成される画素電極と、TFT等のスイッチング素子とを有している。また、基板441D(図8参照)は、基板441Cに対して所定間隔を空けて対向配置される対向基板であり、所定の電圧Vcomが印加される共通電極を有している。そして、これら基板441C,441Dには、図示しない制御装置と電気的に接続し、前記走査線、前記データ線、前記スイッチング素子、および前記共通電極等に所定の駆動信号を出力するフレキシブルプリント基板441E(図8参照)が接続されている。このフレキシブルプリント基板441E(図8参照)を介して前記制御装置から駆動信号を入力することで、所定の前記画素電極と前記共通電極との間に電圧が印加され、該画素電極および共通電極間に介在する液晶の配向状態が制御され、入射側偏光板442から射出された偏光光束の偏光方向が変調される。   The liquid crystal panel 441 has a configuration in which a liquid crystal as an electro-optical material is hermetically sealed between a pair of substrates 441C and 441D (see FIG. 8) made of glass or the like. Of these, the substrate 441C (see FIG. 8) is a driving substrate for driving the liquid crystal, and a plurality of data lines arranged in parallel to each other and a plurality arranged in a direction orthogonal to the plurality of data lines. Scanning lines, pixel electrodes arranged in a matrix corresponding to the intersection of the scanning lines and the data lines, and switching elements such as TFTs. The substrate 441D (see FIG. 8) is a counter substrate that is disposed to face the substrate 441C at a predetermined interval, and has a common electrode to which a predetermined voltage Vcom is applied. These substrates 441C and 441D are electrically connected to a control device (not shown), and a flexible printed circuit board 441E that outputs a predetermined drive signal to the scanning line, the data line, the switching element, the common electrode, and the like. (See FIG. 8) are connected. By inputting a drive signal from the control device via the flexible printed circuit board 441E (see FIG. 8), a voltage is applied between the predetermined pixel electrode and the common electrode, and between the pixel electrode and the common electrode. The alignment state of the liquid crystal intervening is controlled, and the polarization direction of the polarized light beam emitted from the incident side polarizing plate 442 is modulated.

入射側偏光板442は、偏光変換素子414で偏光方向が略一方向に揃えられた各色光が入射され、入射された光束のうち、偏光変換素子414で揃えられた光束の偏光軸と略同一方向の偏光光のみ透過させ、その他の光束を吸収するものである。この入射側偏光板442は、サファイアガラスまたは水晶等の透光性基板442A(図8参照)上に光学変換膜としての偏光膜(図示省略)が貼付された構成を有している。
射出側偏光板443は、入射側偏光板442と同様に透光性基板443Aおよび光学変換膜としての偏光膜443B(図8参照)を有し、液晶パネル441から射出された光束のうち、入射側偏光板442における光束の透過軸と直交する偏光軸を有する光束のみ透過させ、その他の光束を吸収するものである。
The incident-side polarizing plate 442 receives light of each color whose polarization direction is aligned in approximately one direction by the polarization conversion element 414, and of the incident light beams, is substantially the same as the polarization axis of the light beams aligned by the polarization conversion element 414. Only polarized light in the direction is transmitted, and other light beams are absorbed. The incident-side polarizing plate 442 has a configuration in which a polarizing film (not shown) as an optical conversion film is attached to a translucent substrate 442A (see FIG. 8) such as sapphire glass or quartz.
The exit-side polarizing plate 443 includes a light-transmitting substrate 443A and a polarizing film 443B (see FIG. 8) as an optical conversion film in the same manner as the incident-side polarizing plate 442, and includes incident light out of the light flux emitted from the liquid crystal panel 441. Only the light beam having a polarization axis orthogonal to the transmission axis of the light beam in the side polarizing plate 442 is transmitted, and other light beams are absorbed.

クロスダイクロイックプリズム444は、射出側偏光板443から射出された色光毎に変調された光学像を合成してカラー画像を形成する光学素子である。このクロスダイクロイックプリズム444は、4つの直角プリズムを貼り合わせた平面視略正方形状をなし、直角プリズム同士を貼り合わせた界面には、2つの誘電体多層膜が形成されている。これら誘電体多層膜は、液晶パネル441R,441Bから射出され射出側偏光板443を介した色光を反射し、液晶パネル441Gから射出され射出側偏光板443を介した色光を透過する。このようにして、各液晶パネル441R,441G,441Bにて変調された各色光が合成されてカラー画像が形成される。   The cross dichroic prism 444 is an optical element that synthesizes an optical image modulated for each color light emitted from the emission side polarizing plate 443 to form a color image. The cross dichroic prism 444 has a substantially square shape in plan view in which four right angle prisms are bonded together, and two dielectric multilayer films are formed on the interface where the right angle prisms are bonded together. These dielectric multilayer films reflect the color light emitted from the liquid crystal panels 441R and 441B through the emission side polarizing plate 443, and transmit the color light emitted from the liquid crystal panel 441G through the emission side polarizing plate 443. In this manner, the color lights modulated by the liquid crystal panels 441R, 441G, and 441B are combined to form a color image.

図2は、プロジェクタ1内の一部を上方側から見た斜視図である。なお、図2において、光学部品用筐体45内の光学部品は、説明を簡略化するために、光学装置44の後述する光学装置本体のみを図示し、その他の光学部品41〜43は省略している。
図3は、プロジェクタ1内の一部を下方側から見た斜視図である。
光学部品用筐体45は、例えば、金属製部材から構成され、図1に示すように、内部に所定の照明光軸Aが設定され、上述した光学部品41〜43、および光学装置44の後述する光学装置本体を照明光軸Aに対する所定位置に収納配置する。なお、光学部品用筐体45は、金属製部材に限らず、その他の材料にて構成してもよく、特に熱伝導性材料で構成することが好ましい。この光学部品用筐体45は、図2に示すように、光学部品41〜43、および光学装置44の後述する光学装置本体を収納する容器状の部品収納部材451と、部品収納部材451の開口部分を閉塞する図示しない蓋状部材とで構成される。
FIG. 2 is a perspective view of a part of the projector 1 as viewed from above. In FIG. 2, the optical components in the optical component housing 45 are shown only for the optical device main body (to be described later) of the optical device 44 for the sake of simplicity, and the other optical components 41 to 43 are omitted. ing.
FIG. 3 is a perspective view of a part of the projector 1 as viewed from below.
The optical component housing 45 is made of, for example, a metal member. As shown in FIG. 1, a predetermined illumination optical axis A is set therein, and the optical components 41 to 43 and the optical device 44 described above are described later. The optical device main body to be stored is accommodated in a predetermined position with respect to the illumination optical axis A. The optical component casing 45 is not limited to a metal member, and may be composed of other materials, and is particularly preferably composed of a heat conductive material. As shown in FIG. 2, the optical component housing 45 includes a container-shaped component storage member 451 for storing optical components 41 to 43 and an optical device body to be described later of the optical device 44, and an opening of the component storage member 451. It comprises a lid-like member (not shown) that closes the portion.

このうち、部品収納部材451は、光学部品用筐体45の底面、前面、および側面をそれぞれ構成する。
この部品収納部材451において、側面の内側面には、図2に示すように、上述した光学部品412〜415,418,421〜423,431〜434を上方からスライド式に嵌め込むための溝部451Aが形成されている。
また、側面の正面部分には、図2に示すように、投射レンズ5を光学ユニット4に対して所定位置に設置するための投射レンズ設置部451Bが形成されている。この投射レンズ設置部451Bは、平面視略矩形状に形成され、平面視略中央部分には光学装置44からの光束射出位置に対応して円形状の図示しない孔が形成されており、光学ユニット4にて形成されたカラー画像が前記孔を通して投射レンズ5にて拡大投射される。
また、この部品収納部材451において、底面には、図3に示すように、光学装置44の液晶パネル441位置に対応して形成された3つの孔451Cと、光学装置44の後述する流体分岐部の冷却流体流入部に対応して形成された孔451Dとが形成されている。ここで、冷却ユニット3のシロッコファン31によりプロジェクタ1外部から内部に導入された冷却空気は、シロッコファン31の吐出口31A(図3)から吐出され、図示しないダクトを介して前記孔451Cに導かれる。
Among these, the component storage member 451 constitutes a bottom surface, a front surface, and a side surface of the optical component housing 45, respectively.
In this component storage member 451, on the inner side surface of the side surface, as shown in FIG. 2, a groove portion 451A for slidingly fitting the above-described optical components 412 to 415, 418, 421 to 423, 431 to 434 from above is provided. Is formed.
Further, as shown in FIG. 2, a projection lens installation part 451 </ b> B for installing the projection lens 5 at a predetermined position with respect to the optical unit 4 is formed on the front part of the side surface. The projection lens installation portion 451B is formed in a substantially rectangular shape in plan view, and a circular hole (not shown) corresponding to the light beam emission position from the optical device 44 is formed in a substantially central portion in plan view. The color image formed at 4 is enlarged and projected by the projection lens 5 through the hole.
Further, in the component storage member 451, on the bottom surface, as shown in FIG. And a hole 451D formed corresponding to the cooling fluid inflow portion. Here, the cooling air introduced from the outside of the projector 1 by the sirocco fan 31 of the cooling unit 3 is discharged from the discharge port 31A (FIG. 3) of the sirocco fan 31 and guided to the hole 451C through a duct (not shown). It is burned.

〔光学装置の構成〕
光学装置44は、図2または図3に示すように、液晶パネル441、入射側偏光板442、射出側偏光板443、およびクロスダイクロイックプリズム444が一体化された光学装置本体440(図2)と、メインタンク445と、流体圧送部446と、ラジエータ447と、複数の流体循環部材448とを備える。
複数の流体循環部材448は、内部に冷却流体が対流可能にアルミニウム製の管状部材で構成され、冷却流体が循環可能に各部材440,445〜447を接続する。そして、循環する冷却流体により光学装置本体440を構成する液晶パネル441、入射側偏光板442、および射出側偏光板443に生じる熱を冷却する。
なお、本実施形態では、冷却流体として、透明性の非揮発性液体であるエチレングリコールを採用する。冷却流体としては、エチレングリコールに限らず、その他の液体を採用してもよい。
以下では、各部材440,445〜447を、循環する冷却流体の流路に沿って液晶パネル441に対する上流側から順に説明する。
[Configuration of optical device]
As shown in FIG. 2 or FIG. 3, the optical device 44 includes an optical device main body 440 (FIG. 2) in which a liquid crystal panel 441, an incident side polarizing plate 442, an emission side polarizing plate 443, and a cross dichroic prism 444 are integrated. , A main tank 445, a fluid pumping unit 446, a radiator 447, and a plurality of fluid circulation members 448.
The plurality of fluid circulation members 448 are formed of aluminum tubular members so that the cooling fluid can convect therein, and connect the members 440 and 445 to 447 so that the cooling fluid can circulate. Then, heat generated in the liquid crystal panel 441, the incident-side polarizing plate 442, and the emission-side polarizing plate 443 constituting the optical device body 440 is cooled by the circulating cooling fluid.
In the present embodiment, ethylene glycol, which is a transparent non-volatile liquid, is employed as the cooling fluid. The cooling fluid is not limited to ethylene glycol, and other liquids may be used.
Below, each member 440, 445-447 is demonstrated in order from the upstream with respect to the liquid crystal panel 441 along the flow path of the circulating cooling fluid.

図4は、メインタンク445の構造を示す図である。具体的に、図4(A)は、メインタンク445を上方から見た平面図である。また、図4(B)は、図4(A)におけるA-A線の断面図である。
メインタンク445は、略円柱形状を有し、アルミニウム製の2つの容器状部材から構成され、2つの容器状部材の開口部分を互いに接続することで内部に冷却流体を一時的に蓄積する。これら容器状部材は、例えば、シール溶接またはゴム等の弾性部材を介在させることで接続される。
FIG. 4 is a view showing the structure of the main tank 445. Specifically, FIG. 4A is a plan view of the main tank 445 viewed from above. FIG. 4B is a cross-sectional view taken along the line AA in FIG.
The main tank 445 has a substantially cylindrical shape and is composed of two container members made of aluminum. The main tank 445 temporarily accumulates the cooling fluid therein by connecting the opening portions of the two container members. These container-like members are connected by interposing an elastic member such as seal welding or rubber, for example.

このメインタンク445において、円柱軸方向略中央部分には、図4(B)に示すように、冷却流体を内部に流入させる冷却流体流入部445Aおよび内部の冷却流体を外部に流出させる冷却流体流出部445Bが形成されている。
これら冷却流体流入部445Aおよび冷却流体流出部445Bは、流体循環部材448の管径寸法よりも小さい管径寸法を有する略筒状部材から構成され、メインタンク445の内外に突出するように配置されている。そして、冷却流体流入部445Aの外側に突出した一端には、流体循環部材448の一端が接続され、該流体循環部材448を介して外部からの冷却流体がメインタンク445内部に流入する。また、冷却流体流出部445Bの外側に突出した一端にも、流体循環部材448の一端が接続され、該流体循環部材448を介してメインタンク445内部の冷却流体が外部へと流出する。
また、冷却流体流入部445Aおよび冷却流体流出部445Bの内側に突出した他端は、図4(A)に示すように、メインタンク445の円柱軸に向けて延出し、平面的に視て略直交するようにそれぞれ配置されている。このように、冷却流体流入部445Aおよび冷却流体流出部445Bを平面的に視て略直交するようにそれぞれ配置することで、冷却流体流入部445Aを介してメインタンク445内部に流入した冷却流体が、冷却流体流出部445Bを介して直ぐに外部に流出することを回避でき、流入した冷却流体をメインタンク445内部の冷却流体と混合させ、冷却流体の温度の均一化を図っている。
As shown in FIG. 4B, the main tank 445 has a cooling fluid inflow portion 445A for injecting the cooling fluid into the interior and a cooling fluid outflow for outflowing the inside cooling fluid to the outside, as shown in FIG. A portion 445B is formed.
The cooling fluid inflow portion 445A and the cooling fluid outflow portion 445B are configured by a substantially cylindrical member having a tube diameter smaller than the tube diameter of the fluid circulation member 448, and are disposed so as to protrude in and out of the main tank 445. ing. One end of the fluid circulation member 448 is connected to one end protruding to the outside of the cooling fluid inflow portion 445 </ b> A, and cooling fluid from the outside flows into the main tank 445 through the fluid circulation member 448. In addition, one end of the fluid circulation member 448 is connected to one end protruding to the outside of the cooling fluid outflow portion 445B, and the cooling fluid inside the main tank 445 flows out to the outside through the fluid circulation member 448.
Further, the other ends protruding inward of the cooling fluid inflow portion 445A and the cooling fluid outflow portion 445B extend toward the cylindrical axis of the main tank 445, as shown in FIG. They are arranged so as to be orthogonal to each other. As described above, the cooling fluid inflow portion 445A and the cooling fluid outflow portion 445B are arranged so as to be substantially orthogonal in a plan view, so that the cooling fluid that has flowed into the main tank 445 via the cooling fluid inflow portion 445A can be obtained. Therefore, it is possible to prevent the cooling fluid outflow portion 445B from immediately flowing out to the outside, and the cooling fluid that has flowed in is mixed with the cooling fluid inside the main tank 445 so as to equalize the temperature of the cooling fluid.

また、このメインタンク445の外周面において、円柱軸方向略中央部分には、図4(A)に示すように、2つの容器状部材のそれぞれに3つの固定部445Cが形成され、該固定部445Cにねじ445D(図2、図3)を挿通し、外装ケース2の底面に螺合することで、2つの容器状部材が互いに密接して接続されるとともに、メインタンク445が外装ケース2に固定される。
そして、このメインタンク445は、図1または図2に示すように、光学部品用筐体45と外装ケース2の内側面とで形成される平面視三角形状の領域に配置される。この領域にメインタンク445を配置することで、外装ケース2内の収納効率の向上が図れ、プロジェクタ1が大型化することがない。
In addition, on the outer peripheral surface of the main tank 445, three fixing portions 445C are formed in each of the two container-like members, as shown in FIG. By inserting a screw 445D (FIGS. 2 and 3) through 445C and screwing it into the bottom surface of the outer case 2, the two container-like members are closely connected to each other, and the main tank 445 is attached to the outer case 2. Fixed.
As shown in FIG. 1 or FIG. 2, the main tank 445 is disposed in a triangular region in plan view formed by the optical component housing 45 and the inner surface of the outer case 2. By disposing the main tank 445 in this region, the storage efficiency in the outer case 2 can be improved, and the projector 1 does not increase in size.

流体圧送部446は、メインタンク445内に蓄積された冷却流体を送入し、送入した冷却流体を外部に強制的に送出する。このため、流体圧送部446は、図3に示すように、メインタンク445の冷却流体流出部445Bに接続した流体循環部材448の他端と連通接続するとともに、外部に冷却流体を送出するために他の流体循環部材448の一端と連通接続している。
この流体圧送部446は、具体的な図示は省略するが、例えば、略直方体状のアルミニウム製の中空部材内に羽根車が配置された構成を有し、図示しない制御装置による制御の下、前記羽根車が回転することで、メインタンク445内に蓄積された冷却流体を流体循環部材448を介して強制的に送入し、送入した冷却流体を流体循環部材448を介して外部に強制的に送出する。このような構成では、流体圧送部446は、前記羽根車の回転軸方向の厚み寸法を小さくすることができ、プロジェクタ1内部の空きスペースに配置することが可能となり、プロジェクタ1内部の収納効率の向上を図れ、プロジェクタ1が大型化することがない。本実施形態では、流体圧送部446は、図2または図3に示すように、投射レンズ5の下方に配置される。
The fluid pumping unit 446 sends in the cooling fluid accumulated in the main tank 445 and forcibly sends out the sent cooling fluid to the outside. For this reason, as shown in FIG. 3, the fluid pumping part 446 is connected to the other end of the fluid circulation member 448 connected to the cooling fluid outflow part 445B of the main tank 445, and sends the cooling fluid to the outside. The other fluid circulation member 448 is connected in communication with one end.
Although not specifically illustrated, the fluid pumping unit 446 has, for example, a configuration in which an impeller is disposed in a substantially rectangular parallelepiped aluminum hollow member, and is controlled by a control device (not illustrated). By rotating the impeller, the cooling fluid accumulated in the main tank 445 is forcibly sent via the fluid circulation member 448, and the sent cooling fluid is forcibly sent to the outside via the fluid circulation member 448. To send. In such a configuration, the fluid pressure feeding unit 446 can reduce the thickness dimension of the impeller in the rotation axis direction, and can be disposed in an empty space inside the projector 1. Improvement can be achieved and the projector 1 will not be enlarged. In the present embodiment, the fluid pumping unit 446 is disposed below the projection lens 5 as shown in FIG. 2 or FIG.

図5および図6は、光学装置本体440の概略構成を示す図である。具体的に、図5は、光学装置本体440を上方側から見た斜視図である。また、図6は、光学装置本体440を下方側から見た斜視図である。
光学装置本体440は、3つの液晶パネル441、3つの入射側偏光板442、3つの射出側偏光板443、およびクロスダイクロイックプリズム444の他、図5および図6に示すように、流体分岐部4401と、3つの光変調素子保持体4402と、3つの支持部材4403と、中継タンク4404(図5)とを備える。
5 and 6 are diagrams showing a schematic configuration of the optical device main body 440. FIG. Specifically, FIG. 5 is a perspective view of the optical device main body 440 as viewed from above. FIG. 6 is a perspective view of the optical device body 440 as viewed from below.
The optical device main body 440 includes three liquid crystal panels 441, three incident side polarization plates 442, three emission side polarization plates 443, and a cross dichroic prism 444, as well as a fluid branching portion 4401 as shown in FIGS. And three light modulation element holders 4402, three support members 4403, and a relay tank 4404 (FIG. 5).

図7は、流体分岐部4401の構造を示す図である。具体的に、図7(A)は、流体分岐部4401を上方から見た平面図である。また、図7(B)は、図7(A)におけるB-B線の断面図である。
流体分岐部4401は、略直方体状のアルミニウム製の中空部材で構成され、流体圧送部446から強制的に送出された冷却流体を送入し、送入した冷却流体を3つの光変調素子保持体4402毎に分岐して送出する。また、この流体分岐部4401は、クロスダイクロイックプリズム444の3つの光束入射側端面に交差する端面である下面に固定され、クロスダイクロイックプリズム444を支持するプリズム固定板としての機能も有する。
この流体分岐部4401において、底面の略中央部分には、図7(B)に示すように、流体圧送部446から圧送された冷却流体を内部に流入させる冷却流体流入部4401Aが形成されている。この冷却流体流入部4401Aは、メインタンク445の冷却流体流入部445Aと同様に、流体循環部材448の管径寸法よりも小さい管径寸法を有する略筒状部材から構成され、流体分岐部4401内外に突出するように配置されている。そして、冷却流体流入部4401Aの外側に突出した一端には、流体圧送部446に連通接続された流体循環部材448の他端が接続され、該流体循環部材448を介して流体圧送部446から圧送された冷却流体が流体分岐部4401内部に流入する。
また、底面の四隅部分には、図7(A)に示すように、該底面に沿って延出する腕部4401Bがそれぞれ形成されている。これら腕部4401Bの先端部分には、それぞれ孔4401B1が形成され、これら孔4401B1に図示しないねじを挿通し、光学部品用筐体45の部品収納部材451に螺合することで、光学装置本体440が部品収納部材451に固定される。この際、流体分岐部4401および光学部品用筐体45は、熱伝達可能に接続される。このように、流体分岐部4401が光学部品用筐体45に熱伝達可能に接続されることで、循環する冷却流体〜流体分岐部4401〜光学部品用筐体45への熱伝達経路を確保し、冷却流体の冷却効率を向上させ、ひいては、冷却流体による液晶パネル441、入射側偏光板442、および射出側偏光板443の冷却効率の向上を図れる。また、シロッコファン31の送風を光学部品用筐体45の底面に沿って流せば、循環する冷却流体の放熱面積を増加でき、さらに、冷却効率が高められる。
FIG. 7 is a view showing the structure of the fluid branching portion 4401. Specifically, FIG. 7A is a plan view of the fluid branch portion 4401 viewed from above. FIG. 7B is a cross-sectional view taken along the line BB in FIG.
The fluid branching portion 4401 is formed of a substantially rectangular parallelepiped aluminum hollow member, which sends in the cooling fluid forcibly sent out from the fluid pressure sending portion 446, and sends the cooling fluid into three light modulation element holding bodies. It branches and sends every 4402. In addition, the fluid branching portion 4401 is fixed to a lower surface that is an end surface intersecting with the three light flux incident side end surfaces of the cross dichroic prism 444, and also has a function as a prism fixing plate that supports the cross dichroic prism 444.
In this fluid branching portion 4401, a cooling fluid inflow portion 4401A for allowing the cooling fluid pumped from the fluid pumping portion 446 to flow into the inside is formed at a substantially central portion of the bottom surface as shown in FIG. 7B. . This cooling fluid inflow portion 4401A is composed of a substantially cylindrical member having a pipe diameter smaller than the diameter of the fluid circulation member 448, similar to the cooling fluid inflow portion 445A of the main tank 445. It is arranged to protrude. The other end of the fluid circulation member 448 communicated with the fluid pumping portion 446 is connected to one end protruding to the outside of the cooling fluid inflow portion 4401A, and is pumped from the fluid pumping portion 446 via the fluid circulation member 448. The cooled cooling fluid flows into the fluid branch portion 4401.
Also, as shown in FIG. 7A, arm portions 4401B extending along the bottom surface are formed at the four corners of the bottom surface, respectively. Holes 4401B1 are respectively formed at the tip portions of these arm portions 4401B. Screws (not shown) are inserted into the holes 4401B1 and screwed into the component housing member 451 of the optical component housing 45, whereby the optical device main body 440 is obtained. Is fixed to the component storage member 451. At this time, the fluid branch portion 4401 and the optical component casing 45 are connected so as to be capable of transferring heat. In this way, the fluid branching portion 4401 is connected to the optical component housing 45 so as to be able to transfer heat, thereby securing a heat transfer path from the circulating cooling fluid to the fluid branching portion 4401 to the optical component housing 45. Thus, the cooling efficiency of the cooling fluid can be improved, and as a result, the cooling efficiency of the liquid crystal panel 441, the incident side polarizing plate 442, and the emission side polarizing plate 443 can be improved by the cooling fluid. Further, if the sirocco fan 31 is blown along the bottom surface of the optical component casing 45, the heat radiation area of the circulating cooling fluid can be increased, and the cooling efficiency can be improved.

また、この流体分岐部4401において、クロスダイクロイックプリズム444の光束入射側端面に対応する3つの側面には、図7(A)に示すように、送入された冷却流体を3つの光変調素子保持体4402毎に分岐して流出させる冷却流体流出部4401Cが形成されている。
これら冷却流体流出部4401Cは、冷却流体流入部4401Aと同様に、流体循環部材448の管径寸法よりも小さい管径寸法を有する略筒状部材から構成され、流体分岐部4401内外に突出するように配置されている。そして、各冷却流体流出部4401Cの外側に突出した一端には、それぞれ流体循環部材448の一端が接続され、該流体循環部材448を介して流体分岐部4401内部の冷却流体が分岐されて外部へと流出する。
さらに、この流体分岐部4401において、上面の略中央部分には、図7に示すように、球状の膨出部4401Dが形成されている。そして、この膨出部4401Dにクロスダイクロイックプリズム444の下面を当接させることで、流体分岐部4401に対するクロスダイクロイックプリズム444のあおり方向の位置調整が可能となる。
Further, in this fluid branching portion 4401, the three cooling modulators held by the three light modulation elements are held on the three side surfaces corresponding to the light incident side end surface of the cross dichroic prism 444 as shown in FIG. A cooling fluid outflow portion 4401C is formed to branch out and flow out for each body 4402.
Like the cooling fluid inflow portion 4401A, these cooling fluid outflow portions 4401C are formed of a substantially cylindrical member having a tube diameter smaller than the tube diameter of the fluid circulation member 448, and project into the fluid branching portion 4401. Is arranged. One end of each cooling fluid outflow portion 4401C that protrudes to the outside is connected to one end of a fluid circulation member 448, and the cooling fluid inside the fluid branch portion 4401 is branched via the fluid circulation member 448 to the outside. And leaked.
Further, in the fluid branching portion 4401, a spherical bulging portion 4401D is formed at a substantially central portion of the upper surface as shown in FIG. The position of the cross dichroic prism 444 in the tilt direction relative to the fluid branching portion 4401 can be adjusted by bringing the lower surface of the cross dichroic prism 444 into contact with the bulging portion 4401D.

図8は、光変調素子保持体4402の概略構成を示す分解斜視図である。
3つの光変調素子保持体4402は、3つの液晶パネル441、3つの入射側偏光板442、および3つの射出側偏光板443をそれぞれ保持するとともに、内部に冷却流体が流入および流出し、該冷却流体により3つの液晶パネル441、3つの入射側偏光板442、および3つの射出側偏光板443をそれぞれ冷却する。なお、各光変調素子保持体4402は、同様の構成であり、以下では1つの光変調素子保持体4402のみを説明する。
光変調素子保持体4402は、図8に示すように、一対の枠状部材4405,4406と、4つの弾性部材4407と、一対の偏光板固定部材4408A,4408Bと、中間枠体4409とを備える。
FIG. 8 is an exploded perspective view showing a schematic configuration of the light modulation element holding body 4402.
The three light modulation element holding bodies 4402 hold the three liquid crystal panels 441, the three incident side polarizing plates 442, and the three emission side polarizing plates 443, respectively, and a cooling fluid flows in and out of the inside. The three liquid crystal panels 441, the three incident side polarizing plates 442, and the three outgoing side polarizing plates 443 are cooled by the fluid. Each light modulation element holder 4402 has the same configuration, and only one light modulation element holder 4402 will be described below.
As shown in FIG. 8, the light modulation element holding body 4402 includes a pair of frame-like members 4405 and 4406, four elastic members 4407, a pair of polarizing plate fixing members 4408A and 4408B, and an intermediate frame 4409. .

図9は、枠状部材4405の概略構成を示す図である。具体的に、図9(A)は、枠状部材4405を光束射出側から見た斜視図である。また、図9(B)は、枠状部材4405を光束入射側から見た斜視図である。
枠状部材4405は、略中央部分に液晶パネル441の画像形成領域に対応した矩形状の開口部4405Aを有する平面視略矩形状のアルミニウム製の枠体であり、枠状部材4406に対して光束入射側に配置され、液晶パネル441の光束入射側を支持するとともに、入射側偏光板442の光束射出側を支持する。
FIG. 9 is a diagram showing a schematic configuration of the frame-like member 4405. As shown in FIG. Specifically, FIG. 9A is a perspective view of the frame-like member 4405 as viewed from the light beam emission side. FIG. 9B is a perspective view of the frame member 4405 as viewed from the light beam incident side.
The frame-like member 4405 is a substantially rectangular aluminum frame having a rectangular opening 4405A corresponding to the image forming area of the liquid crystal panel 441 in the substantially central portion. It is arranged on the incident side and supports the light beam incident side of the liquid crystal panel 441 and also supports the light beam emission side of the incident side polarizing plate 442.

この枠状部材4405において、光束射出側端面には、図9(A)に示すように、弾性部材4407の後述する第2弾性部材の形状に対応した形状を有する凹部4405Bが形成され、この凹部4405Bにて前記第2弾性部材および中間枠体4409を介して液晶パネル441の光束入射側端面を支持する。そして、枠状部材4405が液晶パネル441の光束入射側端面を支持することで、前記第2弾性部材、中間枠体4409、および液晶パネル441の光束入射側端面にて、開口部4405Aの光束射出側が閉塞される。
この凹部4405Bにおける上方側角隅部分、および下方側の左右方向略中央部分には、図9(A)または図9(B)に示すように、光束射出側端面および光束入射側端面を貫通し、枠状部材4406の後述する筒状部を挿通可能とする3つの挿通孔4405C,4405Dが形成されている。
In this frame-shaped member 4405, a concave portion 4405B having a shape corresponding to the shape of a second elastic member described later of the elastic member 4407 is formed on the end surface on the light beam exit side, as shown in FIG. 9A. 4405B supports the light beam incident side end face of the liquid crystal panel 441 via the second elastic member and the intermediate frame 4409. The frame-shaped member 4405 supports the light beam incident side end surface of the liquid crystal panel 441, so that the light beam is emitted from the opening 4405 A at the second elastic member, the intermediate frame 4409, and the light beam incident side end surface of the liquid crystal panel 441. The side is blocked.
As shown in FIG. 9 (A) or FIG. 9 (B), the upper corner portion of the concave portion 4405B and the substantially horizontal central portion on the lower side penetrate the light beam emission side end surface and the light beam incident side end surface. Three insertion holes 4405C and 4405D are formed through which a cylindrical portion to be described later of the frame-like member 4406 can be inserted.

