JP2005214677A - Gas sensor and hydrogen concentration detection method - Google Patents

Gas sensor and hydrogen concentration detection method Download PDF

Info

Publication number
JP2005214677A
JP2005214677A JP2004019055A JP2004019055A JP2005214677A JP 2005214677 A JP2005214677 A JP 2005214677A JP 2004019055 A JP2004019055 A JP 2004019055A JP 2004019055 A JP2004019055 A JP 2004019055A JP 2005214677 A JP2005214677 A JP 2005214677A
Authority
JP
Japan
Prior art keywords
temperature
thermocouple
hydrogen
data
electronic control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004019055A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Tsuji
信義 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Bank Co Ltd
Original Assignee
Techno Bank Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Bank Co Ltd filed Critical Techno Bank Co Ltd
Priority to JP2004019055A priority Critical patent/JP2005214677A/en
Publication of JP2005214677A publication Critical patent/JP2005214677A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized sensor capable of detecting gas and temperature by using integrally a thermocouple and a gas reaction body (a catalyst material and either of an electrochemical device and a surface acoustic wave device of its application). <P>SOLUTION: This gas sensor is constituted of a complex element means by a conductor bonding point on the temperature measuring junction side of the thermocouple and the gas reaction body; a detachment/attachment means for storing the complex element means in a detachment/attachment vessel; and an electronic control means by an electronic control part comprising a Thompson effect control system, a Seebeck effect control system or the like including a power source for controlling the complex element means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、熱電対の熱電効果とガス反応体の機能を応用してガス濃度を検出する装置にかかり、特にガスセンサーの小型化、低価格化、極限環境での使用、などを可能にするものである。 The present invention relates to an apparatus for detecting a gas concentration by applying a thermocouple effect of a thermocouple and a function of a gas reactant, and particularly enables downsizing, cost reduction, use in an extreme environment, etc. of a gas sensor. Is.

ガスセンサー分野で特に水素センサーについては、地球温暖化効果ガス削減対策とともに燃料電池の早期実用化が望まれており、これらに必需となる水素センサーでは、文献1(特許公開平8−128992)、文献2(特許公表2002−535651)、文献3(特許公開2002−193861)、等がある。 In the field of gas sensors, particularly for hydrogen sensors, early practical application of fuel cells is desired along with measures to reduce global warming effect gas. For hydrogen sensors that are indispensable for these, Document 1 (Patent Publication No. 8-128992), Document 2 (Patent Publication 2002-535651), Document 3 (Patent Publication 2002-193861), and the like.

このような従来方法は、水素相互作用金属膜による方法、イオン検出の方法、プロトン伝導体などによる方法では、装置が大きく、温度の計測や制御の部材も別途必要となり、総体には電気化学デバイスでは高コストになるなど課題がある。 Such conventional methods include a hydrogen interaction metal film method, an ion detection method, a proton conductor method, etc., and the apparatus is large, and members for temperature measurement and control are separately required. Then there are problems such as high costs.

また、ほかにも弾性表面波(SAW)デバイスを用いたガスセンサーでは、計測環境の熱や圧力などに影響を受けやすいため、極限環境での使用や計測値の補正制御において課題がある。 In addition, gas sensors using surface acoustic wave (SAW) devices are susceptible to the heat and pressure of the measurement environment, and thus have problems in use in extreme environments and correction control of measurement values.

本発明は、従来技術が課題とする、装置規模の小型化、低価格化、極限環境への対応、などを可能にする。また、本発明の他の目的は、ガス濃度検知と温度検知の機能を兼ね備えることにある。 The present invention makes it possible to reduce the size of the apparatus, reduce the price, and cope with extreme environments, which are problems of the prior art. Another object of the present invention is to combine the functions of gas concentration detection and temperature detection.

本発明は、熱電対の測温接点側の導体接合点とガス反応体による複合素子手段と、複合素子手段を離脱着容器内に収納させた離脱着手段と、複合素子手段を制御する電源を含むトムソン効果制御系統およびゼーベック効果制御系統などからなる電子制御部による電子制御手段とで構成したことを主要な特徴とする。 The present invention relates to a composite element means using a conductor junction on the temperature measuring contact side of a thermocouple and a gas reactant, a detaching / attaching means in which the composite element means is housed in a detachable attachment container, and a power source for controlling the composite element means. The main feature is that it is composed of electronic control means by an electronic control unit including a Thomson effect control system and a Seebeck effect control system.

