JP2005214698A - Method for measuring internal stress of composite structure material due to radioactive diffraction - Google Patents

Method for measuring internal stress of composite structure material due to radioactive diffraction Download PDF

Info

Publication number
JP2005214698A
JP2005214698A JP2004019429A JP2004019429A JP2005214698A JP 2005214698 A JP2005214698 A JP 2005214698A JP 2004019429 A JP2004019429 A JP 2004019429A JP 2004019429 A JP2004019429 A JP 2004019429A JP 2005214698 A JP2005214698 A JP 2005214698A
Authority
JP
Japan
Prior art keywords
stress
strength
measuring
neutron
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004019429A
Other languages
Japanese (ja)
Inventor
Shintaro Ishiyama
新太郎 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2004019429A priority Critical patent/JP2005214698A/en
Publication of JP2005214698A publication Critical patent/JP2005214698A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein there is nothing in an example for measuring the residual stress state related to a high strength material such as a nano composite material like high strength SIC or a bonding material thereof because an experiment is difficult or an experimental technique is not established. <P>SOLUTION: An X-ray stress measuring method capable of measuring the stress of the surface of a sample (-about 20 mm) and a neutron stress measuring method capable of measuring the stress in the sample (about several 10 mm) are combined by noticing a neutron diffraction method capable of fractionating the lattice diffraction pattern at every name phase of the deep layer of the material or high intensity X-rays to measure the three-dimensional stress distribution in the material in each of fine structural phases to clear the effect of the residial stress exerted on the material strength or destruction mechanism of high strength reaction sintered SiC. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、放射線回折による、高強度SiCのようなナノ複合材料やその接合材等の複合構造材料の内部応力を同時に計測する方法に関するものである。本発明は、一般産業分野、原子力、宇宙・航空等において使用されるSiCのようなナノ複合材料やその接合材等の複合構造材料の内部応力を同時に計測する方法である。又、本発明においては、X線では試料表面、中性子線では試料内部の結晶格子の残留応力による歪みをそれぞれ計測できるので、これらを同時に計測することにより物質全体の応力情報を入手ることが可能である。   The present invention relates to a method of simultaneously measuring internal stresses of a composite structure material such as a nanocomposite material such as high-strength SiC or a bonding material thereof by radiation diffraction. The present invention is a method for simultaneously measuring the internal stress of a nanocomposite material such as SiC used in general industrial fields, nuclear power, space / aviation, and the like, and a composite structure material such as a bonding material thereof. In the present invention, the X-ray can measure the strain due to the residual stress in the sample surface and the neutron beam due to the residual stress in the crystal lattice inside the sample. By simultaneously measuring these, it is possible to obtain the stress information of the whole substance. It is.

中性子線や放射光X線による種々の材料の回折構造解析や残留応力の評価は行なわれてきたが、高強度SiCのようなナノ複合材料やその接合材等の複合構造を同時に、しかも三次元的に分析できる方法はなかった。   Diffraction structure analysis and residual stress evaluation of various materials using neutron rays and synchrotron radiation X-rays have been performed, but composite structures such as nano-composite materials such as high-strength SiC and their bonding materials are simultaneously and three-dimensional. There was no method that could be analyzed analytically.

最近、無加圧で骨材SiC粒子(αSiC)と炭素粉末中に溶融珪素を流し込む真空反応焼結法で製作した炭化珪素材料により、従来の製品強度の2.5倍以上(曲げ強さ:1200MPa)の高強度SiCセラミックスが出現し、さらには同材料の同様の反応焼結法による接合技術開発の見通しもつきつつある。   More than 2.5 times the conventional product strength (bending strength: 1200MPa) by using a silicon carbide material that has recently been manufactured by vacuum reaction sintering method in which molten SiC is poured into carbon powder and aggregate SiC particles (αSiC) without pressure High-strength SiC ceramics have emerged, and the prospect of joint technology development using the same reactive sintering method for the same material is also emerging.