また、この枠状部材4405において、光束入射側端面には、図9(B)に示すように、弾性部材4407の後述する第1弾性部材の形状に対応して矩形枠状の凹部4405Eが形成され、この凹部4405Eにて前記第1弾性部材を介して入射側偏光板442を支持する。そして、枠状部材4405が入射側偏光板442の光束射出側端面を支持することで、前記第1弾性部材、および入射側偏光板442の光束射出側端面にて、開口部4405Aにおける光束入射側が閉塞される。
また、開口部4405Aは、図9(B)に示すように、光束射出側端面から光束入射側端面に向けて開口面積が大きくなるように、光束入射側の角部分が面取りされ、斜面4405A1を有している。
さらに、この光束入射側端面には、図9(B)に示すように、開口部4405Aの上下側端部周縁に、凹部4405Eよりも深さ寸法の大きい凹部4405Fが3つの挿通孔4405C,4405Dと接続するようにそれぞれ形成されている。
これら凹部4405Fのうち、上方側に位置する凹部4405Fの上方側の側壁は、左右方向略中央部分が下方に突出して凸となるように曲面状に形成されている。また、下方側に位置する凹部4405Fの下方側の側壁も同様に、左右方向略中央部分が下方側に窪み凹となるように曲面状に形成されている。
以上のように、液晶パネル441および入射側偏光板442により開口部4405Aの光束入射側および光束射出側が閉塞されると、枠状部材4405内部(開口部4405A内、および、凹部4405Fと入射側偏光板442との空隙)に冷却流体を封入可能とする冷却室R1(図14または図15参照)が形成される。
Further, in this frame-shaped member 4405, a rectangular frame-shaped concave portion 4405E corresponding to the shape of the first elastic member described later of the elastic member 4407 is formed on the end surface on the light incident side, as shown in FIG. 9B. The incident side polarizing plate 442 is supported by the concave portion 4405E via the first elastic member. The frame-shaped member 4405 supports the light exit side end face of the incident side polarizing plate 442, so that the light entrance side of the opening 4405A is on the end face of the first elastic member and the light exit side of the incident side polarizing plate 442. Blocked.
As shown in FIG. 9B, the opening 4405A is chamfered at the corner on the light incident side so that the opening area increases from the end surface on the light emitting side toward the end surface on the light incident side, and an inclined surface 4405A1 is formed. Have.
Further, as shown in FIG. 9 (B), a concave portion 4405F having a depth dimension larger than that of the concave portion 4405E is provided on the end surface of the light beam incident side on the upper and lower end portions of the opening 4405A, and three insertion holes 4405C and 4405D are provided. Are formed to connect with each other.
Of these recesses 4405F, the upper side wall of the recess 4405F located on the upper side is formed in a curved surface so that the substantially central portion in the left-right direction protrudes downward and becomes convex. Similarly, the lower side wall of the recess 4405F located on the lower side is also formed in a curved surface so that the substantially central portion in the left-right direction is recessed downward.
As described above, when the light incident side and light exit side of the opening 4405A are closed by the liquid crystal panel 441 and the incident side polarizing plate 442, the inside of the frame-shaped member 4405 (inside the opening 4405A and the concave portion 4405F and the incident side polarized light). A cooling chamber R1 (see FIG. 14 or FIG. 15) is formed in which a cooling fluid can be enclosed in a gap between the plate 442 and the plate 442.

さらに、この枠状部材4405において、左側端部角隅部分および右側端部角隅部分には、図9に示すように、枠状部材4406と接続するための接続部4405Gが形成されている。
さらにまた、この枠状部材4405において、左側端部略中央部分および右側端部略中央部分には、図9に示すように、偏光板固定部材4408Aが係合するフック4405Hが形成されている。
Further, in the frame-shaped member 4405, connection portions 4405G for connecting to the frame-shaped member 4406 are formed at the left end corner portion and the right end corner portion as shown in FIG.
Furthermore, in this frame-shaped member 4405, hooks 4405H with which the polarizing plate fixing member 4408A is engaged are formed at the left end portion substantially central portion and the right end portion substantially center portion, as shown in FIG.

図10は、枠状部材4406の概略構成を示す図である。具体的に、図10(A)は、枠状部材4406を光束射出側から見た斜視図である。また、図10(B)は、枠状部材4406を光束入射側から見た斜視図である。
枠状部材4406は、上述した枠状部材4405と略同様に、略中央部分に液晶パネル441の画像形成領域に対応した矩形状の開口部4406Aを有する平面視略矩形状のアルミニウム製の枠体である。そして、この枠状部材4406は、上述した枠状部材4405との間に、弾性部材4407および中間枠体4409を介して液晶パネル441を挟持するとともに、枠状部材4405と対向する面と反対の面側にて弾性部材4407を介して射出側偏光板443を支持する。
この枠状部材4406において、光束射出側端面には、図10(A)に示すように、弾性部材4407の後述する第4弾性部材の形状に対応して矩形枠状の凹部4406Bが形成され、この凹部4406Bにて前記第4弾性部材を介して射出側偏光板443を支持する。そして、枠状部材4406が射出側偏光板443の光束入射側端面を支持することで、前記第4弾性部材、および射出側偏光板443の光束入射側端面にて、開口部4406Aにおける光束射出側が閉塞される。
FIG. 10 is a diagram showing a schematic configuration of the frame-like member 4406. As shown in FIG. Specifically, FIG. 10A is a perspective view of the frame-shaped member 4406 as viewed from the light beam emission side. FIG. 10B is a perspective view of the frame-shaped member 4406 as viewed from the light beam incident side.
The frame-shaped member 4406 has a substantially rectangular aluminum frame in plan view having a rectangular opening 4406A corresponding to the image forming area of the liquid crystal panel 441 at a substantially central portion, similar to the frame-shaped member 4405 described above. It is. The frame-shaped member 4406 sandwiches the liquid crystal panel 441 between the frame-shaped member 4405 and the above-described frame-shaped member 4405 via the elastic member 4407 and the intermediate frame 4409, and is opposite to the surface facing the frame-shaped member 4405. The exit side polarizing plate 443 is supported through the elastic member 4407 on the surface side.
In this frame-shaped member 4406, a rectangular frame-shaped concave portion 4406B corresponding to the shape of a later-described fourth elastic member of the elastic member 4407 is formed on the end surface on the light beam exit side, as shown in FIG. The concave portion 4406B supports the emission-side polarizing plate 443 through the fourth elastic member. The frame-shaped member 4406 supports the light incident side end face of the exit side polarizing plate 443, so that the light exit side of the opening 4406A is on the end surface of the light incident side of the fourth elastic member and the exit side polarizing plate 443. Blocked.

この凹部4406Bにおける上方側角隅部分、および下方側の左右方向略中央部分には、図10(A)または図10(B)に示すように、上述した枠状部材4405における3つの挿通孔4405C,4405Dに対応して、光束射出側端面および光束入射側端面を貫通する孔4406C1,4406D1を有し、光束入射側端面から略直交して突出する3つの筒状部4406C,4406Dが形成されている。そして、枠状部材4406と枠状部材4405とを組み合わせた状態では、枠状部材4406における筒状部4406C,4406Dが枠状部材4405における挿通孔4405C,4405Dにそれぞれ挿通され、枠状部材4406の光束射出側および枠状部材4405の光束入射側を筒状部4406C,4406Dの孔4406C1,4406D1、および挿通孔4405C,4405Dを介して冷却流体が流通可能となる。
すなわち、枠状部材4405における3つの挿通孔4405C,4405D、および枠状部材4406における3つの筒状部4406C,4406Dが、本発明に係る連通口に相当する。
ここで、筒状部4406C、4406Dの内径は、例えば、1mm〜5mmが好ましく、2mm〜3mmがさらに好ましい。筒状部4406Cの内径断面積と、2つの筒状部4406Dの内径断面積の和とは、略同一断面積で構成することが好ましい。また、挿通孔4405C、4405Dの内径は、それぞれ筒状部4406C、4406Dを嵌合可能な寸法とすればよい。このような構成とすることで、筒状部4406Cおよび挿通部4405C、筒状部4406Dおよび挿通部4405Dを介して流通する冷却流体の流路抵抗を略同一のものとすることができ、冷却流体の流通を円滑に実施できる。
なお、筒状部4406Cの内径断面積と、2つの筒状部4406Dの内径断面積の和とを略同一断面積とする構成に限らず、異なる内径断面積とする構成を採用してもよい。
As shown in FIG. 10 (A) or FIG. 10 (B), there are three insertion holes 4405C in the above-mentioned frame-shaped member 4405 in the upper corner portion of the recess 4406B and the substantially central portion in the left-right direction on the lower side. , 4405D, three cylindrical portions 4406C and 4406D are formed which have holes 4406C1 and 4406D1 penetrating the end surface on the light emission side and the end surface on the light incident side, and project substantially orthogonally from the end surface on the light incident side. Yes. In a state where the frame-shaped member 4406 and the frame-shaped member 4405 are combined, the cylindrical portions 4406C and 4406D of the frame-shaped member 4406 are inserted into the insertion holes 4405C and 4405D of the frame-shaped member 4405, respectively. The cooling fluid can flow through the light beam exit side and the light beam incident side of the frame-like member 4405 through the holes 4406C1 and 4406D1 and the insertion holes 4405C and 4405D of the cylindrical portions 4406C and 4406D.
That is, the three insertion holes 4405C and 4405D in the frame-shaped member 4405 and the three cylindrical portions 4406C and 4406D in the frame-shaped member 4406 correspond to the communication port according to the present invention.
Here, the inner diameter of the cylindrical portions 4406C and 4406D is, for example, preferably 1 mm to 5 mm, and more preferably 2 mm to 3 mm. It is preferable that the inner diameter cross-sectional area of the cylindrical portion 4406C and the sum of the inner diameter cross-sectional areas of the two cylindrical portions 4406D have substantially the same cross-sectional area. In addition, the inner diameters of the insertion holes 4405C and 4405D may be dimensions that allow the tubular portions 4406C and 4406D to be fitted, respectively. With this configuration, the flow resistance of the cooling fluid flowing through the cylindrical portion 4406C and the insertion portion 4405C, the cylindrical portion 4406D, and the insertion portion 4405D can be made substantially the same, and the cooling fluid Can be smoothly distributed.
The configuration in which the inner diameter cross-sectional area of the cylindrical portion 4406C and the sum of the inner diameter cross-sectional areas of the two cylindrical portions 4406D are not substantially the same cross-sectional area may be adopted. .

筒状部4406Cは、後述する流入口に対して略直交するように連通接続している。そして、この筒状部4406Cの内側面の一部は、前記流入口の中心軸と交差するように延出し、該内側面の一部には前記流入口を介して流入した冷却流体を、枠状部材4405の光束入射側(冷却室R1(図14または図15参照))および枠状部材4406の光束射出側(後述する冷却室R2(図14または図15参照))に分流する突出部4406C2(図14または図15参照)が形成されている。
すなわち、枠状部材4406における筒状部4406C、および枠状部材4405における挿通孔4405Cが、本発明に係る分流口に相当する。また、枠状部材4406における2つの筒状部4406D、および枠状部材4405における2つの挿通孔4405Dが、本発明に係る合流口に相当する。
突出部4406C2(図14または図15参照)は、略三角柱形状を有し、その軸方向が枠状部材4406の光束入射側端面および光束射出側端面と平行するように形成されている。すなわち、三角柱状の3つの側面のうち、1つの側面が筒状部4406Cの内壁に接続し、他の2つの側面が光束入射側および光束射出側にそれぞれ向くように形成されている。そして、このような突出部4406C2(図14または図15参照)により、後述する流入口を介して流入した冷却流体が前記2つの側面に案内されて枠状部材4405の光束入射側(冷却室R1(図14または図15参照))および枠状部材4406の光束射出側(後述する冷却室R2(図14または図15参照))に分流される。
The tubular portion 4406C is connected in communication so as to be substantially orthogonal to an inlet described later. A part of the inner side surface of the cylindrical portion 4406C extends so as to intersect the central axis of the inflow port, and the cooling fluid that has flowed in through the inflow port is transferred to a part of the inner side surface. Projecting portion 4406C2 that diverts to the light beam entrance side (cooling chamber R1 (see FIG. 14 or FIG. 15)) of the cylindrical member 4405 and the light beam exit side (cooling chamber R2 (see FIG. 14 or FIG. 15) described later) of the frame-shaped member 4406. (See FIG. 14 or FIG. 15).
That is, the cylindrical portion 4406C in the frame-shaped member 4406 and the insertion hole 4405C in the frame-shaped member 4405 correspond to the diversion port according to the present invention. Further, the two cylindrical portions 4406D in the frame-shaped member 4406 and the two insertion holes 4405D in the frame-shaped member 4405 correspond to the junction according to the present invention.
The protrusion 4406C2 (see FIG. 14 or FIG. 15) has a substantially triangular prism shape, and is formed so that the axial direction thereof is parallel to the light beam incident side end surface and the light beam emission side end surface of the frame-shaped member 4406. That is, one of the three triangular prism-shaped side surfaces is connected to the inner wall of the cylindrical portion 4406C, and the other two side surfaces are formed to face the light beam incident side and the light beam emission side, respectively. Then, by such a protrusion 4406C2 (see FIG. 14 or FIG. 15), the cooling fluid that has flowed in through the inlet described later is guided to the two side surfaces, and the light beam incident side (cooling chamber R1) of the frame-shaped member 4405 (See FIG. 14 or FIG. 15)) and the light beam exit side of the frame-like member 4406 (cooling chamber R2 (see FIG. 14 or FIG. 15) described later).

なお、突出部4406C2(図14または図15参照)の形成位置は、前記流入口の中心軸と交差する位置に限らず、冷却流体による冷却対象となる液晶パネル441、入射側偏光板442、および射出側偏光板443の発熱量の大きさに応じた位置に形成すればよい。例えば、液晶パネル441の対向基板441Dおよび入射側偏光板442の発熱量が、液晶パネル441の駆動基板441Cおよび射出側偏光板443の発熱量に比較して大きい場合には、突出部4406C2(図14または図15参照)を、前記流入口の中心軸と交差する位置から光束射出側に所定距離ずらした位置に形成すればよい。逆に、液晶パネル441の駆動基板441Cおよび射出側偏光板443の発熱量が、液晶パネル441の対向基板441Dおよび入射側偏光板442の発熱量に比較して大きい場合には、突出部4406C2(図14または図15参照)を、前記流入口の中心軸と交差する位置から光束入射側に所定距離ずらした位置に形成すればよい。
また、突出部4406C2(図14または図15参照)の形状は、略三角柱状の形状に限らず、前記流入口から流入した冷却流体を光束入射側および光束射出側に分流可能な形状であれば、その他の形状であってもかまわない。例えば、前記2つの側面が内部側に窪み、前記側面が断面略凹形状となる構成、または、前記2つの側面が外側に膨出し、突出部が断面略半球状となる構成等を採用してもよい。
Note that the formation position of the protrusion 4406C2 (see FIG. 14 or FIG. 15) is not limited to the position intersecting the central axis of the inflow port, and the liquid crystal panel 441 to be cooled by the cooling fluid, the incident-side polarizing plate 442, and What is necessary is just to form in the position according to the magnitude | size of the emitted-heat amount of the emission side polarizing plate 443. FIG. For example, when the amount of heat generated by the counter substrate 441D and the incident side polarizing plate 442 of the liquid crystal panel 441 is larger than the amount of heat generated by the driving substrate 441C and the emission side polarizing plate 443 of the liquid crystal panel 441, the protrusion 4406C2 (FIG. 14 or FIG. 15) may be formed at a position shifted from the position intersecting the central axis of the inlet by a predetermined distance toward the light beam exit side. On the contrary, when the heat generation amount of the drive substrate 441C and the emission side polarizing plate 443 of the liquid crystal panel 441 is larger than the heat generation amount of the counter substrate 441D and the incident side polarization plate 442 of the liquid crystal panel 441, the protrusion 4406C2 ( 14 or 15) may be formed at a position shifted from the position intersecting the central axis of the inlet by a predetermined distance to the light beam incident side.
The shape of the protrusion 4406C2 (see FIG. 14 or FIG. 15) is not limited to a substantially triangular prism shape, but may be any shape as long as the cooling fluid flowing from the inflow port can be divided into the light beam incident side and the light beam emission side. Other shapes may also be used. For example, a configuration in which the two side surfaces are recessed on the inner side and the side surfaces have a substantially concave shape, or a configuration in which the two side surfaces bulge outward and the protrusion has a substantially hemispherical cross section is adopted. Also good.

また、開口部4406Aは、図10(A)に示すように、枠状部材4405における開口部4405Aと同様に、光束入射側端面から光束射出側端面に向けて開口面積が大きくなるように、光束射出側の角部分が面取りされ、斜面4406A1を有している。
さらに、この光束射出側端面には、図10(A)に示すように、開口部4406Aの上下側端部周縁に、凹部4406Bよりも深さ寸法の大きい凹部4406Eが筒状部4406C,4406Dの孔4406C1,4406D1と接続するようにそれぞれ形成されている。
これら凹部4406Eのうち、上方側に位置する凹部4406Eは、左右方向略中央部分が光束入射側に向けて窪み凹となるように曲面状に形成されている。そして、この凹部4406Eの左右方向略中央部分には、冷却流体を整流する2つの整流部4406Fが立設されている。
これら整流部4406Fは、略四角柱状であり、所定の間隔を空けて配置されるとともに、2つの筒状部4406Dの孔4406D1と対向する角部分が内側に窪む凹曲面状に形成されている。
In addition, as shown in FIG. 10A, the opening 4406A has a light flux such that the opening area increases from the light incident side end face to the light emission side end face, similarly to the opening 4405A in the frame-like member 4405. The corner on the exit side is chamfered and has a slope 4406A1.
Further, as shown in FIG. 10 (A), a concave portion 4406E having a depth dimension larger than the concave portion 4406B is formed on the end surface of the light beam emission side at the periphery of the upper and lower end portions of the opening 4406A. The holes 4406C1 and 4406D1 are formed so as to be connected to each other.
Of these recesses 4406E, the recess 4406E positioned on the upper side is formed in a curved shape so that the substantially central portion in the left-right direction is recessed toward the light beam incident side. Two rectifying portions 4406F that rectify the cooling fluid are provided upright at a substantially central portion of the concave portion 4406E in the left-right direction.
These rectifying portions 4406F are substantially quadrangular prisms, are arranged at predetermined intervals, and are formed in a concave curved surface in which the corner portions facing the holes 4406D1 of the two cylindrical portions 4406D are recessed inward. .

また、この枠状部材4406において、光束入射側端面には、図10(B)に示すように、弾性部材4407の後述する第3弾性部材の形状に対応して矩形枠状の凹部4406Gが形成され、この凹部4406Gにて前記第3弾性部材を介して液晶パネル441の光束射出側端面を支持する。そして、枠状部材4406が液晶パネル441の光束射出側端面を支持することで、前記第3弾性部材、および液晶パネル441の光束射出側端面にて、開口部4406Aにおける光束入射側が閉塞される。
以上のように、液晶パネル441および射出側偏光板443により開口部4406Aの光束入射側および光束射出側が閉塞されると、枠状部材4406内部(開口部4406A内、および、凹部4406Eと射出側偏光板443との空隙)に冷却流体を封入可能とする冷却室R2(図14または図15参照)が形成される。
Further, in the frame-shaped member 4406, a rectangular frame-shaped concave portion 4406G corresponding to the shape of a third elastic member, which will be described later, of the elastic member 4407 is formed on the end surface of the light incident side as shown in FIG. The concave portion 4406G supports the light emission side end surface of the liquid crystal panel 441 through the third elastic member. The frame-shaped member 4406 supports the light emission side end surface of the liquid crystal panel 441, so that the light incident side of the opening 4406A is blocked by the third elastic member and the light emission side end surface of the liquid crystal panel 441.
As described above, when the light incident side and the light exit side of the opening 4406A are closed by the liquid crystal panel 441 and the exit side polarizing plate 443, the inside of the frame-like member 4406 (inside the opening 4406A and the recess 4406E and the exit side polarized light). A cooling chamber R <b> 2 (see FIG. 14 or FIG. 15) capable of enclosing a cooling fluid in a gap between the plate 443 and the plate 443 is formed.

さらに、この枠状部材4406において、その下方側端部略中央部分には、図10に示すように、流体分岐部4401の冷却流体流出部4401Cから流出した冷却流体を内部に流入させる流入口4406Hが形成されている。この流入口4406Hは、流体循環部材448の管径寸法よりも小さい管径寸法を有する略筒状部材から構成され、枠状部材4406の外側に突出するように形成されている。そして、流入口4406Hの突出した端部には、流体分岐部4401の冷却流体流出部4401Cに接続された流体循環部材448の他端が接続され、該流体循環部材448を介して流体分岐部4401から流出した冷却流体が筒状部4406Cおよび挿通孔4405Cを介して冷却室R1(図14または図15参照)および冷却室R2(図14または図15参照)に流入する。   Further, in this frame-like member 4406, an inflow port 4406H through which the cooling fluid flowing out from the cooling fluid outflow portion 4401C of the fluid branching portion 4401 flows into the inside at a substantially central portion of the lower end portion thereof as shown in FIG. Is formed. The inflow port 4406H is formed of a substantially cylindrical member having a pipe diameter smaller than the pipe diameter of the fluid circulation member 448, and is formed so as to protrude to the outside of the frame-like member 4406. The other end of the fluid circulation member 448 connected to the cooling fluid outflow portion 4401C of the fluid branch portion 4401 is connected to the protruding end portion of the inflow port 4406H, and the fluid branch portion 4401 is connected via the fluid circulation member 448. The cooling fluid flowing out of the refrigerant flows into the cooling chamber R1 (see FIG. 14 or FIG. 15) and the cooling chamber R2 (see FIG. 14 or FIG. 15) via the cylindrical portion 4406C and the insertion hole 4405C.

さらにまた、この枠状部材4406において、その上方側端部略中央部分には、図10に示すように、冷却室R1(図14または図15参照)および冷却室R2(図14または図15参照)内の冷却流体を外部に流出させる流出口4406Iが形成されている。すなわち、流出口4406Iは、流入口4406Hの対向位置に形成されている。この流出口4406Iは、流入口4406Hと同様に、流体循環部材448の管径寸法よりも小さい管径寸法を有する略筒状部材から構成され、枠状部材4406の外側に突出するように形成されている。そして、流出口4406Iの突出した端部には、流体循環部材448が接続され、流入口4406Hを介して流入した冷却室R2(図14または図15参照)内の冷却流体、および流入口4406Hを介して流入し、筒状部4406Cの突出部4406C2により分流されて冷却室R1(図14または図15参照)内に流入し、筒状部4406Dおよび挿通孔4405Dを介して冷却室R1(図14または図15参照)から冷却室R2(図14または図15参照)へと流入した冷却流体が該流体循環部材448を介して外部に流出される。
本実施形態では、流入口4406Hおよび流出口4406Iの内径断面積は、筒状部4406Cの内径断面積、あるいは2つの筒状部4406Dの内径断面積の和と略同一断面積となるように設定している。このような構成とすることで、光変調素子保持体4402内での冷却流体の流路抵抗を略同一とすることができ、冷却流体の対流速度を速めることが可能となる。
なお、流入口4406Hおよび流出口4406Iの内径断面積を、筒状部4406Cの内径断面積、あるいは2つの筒状部4406Dの内径断面積の和と略同一断面積とする構成に限らず、異なる断面積とする構成を採用してもよい。
Furthermore, in the frame-like member 4406, at the substantially central portion of the upper end thereof, as shown in FIG. 10, a cooling chamber R1 (see FIG. 14 or 15) and a cooling chamber R2 (see FIG. 14 or FIG. 15). An outflow port 4406I is formed to discharge the cooling fluid in the inside. In other words, the outlet 4406I is formed at a position opposite to the inlet 4406H. Similar to the inlet 4406H, the outlet 4406I is composed of a substantially cylindrical member having a pipe diameter smaller than the pipe diameter of the fluid circulation member 448, and is formed so as to protrude outside the frame-like member 4406. ing. A fluid circulation member 448 is connected to the projecting end of the outlet 4406I, and the cooling fluid in the cooling chamber R2 (see FIG. 14 or FIG. 15) that flows in via the inlet 4406H and the inlet 4406H are connected to each other. Through the projecting portion 4406C2 of the cylindrical portion 4406C, and flows into the cooling chamber R1 (see FIG. 14 or FIG. 15), and enters the cooling chamber R1 (see FIG. 14) through the cylindrical portion 4406D and the insertion hole 4405D. Alternatively, the cooling fluid that has flowed into the cooling chamber R2 (see FIG. 14 or FIG. 15) from the cooling chamber R2 flows out through the fluid circulation member 448.
In the present embodiment, the inner diameter cross-sectional areas of the inlet 4406H and the outlet 4406I are set to be substantially the same as the inner diameter cross-sectional area of the cylindrical portion 4406C or the sum of the inner diameter cross-sectional areas of the two cylindrical portions 4406D. doing. With such a configuration, the flow resistance of the cooling fluid in the light modulation element holder 4402 can be made substantially the same, and the convection speed of the cooling fluid can be increased.
Note that the inner diameter cross-sectional areas of the inlet 4406H and the outlet 4406I are not limited to the configuration in which the inner diameter sectional area of the cylindrical portion 4406C or the sum of the inner diameter sectional areas of the two cylindrical portions 4406D is substantially the same. A configuration having a cross-sectional area may be adopted.

また、この枠状部材4406において、上方側角隅部分および下方側角隅部分には、図10に示すように、支持部材4403の後述するピン状部材を挿通可能とする4つの挿通部4406Jが形成されている。
さらに、この枠状部材4406において、左側端部角隅部分および右側端部角隅部分には、図10に示すように、枠状部材4405と接続するための接続部4406Kが形成されている。そして、枠状部材4405,4406の各接続部4405G,4406Kにねじ4406M(図8)を螺合することで、液晶パネル441が中間枠体4409、弾性部材4407の後述する第2弾性部材および第3弾性部材を介して枠状部材4405,4406間に挟持され、枠状部材4405,4406の各開口部4405A,4406Aの対向する面側が封止される。
さらにまた、この枠状部材4406において、左側端部略中央部分および右側端部略中央部分には、図10に示すように、偏光板固定部材4408Bが係合するフック4406Lが形成されている。
Further, in this frame-shaped member 4406, at the upper corner portion and the lower corner portion, as shown in FIG. Is formed.
Further, in this frame-like member 4406, a connecting portion 4406K for connecting to the frame-like member 4405 is formed at the left end corner portion and the right end corner portion as shown in FIG. Then, screws 4406M (FIG. 8) are screwed into the connection portions 4405G and 4406K of the frame-shaped members 4405 and 4406, so that the liquid crystal panel 441 has the intermediate frame 4409 and the second elastic member and the second elastic member 4407 described later. It is sandwiched between the frame-shaped members 4405 and 4406 via the three elastic members, and the facing surface sides of the openings 4405A and 4406A of the frame-shaped members 4405 and 4406 are sealed.
Furthermore, in the frame-shaped member 4406, hooks 4406L with which the polarizing plate fixing member 4408B engages are formed at the left end portion substantially central portion and the right end portion substantially center portion, as shown in FIG.

弾性部材4407は、図8に示すように、入射側偏光板442および枠状部材4405の間に介在配置される第1弾性部材4407Aと、枠状部材4405および液晶パネル441の間に介在配置される第2弾性部材4407Bと、液晶パネル441および枠状部材4406の間に介在配置される第3弾性部材4407Cと、枠状部材4406および射出側偏光板443の間に介在配置される第4弾性部材4407Dとで構成される。
このうち、第1弾性部材4407A、第3弾性部材4407C、および第4弾性部材4407Dは、図8に示すように、略矩形枠状に形成され、枠状部材4405,4406の各凹部4405E,4406G,4406Bに設置される。
また、第2弾性部材4407Bは、図8に示すように、略矩形枠状に形成されるとともに、上方側角隅部分、および下方側端部の左右方向略中央部分に枠状部材4406の3つの筒状部4406C(図10(B)),4406Dを挿通可能とする3つの挿通孔4407B1がそれぞれ形成され、枠状部材4405の凹部4405Bに設置される。
そして、これら弾性部材4407は、枠状部材4405,4406の各冷却室R1,R2(図14または図15参照)を封止し、入射側偏光板442および枠状部材4405、枠状部材4405および液晶パネル441、液晶パネル441および枠状部材4406、枠状部材4406および射出側偏光板443の間から冷却流体が漏れることを防止するとともに、3つの筒状部4406C,4406Dおよび3つの挿通孔4405C,4405Dの接続部分から液晶パネル441側に冷却流体が漏れることも防止している。
As shown in FIG. 8, the elastic member 4407 is interposed between the first elastic member 4407A interposed between the incident-side polarizing plate 442 and the frame-shaped member 4405, and interposed between the frame-shaped member 4405 and the liquid crystal panel 441. The second elastic member 4407B, the third elastic member 4407C interposed between the liquid crystal panel 441 and the frame-like member 4406, and the fourth elasticity interposed between the frame-like member 4406 and the emission-side polarizing plate 443. It is comprised with member 4407D.
Among these, the first elastic member 4407A, the third elastic member 4407C, and the fourth elastic member 4407D are formed in a substantially rectangular frame shape as shown in FIG. 8, and the concave portions 4405E and 4406G of the frame-shaped members 4405 and 4406 are formed. , 4406B.
Further, as shown in FIG. 8, the second elastic member 4407B is formed in a substantially rectangular frame shape, and the upper elastic corner portion and the frame member 4406 3 at the substantially central portion in the left-right direction at the lower end portion. Three insertion holes 4407B1 through which the two cylindrical portions 4406C (FIG. 10B) and 4406D can be inserted are formed and installed in the recess 4405B of the frame-shaped member 4405.
These elastic members 4407 seal the cooling chambers R1, R2 (see FIG. 14 or FIG. 15) of the frame-shaped members 4405, 4406, and the incident-side polarizing plate 442, the frame-shaped member 4405, the frame-shaped member 4405, and the like. The liquid crystal panel 441, the liquid crystal panel 441, the frame-shaped member 4406, the cooling fluid is prevented from leaking between the frame-shaped member 4406 and the exit side polarizing plate 443, and the three cylindrical portions 4406 </ b> C and 4406 </ b> D and the three insertion holes 4405 </ b> C. , 4405D to prevent the cooling fluid from leaking to the liquid crystal panel 441 side.