水素ガス検知における複合素子手段のガス反応体は、触媒材として水素吸蔵合金を用いる場合、熱電対の導体接合点の周囲に装着する水素吸蔵合金の粉末に高分子、金属、酸化物、炭化物などを用いて薄膜な被膜を施すことで、水素吸蔵合金の被毒現象を回避することができる。 In the case of using a hydrogen storage alloy as the catalyst material, the gas reactant of the composite element means in the hydrogen gas detection is a polymer, metal, oxide, carbide, etc. in the hydrogen storage alloy powder mounted around the conductor junction of the thermocouple By applying a thin film using, the poisoning phenomenon of the hydrogen storage alloy can be avoided.

離脱着手段は、複合素子手段の素子部を容器内に収納して導線部と分離することで素子部を離脱着することができる。 The detaching / attaching means can detach / attach the element part by storing the element part of the composite element means in the container and separating it from the conductor part.

トムソン効果制御系統は、熱電効果のトムソン効果を用いて導線に直流電流を通電し導体接合点を加熱または冷却をすることでガス反応体の温度制御が容易にできる。 The Thomson effect control system can easily control the temperature of the gas reactant by applying a direct current to the conductor using the Thomson effect of the thermoelectric effect to heat or cool the conductor junction.

ゼーベック効果制御系統は、熱電効果のゼーベック効果を用いて導体接合点と基準接点との温度差による熱起電力から計測環境温度やガス反応体の発熱量を検知することができる。 The Seebeck effect control system can detect the measurement environment temperature and the calorific value of the gas reactant from the thermoelectromotive force due to the temperature difference between the conductor junction and the reference contact using the Seebeck effect of the thermoelectric effect.

電子制御手段は、電子制御部に予め設定された値と、トムソン効果制御系統の温度制御と、ゼーベック効果制御系統が計測する値と、ガス反応体が検知する値などにより、電子制御部が演算および制御することでガス濃度と温度の検知ができる。 The electronic control unit is operated by the electronic control unit based on values preset in the electronic control unit, temperature control of the Thomson effect control system, values measured by the Seebeck effect control system, values detected by the gas reactant, etc. And by controlling it, gas concentration and temperature can be detected.

また、触媒材およびその応用の電気化学デバイス、弾性表面波(SAW)デバイスのガス反応体のいずれかと熱電対の導体接合点とを組み合わせて素子部を一体化することで、ガスと温度の検知機能を持ち備えてセンサーの小型化ができる。 In addition, gas and temperature can be detected by combining the catalytic element and any of the gas reactants of the electrochemical device or surface acoustic wave (SAW) device of the application with the conductor junction of the thermocouple to integrate the element. It has a function and can downsize the sensor.

第1図の実施例によって説明すると、ガス反応体3に触媒材を用いた水素ガスを検知するガスセンサーであって、2種類の金属線の導体端が接合された熱電対の導体接合点2の周囲にガス反応体3として触媒材の水素吸蔵合金の粉末が固着され、離脱着容器4内部に収納されるガスセンサー1が形成されている。 Referring to the embodiment of FIG. 1, a gas sensor for detecting hydrogen gas using a catalyst material for the gas reactant 3, which is a conductor junction 2 of a thermocouple in which conductor ends of two kinds of metal wires are joined. As a gas reactant 3, a hydrogen storage alloy powder of a catalyst material is fixed around the gas sensor 1, and a gas sensor 1 is formed that is housed in the release / detachment container 4.

また、ガスセンサー1が収納された離脱着容器4はソケット5内に差し込まれて、ソケット5内でガスセンサー1の導体端と接合する2種類の導線8は、電源15を含むトムソン効果制御系統10およびゼーベック効果制御系統12などとで構成される電子制御部20と結線されて全体が構成されている。 Further, the detachable container 4 in which the gas sensor 1 is accommodated is inserted into the socket 5, and the two kinds of conductors 8 joined to the conductor end of the gas sensor 1 in the socket 5 are Thomson effect control systems including a power source 15. 10 and the Seebeck effect control system 12 and the like are connected to an electronic control unit 20 to constitute the whole.

熱電対の導体材料としては、一般工業用で汎用されている、例えばクロメル:アルメル、鉄:コンスタンタン、銅:コンスタンタンなど2種類の金属線端を接合したもので、特に熱電対素線材料を限定するものではない。 The thermocouple conductor material is widely used in general industrial applications. For example, chromel: alumel, iron: constantan, copper: constantan, etc. are joined together, and the thermocouple wire material is particularly limited. Not what you want.