この材料における高強度化発現の理由は、溶融珪素と炭素粉末が反応して生成した炭化珪素(βSiC)と未反応のフリー珪素(Si)により構成されるナノ微細構造に起因しているものと考えられる。すなわち、高強度SiCは、図1に示されるように、αSiC、βSiC、さらにSiの3相から成る複合材料であり、相間の熱膨張係数差により発生した相間残留応力や外力発生に伴い生ずる各相の複雑な応力状態が、き裂進展挙動や破壊機構に影響すると予想され、それが特異な材料強度を有する要因になっていると考えられる。   The reason for the development of high-strength in this material is due to the nano-fine structure composed of silicon carbide (βSiC) produced by the reaction of molten silicon and carbon powder and unreacted free silicon (Si). Conceivable. That is, as shown in FIG. 1, high-strength SiC is a composite material composed of three phases of αSiC, βSiC, and Si. Each of the high-strength SiC is generated by interphase residual stress and external force generated due to the difference in thermal expansion coefficient between phases. The complex stress state of the phase is expected to affect the crack propagation behavior and fracture mechanism, which is considered to be a factor that has a unique material strength.

そこで、これらの相間応力解析や破壊機構の関係を明らかにして新たにこれらの応力を緩和できるナノ構造を付与することにより、この材料の材料強度をさらに改善できる可能性が期待できるが、高強度SiCのようなナノ複合材料やその接合材では、材料内部は複雑な三軸応力状態(外部から受けた物体内部に発生する三次元的応力)で、かつこれらの発生応力を各相(αSiC,βSiC,さらにSi相)がそれぞれ分担することにより高強度を発現しているものと推測されるものの、試料表面においては三軸応力状態から平面応力状態(外部から力を受けた物体内部に働く平面的な応力:薄い板で良く起きる)に移行するなど、材料中で極めて複雑な応力分状態が存在し、このような複雑な応力状態がかかる材料の特異な材料強度や破壊機構に影響を及ぼしているものと考えられる。   Therefore, it is expected that the material strength of this material can be further improved by clarifying the relationship between these interfacial stress analysis and fracture mechanism and adding a new nanostructure that can relieve these stresses. In a nanocomposite material such as SiC and its bonding material, the inside of the material is in a complex triaxial stress state (three-dimensional stress generated inside the object received from the outside), and these generated stresses are expressed in each phase (αSiC, Although it is assumed that βSiC and Si phase) each share high strength, the surface of the sample is changed from a triaxial stress state to a plane stress state (a plane acting inside the object that receives external force). The stress component state is very complex in the material, and it affects the specific material strength and fracture mechanism of the material. It is considered that you are.

そのため、これまでにこのような高強度材料に関する残留応力状態を測定した例は、実験の困難さや同実験手法が確立されていないことから、皆無の状態である。   For this reason, there are no examples in which the residual stress state relating to such a high-strength material has been measured so far because the difficulty of the experiment and the experimental method have not been established.

これに対して、本発明においては、これら材料深層の各ナノ相(例えば、αSiC相,βSiC相,さらにSi相)ごとの格子回折パターンを分別できる中性子回折装置(図2)を使用する中性子回折法や、放射光応力測定装置(図3)の高強度X線(放射光X線)に着目することにより、試料極表面(〜20μm程度)の応力を測定可能なX線応力測定法と、試料内部(数10mm程度)の応力を測定可能な中性子応力測定法とを組み合わせて、試料内部の三次元応力分布を各微細構造相において測定し、高強度反応焼結SiCの材料強度や破壊機構に及ぼす残留応力の影響を明確にできる確証データを得た。   On the other hand, in the present invention, neutron diffraction using a neutron diffraction apparatus (FIG. 2) that can separate the lattice diffraction patterns for each nanophase (for example, αSiC phase, βSiC phase, and further Si phase) of these material deep layers. X-ray stress measurement method capable of measuring the stress on the sample electrode surface (about 20 μm) by paying attention to the high-intensity X-ray (radiation light X-ray) of the method and synchrotron radiation stress measurement device (FIG. 3), Combined with the neutron stress measurement method that can measure the stress inside the sample (several tens of millimeters), the three-dimensional stress distribution inside the sample is measured in each microstructure phase, and the material strength and fracture mechanism of high-strength reactive sintered SiC Confirmation data was obtained that could clarify the effect of residual stress on.

本発明により、複合構造材料の微細構造ならびに応力負荷時の応力分布を三次元的に計測することができ、構造体の破壊を未然に防いだり、材料の高強度化に役立つ。   According to the present invention, the microstructure of the composite structure material and the stress distribution at the time of stress loading can be measured three-dimensionally, and the structure can be prevented from being broken in advance, and it is useful for increasing the strength of the material.