これら弾性部材4407としては、弾性を有するシリコンゴムを採用でき、さらに、両面あるいは片面に表層の架橋密度を上げる表面処理を施したものが好ましい。例えば、このような弾性部材4407としては、サーコンGR−dシリーズ(冨士高分子工業の商標)を採用できる。このように、端面に表面処理を施すことにより、弾性部材4407を各凹部4405B,4405E,4406B,4406Gに設置する作業を容易に実施できる。
なお、弾性部材4407は、シリコンゴムに限らず、水分透過量の少ないブチルゴムまたはフッ素ゴムを使用してもよい。
As these elastic members 4407, silicon rubber having elasticity can be adopted, and those having surface treatment for increasing the cross-linking density of the surface layer on both sides or one side are preferable. For example, as such an elastic member 4407, Sircon GR-d series (trademark of Fuji Polymer Industries) can be adopted. As described above, by performing the surface treatment on the end face, the work of installing the elastic member 4407 in each of the concave portions 4405B, 4405E, 4406B, and 4406G can be easily performed.
Note that the elastic member 4407 is not limited to silicon rubber, and butyl rubber or fluorine rubber having a small moisture permeation amount may be used.

偏光板固定部材4408A,4408Bは、入射側偏光板442および射出側偏光板443を、第1弾性部材4407Aおよび第4弾性部材4407Dを介して枠状部材4405,4406の各凹部4405E,4406Bにそれぞれ押圧固定する。これら偏光板固定部材4408A,4408Bは、図8に示すように、略中央部分に開口部4408A1,4408B1が形成された平面視略矩形枠体で構成され、開口部4408A1,4408B1周縁部分にて、入射側偏光板442および射出側偏光板443を枠状部材4405,4406に対してそれぞれ押圧する。また、これら偏光板固定部材4408A,4408Bには、左右側端縁にそれぞれフック係合部4408A2,4408B2が形成され、フック係合部4408A2,4408B2を枠状部材4405,4406の各フック4405H,4406Lに係合させることで、枠状部材4405,4406に対して偏光板固定部材4408A,4408Bが入射側偏光板442および射出側偏光板443を押圧した状態で固定される。   The polarizing plate fixing members 4408A and 4408B are configured such that the incident-side polarizing plate 442 and the emission-side polarizing plate 443 are respectively inserted into the concave portions 4405E and 4406B of the frame-shaped members 4405 and 4406 via the first elastic member 4407A and the fourth elastic member 4407D. Press and fix. As shown in FIG. 8, these polarizing plate fixing members 4408A and 4408B are configured by a substantially rectangular frame in plan view in which openings 4408A1 and 4408B1 are formed in a substantially central portion, and at the peripheral portions of the openings 4408A1 and 4408B1. The incident side polarizing plate 442 and the emission side polarizing plate 443 are pressed against the frame-shaped members 4405 and 4406, respectively. The polarizing plate fixing members 4408A and 4408B are respectively formed with hook engaging portions 4408A2 and 4408B2 at the left and right side edges, and the hook engaging portions 4408A2 and 4408B2 are respectively connected to the hooks 4405H and 4406L of the frame-shaped members 4405 and 4406L. , The polarizing plate fixing members 4408A and 4408B are fixed to the frame-shaped members 4405 and 4406 in a state where the incident side polarizing plate 442 and the emitting side polarizing plate 443 are pressed.

中間枠体4409は、アルミニウム製の平面視略矩形状の板体から構成され、液晶パネル441を保持するとともに、該液晶パネル441を枠状部材4405,4406の所定位置に位置決めするものである。
この中間枠体4409において、その略中央部分には、図8に示すように、液晶パネル441の対向基板441Dを嵌合可能な矩形状の開口部4409Aが形成され、液晶パネル441の対向基板441Dを開口部4409Aに嵌合させることで、中間枠体4409に対して液晶パネル441が位置決めされる。
また、開口部4409Aの周縁には、開口部4409Aに対向基板441Dを嵌合させた状態で駆動基板441Cを遊嵌状態で配置させるための段差部4409Bが形成されている。ここで、この段差部4409Bと中間枠体4409の光束入射側端面との間の寸法は、対向基板441Dの厚み寸法よりも小さく設定されており、開口部4409Aに対向基板441Dを嵌合させ、対向基板441Dの光束入射側端面と中間枠体4409の光束入射側端面とを略面一とした際には、段差部4409Bと駆動基板441Cとの間に隙間4409C(図14または図15参照)が形成される。そして、この隙間4409C(図14または図15参照)に、伸び率の高い接着剤を充填させることで、液晶パネル441が中間枠体4409に対して位置決め固定される。
さらに、この段差部4409Bの上方側は、中間枠体4409の上方側端縁にかけて延出形成され、中間枠体4409に液晶パネル441を位置決め固定した状態では、該液晶パネル441のフレキシブルプリント基板441Eが折り曲げられることなく、上方側の段差部4409Bに配置される。
The intermediate frame 4409 is made of an aluminum plate having a substantially rectangular shape in plan view, and holds the liquid crystal panel 441 and positions the liquid crystal panel 441 at a predetermined position of the frame-shaped members 4405 and 4406.
In the intermediate frame 4409, a rectangular opening 4409A into which the counter substrate 441D of the liquid crystal panel 441 can be fitted is formed at a substantially central portion as shown in FIG. 8, and the counter substrate 441D of the liquid crystal panel 441 is formed. Is fitted into the opening 4409A, whereby the liquid crystal panel 441 is positioned with respect to the intermediate frame 4409.
In addition, a stepped portion 4409B for arranging the drive substrate 441C in a loosely fitted state in a state where the counter substrate 441D is fitted to the opening 4409A is formed at the periphery of the opening 4409A. Here, the dimension between the stepped portion 4409B and the end face of the intermediate frame 4409 on the light beam incident side is set smaller than the thickness dimension of the counter substrate 441D, and the counter substrate 441D is fitted into the opening 4409A. When the light incident side end surface of the counter substrate 441D and the light incident side end surface of the intermediate frame 4409 are substantially flush, a gap 4409C is provided between the stepped portion 4409B and the drive substrate 441C (see FIG. 14 or FIG. 15). Is formed. The liquid crystal panel 441 is positioned and fixed with respect to the intermediate frame 4409 by filling the gap 4409C (see FIG. 14 or FIG. 15) with an adhesive having a high elongation rate.
Further, the upper side of the stepped portion 4409B extends to the upper edge of the intermediate frame 4409, and in a state where the liquid crystal panel 441 is positioned and fixed to the intermediate frame 4409, the flexible printed board 441E of the liquid crystal panel 441 is provided. Are arranged in the upper step 4409B without being bent.

また、この中間枠体4409において、上方側端部角隅部分、および下方側端部の左右方向略中央部分には、図8に示すように、枠状部材4406の筒状部4406C(図10(B)),4406Dを挿通可能とする3つの挿通孔4409Dがそれぞれ形成されている。これら挿通孔4409Dは、枠状部材4406に対する中間枠体4409の位置決め用の孔としての機能を有し、予め、中間枠体4409に対して液晶パネル441を位置決め固定した状態で、中間枠体4409の3つの挿通孔4409Dに枠状部材4406の筒状部4406C,4406Dをそれぞれ挿通することで、枠状部材4406に対して中間枠体4409が位置決めされ、すなわち、液晶パネル441が枠状部材4406の所定位置に位置決めされる。   Further, in the intermediate frame 4409, as shown in FIG. 8, a cylindrical portion 4406C (FIG. 10) of the frame-like member 4406 is provided at the upper end corner portion and the substantially horizontal central portion of the lower end portion. (B)), three insertion holes 4409D through which 4406D can be inserted are formed. These insertion holes 4409D function as holes for positioning the intermediate frame 4409 with respect to the frame-shaped member 4406, and the intermediate frame 4409 is in a state where the liquid crystal panel 441 is positioned and fixed with respect to the intermediate frame 4409 in advance. By inserting the cylindrical portions 4406C and 4406D of the frame-shaped member 4406 through the three insertion holes 4409D, the intermediate frame 4409 is positioned with respect to the frame-shaped member 4406. That is, the liquid crystal panel 441 is positioned in the frame-shaped member 4406. Is positioned at a predetermined position.

支持部材4403は、略中央部分に図示しない開口が形成された平面視矩形枠状の板体から構成される。
この支持部材4403において、光束入射側端面には、図5または図6に示すように、光変調素子保持体4402の4つの挿通部4406Jに対応した位置に、板体から突出するピン状部材4403Aが形成されている。
ところで、3つの光変調素子保持体4402をクロスダイクロイックプリズム444の各光束入射側端面に対してそれぞれ取り付ける際には、3つの液晶パネル441の相互の位置調整を実施する必要がある。例えば、光変調素子保持体4402とクロスダイクロイックプリズム444との間に複数のスペーサを介在させ、該スペーサの位置を移動させることで各液晶パネル441の相互の位置調整を実施する構成が考えられる。しかしながら、このような構成では、複数のスペーサを設置する組み立て工数が増加するとともに、修理等により各光変調素子保持体4402を取り外す場合でも複数のスペーサをそれぞれ取り外すという面倒な作業が生じてしまう。
本実施形態では、支持部材4403は、ピン状部材4403Aを光変調素子保持体4402の4つの挿通部4406Jに挿通することで該光変調素子保持体4402を支持し、板体の光束射出側端面をクロスダイクロイックプリズム444の光束入射側端面に接着固定することで、光変調素子保持体4402をクロスダイクロイックプリズム444に一体化することができる。すなわち、上述したスペーサが、支持部材4403に形成されたピン状部材4403Aに相当し、スペーサが支持部材4403に一体的に形成されていることで、光変調素子保持体4402をクロスダイクロイックプリズム444に対して取り付ける作業および取り外す作業を容易に実施できる。
The support member 4403 is formed of a plate body having a rectangular frame shape in plan view in which an opening (not shown) is formed in a substantially central portion.
As shown in FIG. 5 or 6, the support member 4403 has a pin-like member 4403 </ b> A that protrudes from the plate at a position corresponding to the four insertion portions 4406 </ b> J of the light modulation element holding body 4402 on the light incident side end surface. Is formed.
By the way, when the three light modulation element holding bodies 4402 are attached to the respective light beam incident side end surfaces of the cross dichroic prism 444, it is necessary to adjust the positions of the three liquid crystal panels 441. For example, a configuration in which a plurality of spacers are interposed between the light modulation element holding body 4402 and the cross dichroic prism 444 and the positions of the spacers are moved to adjust the positions of the liquid crystal panels 441 is considered. However, in such a configuration, the number of assembling steps for installing the plurality of spacers increases, and a troublesome work of removing the plurality of spacers occurs even when each light modulation element holding body 4402 is removed due to repair or the like.
In the present embodiment, the support member 4403 supports the light modulation element holding body 4402 by inserting the pin-shaped member 4403A through the four insertion portions 4406J of the light modulation element holding body 4402, and the end surface on the light beam emission side of the plate body. Is bonded and fixed to the light beam incident side end face of the cross dichroic prism 444, whereby the light modulation element holding body 4402 can be integrated with the cross dichroic prism 444. That is, the above-described spacer corresponds to the pin-shaped member 4403A formed on the support member 4403, and the spacer is formed integrally with the support member 4403, so that the light modulation element holding body 4402 is replaced with the cross dichroic prism 444. The attachment work and the removal work can be easily performed.

図11は、中継タンク4404の構造を示す図である。具体的に、図11(A)は、中継タンク4404を上方から見た平面図である。また、図11(B)は、図11(A)におけるC−C線の断面図である。
中継タンク4404は、略円柱状のアルミニウム製の中空部材で構成され、クロスダイクロイックプリズム444の3つの光束入射側端面に交差する端面である上面に固定される。そして、この中継タンク4404は、各光変調素子保持体4402から送出された冷却流体を一括して送入し、送入した冷却流体を外部に送出する。
この中継タンク4404において、その上面には、図11に示すように、各光変調素子保持体4402から送出された冷却流体を内部に流入させる3つの冷却流体流入部4404Aが形成されている。これら冷却流体流入部4404Aは、流体循環部材448の管径寸法よりも小さい管径寸法を有する略筒状部材から構成され、中継タンク4404内外に突出するように配置されている。そして、各冷却流体流入部4404Aの外側に突出した端部には、3つの光変調素子保持体4402の各流出口4406Iと接続された流体循環部材448の他端が接続され、該流体循環部材448を介して各光変調素子保持体4402から送出された冷却流体が一括して中継タンク4404内部に流入する。
FIG. 11 is a diagram illustrating the structure of the relay tank 4404. Specifically, FIG. 11A is a plan view of the relay tank 4404 as viewed from above. FIG. 11B is a cross-sectional view taken along line CC in FIG.
The relay tank 4404 is formed of a substantially cylindrical hollow member made of aluminum, and is fixed to an upper surface that is an end surface that intersects the three light beam incident side end surfaces of the cross dichroic prism 444. And this relay tank 4404 sends in the cooling fluid sent out from each light modulation element holding body 4402 in a lump, and sends out the sent cooling fluid to the outside.
As shown in FIG. 11, the relay tank 4404 has three cooling fluid inflow portions 4404 </ b> A through which the cooling fluid sent from each light modulation element holding body 4402 flows into the relay tank 4404. These cooling fluid inflow portions 4404A are formed of a substantially cylindrical member having a pipe diameter smaller than the pipe diameter of the fluid circulation member 448, and are disposed so as to protrude into and out of the relay tank 4404. The other ends of the fluid circulation members 448 connected to the respective outlets 4406I of the three light modulation element holding bodies 4402 are connected to the end portions protruding outside the respective cooling fluid inflow portions 4404A, and the fluid circulation members The cooling fluid sent from each light modulation element holding body 4402 via 448 flows into the relay tank 4404 at once.

また、この中継タンク4404において、外側面の下方側には、図11に示すように、送入された冷却流体を外部に流出させる冷却流体流出部4404Bが形成されている。この冷却流体流出部4404Bは、冷却流体流入部4404Aと同様に、流体循環部材448の管径寸法よりも小さい管径寸法を有する略筒状部材から構成され、中継タンク4404内外に突出するように配置されている。そして、冷却流体流出部4404Bの外側に突出した端部には、流体循環部材448の一端が接続され、該流体循環部材448を介して中継タンク4404内部の冷却流体が外部へと流出する。   Further, in the relay tank 4404, a cooling fluid outflow portion 4404B is formed on the lower side of the outer side surface to allow the supplied cooling fluid to flow out as shown in FIG. Like the cooling fluid inflow portion 4404A, the cooling fluid outflow portion 4404B is composed of a substantially cylindrical member having a tube diameter smaller than the tube diameter of the fluid circulation member 448, and protrudes into and out of the relay tank 4404. Has been placed. Then, one end of the fluid circulation member 448 is connected to the end portion protruding to the outside of the cooling fluid outflow portion 4404B, and the cooling fluid inside the relay tank 4404 flows out to the outside via the fluid circulation member 448.

図12は、ラジエータ447の構造、およびラジエータ447と軸流ファン32との配置関係を示す図である。具体的に、図12(A)は、ラジエータ447および軸流ファン32を上方から見た斜視図である。また、図12(B)は、ラジエータ447および軸流ファン32をラジエータ447側から見た平面図である。
ラジエータ447は、図1または図2に示すように、外装ケース2に形成された隔壁21内に配置され、光学装置本体440において各液晶パネル441、各入射側偏光板442、および各射出側偏光板443にて温められた冷却流体の熱を放熱する。このラジエータ447は、図12に示すように、固定部4471と、管状部材4472と、複数のフィン4473とを備える。
固定部4471は、例えば、金属等の熱伝導性部材から構成され、図12(B)に示すように、平面視略コ字形状を有し、対向するコ字状端縁に管状部材4472が挿通可能に構成されている。また、この固定部4471は、コ字状内側面にて複数の放熱フィン4473を支持する。この固定部4471のコ字状先端部分には、外側に延出する延出部4471Aが形成され、該延出部4471Aの孔4471A1を介して図示しないねじを外装ケース2に螺合することでラジエータ447が外装ケース2に固定される。
FIG. 12 is a diagram showing the structure of the radiator 447 and the positional relationship between the radiator 447 and the axial fan 32. Specifically, FIG. 12A is a perspective view of the radiator 447 and the axial fan 32 as viewed from above. FIG. 12B is a plan view of the radiator 447 and the axial fan 32 viewed from the radiator 447 side.
As shown in FIG. 1 or FIG. 2, the radiator 447 is disposed in the partition wall 21 formed in the exterior case 2. The heat of the cooling fluid heated by the plate 443 is radiated. As shown in FIG. 12, the radiator 447 includes a fixed portion 4471, a tubular member 4472, and a plurality of fins 4473.
The fixing portion 4471 is made of, for example, a heat conductive member such as a metal, and has a substantially U shape in plan view as shown in FIG. 12B. A tubular member 4472 is formed on the opposite U-shaped end edges. It can be inserted. The fixing portion 4471 supports the plurality of heat radiation fins 4473 at the U-shaped inner surface. An extension portion 4471A extending outward is formed at the U-shaped tip portion of the fixing portion 4471, and a screw (not shown) is screwed into the exterior case 2 through the hole 4471A1 of the extension portion 4471A. A radiator 447 is fixed to the outer case 2.

管状部材4472は、アルミニウムから構成され、図12(B)に示すように、固定部4471の一方のコ字状先端端縁から他方のコ字状先端端縁に向けて延出し、この延出方向先端部分が略90°屈曲して下方側に延出し、さらにこの延出方向先端部分が略90°屈曲して固定部4471の他方のコ字状先端端縁から一方のコ字状先端端縁に向けて延出する平面視略コ字形状を有し、固定部4471および放熱フィン4473と熱伝達可能に接続する。また、この管状部材4472は、流体循環部材448の管径寸法よりも小さい管径寸法を有し、図12(B)に示す上方側の一端が、光学装置本体440における中継タンク4404の冷却流体流出部4404Bと接続した流体循環部材448の他端と接続する。また、図12(B)に示す下方側の他端が、メインタンク445の冷却流体流入部445Aと接続した流体循環部材448の他端と接続する。したがって、中継タンク4404から流出した冷却流体が流体循環部材448を介して管状部材4472を通り、管状部材4472を通った冷却流体が流体循環部材448を介してメインタンク445内に流入する。   The tubular member 4472 is made of aluminum and, as shown in FIG. 12B, extends from one U-shaped tip end edge of the fixing portion 4471 toward the other U-shaped tip end edge. The distal end portion in the direction bends approximately 90 ° and extends downward, and the distal end portion in the extending direction bends approximately 90 ° and extends from the other U-shaped distal end edge of the fixing portion 4471 to one U-shaped distal end. It has a substantially U shape in plan view extending toward the edge, and is connected to the fixing portion 4471 and the heat radiating fin 4473 so that heat can be transferred. The tubular member 4472 has a smaller tube diameter than that of the fluid circulation member 448, and the upper end shown in FIG. 12B has a cooling fluid for the relay tank 4404 in the optical device main body 440. It connects with the other end of the fluid circulation member 448 connected with the outflow part 4404B. 12B is connected to the other end of the fluid circulating member 448 connected to the cooling fluid inflow portion 445A of the main tank 445. Therefore, the cooling fluid that has flowed out of the relay tank 4404 passes through the tubular member 4472 via the fluid circulation member 448, and the cooling fluid that passes through the tubular member 4472 flows into the main tank 445 via the fluid circulation member 448.

放熱フィン4473は、例えば、金属等の熱伝導性部材からなる板体で構成され、管状部材4472を挿通可能に構成されている。そして、複数の放熱フィン4473は、管状部材4472の挿通方向と直交する方向に延びるようにそれぞれ形成され、管状部材4472の挿通方向に沿って並列配置している。このような複数の放熱フィン4473の配置状態では、図12に示すように、軸流ファン32から吐出される冷却空気は、複数の放熱フィン4473の間を通り抜けることになる。   The radiating fin 4473 is formed of, for example, a plate body made of a heat conductive member such as metal, and is configured to be able to pass through the tubular member 4472. The plurality of heat radiation fins 4473 are formed so as to extend in a direction orthogonal to the insertion direction of the tubular member 4472, and are arranged in parallel along the insertion direction of the tubular member 4472. In the arrangement state of the plurality of radiating fins 4473, as shown in FIG. 12, the cooling air discharged from the axial fan 32 passes between the plurality of radiating fins 4473.

以上説明したように、冷却流体は、複数の流体循環部材448を介して、メインタンク445〜流体圧送部446〜流体分岐部4401〜各光変調素子保持体4402〜中継タンク4404〜ラジエータ447〜メインタンク445という流路を循環する。   As described above, the cooling fluid is supplied from the main tank 445 to the fluid pumping unit 446 to the fluid branching unit 4401 to each light modulation element holder 4402 to the relay tank 4404 to the radiator 447 to the main through the plurality of fluid circulation members 448. It circulates through a flow path called a tank 445.

次に、液晶パネル441、入射側偏光板442、および射出側偏光板443の冷却構造を説明する。
図13ないし図15は、液晶パネル441、入射側偏光板442、および射出側偏光板443の冷却構造を説明するための図である。具体的に、図13は、光変調素子保持体4402を光束射出側から見た平面図である。図14は、図13におけるD−D線の断面図である。図15は、図13におけるE−E線の断面図である。
流体圧送部446が駆動することにより、流体循環部材448を介して、メインタンク445内の冷却流体が流体圧送部446内に送入されるとともに、流体圧送部446から流体分岐部4401に送出される。
Next, a cooling structure of the liquid crystal panel 441, the incident side polarizing plate 442, and the emission side polarizing plate 443 will be described.
13 to 15 are diagrams for explaining a cooling structure of the liquid crystal panel 441, the incident side polarizing plate 442, and the emission side polarizing plate 443. FIG. Specifically, FIG. 13 is a plan view of the light modulation element holding body 4402 viewed from the light beam exit side. 14 is a cross-sectional view taken along line DD in FIG. 15 is a cross-sectional view taken along line EE in FIG.
When the fluid pumping unit 446 is driven, the cooling fluid in the main tank 445 is fed into the fluid pumping unit 446 via the fluid circulation member 448 and is also sent from the fluid pumping unit 446 to the fluid branching unit 4401. The

そして、流体分岐部4401内に送入された冷却流体は、流体分岐部4401の各冷却流体流出部4401Cから流出し、流体循環部材448を介して、図13ないし図15に示すように、各光変調素子保持体4402の各流入口4406Hから各光変調素子保持体4402内部へと流入する。
各光変調素子保持体4402内部に流入した冷却流体は、図14または図15に示すように、筒状部4406Cの突出部4406C2にて分流され、冷却室R1および冷却室R2に流入する。
ここで、光源装置411から射出された光束により、液晶パネル441、入射側偏光板442、および射出側偏光板443に生じた熱は、各冷却室R1,R2内の冷却流体に伝達される。
冷却室R2内の冷却流体に伝達された熱は、図14に示すように、冷却流体の流れにしたがって、図14中、上方に向けて進み、流出口4406Iを介して冷却室R2外部へと移動する。
一方、冷却室R1内の冷却流体に伝達された熱は、図14に示すように、冷却流体の流れにしたがって、図14中、上方に向けて移動する。また、上方に向けて移動した熱は、冷却流体の流れにしたがって、枠状部材4405における上方側の凹部4405F(図9(B))の側壁により、左右側の角隅部分へと案内される。そして、左右側の角隅部分へと案内された熱は、図15に示すように、冷却流体の流れにしたがって、左右側の角隅部分に位置する2つの挿通孔4405Dおよびこれら挿通孔4405Dと接続する2つの筒状部4406Dを介して、冷却室R2内に移動し、整流部4406F(図10(A))にて整流されて、流出口4406Iを介して冷却室R2外部へと移動する。
Then, the cooling fluid sent into the fluid branching portion 4401 flows out from each cooling fluid outflow portion 4401C of the fluid branching portion 4401, and through the fluid circulation member 448, as shown in FIGS. The light modulation element holding body 4402 flows into each light modulation element holding body 4402 from each inflow port 4406H.
As shown in FIG. 14 or FIG. 15, the cooling fluid that has flowed into each light modulation element holding body 4402 is divided by the protruding portion 4406C2 of the cylindrical portion 4406C, and flows into the cooling chamber R1 and the cooling chamber R2.
Here, the heat generated in the liquid crystal panel 441, the incident side polarizing plate 442, and the emission side polarizing plate 443 by the light beam emitted from the light source device 411 is transmitted to the cooling fluid in each of the cooling chambers R1 and R2.
As shown in FIG. 14, the heat transferred to the cooling fluid in the cooling chamber R2 proceeds upward in FIG. 14 according to the flow of the cooling fluid, and goes to the outside of the cooling chamber R2 through the outlet 4406I. Moving.
On the other hand, the heat transmitted to the cooling fluid in the cooling chamber R1 moves upward in FIG. 14 according to the flow of the cooling fluid, as shown in FIG. Further, the heat moved upward is guided to the left and right corners by the side wall of the upper concave portion 4405F (FIG. 9B) in the frame-like member 4405 according to the flow of the cooling fluid. . Then, as shown in FIG. 15, the heat guided to the left and right corner portions is divided into two insertion holes 4405D and these insertion holes 4405D located in the left and right corner portions according to the flow of the cooling fluid. It moves into the cooling chamber R2 via the two cylindrical portions 4406D to be connected, is rectified by the rectifying portion 4406F (FIG. 10A), and moves to the outside of the cooling chamber R2 via the outlet 4406I. .

流出口4406Iを介して光変調素子保持体4402外部へと移動した熱は、冷却流体の流れにしたがって、冷却室R1,R2〜中継タンク4404〜ラジエータ447へと移動する。温められた冷却流体がラジエータ447の管状部材4472を通過する際、該冷却流体の熱は、管状部材4472〜複数の放熱フィン4473に伝達される。そして、軸流ファン32から吐出される冷却空気により、複数の放熱フィン4473に伝達された熱が冷却される。
そして、ラジエータ447にて冷却された冷却流体は、ラジエータ447〜メインタンク445〜流体圧送部446〜流体分岐部4401へと移動し、再度、冷却室R1,R2へと移動する。
The heat that has moved to the outside of the light modulation element holder 4402 via the outlet 4406I moves to the cooling chambers R1, R2, the relay tank 4404, and the radiator 447 in accordance with the flow of the cooling fluid. When the heated cooling fluid passes through the tubular member 4472 of the radiator 447, the heat of the cooling fluid is transmitted to the tubular member 4472 to the plurality of radiating fins 4473. The heat transmitted to the plurality of heat radiation fins 4473 is cooled by the cooling air discharged from the axial fan 32.
Then, the cooling fluid cooled by the radiator 447 moves from the radiator 447 to the main tank 445 to the fluid pressure feeding unit 446 to the fluid branching unit 4401, and again moves to the cooling chambers R1 and R2.

また、冷却ユニット3のシロッコファン31によりプロジェクタ1外部から内部に導入された冷却空気は、光学部品用筐体45の底面に形成された孔451Cを介して光学部品用筐体45内に導入される。光学部品用筐体45内に導入された冷却空気は、光変調素子保持体4402の外面、および光変調素子保持体4402と支持部材4403との間に流入し、下方から上方に向けて流通する。この際、冷却空気は、入射側偏光板442の光束入射側端面および射出側偏光板443の光束射出側端面を冷却しながら流通する。   Further, the cooling air introduced from the outside of the projector 1 by the sirocco fan 31 of the cooling unit 3 is introduced into the optical component housing 45 through a hole 451C formed in the bottom surface of the optical component housing 45. The The cooling air introduced into the optical component casing 45 flows into the outer surface of the light modulation element holding body 4402 and between the light modulation element holding body 4402 and the support member 4403, and circulates from below to above. . At this time, the cooling air flows while cooling the light incident side end surface of the incident side polarizing plate 442 and the light emitting side end surface of the emission side polarizing plate 443.

上述した第1実施形態においては、光変調素子保持体4402を構成する一対の枠状部材4405,4406は、その内部にそれぞれ冷却室R1,R2を有し、流入口4406Hを介して流入した冷却流体を筒状部4406Cおよび挿通孔4405Cにて各冷却室R1,R2に分流し、各冷却室R1,R2内の冷却流体を2つの筒状部4406Dおよび挿通孔4405Dにて合流させ、流出口4406Iを介して外部に流出させる。このことにより、複数の流体循環部材448にて流入口4406Hおよび流出口4406Iを接続することで、各冷却室R1,R2内の冷却流体を容易に対流させることができ、液晶パネル441により温められた冷却流体が冷却室R1,R2内に滞留することを回避できる。したがって、液晶パネル441により冷却流体が温められて液晶パネル441と冷却流体との温度差が小さくなることがなく、冷却流体により光変調素子を効率的に冷却できる。
ここで、開口部4405A,4406Aが液晶パネル441の画像形成領域に応じて設けられているので、冷却室R1,R2に充填された冷却流体は、液晶パネル441の画像形成領域に接触する。このことにより、液晶パネル441の画像形成領域内の温度分布が均一化され、局所的な過熱を回避し、液晶パネル441にて鮮明な光学像を形成できる。
また、開口部4405A,4406A周縁には、対向する面側に向けて開口面積を小さくする斜面4405A1,4406A1が形成されているので、各冷却室R1,R2内の冷却流体を斜面4405A1,4406A1に沿って流通させることができ、対向する面側に配置される液晶パネル441に効率的に冷却流体を流通させることができる。したがって、冷却流体により液晶パネル441をさらに効率的に冷却できる。
In the first embodiment described above, the pair of frame-like members 4405 and 4406 constituting the light modulation element holding body 4402 has cooling chambers R1 and R2 therein, respectively, and the cooling that has flowed in through the inlet 4406H. The fluid is divided into the cooling chambers R1 and R2 through the cylindrical portion 4406C and the insertion hole 4405C, and the cooling fluid in each of the cooling chambers R1 and R2 is merged at the two cylindrical portions 4406D and the insertion hole 4405D. It flows out through 4406I. By connecting the inflow port 4406H and the outflow port 4406I with the plurality of fluid circulation members 448, the cooling fluid in each of the cooling chambers R1 and R2 can be easily convected and heated by the liquid crystal panel 441. The remaining cooling fluid can be prevented from staying in the cooling chambers R1 and R2. Therefore, the cooling fluid is warmed by the liquid crystal panel 441 and the temperature difference between the liquid crystal panel 441 and the cooling fluid is not reduced, and the light modulation element can be efficiently cooled by the cooling fluid.
Here, since the openings 4405A and 4406A are provided in accordance with the image forming area of the liquid crystal panel 441, the cooling fluid filled in the cooling chambers R1 and R2 contacts the image forming area of the liquid crystal panel 441. Thus, the temperature distribution in the image forming area of the liquid crystal panel 441 is made uniform, local overheating is avoided, and a clear optical image can be formed on the liquid crystal panel 441.
In addition, slopes 4405A1 and 4406A1 that reduce the opening area toward the opposing surface are formed on the periphery of the openings 4405A and 4406A. The cooling fluid can be circulated efficiently through the liquid crystal panel 441 disposed on the opposite surface side. Therefore, the liquid crystal panel 441 can be further efficiently cooled by the cooling fluid.

また、各冷却室R1,R2が3つの筒状部4406C,4406Dおよび3つの挿通孔4405C,4405Dにより連通接続されるので、液晶パネル441の光束入射側および光束射出側を略同一の温度である冷却流体により冷却でき、液晶パネル441における光束入射側および光束射出側の温度の均一化を図れる。
さらに、各冷却室R1,R2を3つの筒状部4406C,4406Dおよび3つの挿通孔4405C,4405Dにて連通接続することで、例えば、流体循環部材にて各冷却室R1,R2を連通接続する構成と比較して、光変調素子保持体4402をコンパクトにでき、光変調素子保持体4402の小型化および軽量化が可能な構成となる。
Further, since each of the cooling chambers R1 and R2 is connected in communication by the three cylindrical portions 4406C and 4406D and the three insertion holes 4405C and 4405D, the light flux incident side and the light flux emission side of the liquid crystal panel 441 have substantially the same temperature. The liquid can be cooled by the cooling fluid, and the temperatures on the light incident side and the light emitting side of the liquid crystal panel 441 can be made uniform.
Further, the cooling chambers R1 and R2 are connected to each other through the three cylindrical portions 4406C and 4406D and the three insertion holes 4405C and 4405D, so that the cooling chambers R1 and R2 are connected to each other by, for example, a fluid circulation member. Compared with the configuration, the light modulation element holding body 4402 can be made compact, and the light modulation element holding body 4402 can be reduced in size and weight.

さらにまた、3つの筒状部4406C,4406Dおよび3つの挿通孔4405C,4405Dを形成することで、流入口4406Hおよび流出口4406Iを各冷却室R1,R2に応じて2つずつ設けなくてもよく、光変調素子保持体4402に各1つのみの流入口4406Hおよび流出口4406Iを設ける構成を採用できる。このことにより、流入口4406Hおよび流出口4406Iを各冷却室R1,R2に応じて2つずつ設ける構成に比較して、流入口4406Hおよび流出口4406Iを接続する流体循環部材448の引き回し本数を低減できる。
したがって、流入口4406Hおよび流出口4406Iへの流体循環部材448の接続作業を容易に実施できる。また、接続箇所を削減することで、冷却流体が漏れる箇所も低減できる。さらに、光変調素子保持体4402周りのスペース効率の向上が図れる。さらにまた、流体循環部材448を光変調素子保持体4402に接続した状態で流体循環部材448による光変調素子保持体4402に対する反力を低減でき、クロスダイクロイックプリズム444に対する各光変調素子保持体4402の相互の位置ずれを回避し、各液晶パネル441間の画素ずれを抑制できる。
ここで、各冷却室R1,R2を連通接続する連通口を、3つの筒状部4406C,4406Dおよび3つの挿通孔4405C,4405Dで構成しているので、各枠状部材4405,4406を組み立てる際に、挿通孔4405C,4405Dに筒状部4406C,4406Dを挿通することで、各冷却室R1,R2を容易に連通接続できる。また、例えば、枠状部材4405,4406の双方にそれぞれ前記筒状部4406C,4406Dと略同様の筒状部を設け、枠状部材4405,4406を組み立てる際に、前記各筒状部を接続することで連通口を形成する構成と比較して、3つの筒状部4406C,4406Dおよび3つの挿通孔4405C,4405Dを介して流通する冷却流体の漏れを簡単な構成で容易に防止できる。
Furthermore, by forming the three cylindrical portions 4406C and 4406D and the three insertion holes 4405C and 4405D, it is not necessary to provide two inlets 4406H and two outlets 4406I in accordance with the cooling chambers R1 and R2. A configuration in which only one inflow port 4406H and outflow port 4406I are provided in the light modulation element holding body 4402 can be employed. This reduces the number of fluid circulation members 448 that connect the inflow port 4406H and the outflow port 4406I as compared to a configuration in which two inflow ports 4406H and outflow ports 4406I are provided for each cooling chamber R1, R2. it can.
Therefore, the connection work of the fluid circulation member 448 to the inlet 4406H and the outlet 4406I can be easily performed. Moreover, the location where the cooling fluid leaks can be reduced by reducing the number of connection locations. Further, the space efficiency around the light modulation element holding body 4402 can be improved. Furthermore, the reaction force of the fluid circulation member 448 to the light modulation element holding body 4402 can be reduced in a state where the fluid circulation member 448 is connected to the light modulation element holding body 4402, and each light modulation element holding body 4402 against the cross dichroic prism 444 can be reduced. Mutual displacement can be avoided and pixel displacement between the liquid crystal panels 441 can be suppressed.
Here, since the communication port for communicating and connecting the cooling chambers R1 and R2 is constituted by the three cylindrical portions 4406C and 4406D and the three insertion holes 4405C and 4405D, the frame-shaped members 4405 and 4406 are assembled. Further, by inserting the cylindrical portions 4406C and 4406D through the insertion holes 4405C and 4405D, the cooling chambers R1 and R2 can be easily connected to each other. Further, for example, the cylindrical members 4405 and 4406 are provided with cylindrical portions substantially similar to the cylindrical portions 4406C and 4406D, respectively, and the cylindrical portions are connected when the frame-shaped members 4405 and 4406 are assembled. Thus, as compared with the configuration in which the communication port is formed, leakage of the cooling fluid flowing through the three cylindrical portions 4406C and 4406D and the three insertion holes 4405C and 4405D can be easily prevented with a simple configuration.

また、流出口4406Iおよび流入口4406Hが枠状部材4406における上下端部の対向位置にそれぞれ形成されるので、各冷却室R1,R2内における冷却流体の流通方向を一方向に設定でき、各冷却室R1,R2内における冷却流体の流通を円滑に実施でき、冷却流体の対流速度を速めることができる。したがって、液晶パネル441と各冷却室R1,R2内の冷却流体との温度差を維持し、冷却流体により液晶パネル441をさらに効率的に冷却できる。
ここで、流入口4406Hが枠状部材4406の下方側端部に形成され、流出口4406Iが枠状部材4406における上方側端部に形成されているので、熱の移動方向と冷却流体の対流方向とを同一方向にすることができ、温められた冷却流体が冷却室R1,R2内部に滞留することを回避し、液晶パネル441の冷却効率の向上をさらに図れる。
Further, since the outlet 4406I and the inlet 4406H are formed at positions opposed to the upper and lower ends of the frame-like member 4406, the flow direction of the cooling fluid in each cooling chamber R1, R2 can be set in one direction, The cooling fluid can be smoothly circulated in the chambers R1 and R2, and the convection speed of the cooling fluid can be increased. Therefore, the temperature difference between the liquid crystal panel 441 and the cooling fluid in the cooling chambers R1 and R2 can be maintained, and the liquid crystal panel 441 can be cooled more efficiently by the cooling fluid.
Here, since the inflow port 4406H is formed at the lower end portion of the frame-like member 4406 and the outflow port 4406I is formed at the upper end portion of the frame-like member 4406, the heat transfer direction and the cooling fluid convection direction. Can be made in the same direction, so that the warmed cooling fluid can be prevented from staying in the cooling chambers R1 and R2, and the cooling efficiency of the liquid crystal panel 441 can be further improved.

さらに、筒状部4406Cは、その内側面の一部が流入口4406Hの中心軸と交差するように流入口4406Hと連通接続し、該内側面の一部に突出部4406C2が形成されているので、流入口4406Hから流入した冷却流体を各冷却室R1,R2の双方に確実に流入させ、液晶パネル441の光束入射側および光束射出側の双方を冷却流体にて確実に冷却できる。
ここで、例えば、液晶パネル441の光束入射側および光束射出側の発熱量が異なる場合には、突出部4406C2を筒状部4406Cの内側面の一部における所定の位置に形成することで、発熱量の多い側には多くの冷却流体を、逆に発熱量の少ない側には少ない冷却流体を流入させることが可能となり、液晶パネル441の光束入射側および光束射出側を効率的に冷却できる。
Further, the cylindrical portion 4406C is connected to the inflow port 4406H so that a part of the inner side surface thereof intersects the central axis of the inflow port 4406H, and the protruding portion 4406C2 is formed on a part of the inner side surface. The cooling fluid flowing in from the inlet 4406H can surely flow into both the cooling chambers R1 and R2, and both the light beam incident side and the light beam emission side of the liquid crystal panel 441 can be reliably cooled with the cooling fluid.
Here, for example, when the amount of heat generated on the light incident side and the light emitting side of the liquid crystal panel 441 are different, the protrusion 4406C2 is formed at a predetermined position on a part of the inner surface of the cylindrical portion 4406C, thereby generating heat. A large amount of cooling fluid can be allowed to flow into the side with a large amount, and a small amount of cooling fluid can be allowed to flow into the side with a small amount of heat generation.

また、流出口4406I近傍に整流部4406Fが形成されているので、流入口4406Hを介して冷却室R2内に流入した冷却流体、および2つの筒状部4406D、2つの挿通孔4405Dを介して冷却室R1から冷却室R2に流入した冷却流体の双方を流出口4406Iに向けて円滑に流通させることができる。したがって、冷却室R1内で液晶パネル441にて一度温められた冷却流体が冷却室R2内に流入した際、冷却室R2内に広がって流通することを抑制でき、液晶パネル441と冷却室R1,R2内の冷却流体との温度差を維持し、冷却流体により液晶パネル441をさらに効率的に冷却できる。   Further, since the rectifying unit 4406F is formed in the vicinity of the outlet 4406I, the cooling fluid that has flowed into the cooling chamber R2 through the inlet 4406H, and the cooling through the two cylindrical parts 4406D and the two insertion holes 4405D. Both cooling fluids that have flowed into the cooling chamber R2 from the chamber R1 can be smoothly circulated toward the outlet 4406I. Therefore, when the cooling fluid once heated in the liquid crystal panel 441 in the cooling chamber R1 flows into the cooling chamber R2, it can be prevented from spreading and flowing into the cooling chamber R2, and the liquid crystal panel 441 and the cooling chamber R1, respectively. The temperature difference from the cooling fluid in R2 is maintained, and the liquid crystal panel 441 can be cooled more efficiently by the cooling fluid.

そして、光変調素子保持体4402は、弾性部材4407を有しているので、各冷却室R1,R2からの冷却流体の漏れを防止できる。
ここで、弾性部材4407を構成する第2弾性部材4407Bは、枠状部材4406における3つの筒状部4406C,4406Dに対応して挿通孔4407B1が形成されているので、光変調素子保持体4402を組み立てた際には、第2弾性部材4407Bが各枠状部材4405,4406により押圧され、該第2弾性部材4407Bにおける各挿通孔4407B1を、3つの筒状部4406C,4406Dおよび3つの挿通孔4405C,4405Dの接続部分に圧接させることができる。したがって、3つの筒状部4406C,4406Dおよび3つの挿通孔4405C,4405Dを介して流通する冷却流体の漏れを簡単な構成で確実に防止できる。
Since the light modulation element holding body 4402 includes the elastic member 4407, leakage of the cooling fluid from each of the cooling chambers R1 and R2 can be prevented.
Here, the second elastic member 4407B constituting the elastic member 4407 is formed with insertion holes 4407B1 corresponding to the three cylindrical portions 4406C and 4406D in the frame-like member 4406. Therefore, the light modulation element holding body 4402 is provided. When assembled, the second elastic member 4407B is pressed by the frame-like members 4405 and 4406, and the insertion holes 4407B1 in the second elastic member 4407B are connected to the three cylindrical portions 4406C and 4406D and the three insertion holes 4405C. , 4405D. Therefore, leakage of the cooling fluid flowing through the three cylindrical portions 4406C and 4406D and the three insertion holes 4405C and 4405D can be reliably prevented with a simple configuration.

また、3つの挿通孔4405C,4405Dおよび3つの筒状部4406C,4406Dは、一対の枠状部材4405,4406の凹部4405F,4406Eと入射側偏光板442および射出側偏光板443の透光性基板442A,443Aとの間に形成される隙間を介して各冷却室R1,R2を連通接続するので、一対の枠状部材4405,4406の外面にそれぞれ凹部4405F,4406Eを設けるだけで、3つの挿通孔4405C,4405Dおよび3つの筒状部4406C,4406Dにて各冷却室R1,R2を容易に連通接続できる。さらにまた、一対の枠状部材4405,4406の外面にそれぞれ凹部4405F,4406Eを設けるだけで、3つの挿通孔4405C,4405Dおよび3つの筒状部4406C,4406Dにて各冷却室R1,R2を連通接続できるので、例えば、一対の枠状部材4405,4406の内部に各冷却室R1,R2内の冷却流体を各冷却室R1,R2外部へと流通可能な孔をそれぞれ形成し、前記各孔を介して3つの挿通孔4405C,4405Dおよび3つの筒状部4406C,4406Dにて各冷却室R1,R2を連通接続する構成と比較して、一対の枠状部材4405,4406を容易に製造できる。   Further, the three insertion holes 4405C and 4405D and the three cylindrical portions 4406C and 4406D are formed of a light transmitting substrate for the concave portions 4405F and 4406E of the pair of frame-like members 4405 and 4406, the incident side polarizing plate 442, and the emission side polarizing plate 443, respectively. Since the cooling chambers R1 and R2 are connected to each other through a gap formed between 442A and 443A, only three recesses 4405F and 4406E are provided on the outer surfaces of the pair of frame-like members 4405 and 4406, respectively. The cooling chambers R1 and R2 can be easily connected to each other through the holes 4405C and 4405D and the three cylindrical portions 4406C and 4406D. Furthermore, the cooling chambers R1 and R2 are communicated with each other through the three insertion holes 4405C and 4405D and the three cylindrical portions 4406C and 4406D only by providing the recesses 4405F and 4406E on the outer surfaces of the pair of frame-like members 4405 and 4406, respectively. For example, holes that allow the cooling fluid in the cooling chambers R1 and R2 to flow outside the cooling chambers R1 and R2 are formed inside the pair of frame-like members 4405 and 4406, respectively. The pair of frame-shaped members 4405 and 4406 can be easily manufactured as compared with the configuration in which the cooling chambers R1 and R2 are connected to each other through the three insertion holes 4405C and 4405D and the three cylindrical portions 4406C and 4406D.

さらに、凹部4405F,4406Eの側壁は曲面状に形成されているので、冷却室R1,R2内の冷却流体を該側壁にて2つの挿通孔4405Dに案内することができ、各冷却室R1,R2内の冷却流体の流通をさらに円滑に実施でき、冷却流体の対流速度を速め、冷却流体により液晶パネル441をさらに効率的に冷却できる。   Furthermore, since the side walls of the recesses 4405F and 4406E are formed in a curved shape, the cooling fluid in the cooling chambers R1 and R2 can be guided to the two insertion holes 4405D by the side walls, and each of the cooling chambers R1 and R2 can be guided. The cooling fluid can be circulated more smoothly, the convection speed of the cooling fluid can be increased, and the liquid crystal panel 441 can be more efficiently cooled by the cooling fluid.

そして、光学装置本体440は、光変調素子保持体4402の他、複数の流体循環部材448、流体分岐部4401、および中継タンク4404を備えているので、冷却室R1,R2内だけでなく、複数の流体循環部材448、流体分岐部4401、および中継タンク4404内にも冷却流体を封入することで、冷却流体の容量を大きくすることができ、液晶パネル441と冷却流体との熱交換能力を向上させることができる。
また、光学装置本体440は入射側偏光板442および射出側偏光板443を含んで構成され、冷却室R1,R2は、液晶パネル441と、入射側偏光板442および射出側偏光板443の透光性基板442A,443Aとで開口部4405A,4406Aの光束入射側および光束射出側をそれぞれ閉塞することで形成されるので、液晶パネル441のみならず、入射側偏光板442の偏光膜、および射出側偏光板443の偏光膜443Bに生じた熱も、透光性基板442A,443Aを介して冷却室R1,R2を対流する冷却流体に放熱でき、入射側偏光板442および射出側偏光板443も効率的に冷却できる。
The optical device main body 440 includes a plurality of fluid circulation members 448, a fluid branching portion 4401, and a relay tank 4404 in addition to the light modulation element holding body 4402, so that not only the cooling chambers R1 and R2 but also a plurality of By enclosing the cooling fluid in the fluid circulation member 448, the fluid branching portion 4401, and the relay tank 4404, the capacity of the cooling fluid can be increased, and the heat exchange capacity between the liquid crystal panel 441 and the cooling fluid is improved. Can be made.
The optical device main body 440 includes an incident-side polarizing plate 442 and an emission-side polarizing plate 443, and the cooling chambers R1 and R2 include the liquid crystal panel 441, the light-transmitting light of the incident-side polarizing plate 442 and the emission-side polarizing plate 443. Are formed by closing the light beam incident side and the light beam emission side of the openings 4405A and 4406A with the conductive substrates 442A and 443A, respectively. The heat generated in the polarizing film 443B of the polarizing plate 443 can also be radiated to the cooling fluid convection through the cooling chambers R1 and R2 via the light-transmitting substrates 442A and 443A, and the incident-side polarizing plate 442 and the emission-side polarizing plate 443 are also efficient. Can be cooled.

さらに、流体分岐部4401は、内部の冷却流体を3つの光変調素子保持体4402毎に分岐して送出するので、各光変調素子保持体4402の冷却室R1,R2に流入する冷却流体の温度が偏ることなく、略同一の温度である冷却流体にて3つの液晶パネル441を冷却できる。また、流体分岐部4401は、クロスダイクロイックプリズム444の下面に取り付けられているので、光学装置本体440をコンパクトにでき、光学装置本体440の小型化を図れる。
ここで、流体分岐部4401において、冷却流体流入部4401Aおよび冷却流体流出部4401Cは、一方の端部が内部に向けて突出しているので、流体分岐部4401の内部に蓄積された冷却流体のみを外部へと流出させることができる。例えば、流体分岐部4401内部が冷却流体にて満たされていない場合でも、空気を混入させることなく、冷却流体のみを外部へと流出させることができる。また、冷却流体流出部4401Cのみならず、冷却流体流入部4401Aも内部に突出しているので、冷却流体の対流方向を変えた場合、すなわち、冷却流体流入部4401Aにて内部の冷却流体を外部に流出させ、冷却流体流出部4401Cにて冷却流体を内部に流入させる場合でも、冷却流体流入部4401Aにて内部に蓄積された冷却流体のみを外部へと流出させることができる。メインタンク445および中継タンク4404も同様である。
Furthermore, since the fluid branching portion 4401 branches and sends out the internal cooling fluid for each of the three light modulation element holding bodies 4402, the temperature of the cooling fluid flowing into the cooling chambers R <b> 1 and R <b> 2 of each light modulation element holding body 4402. The three liquid crystal panels 441 can be cooled with a cooling fluid having substantially the same temperature. Since the fluid branching portion 4401 is attached to the lower surface of the cross dichroic prism 444, the optical device body 440 can be made compact, and the optical device body 440 can be downsized.
Here, in the fluid branching portion 4401, one end of each of the cooling fluid inflow portion 4401A and the cooling fluid outflow portion 4401C protrudes toward the inside, so that only the cooling fluid accumulated in the fluid branching portion 4401 is used. It can be drained to the outside. For example, even when the inside of the fluid branch portion 4401 is not filled with the cooling fluid, only the cooling fluid can flow out to the outside without mixing air. Further, since not only the cooling fluid outflow portion 4401C but also the cooling fluid inflow portion 4401A protrudes inside, when the convection direction of the cooling fluid is changed, that is, the cooling fluid inflow portion 4401A moves the internal cooling fluid to the outside. Even when the cooling fluid is caused to flow out and the cooling fluid flows into the inside at the cooling fluid outflow portion 4401C, only the cooling fluid accumulated inside at the cooling fluid inflow portion 4401A can flow out to the outside. The same applies to the main tank 445 and the relay tank 4404.

さらにまた、メインタンク445、流体圧送部446、複数の流体循環部材448、流体分岐部4401、一対の枠状部材4405,4406、中継タンク4404、およびラジエータ447における管状部材4472は、耐食性を有するアルミニウムで構成されていることにより、長期間、冷却流体と接触した場合でも化学反応を生じることを防止することができる。すなわち、化学反応による反応性物質による冷却流体の着色等を回避し、冷却室R1,R2内を通過する光束の光学特性が変更されることを防止できる。
そして、プロジェクタ1は、上述した光学装置本体440を備えることで、液晶パネル441の熱劣化を防止でき、プロジェクタ1の高寿命化を図れる。
Furthermore, the tubular member 4472 in the main tank 445, the fluid pumping portion 446, the plurality of fluid circulation members 448, the fluid branching portion 4401, the pair of frame-like members 4405 and 4406, the relay tank 4404, and the radiator 447 are made of aluminum having corrosion resistance. By being comprised by this, even when it contacts a cooling fluid for a long period, it can prevent producing a chemical reaction. That is, it is possible to avoid coloring of the cooling fluid by a reactive substance due to a chemical reaction, and to prevent the optical characteristics of the light beam passing through the cooling chambers R1 and R2 from being changed.
The projector 1 includes the optical device main body 440 described above, thereby preventing thermal deterioration of the liquid crystal panel 441 and extending the life of the projector 1.

[第2実施形態]
次に、本発明の第2実施形態を図面に基づいて説明する。
以下の説明では、前記第1実施形態と同様の構造および同一部材には同一符号を付して、その詳細な説明は省略または簡略化する。
前記第1実施形態では、光学装置本体440において、光変調素子保持体4402の流入口4406Hおよび流出口4406Iは、枠状部材4406の上下端部の対向位置にそれぞれ形成されている。
これに対して第2実施形態では、光学装置本体540において、光変調素子保持体5402の流入口5406Hおよび流出口5406Iは、枠状部材5406の一側端部である上端部にそれぞれ形成されている。光学装置本体540を除くその他の構成は、前記第1実施形態と同様のものとする。
[Second Embodiment]
Next, 2nd Embodiment of this invention is described based on drawing.
In the following description, the same structure and the same members as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted or simplified.
In the first embodiment, in the optical device main body 440, the inlet 4406 </ b> H and the outlet 4406 </ b> I of the light modulation element holding body 4402 are formed at positions opposed to the upper and lower ends of the frame-shaped member 4406, respectively.
On the other hand, in the second embodiment, in the optical device main body 540, the inflow port 5406H and the outflow port 5406I of the light modulation element holding body 5402 are respectively formed at the upper end portion that is one end portion of the frame-shaped member 5406. Yes. The rest of the configuration excluding the optical device main body 540 is the same as that of the first embodiment.

具体的に、図16および図17は、第2実施形態における光学装置本体540の概略構成を示す図である。図16は、光学装置本体540を上方から見た斜視図であり、図17は、光学装置本体540を下方から見た斜視図である。
光学装置本体540は、前記第1実施形態で説明した液晶パネル441、入射側偏光板442、射出側偏光板443、クロスダイクロイックプリズム444、および支持部材4403の他、中継タンク5404(図16)と、プリズム固定板5401と、3つの光変調素子保持体5402とを備える。
中継タンク5404は、前記第1実施形態で説明した中継タンク4404と同様の構成を有し、前記中継タンク4404の冷却流体流入部4404Aおよび冷却流体流出部4404Bの機能が逆になった点が異なるのみである。この中継タンク5404は、図16に示すように、前記中継タンク4404の冷却流体流出部4404Bが、外部から冷却流体を内部に流入させる冷却流体流入部5404Aとして機能する。すなわち、冷却流体流入部5404Aの外側に突出した一端には、具体的な図示は省略するが、流体圧送部446(図2または図3)に連通接続された流体循環部材448の他端が接続され、該流体循環部材448を介して流体圧送部446から圧送された冷却流体が中継タンク5404内部に流入する。
Specifically, FIGS. 16 and 17 are diagrams illustrating a schematic configuration of the optical device main body 540 according to the second embodiment. FIG. 16 is a perspective view of the optical device main body 540 as viewed from above, and FIG. 17 is a perspective view of the optical device main body 540 as viewed from below.
The optical device main body 540 includes the liquid crystal panel 441, the incident side polarizing plate 442, the emission side polarizing plate 443, the cross dichroic prism 444, the support member 4403, and the relay tank 5404 (FIG. 16) described in the first embodiment. A prism fixing plate 5401 and three light modulation element holders 5402.
The relay tank 5404 has the same configuration as the relay tank 4404 described in the first embodiment, except that the functions of the cooling fluid inflow portion 4404A and the cooling fluid outflow portion 4404B of the relay tank 4404 are reversed. Only. In this relay tank 5404, as shown in FIG. 16, the cooling fluid outflow portion 4404B of the relay tank 4404 functions as a cooling fluid inflow portion 5404A for allowing the cooling fluid to flow into the inside from the outside. In other words, one end protruding outside the cooling fluid inflow portion 5404A is connected to the other end of the fluid circulation member 448 connected to the fluid pressure feeding portion 446 (FIG. 2 or FIG. 3), although a specific illustration is omitted. Then, the cooling fluid pumped from the fluid pumping unit 446 through the fluid circulation member 448 flows into the relay tank 5404.

また、この中継タンク5404は、図16に示すように、前記中継タンク4404の3つの冷却流体流入部4404Aが、内部の冷却流体を各光変調素子保持体5402に分岐して流出させる3つの冷却流体流出部5404Bとして機能する。これら3つの冷却流体流出部5404Bの外側に突出した一端には、図16に示すように、3つの流体循環部材448の一端がそれぞれ接続され、各流体循環部材448の他端が各光変調素子保持体5402の後述する流入口とそれぞれ接続され、これら流体循環部材448を介して中継タンク5404内部の冷却流体が分岐されて各光変調素子保持体5402へと流出する。
したがって、第2実施形態における中継タンク5404は、本発明に係る流体分岐部に相当する。
In addition, as shown in FIG. 16, the relay tank 5404 has three cooling fluid inflow portions 4404A of the relay tank 4404 that branch the internal cooling fluid to the respective light modulation element holders 5402 to flow out. It functions as the fluid outflow portion 5404B. As shown in FIG. 16, one end of each of the three fluid circulation members 448 is connected to one end of the three cooling fluid outflow portions 5404B, and the other end of each fluid circulation member 448 is connected to each light modulation element. The cooling fluid in the relay tank 5404 is branched through these fluid circulation members 448 and flows out to the respective light modulation element holding bodies 5402.
Therefore, the relay tank 5404 in the second embodiment corresponds to a fluid branching portion according to the present invention.

プリズム固定板5401は、前記第1実施形態で説明した流体分岐部4401と略同様の形状を有し、クロスダイクロイックプリズム444を支持する機能のみを有するものである。すなわち、このプリズム固定板5401は、前記第1実施形態で説明した流体分岐部4401の冷却流体流入部4401Aおよび冷却流体流出部4401Cが省略され、前記流体分岐部4401の腕部4401B(孔4401B1を含む)および膨出部4401Dと同様の、腕部5401B(孔5401B1を含む)および図示しない膨出部を有している。   The prism fixing plate 5401 has substantially the same shape as the fluid branch portion 4401 described in the first embodiment, and has only a function of supporting the cross dichroic prism 444. That is, in the prism fixing plate 5401, the cooling fluid inflow portion 4401A and the cooling fluid outflow portion 4401C of the fluid branching portion 4401 described in the first embodiment are omitted, and the arm portion 4401B (hole 4401B1 of the fluid branching portion 4401 is omitted). And an bulging portion (not shown) and an arm portion 5401B (including the hole 5401B1) similar to the bulging portion 4401D.