本発明の具体的方法は、(1)まず、日本原子力研究所の実験用原子炉JRR-3Mに設置された中性子型高分解能粉末回折装置(HRPD)及び放射光応力測定装置(RESA)を用いる。HRPDを用いて、図3に示されるような、粉末化した高強度セラミックス材の粉末回折パターンを測定する。この測定結果から、高強度セラミックス材の構成相を明確にすると共に各相の無ひずみ状態の格子面間隔を把握する。また、RESAを用いて、高強度セラミックス材の各回折面に対する弾性定数及びポアソン比を測定する。これら基礎データを、以下の残留応力評価に用いる。   The specific method of the present invention is as follows. (1) First, a neutron type high-resolution powder diffractometer (HRPD) and a synchrotron radiation stress measuring device (RESA) installed in the experimental nuclear reactor JRR-3M of the Japan Atomic Energy Research Institute are used. . Using HRPD, a powder diffraction pattern of a powdered high-strength ceramic material as shown in FIG. 3 is measured. From this measurement result, the constituent phases of the high-strength ceramic material are clarified and the lattice plane spacing of each phase in an unstrained state is grasped. In addition, the elastic constant and Poisson's ratio for each diffraction surface of the high-strength ceramic material are measured using RESA. These basic data are used for the following residual stress evaluation.

(2)次に、中性子応力測定法を用い、高強度セラミックス材、一般反応焼結セラミックス材及び粉末焼結セラミックス材の三次元残留応力分布を測定する。まず、高強度セラミックス材の各相の残留応力状態を比較することで、このような材料の残留応力発生メカニズムを明確にする。次いで、材料強度の大きく異なる3種類の材料の応力状態と材料強度の関係から、高強度セラミックス材の材料強度に及ぼす残留応力の影響を検討する。   (2) Next, the three-dimensional residual stress distribution of the high-strength ceramic material, the general reaction sintered ceramic material, and the powder sintered ceramic material is measured using a neutron stress measurement method. First, the residual stress generation mechanism of such a material is clarified by comparing the residual stress state of each phase of the high-strength ceramic material. Next, the influence of the residual stress on the material strength of the high-strength ceramic material is examined from the relationship between the stress state and the material strength of three kinds of materials having greatly different material strengths.

(3)最後に、単軸引張負荷(外部からの力が一方向だけから働く場合)した高強度セラミックス材の各相の応力変化を測定し、機械的負荷応力に対する各相の応力負担分を把握する。   (3) Finally, the stress change of each phase of the high strength ceramic material subjected to uniaxial tensile load (when external force works only from one direction) is measured, and the stress share of each phase with respect to the mechanical load stress is calculated. To grasp.

即ち、高強度セラミックス材の曲げ試験片を複数本作成し、全ての試験片について三次元残留応力分布(一旦外力が加わった後、この外力を取り除いても物体内部に三次元的に残留する応力)を測定する。全ての試験片について、4点曲げ負荷試験により曲げ強さを測定し破壊起点を特定し、破壊起点近傍の残留応力状態と各試験片の曲げ強さの関係から、材料強度に及ぼす残留応力の影響を明確にする。   In other words, a plurality of bending test pieces of high-strength ceramic material are prepared, and the three-dimensional residual stress distribution for all the test pieces (the stress that remains in the object three-dimensionally even if this external force is removed once the external force is applied) ). For all specimens, the bending strength is measured by a four-point bending load test to identify the starting point of fracture. From the relationship between the residual stress state near the starting point of fracture and the bending strength of each specimen, the residual stress on the material strength is measured. Clarify the impact.

そして、各相の応力負担分と各相の一般的な曲げ強さ、そして高強度セラミックス材の曲げ強さの関係から、破壊起点となる相を特定し、高強度発現の要因を明確にできる。
以上により、中性子により高強度セラミックスの三次元相間応力分布を測定することによって、各相に生じる残留応力状態や外部負荷に伴う各相の応力負担分を把握し、さらに、これらの情報を基に高強度セラミックスの材料強度や破壊機構に及ぼす残留応力の影響を明らかにすることにより、この材料のさらなる高強度化の方策及び中性子利用領域の拡大が期待できる。
And, from the relationship between the stress burden of each phase, the general bending strength of each phase, and the bending strength of high-strength ceramic materials, it is possible to identify the phase that is the starting point of fracture and clarify the cause of high strength development. .
As described above, by measuring the three-dimensional interphase stress distribution of high-strength ceramics using neutrons, it is possible to grasp the residual stress state generated in each phase and the stress burden of each phase accompanying external load, and based on these information By clarifying the effects of residual stress on the material strength and fracture mechanism of high-strength ceramics, we can expect further enhancement of the strength of this material and expansion of the neutron application range.