図18は、光変調素子保持体5402の概略構成を示す分解斜視図である。
3つの光変調素子保持体5402は、前記第1実施形態で説明した光変調素子保持体4402と略同様に、3つの液晶パネル441、3つの入射側偏光板442、および3つの射出側偏光板443をそれぞれ保持するとともに、内部に冷却流体が流入および流出し、該冷却流体により3つの液晶パネル441、3つの入射側偏光板442、および3つの射出側偏光板443をそれぞれ冷却する。なお、各光変調素子保持体5402は、同様の構成であり、以下では1つの光変調素子保持体5402のみを説明する。この光変調素子保持体5402は、図18に示すように、前記第1実施形態で説明した一対の偏光板固定部材4408A,4408Bの他、一対の枠状部材5405,5406と、4つの弾性部材5407と、中間枠体5409とを備える。
FIG. 18 is an exploded perspective view showing a schematic configuration of the light modulation element holding body 5402.
The three light modulation element holders 5402 are substantially the same as the light modulation element holder 4402 described in the first embodiment, with three liquid crystal panels 441, three incident side polarizing plates 442, and three emission side polarizing plates. Each of the liquid crystal panels 441, the three incident side polarizing plates 442, and the three outgoing side polarizing plates 443 is cooled by the cooling fluid. Each light modulation element holder 5402 has the same configuration, and only one light modulation element holder 5402 will be described below. As shown in FIG. 18, the light modulation element holder 5402 includes a pair of polarizing plate fixing members 4408A and 4408B described in the first embodiment, a pair of frame-like members 5405 and 5406, and four elastic members. 5407 and an intermediate frame 5409 are provided.

図19は、枠状部材5405の概略構成を示す図である。具体的に、図19(A)は、枠状部材5405を光束射出側から見た斜視図である。また、図19(B)は、枠状部材5405を光束入射側から見た斜視図である。
枠状部材5405は、枠状部材5406に対して光束入射側に配置され、液晶パネル441の光束入射側を支持するとともに、入射側偏光板442の光束射出側を支持するものであり、その具体的な構造は、前記第1実施形態で説明した枠状部材4405と略同様である。すなわち、この枠状部材5405は、前記第1実施形態で説明した枠状部材4405の開口部4405A(斜面4405A1を含む)、凹部4405B,4405E,4405F、挿通孔4405C,4405D、接続部4405G、およびフック4405Hと略同様の、開口部5405A(斜面5405A1を含む)、凹部5405B,5405E,5405F、挿通孔5405C,5405D、接続部5405G、およびフック5405Hを有している。
このうち、挿通孔5405C,5405Dは、枠状部材5406の後述する2つの筒状部に対応して2つ形成されている。すなわち、前記第1実施形態で説明した2つの挿通孔4405Dのうちの1つの挿通孔4405Dが省略されている。
また、凹部5405Fは、2つの挿通孔5405C,5405Dと接続するように、開口部5405Aの上下側端部周縁にそれぞれ形成されている。ここで、これら凹部5405Fのうち、上方側に位置する凹部5405Fの上方側の側壁は、挿通孔5405Dから離間するにしたがって、開口部5405Aに近接するように曲面状に形成されている。
FIG. 19 is a diagram illustrating a schematic configuration of the frame-shaped member 5405. Specifically, FIG. 19A is a perspective view of the frame-shaped member 5405 as viewed from the light beam emission side. FIG. 19B is a perspective view of the frame-shaped member 5405 as viewed from the light beam incident side.
The frame-shaped member 5405 is disposed on the light beam incident side with respect to the frame-shaped member 5406, supports the light beam incident side of the liquid crystal panel 441, and supports the light beam emission side of the incident-side polarizing plate 442. The general structure is substantially the same as the frame-like member 4405 described in the first embodiment. That is, the frame-shaped member 5405 includes the opening 4405A (including the slope 4405A1), the recesses 4405B, 4405E, 4405F, the insertion holes 4405C, 4405D, the connection 4405G, and the frame-shaped member 4405 described in the first embodiment. It has an opening 5405A (including a slope 5405A1), recesses 5405B, 5405E, 5405F, insertion holes 5405C, 5405D, a connection 5405G, and a hook 5405H, which are substantially the same as the hook 4405H.
Among these, two insertion holes 5405 </ b> C and 5405 </ b> D are formed corresponding to two cylindrical portions of the frame-like member 5406 described later. That is, one insertion hole 4405D of the two insertion holes 4405D described in the first embodiment is omitted.
In addition, the recess 5405F is formed on the periphery of the upper and lower end portions of the opening 5405A so as to be connected to the two insertion holes 5405C and 5405D. Here, of these concave portions 5405F, the upper side wall of the concave portion 5405F located on the upper side is formed in a curved shape so as to be closer to the opening portion 5405A as the distance from the insertion hole 5405D increases.

以上のような構成では、枠状部材5405は、前記第1実施形態で説明した枠状部材4405と同様に、凹部5405Bにて弾性部材5407の後述する第2弾性部材および中間枠体5409を介して液晶パネル441の光束入射側端面を支持することで、開口部5405Aの光束射出側が閉塞される。また、枠状部材5405に対して偏光板固定部材4408Aを固定することで、入射側偏光板442が弾性部材5407の後述する第1弾性部材を介して枠状部材5405に押圧され、枠状部材5405の開口部5405Aの光束入射側が封止される。そして、枠状部材5405の開口部5405Aの光束入射側および光束射出側が閉塞されることで、枠状部材5405内部(開口部5405A内、および、凹部5405Fと入射側偏光板442との空隙)に冷却流体を封入可能とする冷却室R3(図22または図23参照)が形成される。   In the configuration as described above, the frame-like member 5405 has a second elastic member (to be described later) of the elastic member 5407 and an intermediate frame 5409 at the concave portion 5405B, similarly to the frame-like member 4405 described in the first embodiment. By supporting the light beam incident side end surface of the liquid crystal panel 441, the light beam emission side of the opening 5405A is closed. Further, by fixing the polarizing plate fixing member 4408A to the frame-shaped member 5405, the incident-side polarizing plate 442 is pressed by the frame-shaped member 5405 via a first elastic member described later of the elastic member 5407, and the frame-shaped member. The light beam incident side of the opening 5405A of 5405 is sealed. Then, the light incident side and the light exit side of the opening 5405A of the frame-shaped member 5405 are closed, so that the frame-shaped member 5405 is filled inside (the opening 5405A and the gap between the recess 5405F and the incident-side polarizing plate 442). A cooling chamber R3 (see FIG. 22 or FIG. 23) capable of enclosing the cooling fluid is formed.

図20は、枠状部材5406の概略構成を示す図である。具体的に、図20(A)は、枠状部材5406を光束射出側から見た斜視図である。また、図20(B)は、枠状部材5406を光束入射側から見た斜視図である。
枠状部材5406は、上述した枠状部材5405との間に、弾性部材5407および中間枠体5409を介して液晶パネル441を挟持するとともに、枠状部材5405と対向する面と反対の面側にて弾性部材5407を介して射出側偏光板443を支持するものであり、その具体的な構造は、前記第1実施形態で説明した枠状部材4406と略同様である。すなわち、この枠状部材5406は、前記第1実施形態で説明した枠状部材4406の開口部4406A(斜面4406A1を含む)、凹部4406B,4406E,4406G、筒状部4406C,4406D(孔4406C1,4406D1を含む)、挿通部4406J、接続部4406K、およびフック4406Lと略同様の、開口部5406A(斜面5406A1を含む)、凹部5406B,5406E,5406G、筒状部5406C,5406D(孔5406C1,5406D1を含む)、挿通部5406J、接続部5406K、およびフック5406Lを有している。
FIG. 20 is a diagram showing a schematic configuration of the frame-like member 5406. As shown in FIG. Specifically, FIG. 20A is a perspective view of the frame-shaped member 5406 as viewed from the light beam emission side. FIG. 20B is a perspective view of the frame-shaped member 5406 as viewed from the light beam incident side.
The frame-shaped member 5406 sandwiches the liquid crystal panel 441 between the frame-shaped member 5405 and the above-described frame-shaped member 5405 via the elastic member 5407 and the intermediate frame 5409, and on the surface opposite to the surface facing the frame-shaped member 5405. The emission-side polarizing plate 443 is supported via the elastic member 5407, and the specific structure thereof is substantially the same as the frame-like member 4406 described in the first embodiment. That is, the frame-shaped member 5406 includes the opening 4406A (including the inclined surface 4406A1), the recesses 4406B, 4406E, 4406G, and the cylindrical portions 4406C, 4406D (holes 4406C1, 4406D1) of the frame-shaped member 4406 described in the first embodiment. ), An opening 5406A (including a slope 5406A1), recesses 5406B, 5406E and 5406G, and cylindrical portions 5406C and 5406D (including holes 5406C1 and 5406D1), which are substantially similar to the insertion portion 4406J, the connection portion 4406K, and the hook 4406L. ), An insertion portion 5406J, a connection portion 5406K, and a hook 5406L.

このうち、筒状部5406C,5406Dは、図20に示すように、凹部5406Bにおける上方側角隅部分の一方(光束射出側から見て左側の角隅部分)、および下方側の左右方向略中央部分にそれぞれ形成されている。すなわち、枠状部材5406は、前記第1実施形態で説明した枠状部材4406における2つの筒状部4406Dのうちの一方が省略された構成となる。そして、枠状部材5406と枠状部材5405とを組み合わせた状態では、枠状部材5406における2つの筒状部5406C,5406Dが枠状部材5405における2つの挿通孔5405C,5405Dにそれぞれ挿通され、枠状部材5406の光束射出側および枠状部材5405の光束入射側を筒状部5406C,5406Dの孔5406C1,5406D1、および2つの挿通孔5405C,5405Dを介して冷却流体が流通可能となる。
すなわち、枠状部材5405における2つの挿通孔5405C,5405D、および枠状部材5406における2つの筒状部5406C,5406Dが、本発明に係る連通口に相当する。また、挿通孔5405Cおよび筒状部5406Cが、本発明に係る第1連通口に相当し、挿通孔5405Dおよび筒状部5406Dが、本発明に係る第2連通口に相当する。
なお、筒状部5406Cは、前記第1実施形態で説明した筒状部4406Cに対応する形状を有しているが、該筒状部5406Cには前記筒状部4406Cにおける突出部4406C2が形成されていないものとする。
Among these, as shown in FIG. 20, the cylindrical portions 5406C and 5406D are formed at one of the upper corner portions (the left corner portion as viewed from the light beam exit side) of the recess 5406B and the substantially horizontal center on the lower side. Each part is formed. That is, the frame-shaped member 5406 has a configuration in which one of the two cylindrical portions 4406D in the frame-shaped member 4406 described in the first embodiment is omitted. In a state where the frame-shaped member 5406 and the frame-shaped member 5405 are combined, the two cylindrical portions 5406C and 5406D in the frame-shaped member 5406 are inserted into the two insertion holes 5405C and 5405D in the frame-shaped member 5405, respectively. The cooling fluid can circulate through the holes 5406C1 and 5406D1 of the cylindrical portions 5406C and 5406D and the two insertion holes 5405C and 5405D on the light emission side of the cylindrical member 5406 and the light incident side of the frame-like member 5405.
That is, the two insertion holes 5405C and 5405D in the frame-shaped member 5405 and the two cylindrical portions 5406C and 5406D in the frame-shaped member 5406 correspond to the communication port according to the present invention. Further, the insertion hole 5405C and the cylindrical portion 5406C correspond to the first communication port according to the present invention, and the insertion hole 5405D and the cylindrical portion 5406D correspond to the second communication port according to the present invention.
The cylindrical portion 5406C has a shape corresponding to the cylindrical portion 4406C described in the first embodiment, but the protruding portion 4406C2 of the cylindrical portion 4406C is formed in the cylindrical portion 5406C. Shall not.

また、この枠状部材5406において、その上方側端部には、図20に示すように、光束射出側から見て左右方向略中央部分より右側にずれた位置に、上方側に位置する凹部5406Eの上方側の側壁に貫通する流入口5406Hが形成されている。この流入口5406Hは、前記第1実施形態の流入口4406Hと同様の形状を有し、枠状部材5406の外側に突出した端部には、中継タンク5404の冷却流体流出部5404Bに接続された流体循環部材448の他端が接続され、該流体循環部材448を介して中継タンク5404から流出した冷却流体が内部(後述する冷却室R4)に流入する。   Further, as shown in FIG. 20, in the frame-like member 5406, at the upper side end portion, a concave portion 5406E located on the upper side at a position shifted to the right side from the substantially central portion in the left-right direction when viewed from the light beam exit side. An inflow port 5406H penetrating the side wall on the upper side is formed. This inflow port 5406H has the same shape as the inflow port 4406H of the first embodiment, and is connected to the cooling fluid outflow portion 5404B of the relay tank 5404 at the end protruding to the outside of the frame-shaped member 5406. The other end of the fluid circulation member 448 is connected, and the cooling fluid that has flowed out of the relay tank 5404 via the fluid circulation member 448 flows into the interior (a cooling chamber R4 described later).

さらに、この枠状部材5406において、その上方側端部には、図20に示すように、光束射出側から見て左右方向略中央部分より左側にずれた位置に、上方側に位置する凹部5406Eの上方側の側壁に貫通する流出口5406Iが形成されている。そして、流入口5406Hおよび流出口5406Iは、左右方向略中央部分を中心として略対称配置されている。この流出口5406Iは、前記第1実施形態の流出口4406Iと同様の形状を有し、枠状部材5406の外側に突出した端部には、具体的な図示は省略するが、ラジエータ447における管状部材4472(図12)の上方側の一端に接続された流体循環部材の他端が接続され、該流体循環部材を介して内部(後述する領域R4B)の冷却流体がラジエータ447へと送出される。
なお、前記流体循環部材は、具体的な図示は省略するが、他端が3つに分岐された管状部材で構成され、各他端が3つの光変調素子保持体5402の各流出口5406Iにそれぞれ接続し、3つの光変調素子保持体5402から流出した冷却流体を一括してラジエータ447へと送出するものとする。
Further, in this frame-like member 5406, at the upper end thereof, as shown in FIG. 20, a concave portion 5406E located on the upper side is located at a position shifted to the left side from the substantially central portion in the left-right direction when viewed from the light beam exit side. An outlet 5406I penetrating the side wall on the upper side is formed. The inflow port 5406H and the outflow port 5406I are disposed substantially symmetrically about the substantially central portion in the left-right direction. The outlet 5406I has the same shape as the outlet 4406I of the first embodiment, and a tubular portion of the radiator 447 is not shown at the end protruding outside the frame-like member 5406, although the illustration is omitted. The other end of the fluid circulation member connected to one upper end of the member 4472 (FIG. 12) is connected, and the cooling fluid inside (region R4B described later) is sent to the radiator 447 via the fluid circulation member. .
Although not specifically shown, the fluid circulation member is composed of a tubular member whose other end is branched into three, and each other end is connected to each outlet 5406I of three light modulation element holding bodies 5402. It is assumed that the cooling fluids that have been connected to each other and have flowed out from the three light modulation element holders 5402 are collectively delivered to the radiator 447.

さらにまた、この枠状部材5406において、上方側に位置する凹部5406Eには、図20(A)に示すように、流出口5406Iが該凹部5406Eの側壁に連通する部位と孔5406D1とを囲う隔壁5406Nが立設されている。
以上のような構成では、前記第1実施形態で説明した光変調素子保持体4402と同様に、枠状部材5405,5406の各接続部5405G,5406Kにねじ5406M(図18)を螺合することで、液晶パネル441が中間枠体5409および弾性部材5407の後述する第2弾性部材を介して枠状部材5405に押圧されるとともに、中間枠体5409および弾性部材5407の後述する第3弾性部材を介して枠状部材5406に押圧され、枠状部材5405の開口部5405Aの光束射出側、および枠状部材5406の開口部5406Aの光束入射側が封止される。また、枠状部材5406に対して偏光板固定部材4408Bを固定することで、射出側偏光板443が弾性部材5407の後述する第4弾性部材を介して枠状部材5406に押圧され、枠状部材5406の開口部5406Aの光束射出側が封止される。そして、枠状部材5406の開口部5406Aの光束入射側および光束射出側が閉塞されると、枠状部材5406内部(開口部5406A内、および、凹部5406Eと射出側偏光板443との空隙)に冷却流体を封入可能とする冷却室R4(図22または図23参照)が形成される。この際、冷却室R4は、隔壁5406Nにより、流入口5406Hおよび筒状部5406Cの孔5406C1が連通する領域R4A(図22または図23参照)と、流出口5406Iおよび筒状部5406Dの孔5406D1が連通する領域R4B(図22または図23参照)とに区画される。
Furthermore, in this frame-like member 5406, a recess 5406E located on the upper side has a partition wall that surrounds a portion where the outlet 5406I communicates with the side wall of the recess 5406E and the hole 5406D1, as shown in FIG. 5406N is erected.
In the configuration as described above, the screws 5406M (FIG. 18) are screwed into the connection portions 5405G and 5406K of the frame-like members 5405 and 5406, similarly to the light modulation element holding body 4402 described in the first embodiment. Thus, the liquid crystal panel 441 is pressed against the frame-shaped member 5405 via a second elastic member, which will be described later, of the intermediate frame 5409 and the elastic member 5407, and a third elastic member, which will be described later, of the intermediate frame 5409 and the elastic member 5407. The frame-shaped member 5406 is pressed to seal the light beam exit side of the opening 5405A of the frame-shaped member 5405 and the light beam incident side of the opening 5406A of the frame-shaped member 5406. Further, by fixing the polarizing plate fixing member 4408B to the frame-shaped member 5406, the emission-side polarizing plate 443 is pressed by the frame-shaped member 5406 via a fourth elastic member described later of the elastic member 5407, and the frame-shaped member. The light exit side of the opening 5406A of 5406 is sealed. When the light beam incident side and the light beam emission side of the opening 5406A of the frame-shaped member 5406 are closed, the cooling is performed inside the frame-shaped member 5406 (in the opening 5406A and the gap between the concave portion 5406E and the emission-side polarizing plate 443). A cooling chamber R4 (see FIG. 22 or FIG. 23) capable of enclosing a fluid is formed. At this time, the cooling chamber R4 has a region R4A (see FIG. 22 or FIG. 23) in which the inlet 5406H and the hole 5406C1 of the cylindrical portion 5406C communicate with each other by the partition wall 5406N, and an outlet 5406I and a hole 5406D1 of the cylindrical portion 5406D. It is partitioned into a communication region R4B (see FIG. 22 or FIG. 23).

4つの弾性部材5407は、前記第1実施形態で説明した第1弾性部材4407A、第3弾性部材4407C、および第4弾性部材4407Dの他、第2弾性部材5407Bを備える。これら弾性部材5407の材料は、前記第1実施形態で説明した弾性部材4407と同様に、シリコンゴム、水分透過量の少ないブチルゴムまたはフッ素ゴム等を採用できる。
第2弾性部材5407Bは、前記第1実施形態で説明した第2弾性部材4407Bと略同様の形状を有し、異なる点は、枠状部材5406の2つの筒状部5406C,5406Dに対応して2つの挿通孔5407B1がそれぞれ形成されている点のみである。
中間枠体5409も同様に、前記第1実施形態で説明した中間枠体4409と略同様の形状を有し、異なる点は、枠状部材5406の2つの筒状部5406C,5406Dに対応して2つの挿通孔5409Dがそれぞれ形成されている点のみである。すなわち、この中間枠体5409には、図18に示すように、前記中間枠体4409の開口部4409Aおよび段差部4409B(隙間4409Cを含む)と同様の、開口部5409Aおよび段差部5409B(隙間5409C(図22または図23参照)を含む)が形成されている。
The four elastic members 5407 include a second elastic member 5407B in addition to the first elastic member 4407A, the third elastic member 4407C, and the fourth elastic member 4407D described in the first embodiment. As the material of these elastic members 5407, as with the elastic member 4407 described in the first embodiment, silicon rubber, butyl rubber having a low moisture permeation amount, fluorine rubber, or the like can be employed.
The second elastic member 5407B has substantially the same shape as the second elastic member 4407B described in the first embodiment, and the difference is that it corresponds to the two cylindrical portions 5406C and 5406D of the frame-like member 5406. It is only a point where two insertion holes 5407B1 are formed.
Similarly, the intermediate frame 5409 has substantially the same shape as the intermediate frame 4409 described in the first embodiment, and the difference is that it corresponds to the two cylindrical portions 5406C and 5406D of the frame-shaped member 5406. The only difference is that two insertion holes 5409D are formed. That is, as shown in FIG. 18, the intermediate frame 5409 includes an opening 5409A and a step 5409B (gap 5409C) similar to the opening 4409A and the step 4409B (including the gap 4409C) of the intermediate frame 4409. (See FIG. 22 or FIG. 23).

以上説明したように、冷却流体は、複数の流体循環部材448を介して、メインタンク445(図4)〜流体圧送部446(図3)〜中継タンク5404(図16)〜各光変調素子保持体5402(図16または図17)〜ラジエータ447(図12)〜メインタンク445(図4)という流路を循環する。   As described above, the cooling fluid passes through the plurality of fluid circulation members 448, and the main tank 445 (FIG. 4), the fluid pumping unit 446 (FIG. 3), the relay tank 5404 (FIG. 16), and each light modulation element holding. It circulates through the flow path of the body 5402 (FIG. 16 or FIG. 17) to the radiator 447 (FIG. 12) to the main tank 445 (FIG. 4).

次に、液晶パネル441、入射側偏光板442、および射出側偏光板443の冷却構造を説明する。
図21ないし図23は、液晶パネル441、入射側偏光板442、および射出側偏光板443の冷却構造を説明するための図である。具体的に、図21は、光変調素子保持体5402を光束射出側から見た平面図である。図22は、図21におけるF−F線の断面図である。図23は、図22におけるG−G線の断面図である。
流体圧送部446が駆動することにより、流体循環部材448を介して、メインタンク445内の冷却流体が流体圧送部446内に送入されるとともに、流体圧送部446から中継タンク5404に送出される。
Next, a cooling structure of the liquid crystal panel 441, the incident side polarizing plate 442, and the emission side polarizing plate 443 will be described.
21 to 23 are diagrams for explaining a cooling structure of the liquid crystal panel 441, the incident side polarizing plate 442, and the emission side polarizing plate 443. FIG. Specifically, FIG. 21 is a plan view of the light modulation element holder 5402 as viewed from the light beam exit side. 22 is a cross-sectional view taken along line FF in FIG. 23 is a cross-sectional view taken along line GG in FIG.
When the fluid pumping unit 446 is driven, the cooling fluid in the main tank 445 is fed into the fluid pumping unit 446 via the fluid circulation member 448 and is sent from the fluid pumping unit 446 to the relay tank 5404. .

そして、中継タンク5404内に送入された冷却流体は、中継タンク5404の各冷却流体流出部5404Bから流出し、流体循環部材448を介して、図21または図22に示すように、各光変調素子保持体5402の各流入口5406Hから各光変調素子保持体5402の各冷却室R4の領域R4A(図22または図23)へと流入する。
ここで、光源装置411から射出された光束により、液晶パネル441の駆動基板441C、および射出側偏光板443に生じた熱は、冷却室R4の領域R4A内の冷却流体に伝達される。
冷却室R4の領域R4A内の冷却流体に伝達された熱は、図22に示すように、冷却流体の流れにしたがって、図22中、下方に向けて移動する。また、下方に向けて移動した熱は、冷却流体の流れにしたがって、枠状部材5406における下方側の凹部5406E(図20(A))の下方側の側壁により、左右方向略中央部分へと案内される。そして、左右方向略中央部分へと案内された熱は、図22に示すように、冷却流体の流れにしたがって、筒状部5406Cおよびこの筒状部5406Cと接続する挿通孔5405Cを介して、冷却室R3内に移動する。
Then, the cooling fluid sent into the relay tank 5404 flows out from each cooling fluid outflow portion 5404B of the relay tank 5404, and each light modulation is performed via the fluid circulation member 448 as shown in FIG. 21 or FIG. The light flows into each region R4A (FIG. 22 or FIG. 23) of each cooling chamber R4 of each light modulation element holding body 5402 from each inflow port 5406H of the element holding body 5402.
Here, the heat generated in the drive substrate 441C of the liquid crystal panel 441 and the emission-side polarizing plate 443 by the light emitted from the light source device 411 is transmitted to the cooling fluid in the region R4A of the cooling chamber R4.
The heat transferred to the cooling fluid in the region R4A of the cooling chamber R4 moves downward in FIG. 22 according to the flow of the cooling fluid, as shown in FIG. Further, the heat moved downward is guided to a substantially central portion in the left-right direction by the lower side wall of the lower recess 5406E (FIG. 20A) in the frame-like member 5406 according to the flow of the cooling fluid. Is done. Then, the heat guided to the substantially central portion in the left-right direction is cooled through the cylindrical portion 5406C and the insertion hole 5405C connected to the cylindrical portion 5406C in accordance with the flow of the cooling fluid, as shown in FIG. Move into chamber R3.

ここでまた、光源装置411から射出された光束により、液晶パネル441の対向基板441D、および入射側偏光板442に生じた熱は、冷却室R3内の冷却流体に伝達される。
冷却室R3内の冷却流体に伝達された熱は、図22に示すように、冷却室R4内から移動した熱とともに、冷却流体の流れにしたがって、図22中、上方に向けて移動する。また、上方に向けて移動した熱は、冷却流体の流れにしたがって、枠状部材5405における上方側の凹部5405F(図19(B))の側壁により、上方側角隅部分の一方(光束入射側から見て右側の角隅部分)へと案内される。そして、上方側角隅部分の一方へと案内された熱は、図23に示すように、冷却流体の流れにしたがって、挿通孔5405Dおよびこの挿通孔5405Dと接続する筒状部5406Dを介して冷却室R4の領域R4B内に移動し、領域R4B内から流出口5406Iを介して外部へと移動する。
Here, the heat generated in the counter substrate 441D of the liquid crystal panel 441 and the incident-side polarizing plate 442 by the light beam emitted from the light source device 411 is transmitted to the cooling fluid in the cooling chamber R3.
As shown in FIG. 22, the heat transferred to the cooling fluid in the cooling chamber R3 moves upward in FIG. 22 along with the flow of the cooling fluid together with the heat moved from inside the cooling chamber R4. Further, the heat that has moved upward is caused by the side wall of the upper concave portion 5405F (FIG. 19B) in the frame-shaped member 5405 according to the flow of the cooling fluid to one of the upper corner portions (on the light incident side). To the right corner). As shown in FIG. 23, the heat guided to one of the upper corner portions is cooled through the insertion hole 5405D and the cylindrical portion 5406D connected to the insertion hole 5405D according to the flow of the cooling fluid. It moves into area | region R4B of chamber R4, and moves outside from the inside of area | region R4B through the outflow port 5406I.

流出口5406Iを介して光変調素子保持体5402の外部へと移動した熱は、冷却流体の流れにしたがって、図示しない流体循環部材を介して各光変調素子保持体5402〜ラジエータ447へと移動し、前記第1実施形態と同様に、ラジエータ447にて放熱される。
そして、ラジエータ447にて冷却された冷却流体は、ラジエータ447〜メインタンク445〜流体圧送部446〜中継タンク5404へと移動し、再度、冷却室R4の領域R4Aへと移動する。
また、冷却ユニット3のシロッコファン31により、前記第1実施形態と同様に、冷却空気が光変調素子保持体5402の外面、および光変調素子保持体5402と支持部材4403との間に流入し、入射側偏光板442の光束入射側端面および射出側偏光板443の光束射出側端面を冷却する。
The heat transferred to the outside of the light modulation element holding body 5402 via the outlet 5406I moves to each light modulation element holding body 5402 to the radiator 447 via a fluid circulation member (not shown) according to the flow of the cooling fluid. As in the first embodiment, heat is radiated by the radiator 447.
Then, the cooling fluid cooled by the radiator 447 moves from the radiator 447 to the main tank 445 to the fluid pressure sending unit 446 to the relay tank 5404, and again moves to the region R4A of the cooling chamber R4.
Further, the sirocco fan 31 of the cooling unit 3 causes cooling air to flow between the outer surface of the light modulation element holding body 5402 and between the light modulation element holding body 5402 and the support member 4403, as in the first embodiment. The light incident side end face of the incident side polarizing plate 442 and the light emitting side end face of the emission side polarizing plate 443 are cooled.

上述した第2実施形態においては、前記第1実施形態と比較して、流入口5406Hおよび流出口5406Iが枠状部材5406における上端部にそれぞれ形成されているので、流入口5406Hおよび流出口5406Iへの流体循環部材448の接続作業を上方向からの一方向に集約でき、該接続作業をさらに容易に実施できる。
また、筒状部5406Cおよび挿通孔5405Cは、流入口5406Hを介して冷却室R4の領域R4A内に流入し、該領域R4A内において上方側から下方側へと流通した冷却流体を冷却室R3内に流入させ、筒状部5406Dおよび挿通孔5405Cは、冷却室R3内において下方側から上方側へと流通した冷却流体を冷却室R4の領域R4B内に流入させて流出口5406Iを介して外部に流出させるので、流入口5406Hおよび流出口5406Iが枠状部材5406における上端部にそれぞれ形成されていても、各冷却室R3,R4の双方に確実に冷却流体を流通させることができる。
ここで、各冷却室R3,R4を連通接続する連通口を、2つの筒状部5406C,5406Dおよび2つの挿通孔5405C,5405Dで構成することで、前記第1実施形態で説明した連通口を3つの筒状部4406C,4406Dおよび3つの挿通孔4405C,4405Dとする構成と比較して、一対の枠状部材5405,5406の加工性を向上させ、容易に製造できるとともに、製造コストの低減を図れる。また、第2弾性部材5407Bおよび中間枠体5409も同様である。
In the second embodiment described above, the inflow port 5406H and the outflow port 5406I are formed at the upper end portions of the frame-shaped member 5406, respectively, as compared with the first embodiment, and therefore the inflow port 5406H and the outflow port 5406I. The connection work of the fluid circulation member 448 can be concentrated in one direction from the upper direction, and the connection work can be more easily performed.
Further, the cylindrical portion 5406C and the insertion hole 5405C flow into the region R4A of the cooling chamber R4 through the inflow port 5406H, and the cooling fluid that flows from the upper side to the lower side in the region R4A flows into the cooling chamber R3. The cylindrical portion 5406D and the insertion hole 5405C allow the cooling fluid flowing from the lower side to the upper side in the cooling chamber R3 to flow into the region R4B of the cooling chamber R4 and to the outside through the outlet 5406I. Since it flows out, even if the inflow port 5406H and the outflow port 5406I are each formed in the upper end part in the frame-shaped member 5406, a cooling fluid can be reliably distribute | circulated through both cooling chamber R3, R4.
Here, the communication port connecting the cooling chambers R3 and R4 is constituted by two cylindrical portions 5406C and 5406D and two insertion holes 5405C and 5405D, so that the communication port described in the first embodiment can be obtained. Compared with the configuration having three cylindrical portions 4406C and 4406D and three insertion holes 4405C and 4405D, the workability of the pair of frame-shaped members 5405 and 5406 can be improved and easily manufactured, and the manufacturing cost can be reduced. I can plan. The same applies to the second elastic member 5407B and the intermediate frame 5409.