本発明の研究の要となる高強度SiCのようなナノ複合材料やその接合材のナノ複合構造組織(αSiC、βSiC、さらにSi相)の応力分担解析に必要な各相からの回折パターンの取得は中性子回折法による予備的試験ですでに終了しており、SiC及びSi各相の回折パターンおよびそれらの個別認識が可能であることを明らかにしている(図4)。即ち、図4に示されるように、高強度反応焼結SiCの微細組織のαSiC、βSiCおよびフリーSiからのそれぞれの回折パターンの違いが分別でき、この状態で外部から応力がかかると、各ナノ組織格子が歪むため各回折パターン位置が変わる。その情報を基に、各組織の応力分担の割合を解析することができる。   Acquisition of diffraction patterns from each phase required for stress sharing analysis of nanocomposite materials such as high-strength SiC and the nanocomposite structure (αSiC, βSiC, and Si phase) of the joint material, which is the key to the research of the present invention Has already been completed in a preliminary test by the neutron diffraction method, revealing that diffraction patterns of SiC and Si phases and their individual recognition are possible (FIG. 4). That is, as shown in FIG. 4, the difference in diffraction pattern from αSiC, βSiC, and free Si in the microstructure of high-strength reaction-sintered SiC can be distinguished. Since the tissue lattice is distorted, the position of each diffraction pattern changes. Based on the information, it is possible to analyze the ratio of stress sharing of each tissue.

一方、当初αSiCおよびβSiCの回折線が重なることから、αSiCについては、独立な回折線が存在するために応力評価は可能であるが、βSiCには独立なピークが存在しないため、応力評価が困難であった。そこで、JCPDS(標準規格)粉末回折データベースのαSiCおよびβSiCの格子定数を用いて各回折線のピーク位置を検討した。その結果、その差は約0.1°から0.3°程度であるが、中性子応力測定では、ピーク位置決定法としてガウス近似法を用いているため、ピークが重なっていてもピークトップさえ明確であれば、回折角を決定できることが分かった。   On the other hand, because αSiC and βSiC diffraction lines initially overlap, stress evaluation is possible for αSiC because there are independent diffraction lines, but stress evaluation is difficult because there is no independent peak in βSiC. Met. Therefore, the peak positions of each diffraction line were examined using αSiC and βSiC lattice constants in the JCPDS (standard specification) powder diffraction database. As a result, the difference is about 0.1 ° to 0.3 °, but in neutron stress measurement, since the Gaussian approximation method is used as the peak position determination method, if the peaks overlap even if the peaks overlap, It was found that the diffraction angle can be determined.

高強度反応焼結SiCの微細組織は、αSiC、βSiCおよびフリーSiのナノ複合構造から構成されていることを示す図である。It is a figure which shows that the microstructure of high intensity | strength reaction sintered SiC is comprised from the nanocomposite structure of (alpha) SiC, (beta) SiC, and free Si. 中性子回折装置により構造体内部の格子ひずみ情報が計測できることを示す図である。It is a figure which shows that the lattice distortion information inside a structure can be measured with a neutron diffraction apparatus. 放射光応力測定装置により構造体表面の格子ひずみ情報を計測できることを示す図である。It is a figure which shows that the lattice distortion information on the surface of a structure can be measured with a synchrotron radiation stress measuring device. 高強度反応焼結SiCの微細組織のαSiC、βSiCおよびフリーSiからのそれぞれの回折パターンの違いを示す図である。It is a figure which shows the difference of each diffraction pattern from (alpha) SiC, (beta) SiC, and free Si of the microstructure of high intensity | strength reaction sintering SiC.

Claims (7)

中性子線や放射光X線の回折計測による複合構造材料の構造格子の歪みを同時に計測する方法。   A method of simultaneously measuring the distortion of the structural lattice of a composite structural material by diffractometry of neutron rays and synchrotron radiation X-rays. SiCα粒子、フリーSi及びSiCβ粒子から構成される高強度微細構造セラミックスからなる複合構造材料の内部応力を計測する請求項1記載の方法。   The method according to claim 1, wherein the internal stress of a composite structural material composed of high-strength microstructure ceramics composed of SiCα particles, free Si and SiCβ particles is measured. 中性子線及び放射光X線により複合構造材料の内部及びその表面の構造歪みを三次元的に計測し、その残留応力を評価する請求項1記載の方法。   The method according to claim 1, wherein the residual stress is evaluated by three-dimensionally measuring the structural distortion of the inside and the surface of the composite structural material with neutron rays and synchrotron radiation X-rays. SiCα粒子、フリーSi及びSiGβ粒子から構成される高強度微細構造セラミクス間の接合部の残留応力を計測する請求項2記載の方法。   The method according to claim 2, wherein the residual stress at the joint between the high-strength microstructure ceramics composed of SiCα particles, free Si and SiGβ particles is measured. 複合構造材料の極表面の応力を測定できる放射光X線応力測定法と前記材料又は内部の応力を測定できる中性子応力測定法とを組み合わせて、前記材料内部の三次元応力分布を各微細構造相において測定し、前記材料の強度や破壊機構に及ぼす残留応力を計測する方法。   Combining the synchrotron radiation X-ray stress measurement method capable of measuring the stress on the extreme surface of a composite structural material with the neutron stress measurement method capable of measuring the material or internal stress, the three-dimensional stress distribution inside the material can be determined for each microstructure phase. A method of measuring residual stress exerted on the strength and fracture mechanism of the material. 複合構造材料が、SiCα粒子、フリーSi及びSiCβ粒子から構成される高強度微細構造セラミックスからなる請求項5記載の方法。   The method according to claim 5, wherein the composite structural material comprises high-strength microstructure ceramics composed of SiCα particles, free Si and SiCβ particles. (1)中性子回折装置を用いて粉末化した高強度セラミックス材の粉末回折パターンを測定し、この測定結果から高強度セラミックス材の構成相を明確にすると共に各相の無ひずみ状態の格子面間隔を把握し、更に放射光応力測定装置を用いて高強度セラミックス材の各回折面に対する弾性定数及びポアソン比を測定し、これら測定結果を基礎データとして得、
(2)中性子応力測定法を用いて高強度セラミックス材、一般反応焼結セラミックス材 及び粉末焼結セラミックス材の三次元残留応力分布を測定し、材料強度の大きく異なる 3種類の材料の応力状態と材料強度の関係から高強度セラミックス材の材料強度に及ぼ す残留応力の影響を検討し、
(3)最後に、単軸引張負荷した高強度セラミックス材の各相の応力変化を測定し、機械的負荷応力に対する各相の応力負担分を測定し、高強度セラミックス材の曲げ強さの関係から破壊起点となる相を特定し、高強度発現の要因を明確にできるとともに、その要因を取り除くための材料組成や組織の変更により、さらに強度の優れた材料の開発を可能とする、高強度セラミックス材料の強度や破壊機構に及ぼす残留応力を計測する方法。












(1) Measure the powder diffraction pattern of the high-strength ceramic material powdered using a neutron diffractometer, clarify the constituent phases of the high-strength ceramic material from the measurement results, and the lattice plane spacing of each phase in the unstrained state Measure the elastic constant and Poisson's ratio for each diffraction surface of the high-strength ceramic material using a synchrotron radiation stress measurement device, and obtain these measurement results as basic data.
(2) Three-dimensional residual stress distribution of high-strength ceramic materials, general reaction sintered ceramic materials, and powder sintered ceramic materials is measured using neutron stress measurement method. Considering the effect of residual stress on the material strength of high-strength ceramic materials from the relationship of material strength,
(3) Finally, the stress change of each phase of the high-strength ceramic material subjected to uniaxial tensile load is measured, the stress share of each phase with respect to the mechanical load stress is measured, and the relationship between the bending strength of the high-strength ceramic material It is possible to identify the phase that is the starting point of fracture and clarify the cause of high strength, and to develop a material with higher strength by changing the material composition and the structure to remove the cause. A method of measuring the residual stress on the strength and fracture mechanism of ceramic materials.












JP2004019429A 2004-01-28 2004-01-28 Method for measuring internal stress of composite structure material due to radioactive diffraction Pending JP2005214698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004019429A JP2005214698A (en) 2004-01-28 2004-01-28 Method for measuring internal stress of composite structure material due to radioactive diffraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004019429A JP2005214698A (en) 2004-01-28 2004-01-28 Method for measuring internal stress of composite structure material due to radioactive diffraction

Publications (1)

Publication Number Publication Date
JP2005214698A true JP2005214698A (en) 2005-08-11

Family

ID=34903643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004019429A Pending JP2005214698A (en) 2004-01-28 2004-01-28 Method for measuring internal stress of composite structure material due to radioactive diffraction