さらに、枠状部材5406において、上方側に位置する凹部5406Eには隔壁5406Nが立設されているので、該隔壁5406Nにより、冷却室R4内部を、領域R4Aおよび領域R4Bに区画することができる。したがって、筒状部5406Dおよび挿通孔5405Dを介して冷却室R4に流入した冷却流体を、領域R4B内部に閉じ込めて流出口5406Iを介して外部へと流出させることができる。このため、冷却室R3内で液晶パネル441にて温められた冷却流体が冷却室R4内に流入した際、冷却室R4の領域R4A内に流通することを回避でき、液晶パネル441と冷却室R3,R4内の冷却流体との温度差が小さくなることがなく、冷却流体により液晶パネル441をさらに効率的に冷却できる。   Further, in the frame-like member 5406, since the partition wall 5406N is erected in the concave portion 5406E located on the upper side, the inside of the cooling chamber R4 can be partitioned into the region R4A and the region R4B by the partition wall 5406N. Therefore, the cooling fluid that has flowed into the cooling chamber R4 via the cylindrical portion 5406D and the insertion hole 5405D can be confined within the region R4B and flowed out to the outside via the outlet 5406I. For this reason, when the cooling fluid heated by the liquid crystal panel 441 in the cooling chamber R3 flows into the cooling chamber R4, it can be prevented from flowing into the region R4A of the cooling chamber R4, and the liquid crystal panel 441 and the cooling chamber R3 can be avoided. The temperature difference from the cooling fluid in R4 is not reduced, and the liquid crystal panel 441 can be cooled more efficiently by the cooling fluid.

[第3実施形態]
次に、本発明の第3実施形態を図面に基づいて説明する。
以下の説明では、前記第1実施形態および前記第2実施形態と同様の構造および同一部材には同一符号を付して、その詳細な説明は省略または簡略化する。
前記第1実施形態では、光学装置本体440において、光変調素子保持体4402の流入口4406Hおよび流出口4406Iは、枠状部材4406の上下端部の対向位置にそれぞれ形成されている。
これに対して第3実施形態では、光学装置本体640において、光変調素子保持体6402の流入口6406Hおよび流出口6405Iは、枠状部材6406の上端部、および枠状部材6405の上端部にそれぞれ形成されている。光学装置本体640を除くその他の構成は、前記第1実施形態と同様のものとする。
[Third embodiment]
Next, 3rd Embodiment of this invention is described based on drawing.
In the following description, the same structures and the same members as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted or simplified.
In the first embodiment, in the optical device main body 440, the inlet 4406 </ b> H and the outlet 4406 </ b> I of the light modulation element holding body 4402 are formed at positions opposed to the upper and lower ends of the frame-shaped member 4406, respectively.
On the other hand, in the third embodiment, in the optical device main body 640, the inlet 6406H and the outlet 6405I of the light modulation element holding body 6402 are provided at the upper end of the frame member 6406 and the upper end of the frame member 6405, respectively. Is formed. The rest of the configuration excluding the optical device main body 640 is the same as that of the first embodiment.

具体的に、図24は、第3実施形態における光学装置本体640の概略構成を示す斜視図である。
光学装置本体640は、前記第1実施形態で説明した液晶パネル441、入射側偏光板442、射出側偏光板443、クロスダイクロイックプリズム444、および支持部材4403、前記第2実施形態で説明した中継タンク5404およびプリズム固定板5401の他、3つの光変調素子保持体6402を備える。
Specifically, FIG. 24 is a perspective view illustrating a schematic configuration of the optical device main body 640 according to the third embodiment.
The optical device main body 640 includes the liquid crystal panel 441, the incident side polarizing plate 442, the emission side polarizing plate 443, the cross dichroic prism 444, and the support member 4403 described in the first embodiment, and the relay tank described in the second embodiment. In addition to 5404 and prism fixing plate 5401, three light modulation element holding bodies 6402 are provided.

図25は、光変調素子保持体6402の概略構成を示す分解斜視図である。
3つの光変調素子保持体6402は、前記第1実施形態で説明した光変調素子保持体4402と略同様に、3つの液晶パネル441、3つの入射側偏光板442、および3つの射出側偏光板443をそれぞれ保持するとともに、内部に冷却流体が流入および流出し、該冷却流体により3つの液晶パネル441、3つの入射側偏光板442、および3つの射出側偏光板443をそれぞれ冷却する。なお、各光変調素子保持体6402は、同様の構成であり、以下では1つの光変調素子保持体6402のみを説明する。この光変調素子保持体6402は、図25に示すように、前記第1実施形態で説明した一対の偏光板固定部材4408A,4408Bの他、一対の枠状部材6405,6406と、4つの弾性部材6407と、中間枠体6409とを備える。
FIG. 25 is an exploded perspective view showing a schematic configuration of the light modulation element holding body 6402.
The three light modulation element holders 6402 are substantially the same as the light modulation element holder 4402 described in the first embodiment, with three liquid crystal panels 441, three incident side polarizing plates 442, and three emission side polarizing plates. Each of the liquid crystal panels 441, the three incident side polarizing plates 442, and the three outgoing side polarizing plates 443 is cooled by the cooling fluid. Each light modulation element holding body 6402 has the same configuration, and only one light modulation element holding body 6402 will be described below. As shown in FIG. 25, this light modulation element holding body 6402 includes a pair of polarizing plate fixing members 4408A and 4408B described in the first embodiment, a pair of frame-like members 6405 and 6406, and four elastic members. 6407 and an intermediate frame 6409 are provided.

図26は、枠状部材6405の概略構成を示す図である。具体的に、図26(A)は、枠状部材6405を光束射出側から見た斜視図である。また、図26(B)は、枠状部材6405を光束入射側から見た斜視図である。
枠状部材6405は、枠状部材6406に対して光束入射側に配置され、液晶パネル441の光束入射側を支持するとともに、入射側偏光板442の光束射出側を支持するものであり、その具体的な構造は、前記第1実施形態で説明した枠状部材4405と略同様である。すなわち、この枠状部材6405は、前記第1実施形態で説明した枠状部材4405の開口部4405A(斜面4405A1を含む)、凹部4405B、4405E,4405F、挿通孔4405C、接続部4405G、およびフック4405Hと略同様の、開口部6405A(斜面6405A1を含む)、凹部6405B,6405E,6405F、挿通孔6405C、接続部6405G、およびフック6405Hを有している。
このうち、挿通孔6405Cは、枠状部材6406の後述する1つの筒状部に対応して1つのみ形成されている。すなわち、前記第1実施形態で説明した2つの挿通孔4405Dが省略されている。
また、上方側に位置する凹部6405Fは、左右方向略中央部分が光束射出側に向けて窪み凹となる曲面状に形成されている。また、凹部6405Fの上方側の側壁は、左右方向略中央部分が上方に向けて窪み凹となる曲面状に形成されている。
FIG. 26 is a diagram illustrating a schematic configuration of the frame-shaped member 6405. Specifically, FIG. 26A is a perspective view of the frame-shaped member 6405 as seen from the light emission side. FIG. 26B is a perspective view of the frame member 6405 as viewed from the light beam incident side.
The frame-shaped member 6405 is disposed on the light beam incident side with respect to the frame-shaped member 6406, supports the light beam incident side of the liquid crystal panel 441, and supports the light beam emission side of the incident-side polarizing plate 442. The general structure is substantially the same as the frame-like member 4405 described in the first embodiment. That is, the frame-shaped member 6405 includes the opening 4405A (including the inclined surface 4405A1), the recesses 4405B, 4405E, and 4405F, the insertion hole 4405C, the connection portion 4405G, and the hook 4405H of the frame-shaped member 4405 described in the first embodiment. And having an opening 6405A (including a slope 6405A1), recesses 6405B, 6405E, 6405F, an insertion hole 6405C, a connection 6405G, and a hook 6405H.
Among these, only one insertion hole 6405 </ b> C is formed corresponding to one cylindrical portion described later of the frame-shaped member 6406. That is, the two insertion holes 4405D described in the first embodiment are omitted.
Further, the concave portion 6405F located on the upper side is formed in a curved surface in which a substantially central portion in the left-right direction is recessed toward the light beam exit side. Further, the upper side wall of the recess 6405F is formed in a curved shape in which a substantially central portion in the left-right direction is recessed upward.

また、この枠状部材6405において、その上方側端部略中央部分には、図26に示すように、上方側に位置する凹部6405Fの上方側の側壁に貫通する流出口6405Iが形成されている。この流出口6405Iは、前記第1実施形態の流出口4406Iと同様の形状を有する。そして、この流出口6405Iは、前記第2実施形態の流出口5406Iと同様に、枠状部材6405の外側に突出した端部には、具体的な図示は省略するが、ラジエータ447における管状部材4472(図12)の上方側の一端に接続された流体循環部材の他端が接続され、該流体循環部材を介して内部(後述する冷却室R5)の冷却流体がラジエータ447へと送出される。
なお、前記流体循環部材は、前記第2実施形態で説明した流体循環部材と同様に、他端が3つに分岐された管状部材で構成され、各他端が3つの光変調素子保持体6402の各流出口6405Iにそれぞれ接続し、3つの光変調素子保持体6402から流出した冷却流体を一括してラジエータ447へと送出するものとする。
In addition, in the frame-like member 6405, an outlet 6405I penetrating through the upper side wall of the concave portion 6405F located on the upper side is formed at the substantially central portion of the upper end portion thereof as shown in FIG. . The outlet 6405I has the same shape as the outlet 4406I of the first embodiment. In addition, the outlet 6405I is similar to the outlet 5406I of the second embodiment, but the tubular member 4472 in the radiator 447 is not illustrated at the end protruding outside the frame-shaped member 6405. The other end of the fluid circulation member connected to one upper end of FIG. 12 is connected, and the cooling fluid inside (cooling chamber R5 described later) is sent to the radiator 447 through the fluid circulation member.
The fluid circulation member is formed of a tubular member having the other end branched into three, similar to the fluid circulation member described in the second embodiment, and each other end has three light modulation element holders 6402. It is assumed that the cooling fluid flowing out from the three light modulation element holders 6402 is collectively sent to the radiator 447.

以上のような構成では、枠状部材6405は、前記第1実施形態で説明した枠状部材4405と同様に、凹部6405Bにて弾性部材6407の後述する第2弾性部材および中間枠体6409を介して液晶パネル441の光束入射側端面を支持することで、開口部6405Aの光束射出側が閉塞される。また、枠状部材6405に対して偏光板固定部材4408Aを固定することで、入射側偏光板442が弾性部材6407の後述する第1弾性部材を介して枠状部材6405に押圧され、枠状部材6405の開口部6405Aの光束入射側が封止される。そして、枠状部材6405の開口部6405Aの光束入射側および光束射出側が閉塞されることで、枠状部材6405内部(開口部6405A内、および、凹部6405Fと入射側偏光板442との空隙)に冷却流体を封入可能とする冷却室R5(図29参照)が形成される。   In the configuration as described above, the frame-shaped member 6405 is similar to the frame-shaped member 4405 described in the first embodiment via the second elastic member and the intermediate frame 6409 described later of the elastic member 6407 in the recess 6405B. By supporting the light beam incident side end surface of the liquid crystal panel 441, the light beam emission side of the opening 6405A is closed. Further, by fixing the polarizing plate fixing member 4408A to the frame-shaped member 6405, the incident-side polarizing plate 442 is pressed against the frame-shaped member 6405 via a first elastic member described later of the elastic member 6407, and the frame-shaped member. The light beam incident side of the opening 6405A of 6405 is sealed. Then, the light incident side and the light exit side of the opening 6405A of the frame-shaped member 6405 are closed, so that the frame-shaped member 6405 is filled inside (the opening 6405A and the gap between the concave portion 6405F and the incident-side polarizing plate 442). A cooling chamber R5 (see FIG. 29) capable of enclosing the cooling fluid is formed.

図27は、枠状部材6406の概略構成を示す図である。具体的に、図27(A)は、枠状部材6406を光束射出側から見た斜視図である。また、図27(B)は、枠状部材6406を光束入射側から見た斜視図である。
枠状部材6406は、上述した枠状部材6405との間に、弾性部材6407および中間枠体6409を介して液晶パネル441を挟持するとともに、枠状部材6405と対向する面と反対の面側にて弾性部材6407を介して射出側偏光板443を支持するものであり、その具体的な構造は、前記第1実施形態で説明した枠状部材4406と略同様である。すなわち、この枠状部材6406は、前記第1実施形態で説明した枠状部材4406の開口部4406A(斜面4406A1を含む)、凹部4406B,4406E,4406G、筒状部4406C(孔4406C1を含む)、挿通部4406J、接続部4406K、およびフック4406Lと同様の、開口部6406A(斜面6406A1を含む)、凹部6406B,6406E,6406G、筒状部6406C(孔6406C1を含む)、挿通部6406J、接続部6406K、およびフック6406Lを有している。
FIG. 27 is a diagram showing a schematic configuration of the frame-like member 6406. As shown in FIG. Specifically, FIG. 27A is a perspective view of the frame-shaped member 6406 as viewed from the light beam emission side. FIG. 27B is a perspective view of the frame-shaped member 6406 as viewed from the light beam incident side.
The frame-shaped member 6406 holds the liquid crystal panel 441 between the frame-shaped member 6405 and the above-described frame-shaped member 6405 via the elastic member 6407 and the intermediate frame 6409, and on the surface opposite to the surface facing the frame-shaped member 6405. The emission-side polarizing plate 443 is supported via the elastic member 6407, and the specific structure is substantially the same as the frame-shaped member 4406 described in the first embodiment. That is, the frame-shaped member 6406 includes the opening 4406A (including the slope 4406A1), the recesses 4406B, 4406E, and 4406G, the cylindrical portion 4406C (including the hole 4406C1) of the frame-shaped member 4406 described in the first embodiment, Opening 6406A (including slope 6406A1), recesses 6406B, 6406E, 6406G, cylindrical portion 6406C (including hole 6406C1), insertion portion 6406J, and connection portion 6406K, similar to insertion portion 4406J, connection portion 4406K, and hook 4406L. , And a hook 6406L.

このうち、筒状部6406Cは、図27に示すように、凹部6406Bにおける下方側の左右方向略中央部分に形成されている。すなわち、枠状部材6406は、前記第1実施形態で説明した枠状部材4406における2つの筒状部4406Dが省略された構成となる。そして、枠状部材6406と枠状部材6405とを組み合わせた状態では、枠状部材6406における筒状部6406Cが枠状部材6405における挿通孔6405Cに挿通され、枠状部材6406の光束射出側および枠状部材6405の光束入射側を筒状部6406Cの孔6406C1、および挿通孔6405Cを介して冷却流体が流通可能となる。
すなわち、枠状部材6405における挿通孔6405C、および枠状部材6406における筒状部6406Cが、本発明に係る連通口に相当する。
なお、筒状部6406Cは、前記第1実施形態で説明した筒状部4406Cに対応する形状を有しているが、該筒状部6406Cには前記筒状部4406Cにおける突出部4406C2が形成されていないものとする。
また、上方側に位置する凹部6406Eは、図27(A)に示すように、左右方向略中央部分が光束入射側に向けて窪み凹となるように曲面状に形成されている。また、凹部6406Eの上方側の側壁は、左右方向略中央部分が上方に向けて窪み凹となるように曲面状に形成されている。
Among these, as shown in FIG. 27, the cylindrical portion 6406C is formed in the substantially central portion of the lower side of the concave portion 6406B in the left-right direction. That is, the frame-shaped member 6406 has a configuration in which the two cylindrical portions 4406D in the frame-shaped member 4406 described in the first embodiment are omitted. In a state where the frame-shaped member 6406 and the frame-shaped member 6405 are combined, the cylindrical portion 6406C of the frame-shaped member 6406 is inserted into the insertion hole 6405C of the frame-shaped member 6405, and the light emission side of the frame-shaped member 6406 and the frame The cooling fluid can flow through the hole 6406C1 of the cylindrical portion 6406C and the insertion hole 6405C on the light beam incident side of the cylindrical member 6405.
That is, the insertion hole 6405C in the frame-shaped member 6405 and the cylindrical portion 6406C in the frame-shaped member 6406 correspond to the communication port according to the present invention.
The cylindrical portion 6406C has a shape corresponding to the cylindrical portion 4406C described in the first embodiment, but the protruding portion 4406C2 of the cylindrical portion 4406C is formed in the cylindrical portion 6406C. Shall not.
In addition, as shown in FIG. 27A, the concave portion 6406E positioned on the upper side is formed in a curved surface so that the substantially central portion in the left-right direction is recessed toward the light beam incident side. In addition, the upper side wall of the recess 6406E is formed in a curved shape so that the substantially central portion in the left-right direction is recessed upward.

また、この枠状部材6406において、その上方側端部略中央部分には、図27に示すように、上方側に位置する凹部6406Eの上方側の側壁に貫通する流入口6406Hが形成されている。この流入口6406Hは、前記第1実施形態の流入口4406Hと同様の形状を有する。そして、この流入口6406Hは、前記第2実施形態の流入口5406Hと同様に、枠状部材6406の外側に突出した端部には、中継タンク5404の冷却流体流出部5404Bに接続された流体循環部材448の他端が接続され、該流体循環部材448を介して中継タンク5404から流出した冷却流体が内部(後述する冷却室R6)に流入する。   In addition, in the frame-like member 6406, an inflow port 6406H penetrating the upper side wall of the concave portion 6406E located on the upper side is formed at the upper end substantially central portion thereof as shown in FIG. . The inlet 6406H has the same shape as the inlet 4406H of the first embodiment. The inflow port 6406H, like the inflow port 5406H of the second embodiment, is connected to the cooling fluid outflow portion 5404B of the relay tank 5404 at the end protruding to the outside of the frame-like member 6406. The other end of the member 448 is connected, and the cooling fluid that has flowed out of the relay tank 5404 via the fluid circulation member 448 flows into the inside (cooling chamber R6 described later).

以上のような構成では、前記第1実施形態で説明した光変調素子保持体4402と同様に、枠状部材6405,6406の各接続部6405G,6406Kにねじ6406M(図25)を螺合することで、液晶パネル441が中間枠体6409および弾性部材6407の後述する第2弾性部材を介して枠状部材6405に押圧されるとともに、中間枠体6409および弾性部材6407の後述する第3弾性部材を介して枠状部材6406に押圧され、枠状部材6405の開口部6405Aの光束射出側、および枠状部材6406の開口部6406Aの光束入射側が封止される。また、枠状部材6406に対して偏光板固定部材4408Bを固定することで、射出側偏光板443が弾性部材6407の後述する第4弾性部材を介して枠状部材6406に押圧され、枠状部材6406の開口部6406Aの光束射出側が封止される。そして、枠状部材6406の開口部6406Aの光束入射側および光束射出側が閉塞されることで、枠状部材6406内部(開口部6406A内、および、凹部6406Eと射出側偏光板443との空隙)に冷却流体を封入可能とする冷却室R6(図29参照)が形成される。   In the configuration as described above, the screws 6406M (FIG. 25) are screwed into the connection portions 6405G and 6406K of the frame-like members 6405 and 6406, similarly to the light modulation element holding body 4402 described in the first embodiment. Thus, the liquid crystal panel 441 is pressed against the frame-shaped member 6405 via a second elastic member described later of the intermediate frame 6409 and the elastic member 6407, and a third elastic member described later of the intermediate frame 6409 and the elastic member 6407 is provided. The frame-shaped member 6406 is pressed to seal the light beam exit side of the opening 6405A of the frame-shaped member 6405 and the light beam incident side of the opening 6406A of the frame-shaped member 6406. Further, by fixing the polarizing plate fixing member 4408B to the frame-shaped member 6406, the emission-side polarizing plate 443 is pressed against the frame-shaped member 6406 via a fourth elastic member described later of the elastic member 6407, and the frame-shaped member. The light exit side of the opening 6406A of 6406 is sealed. Then, the light entrance side and the light exit side of the opening 6406A of the frame-like member 6406 are closed, so that the inside of the frame-like member 6406 (in the opening 6406A and the gap between the recess 6406E and the exit-side polarizing plate 443). A cooling chamber R6 (see FIG. 29) capable of enclosing the cooling fluid is formed.

4つの弾性部材6407は、前記第1実施形態で説明した第1弾性部材4407A、第3弾性部材4407C、および第4弾性部材4407Dの他、第2弾性部材6407Bを備える。これら弾性部材6407の材料は、前記第1実施形態で説明した弾性部材4407と同様に、シリコンゴム、水分透過量の少ないブチルゴムまたはフッ素ゴム等を採用できる。
第2弾性部材6407Bは、前記第1実施形態で説明した第2弾性部材4407Bと略同様の形状を有し、異なる点は、枠状部材6406の筒状部6406Cに対応して1つのみの挿通孔6407B1が形成されている点のみである。
中間枠体6409も同様に、前記第1実施形態で説明した中間枠体4409と略同様の形状を有し、異なる点は、枠状部材6406の筒状部6406Cに対応して1つのみの挿通孔6409Dが形成されている点のみである。すなわち、この中間枠体6409には、図25に示すように、前記中間枠体4409の開口部4409Aおよび段差部4409B(隙間4409Cを含む)と同様の、開口部6409Aおよび段差部6409B(隙間6409C(図29参照)を含む)が形成されている。
The four elastic members 6407 include a second elastic member 6407B in addition to the first elastic member 4407A, the third elastic member 4407C, and the fourth elastic member 4407D described in the first embodiment. As the material of the elastic member 6407, silicon rubber, butyl rubber or fluorine rubber having a small amount of moisture permeation, etc. can be adopted as in the elastic member 4407 described in the first embodiment.
The second elastic member 6407B has substantially the same shape as the second elastic member 4407B described in the first embodiment, except that only one corresponding to the cylindrical portion 6406C of the frame-shaped member 6406 is provided. This is only the point where the insertion hole 6407B1 is formed.
Similarly, the intermediate frame 6409 has substantially the same shape as the intermediate frame 4409 described in the first embodiment, and is different from the intermediate frame 6409 in that there is only one corresponding to the cylindrical portion 6406C of the frame-shaped member 6406. This is only the point where the insertion hole 6409D is formed. That is, as shown in FIG. 25, the intermediate frame 6409 has an opening 6409A and a step 6409B (gap 6409C) similar to the opening 4409A and the step 4409B (including the gap 4409C) of the intermediate frame 4409. (Refer to FIG. 29).

以上説明したように、冷却流体は、前記第2実施形態と略同様に、複数の流体循環部材448を介して、メインタンク445(図4)〜流体圧送部446(図3)〜中継タンク5404(図24)〜各光変調素子保持体6402(図24)〜ラジエータ447(図12)〜メインタンク445(図4)という流路を循環する。   As described above, the cooling fluid is supplied from the main tank 445 (FIG. 4) to the fluid pumping unit 446 (FIG. 3) to the relay tank 5404 via the plurality of fluid circulation members 448 in substantially the same manner as in the second embodiment. Each light modulation element holding body 6402 (FIG. 24), radiator 447 (FIG. 12), main tank 445 (FIG. 4) is circulated.

次に、液晶パネル441、入射側偏光板442、および射出側偏光板443の冷却構造を説明する。
図28および図29は、液晶パネル441、入射側偏光板442、および射出側偏光板443の冷却構造を説明するための図である。具体的に、図28は、光変調素子保持体6402を光束射出側から見た平面図である。図29は、図28におけるH−H線の断面図である。
流体圧送部446が駆動することにより、前記第2実施形態と同様に、流体循環部材448を介して、メインタンク445内の冷却流体が中継タンク5404内に送入される。
Next, a cooling structure of the liquid crystal panel 441, the incident side polarizing plate 442, and the emission side polarizing plate 443 will be described.
28 and 29 are diagrams for explaining a cooling structure of the liquid crystal panel 441, the incident side polarizing plate 442, and the emission side polarizing plate 443. FIG. Specifically, FIG. 28 is a plan view of the light modulation element holding body 6402 viewed from the light beam exit side. 29 is a cross-sectional view taken along line HH in FIG.
When the fluid pumping unit 446 is driven, the cooling fluid in the main tank 445 is fed into the relay tank 5404 via the fluid circulation member 448 as in the second embodiment.

そして、中継タンク5404内に送入された冷却流体は、中継タンク5404の各冷却流体流出部5404Bから流出し、流体循環部材448を介して、図28または図29に示すように、各光変調素子保持体6402の各流入口6406Hから各光変調素子保持体6402の各冷却室R6(図29)へと流入する。
ここで、光源装置411から射出された光束により、液晶パネル441の駆動基板441C、および射出側偏光板443に生じた熱は、冷却室R6内の冷却流体に伝達される。
冷却室R6内の冷却流体に伝達された熱は、図29に示すように、冷却流体の流れにしたがって、図29中、下方に向けて移動する。また、下方に向けて移動した熱は、冷却流体の流れにしたがって、枠状部材6406における下方側の凹部6406E(図27(A))の側壁により、左右方向略中央部分へと案内される。そして、左右方向略中央部分へと案内された熱は、図29に示すように、冷却流体の流れにしたがって、筒状部6406Cおよびこの筒状部6406Cと接続する挿通孔6405Cを介して、冷却室R5内に移動する。
Then, the cooling fluid sent into the relay tank 5404 flows out from each cooling fluid outflow portion 5404B of the relay tank 5404, and passes through the fluid circulation member 448, as shown in FIG. 28 or FIG. It flows into each cooling chamber R6 (FIG. 29) of each light modulation element holding body 6402 from each inflow port 6406H of the element holding body 6402.
Here, the heat generated in the drive substrate 441C of the liquid crystal panel 441 and the emission-side polarizing plate 443 by the light emitted from the light source device 411 is transmitted to the cooling fluid in the cooling chamber R6.
As shown in FIG. 29, the heat transferred to the cooling fluid in the cooling chamber R6 moves downward in FIG. 29 according to the flow of the cooling fluid. Further, the heat that has moved downward is guided to the substantially central portion in the left-right direction by the side wall of the recess 6406E on the lower side of the frame-shaped member 6406 (FIG. 27A) according to the flow of the cooling fluid. Then, as shown in FIG. 29, the heat guided to the substantially central portion in the left-right direction is cooled through the cylindrical portion 6406C and the insertion hole 6405C connected to the cylindrical portion 6406C according to the flow of the cooling fluid. Move into chamber R5.

ここでまた、光源装置411から射出された光束により、液晶パネル441の対向基板441D、および入射側偏光板442に生じた熱は、冷却室R5内の冷却流体に伝達される。
冷却室R5内の冷却流体に伝達された熱は、図29に示すように、冷却室R6内から移動した熱とともに、冷却流体の流れにしたがって、図29中、上方に向けて移動する。また、上方に向けて移動した熱は、冷却流体の流れにしたがって、枠状部材6405における上方側の凹部6405F(図26(B))の側壁により、左右方向略中央部分へと案内される。そして、左右方向略中央部分へと案内された熱は、図29に示すように、冷却流体の流れにしたがって、流出口6405Iを介して外部へと移動する。
Here, the heat generated in the counter substrate 441D of the liquid crystal panel 441 and the incident-side polarizing plate 442 by the light beam emitted from the light source device 411 is transmitted to the cooling fluid in the cooling chamber R5.
As shown in FIG. 29, the heat transferred to the cooling fluid in the cooling chamber R5 moves upward in FIG. 29 along with the flow of the cooling fluid together with the heat moved from the cooling chamber R6. Further, the heat moved upward is guided to the substantially central portion in the left-right direction by the side wall of the upper concave portion 6405F (FIG. 26B) in the frame-shaped member 6405 according to the flow of the cooling fluid. Then, as shown in FIG. 29, the heat guided to the substantially central portion in the left-right direction moves to the outside through the outlet 6405I according to the flow of the cooling fluid.

流出口6405Iを介して光変調素子保持体6402の外部へと移動した熱は、前記第2実施形態と同様に、冷却流体の流れにしたがって、図示しない流体循環部材を介して各光変調素子保持体6402〜ラジエータ447へと移動し、ラジエータ447にて放熱される。
そして、ラジエータ447にて冷却された冷却流体は、ラジエータ447〜メインタンク445〜流体圧送部446〜中継タンク5404へと移動し、再度、冷却室R6へと移動する。
また、冷却ユニット3のシロッコファン31により、前記第1実施形態と同様に、冷却空気が光変調素子保持体6402の外面、および光変調素子保持体6402と支持部材4403との間に流入し、入射側偏光板442の光束入射側端面および射出側偏光板443の光束射出側端面を冷却する。
The heat transferred to the outside of the light modulation element holding body 6402 via the outflow port 6405I is held by each light modulation element via a fluid circulation member (not shown) according to the flow of the cooling fluid as in the second embodiment. It moves from the body 6402 to the radiator 447 and is radiated by the radiator 447.
Then, the cooling fluid cooled by the radiator 447 moves from the radiator 447 to the main tank 445 to the fluid pressure feeding unit 446 to the relay tank 5404, and again moves to the cooling chamber R6.
Further, the sirocco fan 31 of the cooling unit 3 causes cooling air to flow between the outer surface of the light modulation element holding body 6402 and between the light modulation element holding body 6402 and the support member 4403, as in the first embodiment. The light incident side end surface of the incident side polarizing plate 442 and the light emitting side end surface of the emission side polarizing plate 443 are cooled.