Country Status (1)

Country Link
JP (1) JP2005214698A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1828282B (en) * 2006-03-30 2010-11-03 武汉理工大学 Neutron diffraction measure method for CaO-Al2O3-SiO2 system microcrystalline glass residue stress
JP2011198874A (en) * 2010-03-18 2011-10-06 Murata Mfg Co Ltd Laminated ceramic capacitor, method of manufacturing the same, and method for evaluating internal stress
CN106770402A (en) * 2017-01-11 2017-05-31 中国工程物理研究院核物理与化学研究所 A kind of three-dimensional calibration measurement apparatus for neutron diffraction stress analysis
CN114858324A (en) * 2022-07-07 2022-08-05 浙江大学杭州国际科创中心 Method and system for detecting residual stress of silicon carbide crystal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1828282B (en) * 2006-03-30 2010-11-03 武汉理工大学 Neutron diffraction measure method for CaO-Al2O3-SiO2 system microcrystalline glass residue stress
JP2011198874A (en) * 2010-03-18 2011-10-06 Murata Mfg Co Ltd Laminated ceramic capacitor, method of manufacturing the same, and method for evaluating internal stress
CN106770402A (en) * 2017-01-11 2017-05-31 中国工程物理研究院核物理与化学研究所 A kind of three-dimensional calibration measurement apparatus for neutron diffraction stress analysis
CN106770402B (en) * 2017-01-11 2023-08-04 中国工程物理研究院核物理与化学研究所 Three-dimensional calibration measuring device for neutron diffraction stress analysis
CN114858324A (en) * 2022-07-07 2022-08-05 浙江大学杭州国际科创中心 Method and system for detecting residual stress of silicon carbide crystal
CN114858324B (en) * 2022-07-07 2022-09-30 浙江大学杭州国际科创中心 Method and system for detecting residual stress of silicon carbide crystal

Similar Documents

Publication Publication Date Title
Östlund et al. Brittle‐to‐ductile transition in uniaxial compression of silicon pillars at room temperature
Watts et al. Measurement of thermal residual stresses in ZrB2–SiC composites
Abuhasan et al. Residual stresses in Alumina/Silicon Carbide (Whisker) composites by X‐ray diffraction
Maurya et al. Review on study of internal load transfer in metal matrix composites using diffraction techniques
Carvajal-Nunez et al. Determination of elastic properties of polycrystalline U3Si2 using resonant ultrasound spectroscopy
Moradkhani et al. Mechanical properties and fracture behavior of B4C-nano/micro SiC composites produced by pressureless sintering
Shokrieh et al. Nondestructive testing (NDT) techniques in the measurement of residual stresses in composite materials: An overview
Liu et al. Internal friction vs. thermal shock in C/C composites
Zhang et al. Scalable preparation of graphene reinforced zirconium diboride composites with strong dynamic response
Guerain et al. Residual stress determination in oxide layers at different length scales combining Raman spectroscopy and X-ray diffraction: Application to chromia-forming metallic alloys
Pelissari et al. Refractory interphase and its role on the mechanical properties of boron containing nacre-like ceramic
Zhou et al. Residual stress estimation in laminated ZrB2-SiC ultra-high temperature ceramics with strong interfaces using X-ray diffraction and indentation techniques
JP2005214698A (en) Method for measuring internal stress of composite structure material due to radioactive diffraction
Shaw et al. Cracking patterns in metal-ceramic laminates: effects of plasticity
CN109470577B (en) Method for representing internal stress of TATB-based PBX under force-heat action
Węglewski et al. Anomalous size effect in thermal residual stresses in pressure sintered alumina-chromium composites
Bianchi Thermophysical and mechanical characterization of advanced materials for the LHC collimation system
Sattonnay et al. Structural modifications induced by swift heavy ions in cubic stabilized zirconia: An X-ray diffraction investigation
Tadano et al. Residual stress evaluation of hydroxyapatite coating Ti implant
Djuidje-Dzumgam et al. Zirconia layers: Structure, residual stress and fracture strength
Kupperman et al. Residual strain in advanced composites
Akiniwa et al. Neutron diffraction study of thermal residual stress in ceramic composite
Kuliiev Mechanical properties of boron carbide (B4C)
Qu et al. Stress among the APS-Prepared TBCs: Testing and Analysis
Biernacki et al. Phase‐resolved strain measurements in hydrated ordinary portland cement using synchrotron x‐rays

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100127