上述した第3実施形態においては、前記第1実施形態と比較して、流入口6406Hが枠状部材6406に形成され、流出口6405Iが枠状部材6405に形成されているので、各冷却室R5,R6を連通接続する連通口として各1つのみの筒状部6406Cおよび挿通孔6405Cを形成することで、流入口6406Hを介して冷却室R6内に流入した冷却流体を、筒状部6406Cおよび挿通孔6405Cを介して冷却室R5内に流入させ、流出口6405Iを介して外部に流出させることができる。したがって、冷却室R6から冷却室R5へと、各冷却室R5,R6の双方に冷却流体を容易に流通させることができる。特に、冷却流体の流れの対称性と一様性が高まり、液晶パネル441の冷却の均一化に有効となる。
ここで、各冷却室R5,R6を連通接続する連通口を、各1つの筒状部6406Cおよび挿通孔6405Cで構成することで、前記第1実施形態で説明した連通口を3つの筒状部4406C,4406Dおよび3つの挿通孔4405C,4405Dとする構成と比較して、一対の枠状部材6405,6406の加工性を飛躍的に向上させ、製造を一層容易に実施できるとともに、製造コストの低減を一層図れる。また、第2弾性部材6407Bおよび中間枠体6409も同様である。そして、このような構成により、光変調素子保持体6402の小型化および軽量化を図れる。
また、流入口6406Hおよび流出口6405Iは、枠状部材6406,6405における上端部にそれぞれ形成されているので、流入口6406Hおよび流出口6405Iへの流体循環部材448の接続作業を上方向からの一方向に集約でき、該接続作業をさらに容易に実施できる。
In the third embodiment described above, the inflow port 6406H is formed in the frame-shaped member 6406 and the outflow port 6405I is formed in the frame-shaped member 6405, compared with the first embodiment, and thus each cooling chamber R5. , R6 are connected to each other as a communication port by forming only one cylindrical portion 6406C and an insertion hole 6405C, so that the cooling fluid flowing into the cooling chamber R6 through the inlet 6406H is supplied to the cylindrical portion 6406C and It can flow into the cooling chamber R5 through the insertion hole 6405C and flow out to the outside through the outflow port 6405I. Therefore, the cooling fluid can be easily circulated from the cooling chamber R6 to the cooling chamber R5 in both the cooling chambers R5 and R6. In particular, the symmetry and uniformity of the flow of the cooling fluid is enhanced, which is effective for uniform cooling of the liquid crystal panel 441.
Here, the communication port connecting the cooling chambers R5 and R6 is constituted by one cylindrical portion 6406C and an insertion hole 6405C, so that the communication port described in the first embodiment is provided with three cylindrical portions. Compared with the configuration of 4406C and 4406D and three insertion holes 4405C and 4405D, the workability of the pair of frame-like members 6405 and 6406 is dramatically improved, and the manufacturing can be more easily performed, and the manufacturing cost can be reduced. Can be further improved. The same applies to the second elastic member 6407B and the intermediate frame 6409. With such a configuration, the light modulation element holding body 6402 can be reduced in size and weight.
In addition, since the inlet 6406H and the outlet 6405I are formed at the upper ends of the frame-shaped members 6406 and 6405, respectively, the connection work of the fluid circulation member 448 to the inlet 6406H and the outlet 6405I is performed from the upper direction. It is possible to aggregate in the direction, and the connection work can be performed more easily.

[第4実施形態]
次に、本発明の第4実施形態を図面に基づいて説明する。
以下の説明では、前記第1実施形態と同様の構造および同一部材には同一符号を付して、その詳細な説明は省略または簡略化する。
前記第1実施形態では、光学装置44において、流体分岐部4401にて分岐され3つの光変調素子保持体4402に流入する冷却流体の流量は、略同一に設定されている。
これに対して第4実施形態では、光学装置44において、各光変調素子保持体4402に流入する冷却流体の流量を変更可能とする流量変更部449を備える。その他の構成は、前記第1実施形態と同様である。
[Fourth embodiment]
Next, 4th Embodiment of this invention is described based on drawing.
In the following description, the same structure and the same members as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted or simplified.
In the first embodiment, in the optical device 44, the flow rates of the cooling fluid branched by the fluid branching portion 4401 and flowing into the three light modulation element holding bodies 4402 are set to be substantially the same.
On the other hand, in the fourth embodiment, the optical device 44 includes a flow rate changing unit 449 that can change the flow rate of the cooling fluid flowing into each light modulation element holding body 4402. Other configurations are the same as those in the first embodiment.

具体的に、図30は、第4実施形態における流量変更部449の構造および設置位置を示す図である。具体的に、図30は、流体分岐部4401を上方から見た平面図である。
流量変更部449は、図30に示すように、流体分岐部4401の冷却流体流出部4401Cにそれぞれ設けられ、各冷却流体流出部4401Cから各光変調素子保持体4402に送入される冷却流体の流量を変更可能に構成されている。この流量変更部449は、図30に示すように、流量変更部本体449Aと、流量調整部449Bとを備える。
流量変更部本体449Aは、冷却流体を流通可能とする流路を有するとともに、流量調整部449Bを回動可能に軸支する。
流量調整部449Bは、具体的な図示は省略するが、流量変更部本体449A内に配置される調整弁と、流量変更部本体449Aの外側に突出する調整ねじとを備える。
このうち、前記調整弁は、回動位置に応じて流量変更部本体449A内の流路を狭めたり、拡げたりして流路を通過する冷却流体の流量を変更可能とする。そして、前記調整弁は、前記調整ねじの動きに連動し、前記調整ねじを手動にて回動させることにより、流量変更部本体449Aの流路を通過する冷却流体の流量を変更可能とする。
Specifically, FIG. 30 is a diagram illustrating a structure and an installation position of the flow rate changing unit 449 in the fourth embodiment. Specifically, FIG. 30 is a plan view of the fluid branch portion 4401 viewed from above.
As shown in FIG. 30, the flow rate changing unit 449 is provided in each cooling fluid outflow unit 4401C of the fluid branching unit 4401, and the flow rate of the cooling fluid sent to each light modulation element holder 4402 from each cooling fluid outflow unit 4401C. The flow rate can be changed. As shown in FIG. 30, the flow rate changing unit 449 includes a flow rate changing unit main body 449A and a flow rate adjusting unit 449B.
The flow rate changing unit main body 449A has a flow path through which the cooling fluid can flow, and pivotally supports the flow rate adjusting unit 449B.
Although not specifically shown, the flow rate adjusting unit 449B includes an adjustment valve disposed in the flow rate changing unit main body 449A and an adjusting screw protruding outside the flow rate changing unit main body 449A.
Among these, the said adjustment valve makes it possible to change the flow volume of the cooling fluid which passes a flow path by narrowing or expanding the flow path in the flow volume changing part main body 449A according to the rotation position. The adjustment valve is capable of changing the flow rate of the cooling fluid passing through the flow path of the flow rate changing unit main body 449A by manually rotating the adjustment screw in conjunction with the movement of the adjustment screw.

上述した第4実施形態においては、前記第1実施形態と比較して、流量変更部449の流量調整部449Bを操作することにより、3つの液晶パネル441のうち、発熱量の大きい液晶パネル441に対して冷却流体の流量を大きくし、発熱量の小さい液晶パネル441に対して冷却流体の流量を小さくすることで、各液晶パネル441の温度の均一化を簡単な構成で容易にかつ、高精度に実施できる。したがって、各液晶パネル441にて形成される光学像の色合いを良好に維持することができる。加えて、液晶パネル441の劣化を防止し、各液晶パネル441の寿命を均等に延ばす効果がある。   In the above-described fourth embodiment, by operating the flow rate adjustment unit 449B of the flow rate change unit 449, the liquid crystal panel 441 having a larger calorific value among the three liquid crystal panels 441 is compared with the first embodiment. On the other hand, by increasing the flow rate of the cooling fluid and decreasing the flow rate of the cooling fluid with respect to the liquid crystal panel 441 having a small heat generation amount, the temperature of each liquid crystal panel 441 can be easily uniformized with a simple configuration with high accuracy. Can be implemented. Therefore, the hue of the optical image formed by each liquid crystal panel 441 can be maintained satisfactorily. In addition, deterioration of the liquid crystal panel 441 is prevented, and the life of each liquid crystal panel 441 is effectively extended.

[第5実施形態]
次に、本発明の第5実施形態を図面に基づいて説明する。
以下の説明では、前記第1実施形態と同様の構造および同一部材には同一符号を付して、その詳細な説明は省略または簡略化する。
前記第1実施形態では、光学装置44において、流体分岐部4401にて分岐され3つの光変調素子保持体4402に流入する冷却流体の流量は、略同一に設定されている。
これに対して第5実施形態では、流体分岐部7401の各冷却流体流出部7401C、および流体分岐部7401と各光変調素子保持体4402とを接続する流体循環部材748の管径を異なるものとすることで、各光変調素子保持体4402に流入する冷却流体の流量を変更する。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described with reference to the drawings.
In the following description, the same structure and the same members as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted or simplified.
In the first embodiment, in the optical device 44, the flow rates of the cooling fluid branched by the fluid branching portion 4401 and flowing into the three light modulation element holding bodies 4402 are set to be substantially the same.
On the other hand, in the fifth embodiment, the cooling fluid outflow portions 7401C of the fluid branching portion 7401 and the pipe diameters of the fluid circulation members 748 that connect the fluid branching portions 7401 and the respective light modulation element holding bodies 4402 are different. As a result, the flow rate of the cooling fluid flowing into each light modulation element holding body 4402 is changed.

具体的に、図31は、第5実施形態における流体分岐部7401および該流体分岐部7401と接続する流体循環部材748を示す図である。具体的に、図31は、流体分岐部7401を下方から見た平面図である。
流体分岐部7401は、前記第1実施形態で説明した流体分岐部4401と略同様の構成であり、3つの冷却流体流出部7401R,7401G,7401Bの管径が異なるように形成されている点が異なるのみである。
本実施形態では、G色光用の液晶パネル441を保持する光変調素子保持体4402へと冷却流体を流出させるための冷却流体流出部7401Gの管径を最も大きい管径に設定し、B色光用の液晶パネル441を保持する光変調素子保持体4402へと冷却流体を流出させるための冷却流体流出部7401B、R色光用の液晶パネル441を保持する光変調素子保持体4402へと冷却流体を流出させるための冷却流体流出部7401Rの管径を順に、小さく設定している。
また、流体循環部材748も上述した各冷却流体流出部7401R,7401G,7401Bの管径に対応させて、各流体循環部材748R,748G,748Bで管径を異なるものに設定している。
Specifically, FIG. 31 is a diagram illustrating a fluid branch portion 7401 and a fluid circulation member 748 connected to the fluid branch portion 7401 in the fifth embodiment. Specifically, FIG. 31 is a plan view of the fluid branch portion 7401 viewed from below.
The fluid branch portion 7401 has substantially the same configuration as the fluid branch portion 4401 described in the first embodiment, and is formed such that the three cooling fluid outlet portions 7401R, 7401G, and 7401B have different tube diameters. Only different.
In this embodiment, the tube diameter of the cooling fluid outflow portion 7401G for allowing the cooling fluid to flow out to the light modulation element holding body 4402 holding the liquid crystal panel 441 for G color light is set to the largest tube diameter, and for B color light. The cooling fluid flows out to the light modulating element holding body 4402 for holding the liquid crystal panel 441 for cooling light and the cooling fluid outflow portion 7401B for flowing the cooling fluid to the light modulating element holding body 4402 for holding the liquid crystal panel 441. The pipe diameter of the cooling fluid outflow part 7401R for making it small is set in order.
Further, the fluid circulating member 748 is set to have a different pipe diameter in each fluid circulating member 748R, 748G, 748B in correspondence with the pipe diameter of each cooling fluid outflow portion 7401R, 7401G, 7401B.

上述した第5実施形態では、前記第1実施形態と比較して、各液晶パネル441の発熱量に応じて、各冷却流体流出部7401R,7401G,7401Bのおよびこれら冷却流体流出部7401R,7401G,7401Bの管径に対応させて流体循環部材748R,748G,748Bの管径を異なるものに設定することで、各液晶パネル441の温度の均一化を簡単な構成で容易に実施可能となる。したがって、各液晶パネル441にて形成される光学像の色合いを良好に維持することができる。   In the fifth embodiment described above, compared to the first embodiment, the cooling fluid outflow portions 7401R, 7401G, 7401B and the cooling fluid outflow portions 7401R, 7401G, By setting the pipe diameters of the fluid circulation members 748R, 748G, and 748B to be different from each other corresponding to the pipe diameter of 7401B, the temperature of each liquid crystal panel 441 can be easily equalized with a simple configuration. Therefore, the hue of the optical image formed by each liquid crystal panel 441 can be maintained satisfactorily.

以上、本発明について好適な実施形態を挙げて説明したが、本発明は、これらの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の改良並びに設計の変更が可能である。
前記各実施形態において、光変調素子保持体4402,5402,6402における流入口4406H,5406H,6406Hおよび流出口4406I,5406I,6405Iの形成位置、および冷却流体の流通方向は、前記各実施形態で説明した形成位置、および流通方向に限らない。
例えば、前記第1実施形態では、枠状部材4406の上下端部に流出口4406Iおよび流入口4406Hがそれぞれ形成されていたが、これに限らず、枠状部材4405の上下端部に流出口4406Iおよび流入口4406Hをそれぞれ形成してもよい。また、下方側から上方側に向けて冷却流体を流通させていたが、これに限らず、流入口4406Hおよび流出口4406Iの形成位置を上下逆に設定し、上方側から下方側に向けて冷却流体を流通させる構成としてもよい。さらには、流入口4406Hおよび流出口4406Iは、枠状部材4405または枠状部材4406の上下端部に限らず、左右端部にそれぞれ形成してもよい。
Although the present invention has been described with reference to preferred embodiments, the present invention is not limited to these embodiments, and various improvements and design changes can be made without departing from the scope of the present invention. It is.
In each of the above embodiments, the formation positions of the inflow ports 4406H, 5406H, 6406H and the outflow ports 4406I, 5406I, 6405I in the light modulation element holding bodies 4402, 5402, 6402 and the flow direction of the cooling fluid are described in the above embodiments. It is not limited to the formed position and the distribution direction.
For example, in the first embodiment, the outlet 4406I and the inlet 4406H are formed at the upper and lower ends of the frame-like member 4406, but the present invention is not limited thereto, and the outlet 4406I is provided at the upper and lower ends of the frame-like member 4405. And the inlet 4406H may be formed respectively. In addition, the cooling fluid is circulated from the lower side toward the upper side. However, the present invention is not limited to this. It is good also as composition which distributes fluid. Furthermore, the inflow port 4406H and the outflow port 4406I are not limited to the upper and lower ends of the frame-shaped member 4405 or the frame-shaped member 4406, but may be formed at the left and right ends, respectively.

また、例えば、前記第2実施形態では、枠状部材5406の上端部に流入口5406Hおよび流出口5406Iがそれぞれ形成されていたが、これに限らず、枠状部材5405の上端部に流入口5406Hおよび流出口5406Iをそれぞれ形成してもよい。このような構成では、冷却流体は、流入口5406Hを介して液晶パネル441の光束入射側の冷却室R3に流入し、筒状部5406Cおよび挿通孔5405Cを介して液晶パネル441の光束射出側の冷却室R4に流入する。さらには、流入口5406Hおよび流出口5406Iは、枠状部材5405または枠状部材5406の上端部に限らず、その他の一側端部、例えば、下端部にそれぞれ形成してもよい。   Further, for example, in the second embodiment, the inflow port 5406H and the outflow port 5406I are formed at the upper end portion of the frame-shaped member 5406. However, the present invention is not limited to this, and the inflow port 5406H is formed at the upper end portion of the frame-shaped member 5405. And the outlet 5406I may be formed respectively. In such a configuration, the cooling fluid flows into the cooling chamber R3 on the light beam incident side of the liquid crystal panel 441 through the inflow port 5406H, and flows on the light beam emission side of the liquid crystal panel 441 through the cylindrical portion 5406C and the insertion hole 5405C. It flows into cooling chamber R4. Furthermore, the inflow port 5406H and the outflow port 5406I are not limited to the upper end portion of the frame-shaped member 5405 or the frame-shaped member 5406, and may be formed at other one end, for example, the lower end.

さらに、例えば、前記第3実施形態では、枠状部材6405の上端部に流出口6405Iが形成され、枠状部材6406の上端部に流入口6406Hが形成されていたが、これに限らず、枠状部材6405の上端部に流入口6406Hを形成し、枠状部材6406の上端部に流出口6405Iを形成してもよい。このような構成では、冷却流体は、流入口6406Hを介して液晶パネル441の光束入射側の冷却室R5に流入し、筒状部6406Cおよび挿通孔6405Cを介して液晶パネル441の光束射出側の冷却室R6に流入する。さらには、流入口6406Hおよび流出口6405Iは、枠状部材6406,6405の上端部に形成されていたが、これに限らず、枠状部材6405,6406の一方の枠状部材に流入口が形成され、他方の枠状部材に流出口が形成されていればよく、例えば、枠状部材6406,6405の下端部にそれぞれ形成してもよい。   Further, for example, in the third embodiment, the outflow port 6405I is formed at the upper end portion of the frame-like member 6405, and the inflow port 6406H is formed at the upper end portion of the frame-like member 6406. The inflow port 6406 </ b> H may be formed at the upper end of the frame-shaped member 6405, and the outflow port 6405 </ b> I may be formed at the upper end of the frame-shaped member 6406. In such a configuration, the cooling fluid flows into the cooling chamber R5 on the light beam incident side of the liquid crystal panel 441 through the inflow port 6406H, and on the light beam emission side of the liquid crystal panel 441 through the cylindrical portion 6406C and the insertion hole 6405C. It flows into the cooling chamber R6. Furthermore, the inflow port 6406H and the outflow port 6405I are formed at the upper end portions of the frame-shaped members 6406 and 6405. However, the present invention is not limited to this, and the inflow port is formed in one of the frame-shaped members 6405 and 6406. However, it is only necessary that the outlet is formed in the other frame-shaped member.

前記各実施形態において、一対の枠状部材に形成される連通口の形成位置および数は、特に限定されない。
例えば、前記第1実施形態では、分流口としての筒状部4406Cおよび挿通孔4405Cは、1つのみ形成されていたが、これに限らず、2つ以上形成してもよい。また、筒状部4406Cおよび挿通孔4405Cは、下方側の左右方向略中央部分に形成されていたが、これに限らず、その他の位置に形成してもよい。前記第2実施形態および前記第3実施形態における筒状部5406C,6406Cおよび挿通孔5405C,6405Cも同様である。さらに、合流口としての筒状部4406Dおよび挿通孔4405Dは、2つ形成されていたが、これに限らず、1つのみで形成してもよい。
In each of the above embodiments, the formation position and number of communication ports formed in the pair of frame-like members are not particularly limited.
For example, in the first embodiment, only one cylindrical portion 4406C and insertion hole 4405C as a diversion port are formed. However, the present invention is not limited to this, and two or more cylindrical portions may be formed. Moreover, although the cylindrical part 4406C and the insertion hole 4405C were formed in the horizontal direction approximate center part of the downward side, you may form not only in this but in another position. The same applies to the cylindrical portions 5406C and 6406C and the insertion holes 5405C and 6405C in the second embodiment and the third embodiment. Furthermore, although the two cylindrical portions 4406D and the insertion holes 4405D as the junction are formed, the present invention is not limited to this, and may be formed by only one.

前記第1実施形態において、枠状部材4406の凹部4406Eに形成された整流部4406Fの形状は、前記第1実施形態で説明した形状に限らない。流入口4406Hを介して冷却室R2内に流入した冷却流体、および2つの筒状部4406D、2つの挿通孔4405Dを介して冷却室R1から冷却室R2に流入した冷却流体の双方を流出口4406Iに向けて流通させる形状であれば、いずれの形状であってもよく、例えば、流入口4406Hに向けて拡がる、平面視略ハ字状の形状を採用してもよい。   In the first embodiment, the shape of the rectifying portion 4406F formed in the recess 4406E of the frame-like member 4406 is not limited to the shape described in the first embodiment. Both the cooling fluid that has flowed into the cooling chamber R2 through the inflow port 4406H and the cooling fluid that has flowed into the cooling chamber R2 from the cooling chamber R1 through the two cylindrical portions 4406D and the two insertion holes 4405D. Any shape may be used as long as it is distributed toward the inlet, and for example, a substantially C-shaped shape in plan view that expands toward the inlet 4406H may be employed.

前記各実施形態では、光学装置44において、メインタンク445、流体圧送部446、およびラジエータ447を備えた構成を説明したが、これに限らず、これらメインタンク445、流体圧送部446、およびラジエータ447のうち少なくともいずれかを省略した構成も本発明の目的を十分に達成できる。   In each of the above-described embodiments, the configuration in which the optical tank 44 includes the main tank 445, the fluid pressure feeding unit 446, and the radiator 447 has been described. However, the configuration is not limited thereto, and the main tank 445, the fluid pressure feeding unit 446, and the radiator 447 are provided. A configuration in which at least one of them is omitted can sufficiently achieve the object of the present invention.

前記各実施形態では、一対の枠状部材4405,4406,5405,5406,6405,6406の外面に入射側偏光板442および射出側偏光板443を配置し、該入射側偏光板442および射出側偏光板443の透光性基板442A,443Aにて各冷却室R1〜R6を閉塞していたが、これに限らず、偏光膜が貼り付けられていないガラス等の透光性基板で各冷却室R1〜R6を閉塞してもよい。この際、入射側偏光板および射出側偏光板としては、前記各実施形態で説明した吸収型偏光板ではなく、所定の偏光軸を有する光束を透過し、その他の偏光軸を有する光束を反射する反射型偏光板とすれば、入射側偏光板および射出側偏光板を冷却流体にて冷却しなくても、光源から射出される光束による温度上昇を抑制できる。
また、光学変換素子として入射側偏光板442および射出側偏光板443を採用し、これら入射側偏光板442および射出側偏光板443を冷却流体にて冷却する構成を採用したが、これに限らず、光学変換素子としては、位相差板、あるいは視野角補正板を採用し、これらの光学変換素子を冷却流体にて冷却する構成を採用してもよい。
In each of the above embodiments, the incident-side polarizing plate 442 and the exit-side polarizing plate 443 are arranged on the outer surfaces of the pair of frame-like members 4405, 4406, 5405, 5406, 6405, 6406, and the incident-side polarizing plate 442 and the exit-side polarizing plate are arranged. Although each cooling chamber R1-R6 was obstruct | occluded by translucent board | substrate 442A, 443A of the board 443, not only this but each cooling chamber R1 with translucent board | substrates, such as glass with which the polarizing film is not affixed. ~ R6 may be closed. At this time, the incident-side polarizing plate and the emitting-side polarizing plate are not the absorption-type polarizing plates described in the above embodiments, but transmit light beams having a predetermined polarization axis and reflect light beams having other polarization axes. If a reflective polarizing plate is used, an increase in temperature due to a light beam emitted from a light source can be suppressed without cooling the incident side polarizing plate and the outgoing side polarizing plate with a cooling fluid.
In addition, although the incident-side polarizing plate 442 and the exit-side polarizing plate 443 are employed as the optical conversion elements, and the incident-side polarizing plate 442 and the exit-side polarizing plate 443 are cooled with a cooling fluid, the present invention is not limited thereto. As the optical conversion element, a retardation plate or a viewing angle correction plate may be employed, and a configuration in which these optical conversion elements are cooled with a cooling fluid may be employed.

前記各実施形態において、メインタンク445、流体分岐部4401,7401、および中継タンク4404,5404は、冷却流体流入部445A,4401A,4404A,5404A,7401Aおよび冷却流体流出部445B,4401C,4404B,5404B,7401Cを有し、冷却流体流入部445A,4401A,4404A,5404A,7401Aおよび冷却流体流出部445B,4401C,4404B,5404B,7401Cの一方の端部が内部に向けて突出している構成を説明したが、これに限らない。例えば、メインタンク445、流体分岐部4401,7401、および中継タンク4404,5404に直接、流体循環部材448,748を連通接続し、流体循環部材448,748の端部をメインタンク445、流体分岐部4401,7401、および中継タンク4404,5404内部に突出させる構成としてもよい。   In each of the above embodiments, the main tank 445, the fluid branching portions 4401 and 7401, and the relay tanks 4404 and 5404 have the cooling fluid inflow portions 445A, 4401A, 4404A, 5404A and 7401A and the cooling fluid outflow portions 445B, 4401C, 4404B and 5404B. , 7401C, and one end portion of the cooling fluid inflow portion 445A, 4401A, 4404A, 5404A, 7401A and the cooling fluid outflow portion 445B, 4401C, 4404B, 5404B, 7401C has been explained. However, it is not limited to this. For example, the fluid circulation members 448 and 748 are directly connected to the main tank 445, the fluid branch portions 4401 and 7401, and the relay tanks 4404 and 5404, and the ends of the fluid circulation members 448 and 748 are connected to the main tank 445 and the fluid branch portion. 4401 and 7401 and relay tanks 4404 and 5404 may be protruded inside.

前記各実施形態において、冷却流体と接触する部材である、流体循環部材448,748、メインタンク445、流体圧送部446、ラジエータ447の管状部材4472、枠状部材4405,4406,5405,5406,6405,6406、中継タンク4404,5404は、アルミニウム製の部材から構成したが、これに限らない。耐食性を有する材料であれば、アルミニウムに限らず、他の材料にて構成してもよく、例えば、無酸素銅やジュラルミンにて構成してもよい。また、流体循環部材448,748としては、光変調素子保持体4402,5402,6402への変形反力が小さく画素ずれを抑制する硬度の低いブチルゴムまたはフッ素ゴム等を使用してもよい。   In each of the above embodiments, the fluid circulating members 448 and 748, the main tank 445, the fluid pumping portion 446, the tubular member 4472 of the radiator 447, and the frame-like members 4405, 4406, 5405, 5406, and 6405, which are members that come into contact with the cooling fluid. 6406 and relay tanks 4404 and 5404 are made of aluminum members, but are not limited thereto. As long as the material has corrosion resistance, it is not limited to aluminum but may be composed of other materials, for example, oxygen-free copper or duralumin. Further, as the fluid circulation members 448 and 748, butyl rubber or fluorine rubber having a low deformation reaction force to the light modulation element holders 4402, 5402, and 6402 and having a low hardness for suppressing pixel shift may be used.

前記第4実施形態における流量変更部449は、前記第1実施形態に採用する構成に限らず、前記第2実施形態または前記第3実施形態に採用してもよい。この際、流量変更部449は、流体分岐部4401ではなく、中継タンク5404に設置することとなる。また、流量変更部449は、各液晶パネル441に対応して3つで構成されていたが、これに限らず、1つ、または、2つで構成してもよい。さらに、流量変更部449は、流体分岐部4401の冷却流体流出部4401Cに設けた構成を説明したが、これに限らず、冷却流体流出部4401Cまたは冷却流体流出部5404Bと接続する流体循環部材448に設けてもよい。さらにまた、流量変更部449の構成は、前記第4実施形態で説明した構成に限らず、冷却流体の流路中に弁を設け、該弁の位置を変更することで流路を狭めたり拡げたりする構成であれば、他の構成であっても構わない。   The flow rate changing unit 449 in the fourth embodiment is not limited to the configuration employed in the first embodiment, and may be employed in the second embodiment or the third embodiment. At this time, the flow rate changing unit 449 is installed not in the fluid branching unit 4401 but in the relay tank 5404. In addition, the flow rate changing unit 449 is configured by three corresponding to each liquid crystal panel 441, but is not limited thereto, and may be configured by one or two. Furthermore, the flow rate changing unit 449 has been described as being provided in the cooling fluid outflow unit 4401C of the fluid branching unit 4401. However, the present invention is not limited to this, and the fluid circulation member 448 connected to the cooling fluid outflow unit 4401C or the cooling fluid outflow unit 5404B. May be provided. Furthermore, the configuration of the flow rate changing unit 449 is not limited to the configuration described in the fourth embodiment, and a valve is provided in the cooling fluid channel, and the position of the valve is changed to narrow or widen the channel. Other configurations may be used as long as they are configured.

前記各実施形態では、シロッコファン31の送風によって、光変調素子保持体4402,5402,6402の外面ならびに光学部品用筐体45の底面を冷却していたが、これに限らず、シロッコファン31を省略しても本発明の目的を十分に達成できる。このような構成では、低騒音化に寄与できる。   In each of the embodiments described above, the outer surface of the light modulation element holders 4402, 5402, and 6402 and the bottom surface of the optical component housing 45 are cooled by the blowing of the sirocco fan 31. Even if omitted, the object of the present invention can be sufficiently achieved. Such a configuration can contribute to noise reduction.

前記第5実施形態における構成は、前記第1実施形態に採用する構成に限らず、前記第2実施形態または前記第3実施形態に採用してもよい。この際、流体分岐部7401と同様に、中継タンク5404の3つの冷却流体流出部5404Bの管径寸法を異なるように設定するとともに、これら冷却流体流出部5404Bと接続する流体循環部材448の管径寸法も異なるように設定すればよい。また、流体分岐部7401の各冷却流体流出部7401C、および各冷却流体流出部7401Cと接続する流体循環部材748の各管径をそれぞれ異なるように設定したが、これに限らず、1つのみの管径を他の管径よりも小さく、あるいは大きくした構成を採用してもよい。   The configuration in the fifth embodiment is not limited to the configuration employed in the first embodiment, and may be employed in the second embodiment or the third embodiment. At this time, similarly to the fluid branch portion 7401, the tube diameters of the three cooling fluid outflow portions 5404B of the relay tank 5404 are set to be different from each other, and the tube diameter of the fluid circulation member 448 connected to these cooling fluid outflow portions 5404B. What is necessary is just to set so that a dimension may also differ. In addition, each cooling fluid outflow portion 7401C of the fluid branching portion 7401 and each pipe diameter of the fluid circulation member 748 connected to each cooling fluid outflow portion 7401C are set to be different from each other. You may employ | adopt the structure which made the pipe diameter smaller or larger than another pipe diameter.

前記各実施形態では、光学ユニット4が平面視略L字形状を有した構成を説明したが、これに限らず、例えば、平面視略U字形状を有した構成を採用してもよい。
前記各実施形態では、3つの液晶パネル441を用いたプロジェクタ1の例のみを挙げたが、本発明は、1つの液晶パネルのみを用いたプロジェクタ、2つの液晶パネルのみを用いたプロジェクタ、あるいは、4つ以上の液晶パネルを用いたプロジェクタにも適用可能である。
前記各実施形態では、光入射面と光射出面とが異なる透過型の液晶パネルを用いていたが、光入射面と光射出面とが同一となる反射型の液晶パネルを用いてもよい。
前記各実施形態では、光変調素子として液晶パネルを用いていたが、マイクロミラーを用いたデバイスなど、液晶以外の光変調素子を用いてもよい。この場合は、光束入射側および光束射出側の偏光板は省略できる。
前各記実施形態では、スクリーンを観察する方向から投写を行なうフロントタイプのプロジェクタの例のみを挙げたが、本発明は、スクリーンを観察する方向とは反対側から投写を行なうリアタイプのプロジェクタにも適用可能である。
In each of the above embodiments, the configuration in which the optical unit 4 has a substantially L shape in plan view has been described. However, the configuration is not limited thereto, and for example, a configuration having a substantially U shape in plan view may be employed.
In each of the above-described embodiments, only the example of the projector 1 using the three liquid crystal panels 441 has been described. However, the present invention is a projector using only one liquid crystal panel, a projector using only two liquid crystal panels, or The present invention can also be applied to a projector using four or more liquid crystal panels.
In each of the above embodiments, a transmissive liquid crystal panel having a different light incident surface and light emitting surface is used. However, a reflective liquid crystal panel having the same light incident surface and light emitting surface may be used.
In each of the embodiments, the liquid crystal panel is used as the light modulation element. However, a light modulation element other than liquid crystal, such as a device using a micromirror, may be used. In this case, polarizing plates on the light beam incident side and the light beam emission side can be omitted.
In the above embodiments, only the example of the front type projector that projects from the direction of observing the screen has been described. However, the present invention is a rear type projector that projects from the side opposite to the direction of observing the screen. Is also applicable.

本発明を実施するための最良の構成などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ、説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。
したがって、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部若しくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。
Although the best configuration for carrying out the present invention has been disclosed in the above description, the present invention is not limited to this. That is, the invention has been illustrated and described primarily with respect to particular embodiments, but may be configured for the above-described embodiments without departing from the scope and spirit of the invention. Various modifications can be made by those skilled in the art in terms of materials, quantity, and other detailed configurations.
Therefore, the description limited to the shape, material, etc. disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. The description by the name of the member which remove | excluded the limitation of one part or all of such is included in this invention.

本発明の光変調素子保持体は、冷却流体により光変調素子を効率的に冷却できるため、ホームシアターやプレゼンテーションで利用されるプロジェクタの光変調素子保持体として有用である。   Since the light modulation element holder of the present invention can be efficiently cooled by the cooling fluid, it is useful as a light modulation element holder for projectors used in home theaters and presentations.

各実施形態におけるプロジェクタの概略構成を模式的に示す図。The figure which shows typically schematic structure of the projector in each embodiment. 第1実施形態におけるプロジェクタ内の一部を上方側から見た斜視図。FIG. 3 is a perspective view of a part of the projector according to the first embodiment as viewed from above. 前記実施形態におけるプロジェクタ内の一部を下方側から見た斜視図。The perspective view which looked at a part in the projector in the said embodiment from the downward side. 前記実施形態におけるメインタンクの構造を示す図。The figure which shows the structure of the main tank in the said embodiment. 前記実施形態における光学装置本体の概略構成を示す図。The figure which shows schematic structure of the optical apparatus main body in the said embodiment. 前記実施形態における光学装置本体の概略構成を示す図。The figure which shows schematic structure of the optical apparatus main body in the said embodiment. 前記実施形態における流体分岐部の構造を示す図。The figure which shows the structure of the fluid branch part in the said embodiment. 前記実施形態における光変調素子保持体の概略構成を示す分解斜視図。The disassembled perspective view which shows schematic structure of the light modulation element holding body in the said embodiment. 前記実施形態における枠状部材の概略構成を示す図。The figure which shows schematic structure of the frame-shaped member in the said embodiment. 前記実施形態における枠状部材の概略構成を示す図。The figure which shows schematic structure of the frame-shaped member in the said embodiment. 前記実施形態における中継タンクの構造を示す図。The figure which shows the structure of the relay tank in the said embodiment. 前記実施形態におけるラジエータの構造、およびラジエータと軸流ファンとの配置関係を示す図。The figure which shows the structure of the radiator in the said embodiment, and the arrangement | positioning relationship between a radiator and an axial flow fan. 前記実施形態における液晶パネル、入射側偏光板、および射出側偏光板の冷却構造を説明するための図。The figure for demonstrating the cooling structure of the liquid crystal panel in the said embodiment, the incident side polarizing plate, and the injection | emission side polarizing plate. 前記実施形態における液晶パネル、入射側偏光板、および射出側偏光板の冷却構造を説明するための図。The figure for demonstrating the cooling structure of the liquid crystal panel in the said embodiment, the incident side polarizing plate, and the injection | emission side polarizing plate. 前記実施形態における液晶パネル、入射側偏光板、および射出側偏光板の冷却構造を説明するための図。The figure for demonstrating the cooling structure of the liquid crystal panel in the said embodiment, the incident side polarizing plate, and the injection | emission side polarizing plate. 第2実施形態における光学装置本体の概略構成を示す図。The figure which shows schematic structure of the optical apparatus main body in 2nd Embodiment. 前記実施形態における光学装置本体の概略構成を示す図。The figure which shows schematic structure of the optical apparatus main body in the said embodiment. 前記実施形態における光変調素子保持体の概略構成を示す分解斜視図。The disassembled perspective view which shows schematic structure of the light modulation element holding body in the said embodiment. 前記実施形態における枠状部材の概略構成を示す図。The figure which shows schematic structure of the frame-shaped member in the said embodiment. 前記実施形態における枠状部材の概略構成を示す図。The figure which shows schematic structure of the frame-shaped member in the said embodiment. 前記実施形態における液晶パネル、入射側偏光板、および射出側偏光板の冷却構造を説明するための図。The figure for demonstrating the cooling structure of the liquid crystal panel in the said embodiment, the incident side polarizing plate, and the injection | emission side polarizing plate. 前記実施形態における液晶パネル、入射側偏光板、および射出側偏光板の冷却構造を説明するための図。The figure for demonstrating the cooling structure of the liquid crystal panel in the said embodiment, the incident side polarizing plate, and the injection | emission side polarizing plate. 前記実施形態における液晶パネル、入射側偏光板、および射出側偏光板の冷却構造を説明するための図。The figure for demonstrating the cooling structure of the liquid crystal panel in the said embodiment, the incident side polarizing plate, and the injection | emission side polarizing plate. 第3実施形態における光学装置本体の概略構成を示す斜視図。The perspective view which shows schematic structure of the optical apparatus main body in 3rd Embodiment. 前記実施形態における光変調素子保持体の概略構成を示す分解斜視図。The disassembled perspective view which shows schematic structure of the light modulation element holding body in the said embodiment. 前記実施形態における枠状部材の概略構成を示す図。The figure which shows schematic structure of the frame-shaped member in the said embodiment. 前記実施形態における枠状部材の概略構成を示す図。The figure which shows schematic structure of the frame-shaped member in the said embodiment. 前記実施形態における液晶パネル、入射側偏光板、および射出側偏光板の冷却構造を説明するための図。The figure for demonstrating the cooling structure of the liquid crystal panel in the said embodiment, the incident side polarizing plate, and the injection | emission side polarizing plate. 前記実施形態における液晶パネル、入射側偏光板、および射出側偏光板の冷却構造を説明するための図。The figure for demonstrating the cooling structure of the liquid crystal panel in the said embodiment, the incident side polarizing plate, and the injection | emission side polarizing plate. 第4実施形態における流量変更部の構造および設置位置を示す図。The figure which shows the structure and installation position of the flow volume change part in 4th Embodiment. 第5実施形態における流体分岐部および該流体分岐部と接続する流体循環部材を示す図。The figure which shows the fluid circulation member connected with the fluid branch part in 5th Embodiment, and this fluid branch part.

符号の説明Explanation of symbols

1・・・プロジェクタ、5・・・投射レンズ(投射光学装置)、44・・・光学装置、411・・・光源装置、441,441R,441G,441B・・・液晶パネル(光変調素子)、442・・・入射側偏光板(光学変換素子)、442A・・・透光性基板、443・・・射出側偏光板(光学変換素子)、443A・・・透光性基板、443B・・・偏光膜(光学変換膜)、444・・・クロスダイクロイックプリズム(色合成光学装置)、448,748・・・流体循環部材、449・・・流量変更部、4401,7401・・・流体分岐部、4401A・・・冷却流体流入部、4401C,7401C・・・冷却流体流出部、4402,5402,6402・・・光変調素子保持体、4405,4406,5405,5406,6405,6406・・・枠状部材、4405A,4406A,5405A,5406A,6405A,6406A・・・開口、4405A1,4406A1,5405A1,5406A1,6405A1,6406A1・・・斜面、4405C,4405D,5405C,5405D,6405C・・・筒状部挿通孔(連通口)、4405F,4406E,5405F,5406E,6405F,6406E・・・凹部、4406C,4406D,5406C,5406D,6406C・・・筒状部(連通口)、4406C1,4406D1,5406C1,5406D1,6406C1・・・孔、4406C2・・・突出部、4406F・・・整流部、4406H,5406H,6406H・・・流入口、4406I,5406I,6405I・・・流出口、4407,5407,6407・・・弾性部材、4407B1,5407B1,6407B1・・・挿通孔、5404・・・中継タンク(流体分岐部)、5406N・・・隔壁、R1,R2,R3,R4,R5,R6・・・冷却室。   DESCRIPTION OF SYMBOLS 1 ... Projector, 5 ... Projection lens (projection optical apparatus), 44 ... Optical apparatus, 411 ... Light source device, 441, 441R, 441G, 441B ... Liquid crystal panel (light modulation element), 442 ... Incident side polarizing plate (optical conversion element), 442A ... Translucent substrate, 443 ... Emission side polarizing plate (optical conversion element), 443A ... Translucent substrate, 443B ... Polarizing film (optical conversion film), 444 ... Cross dichroic prism (color synthesis optical device), 448,748 ... fluid circulation member, 449 ... flow rate changing unit, 4401,7401 ... fluid branching unit, 4401A: Cooling fluid inflow portion, 4401C, 7401C ... Cooling fluid outflow portion, 4402, 5402, 6402 ... Light modulation element holder, 4405, 4406, 5405, 5406, 64 5, 6406 ... frame-like member, 4405A, 4406A, 5405A, 5406A, 6405A, 6406A ... opening, 4405A1, 4406A1, 5405A1, 5406A1, 6405A1, 6406A1 ... slope, 4405C, 4405D, 5405C, 5405D, 6405C ... cylindrical portion insertion hole (communication port), 4405F, 4406E, 5405F, 5406E, 6405F, 6406E ... concave portion, 4406C, 4406D, 5406C, 5406D, 6406C ... cylindrical portion (communication port), 4406C1, 4406D1, 5406C1, 5406D1, 6406C1 ... Hole, 4406C2 ... Projection, 4406F ... Rectification part, 4406H, 5406H, 6406H ... Inlet, 4406I, 5406I, 6405 ... Outlet, 4407, 5407, 6407 ... Elastic member, 4407B1, 5407B1, 6407B1 ... Insertion hole, 5404 ... Relay tank (fluid branch), 5406N ... Partition, R1, R2, R3, R4, R5, R6 ... Cooling chamber.

Claims (19)

光源から射出された光束を画像情報に応じて変調して光学像を形成する光変調素子を保持し、内部に冷却流体が封入される冷却室が形成され、前記冷却室内の冷却流体により前記光変調素子を冷却する光変調素子保持体であって、
前記光変調素子の画像形成領域に応じてそれぞれ開口が形成され前記光変調素子を挟持する一対の枠状部材と、前記一対の枠状部材における対向する面と反対の面側にそれぞれ配置される透光性基板とを含んで構成され、
前記冷却室は、前記一対の枠状部材の前記開口における前記対向する面側、および前記対向する面と反対の面側が前記光変調素子および前記透光性基板にてそれぞれ閉塞されることにより前記一対の枠状部材の双方の内部にそれぞれ形成され、
前記一対の枠状部材には、前記冷却室に前記冷却流体を流入させる流入口と、前記冷却室内部の前記冷却流体を外部に流出させる流出口と、前記各冷却室を連通接続する連通口とが形成されていることを特徴とする光変調素子保持体。
A light modulation element that modulates the light beam emitted from the light source according to image information to form an optical image is held, and a cooling chamber in which a cooling fluid is enclosed is formed. A light modulation element holder for cooling the modulation element,
An opening is formed in accordance with an image forming area of the light modulation element, and a pair of frame-shaped members that sandwich the light modulation element are disposed on a surface opposite to the facing surface of the pair of frame-shaped members. Comprising a translucent substrate,
In the cooling chamber, the opposing surface side and the surface side opposite to the opposing surface in the opening of the pair of frame-shaped members are respectively closed by the light modulation element and the translucent substrate. Formed inside both of the pair of frame-shaped members,
The pair of frame-shaped members include an inlet for allowing the cooling fluid to flow into the cooling chamber, an outlet for allowing the cooling fluid in the cooling chamber to flow out, and a communication port for connecting the cooling chambers in communication. And a light modulation element holding body.
請求項1に記載の光変調素子保持体において、
前記流入口および前記流出口は、前記一対の枠状部材のうちいずれか一方の枠状部材における対向する側端部の対向位置にそれぞれ形成され、
前記連通口は、前記流入口が形成される側端部側に設けられ前記流入口を介して内部に流入した前記冷却流体を、前記一方の枠状部材における前記冷却室、および他方の前記枠状部材における前記冷却室に分流する分流口と、前記流出口が形成される側端部側に設けられ前記他方の枠状部材における前記冷却室内を流通する冷却流体を前記一方の枠状部材における前記冷却室内に流入させる合流口とで構成されていることを特徴とする光変調素子保持体。
The light modulation element holding body according to claim 1,
The inflow port and the outflow port are respectively formed at opposed positions of opposing side end portions of any one of the pair of frame-shaped members.
The communication port is provided on a side end portion side where the inflow port is formed, and the cooling fluid that has flowed into the inside through the inflow port, the cooling chamber in the one frame-shaped member, and the other frame A diversion port for diverting to the cooling chamber in the member, and a cooling fluid that is provided on the side end side where the outflow port is formed and flows in the cooling chamber in the other frame member in the one frame member. A light modulation element holding body comprising: a confluence that flows into the cooling chamber.
請求項2に記載の光変調素子保持体において、
前記分流口は、その内側面の一部が前記流入口から流入する前記冷却流体の流入方向と交差するように前記流入口と連通接続し、
前記内側面の一部には、前記流入口を介して流入した前記冷却流体を前記各冷却室に分流する突出部が形成されていることを特徴とする光変調素子保持体。
The light modulation element holder according to claim 2,
The diversion port is connected in communication with the inflow port so that a part of its inner surface intersects the inflow direction of the cooling fluid flowing in from the inflow port,
The light modulation element holding member according to claim 1, wherein a part of the inner surface is formed with a protruding portion for diverting the cooling fluid flowing in through the inflow port to the cooling chambers.
請求項2または請求項3に記載の光変調素子保持体において、
前記流出口近傍には、前記流入口を介して前記一方の枠状部材における前記冷却室内に流入した冷却流体を前記流出口に向けて流通させかつ、前記合流口を介して前記他方の枠状部材における前記冷却室内から前記一方の枠状部材における前記冷却室内に流入した冷却流体を前記流出口に向けて流通させる整流部が形成されていることを特徴とする光変調素子保持体。
In the light modulation element holder according to claim 2 or 3,
In the vicinity of the outlet, the cooling fluid that has flowed into the cooling chamber of the one frame-like member through the inlet is circulated toward the outlet, and the other frame-like is connected through the junction. A light modulation element holding body, wherein a rectifying section is formed to flow the cooling fluid flowing from the cooling chamber in the member into the cooling chamber in the one frame-shaped member toward the outlet.
請求項1に記載の光変調素子保持体において、
前記流入口および前記流出口は、前記一対の枠状部材のうちいずれか一方の枠状部材における一側端部にそれぞれ形成され、
前記連通口は、前記一側端部に対向する側端部側に配置され、前記一方の枠状部材における前記冷却室内の前記一側端部側から前記一側端部に対向する側端部側に流通した冷却流体を他方の前記枠状部材における前記冷却室内に流入させる第1連通口と、前記一側端部側に配置され、前記他方の枠状部材における冷却室内の前記一側端部に対向する側端部側から前記一側端部側に流通した冷却流体を前記一方の枠状部材における冷却室内に流入させる第2連通口とで構成されていることを特徴とする光変調素子保持体。
The light modulation element holding body according to claim 1,
The inflow port and the outflow port are respectively formed at one side end portion of any one of the pair of frame-shaped members.
The communication port is disposed on a side end portion side facing the one side end portion, and a side end portion facing the one side end portion from the one side end portion side in the cooling chamber in the one frame-shaped member. A first communication port through which the cooling fluid flowing to the side flows into the cooling chamber of the other frame-like member, and the one side end of the other frame-like member inside the cooling chamber, And a second communication port for allowing the cooling fluid flowing from the side end facing the portion to the one end side to flow into the cooling chamber of the one frame-like member. Element holder.
請求項5に記載の光変調素子保持体において、
前記一方の枠状部材における前記対向する面と反対の面には、前記開口周縁の前記一側端部側に、照射される光束の光軸方向に向けて窪む凹部が形成され、
前記流入口および前記流出口は、前記凹部の側壁に貫通するようにそれぞれ形成され、
前記凹部には、前記第2連通口および前記流出口と前記第1連通口および前記流入口とを平面的に区画し、前記第2連通口を介して前記他方の枠状部材における冷却室内から前記一方の枠状部材における冷却室内に流入した冷却流体を前記流出口に流通させる隔壁が形成されていることを特徴とする光変調素子保持体。
The light modulation element holder according to claim 5,
On the surface opposite to the facing surface of the one frame-shaped member, a concave portion that is recessed toward the optical axis direction of the irradiated light beam is formed on the one side end portion side of the opening periphery,
The inflow port and the outflow port are respectively formed so as to penetrate the side wall of the recess,
The concave portion divides the second communication port and the outflow port, the first communication port and the inflow port in a plane, and from the cooling chamber in the other frame-shaped member via the second communication port. The light modulation element holding member is characterized in that a partition wall is formed through which the cooling fluid that has flowed into the cooling chamber of the one frame-shaped member flows to the outlet.
請求項1に記載の光変調素子保持体において、
前記流入口は、前記一対の枠状部材のうちいずれか一方の枠状部材に形成され、前記一方の枠状部材における冷却室内部に前記冷却流体を流入させ、
前記連通口は、前記一方の枠状部材における冷却室内部の前記冷却流体を、前記他方の枠状部材における冷却室内部に流通させ、
前記流出口は、前記一対の枠状部材のうちいずれか他方の枠状部材に形成され、前記他方の枠状部材における冷却室内部の前記冷却流体を外部に流出させることを特徴とする光変調素子保持体。
The light modulation element holding body according to claim 1,
The inlet is formed in any one of the pair of frame-shaped members, and allows the cooling fluid to flow into a cooling chamber in the one frame-shaped member,
The communication port distributes the cooling fluid in the cooling chamber in the one frame-shaped member to the cooling chamber in the other frame-shaped member,
The outflow port is formed in any one of the pair of frame-shaped members, and causes the cooling fluid in the cooling chamber in the other frame-shaped member to flow out to the outside. Element holder.
請求項1から請求項7のいずれかに記載の光変調素子保持体において、
前記連通口は、前記一対の枠状部材のうちいずれか一方の枠状部材に形成され、前記一方の枠状部材における冷却室内部と連通する孔を有し、他方の枠状部材に向けて突出する筒状部と、前記他方の枠状部材に形成され、前記他方の枠状部材における冷却室内部と連通し、前記筒状部を挿通可能とする筒状部挿通孔とで構成されていることを特徴とする光変調素子保持体。
In the light modulation element holding body according to any one of claims 1 to 7,
The communication port is formed in one of the pair of frame-shaped members, has a hole communicating with the inside of the cooling chamber in the one frame-shaped member, and faces the other frame-shaped member A cylindrical portion that protrudes, and a cylindrical portion insertion hole that is formed in the other frame-shaped member, communicates with a cooling chamber in the other frame-shaped member, and allows the cylindrical portion to be inserted. A light modulation element holding member.
請求項8に記載の光変調素子保持体において、
前記他方の枠状部材および前記光変調素子の間に介在配置される弾性部材を備え、
前記弾性部材には、前記筒状部を挿通可能とする挿通孔が形成されていることを特徴とする光変調素子保持体。
The light modulation element holder according to claim 8,
An elastic member interposed between the other frame-shaped member and the light modulation element;
The elastic member is provided with an insertion hole through which the cylindrical portion can be inserted.
請求項1から請求項9のいずれかに記載の光変調素子保持体において、
前記一対の枠状部材には、前記対向する面と反対の面側における前記開口周縁に、照射される光束の光軸方向に向けて窪む凹部がそれぞれ形成され、
前記連通口は、前記凹部を介して前記各冷却室を連通接続することを特徴とする光変調素子保持体。
In the light modulation element holding body according to any one of claims 1 to 9,
The pair of frame-shaped members are respectively formed with recesses that are recessed toward the optical axis direction of the irradiated light flux on the periphery of the opening on the surface opposite to the facing surface,
The communication port is configured to communicate and connect the cooling chambers through the recess.
請求項10に記載の光変調素子保持体において、
前記開口周縁には、前記凹部に向けて開口面積を大きくするように斜面が形成されていることを特徴とする光変調素子保持体。
In the light modulation element holder according to claim 10,
An inclined surface is formed on the peripheral edge of the opening so as to increase the opening area toward the recess.
請求項10または請求項11に記載の光変調素子保持体において、
前記凹部の側壁は、前記冷却室内の冷却流体を所定位置に案内可能に曲面状に形成されていることを特徴とする光変調素子保持体。
In the light modulation element holder according to claim 10 or 11,
The side wall of the recess is formed in a curved surface so that the cooling fluid in the cooling chamber can be guided to a predetermined position.
光源から射出された光束を画像情報に応じて変調して光学像を形成する光変調素子を含んで構成される光学装置であって、
請求項1から請求項12のいずれかに記載の光変調素子保持体と、
前記光変調素子保持体の流入口および流出口と接続され、前記冷却流体を前記冷却室外部に案内し、再度、前記冷却室内部に導く複数の流体循環部材とを備えていることを特徴とする光学装置。
An optical device configured to include a light modulation element that modulates a light beam emitted from a light source according to image information to form an optical image,
The light modulation element holder according to any one of claims 1 to 12,
A plurality of fluid circulation members that are connected to the inlet and outlet of the light modulation element holding body, guide the cooling fluid to the outside of the cooling chamber, and guide the cooling fluid to the inside of the cooling chamber again. Optical device.
請求項13に記載の光学装置において、
入射した光束の光学特性を変換する少なくとも1つの光学変換素子を備え、
前記光学変換素子は、透光性基板と、前記透光性基板上に形成され、入射した光束の光学特性を変換する光学変換膜とで構成され、
前記光変調素子保持体を構成する透光性基板のうちの少なくともいずれかの透光性基板は、前記光学変換素子を構成する透光性基板であることを特徴とする光学装置。
The optical device according to claim 13.
Comprising at least one optical conversion element for converting the optical characteristics of the incident light beam;
The optical conversion element includes a translucent substrate and an optical conversion film that is formed on the translucent substrate and converts an optical characteristic of an incident light beam.
An optical apparatus, wherein at least one of the translucent substrates constituting the light modulation element holding body is a translucent substrate constituting the optical conversion element.
請求項14に記載の光学装置において、
前記光変調素子は、複数で構成され、
前記光変調素子保持体は、前記複数の光変調素子に対応して複数で構成され、
前記複数の流体循環部材における前記冷却流体の流路中に設置され、内部に流入した前記冷却流体を前記複数の流体循環部材を介して前記複数の光変調素子保持体毎に分岐して送出する流体分岐部と、前記複数の光変調素子保持体が取り付けられる複数の光束入射側端面を有し、前記複数の光変調素子にて変調された各色光を合成して射出する色合成光学装置とを備え、
前記流体分岐部は、前記色合成光学装置の前記複数の光束入射側端面と交差する端面のうちいずれか一方の端面に取り付けられていることを特徴とする光学装置。
The optical device according to claim 14.
The light modulation element comprises a plurality of;
The light modulation element holding body is composed of a plurality corresponding to the plurality of light modulation elements,
The cooling fluid which is installed in the flow path of the cooling fluid in the plurality of fluid circulation members and flows into the inside is branched and sent to each of the plurality of light modulation element holders via the plurality of fluid circulation members. A color synthesizing optical device that has a fluid branching unit and a plurality of light beam incident side end surfaces to which the plurality of light modulation element holders are attached, and synthesizes and emits the respective color lights modulated by the plurality of light modulation elements; With
The optical device, wherein the fluid branching portion is attached to any one of the end surfaces intersecting with the plurality of light beam incident side end surfaces of the color synthesizing optical device.
請求項15に記載の光学装置において、
前記複数の光変調素子の発熱量に応じて、前記各光変調素子保持体に流通する前記冷却流体の流量を変更可能とする流量変更部を備えていることを特徴とする光学装置。
The optical device according to claim 15, wherein
An optical apparatus comprising: a flow rate changing unit that can change a flow rate of the cooling fluid flowing through each of the light modulation element holding bodies according to a heat generation amount of the plurality of light modulation elements.
請求項15に記載の光学装置において、
前記複数の流体循環部材は、管状部材から構成され、前記複数の光変調素子の発熱量に応じて管径寸法が異なるように形成されていることを特徴とする光学装置。
The optical device according to claim 15, wherein
The optical device is characterized in that the plurality of fluid circulation members are formed of tubular members and have different tube diameters according to the amount of heat generated by the plurality of light modulation elements.
請求項15から請求項17のいずれかに記載の光学装置において、
前記流体分岐部は、前記複数の流体循環部材と接続し前記冷却流体を内部に流入させる冷却流体流入部、および前記冷却流体を外部に流出させる冷却流体流出部を有し、
前記冷却流体流入部および前記冷却流体流出部は、前記冷却流体を流通可能な管形状を有し、一方の端部が前記流体分岐部の内部に向けて突出していることを特徴とする光学装置。
The optical device according to any one of claims 15 to 17,
The fluid branching portion has a cooling fluid inflow portion that is connected to the plurality of fluid circulation members and allows the cooling fluid to flow into the inside, and a cooling fluid outflow portion that causes the cooling fluid to flow out to the outside,
The cooling fluid inflow portion and the cooling fluid outflow portion have a tube shape through which the cooling fluid can flow, and one end portion protrudes toward the inside of the fluid branching portion. .
光源装置と、請求項13から請求項18のいずれかに記載の光学装置と、前記光学装置にて形成された光学像を拡大投射する投射光学装置とを備えていることを特徴とするプロジェクタ。   A projector comprising: a light source device; the optical device according to any one of claims 13 to 18; and a projection optical device that magnifies and projects an optical image formed by the optical device.
JP2004020247A 2004-01-28 2004-01-28 Optical modulation element holder, optical apparatus and projector Withdrawn JP2005215198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020247A JP2005215198A (en) 2004-01-28 2004-01-28 Optical modulation element holder, optical apparatus and projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020247A JP2005215198A (en) 2004-01-28 2004-01-28 Optical modulation element holder, optical apparatus and projector

Publications (1)

Publication Number Publication Date
JP2005215198A true JP2005215198A (en) 2005-08-11

Family

ID=34904219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020247A Withdrawn JP2005215198A (en) 2004-01-28 2004-01-28 Optical modulation element holder, optical apparatus and projector

Country Status (1)

Country Link
JP (1) JP2005215198A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383515A (en) * 2012-05-04 2013-11-06 扬明光学股份有限公司 Projection device and light valve module thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383515A (en) * 2012-05-04 2013-11-06 扬明光学股份有限公司 Projection device and light valve module thereof
JP2013235267A (en) * 2012-05-04 2013-11-21 Young Optics Inc Projection device and light valve module thereof
US9285580B2 (en) 2012-05-04 2016-03-15 Young Optics Inc. Projection device and light valve module thereof
DE102013103607B4 (en) * 2012-05-04 2021-03-04 Young Optics Inc. Projection device and light valve module for this

Similar Documents

Publication Publication Date Title
JP4192882B2 (en) Optical device and projector
US7150543B2 (en) Optical modulator holder, optical device, and projector
US7216988B2 (en) Optical device and projector
KR100705871B1 (en) Optical device, optical device manufacturing method, and projector
EP1564580B1 (en) Optical device
JP3966295B2 (en) Optical device and projector
JP3966288B2 (en) Light modulation element holder, optical device, and projector
JP4244908B2 (en) Light modulation element holder, optical device, and projector
JPWO2005064397A1 (en) Optical device and projector
JP3992005B2 (en) Optical device and projector
JP2006330642A (en) Optical apparatus and projector
JP2007025384A (en) Optical modulator, optical apparatus and projector
JP2006330641A (en) Optical apparatus and projector
JP2005215198A (en) Optical modulation element holder, optical apparatus and projector
JP3966296B2 (en) Optical device and projector
JP2005249950A (en) Optical device and projector
JP2005241863A (en) Light modulation element holder, optical device and projector
JP2005208632A (en) Optical modulation element holder, optical apparatus and projector
JP2005275271A (en) Optical modulation element holder, optical device and projector
JP2005338347A (en) Optical device and projector
JP2006126456A (en) Optical modulation element holder, optical apparatus and projector
JP2006030400A (en) Projector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070704

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070813

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080107