また、導線8は、金属パイプの中に絶縁管を介して熱電対素線の導線を組み入れたものや、チューブの中に熱電対素線の導線を入れ、酸化マグネシウムを充填し絶縁したものが一般に知られている。 In addition, the conductor 8 is a metal pipe that incorporates a thermocouple conductor through an insulating tube, or a tube that contains a thermocouple conductor that is filled with magnesium oxide and insulated. Generally known.

離脱着容器4は、第2図で示す常温・常圧域用ではプラスチック材で射出成形された容器の板面に水素分子が流通できる微細な孔が複数設けられ、離脱着容器4内部にガスセンサー1が収納されて一体化形成されている。 In the room temperature / normal pressure region shown in FIG. 2, the release / detachment container 4 is provided with a plurality of fine holes through which hydrogen molecules can flow on the plate surface of the injection-molded container made of a plastic material. The sensor 1 is housed and integrally formed.

また、この離脱着容器4が第3図で示す耐熱・耐圧用では金属材料を用いて構成されていて、ガスセンサー1を収納する部分は、容器の板面には水素ガス分子が通過できるように微細な孔を複数あけて設けられ、さらに好ましくはセラミック材で形成した容器も機能的である。 Further, the release / advancement container 4 is made of a metal material for the heat and pressure resistance shown in FIG. 3, and the portion that houses the gas sensor 1 allows hydrogen gas molecules to pass through the plate surface of the container. A container formed with a plurality of fine holes and more preferably made of a ceramic material is also functional.

触媒材の水素吸蔵合金は、例えば一般的にはCu、Ca、La、Mg、Ni、Tiなど金属のほかに共融混合物(共晶体)のLaNi系、MgTi系の合金が知られているが、特に触媒材の種類や製造方法を限定するものではない。 As the hydrogen storage alloy for the catalyst material, for example, in addition to metals such as Cu, Ca, La, Mg, Ni, and Ti, LaNi and MgTi alloys of eutectic mixture (eutectic) are known. In particular, the type of the catalyst material and the production method are not limited.

この水素吸蔵合金の粉末の被膜化は、水素吸蔵合金に水素を吸蔵させ初期粉砕工程を経るなどして粒子の径が約20μ程度に調整した粉末に、湿式めっきのほかCVD、PVDなどの放電式を用いて、Cu、Ca、La、Mg、Ni、Tiなどの金属、高分子、酸化物、炭化物などで薄膜な被膜を施して製造される。 This hydrogen storage alloy powder coating is applied to the powder in which hydrogen is stored in the hydrogen storage alloy and the particle size is adjusted to about 20μ by passing through an initial pulverization process, in addition to wet plating, CVD, PVD and other discharges. It is manufactured by applying a thin film with a metal such as Cu, Ca, La, Mg, Ni, Ti, polymer, oxide, carbide, etc. using the formula.

また、水素吸蔵合金は、−100℃〜500℃と広域に及ぶ使用が可能である一方、合金材料ごとに平衡解離圧特性が違うため、予めセンサーに用いる温度と圧力の環境に合わせて、水素吸蔵合金材料が選択され用いられる。 In addition, hydrogen storage alloys can be used over a wide range of -100 ° C to 500 ° C, but the equilibrium dissociation pressure characteristics are different for each alloy material. An occlusion alloy material is selected and used.

水素吸蔵合金の粉末の装着方法は、使用する環境条件に合わせて高分子、金属、酸化物、炭化物などで被膜した合金粉末と熱伝導体として金属紛とを混合して熱電対の導体接合点2の周囲に型を用いて圧着固化するか、合金粉末とシリコンゴムなど高分子の粘着材とを混合したペーストを熱電対の導体接合点2の周囲に塗布した後に加熱固化して装着される。 The mounting method of the hydrogen storage alloy powder is to mix the alloy powder coated with polymer, metal, oxide, carbide, etc. and the metal powder as the heat conductor according to the environmental conditions to be used. 2 is pressed and solidified using a mold around 2 or a paste obtained by mixing an alloy powder and a polymer adhesive material such as silicon rubber is applied around the conductor junction 2 of the thermocouple and then solidified by heating and mounted. .

このようなガスセンサーでは、水素吸蔵合金の粉末に被膜や高分子の粘着材と混合して装着されると、水素を選択して透過するため、炭酸ガス、酸素、窒素などによる通常水素吸蔵合金を劣化させるといわれる被毒現象から回避できるため都合がよい。 In such a gas sensor, when the hydrogen storage alloy powder is mixed with a film or a polymer adhesive, the hydrogen is selected and permeated, so that the normal hydrogen storage alloy using carbon dioxide, oxygen, nitrogen, etc. This is convenient because it can be avoided from the poisoning phenomenon that is said to deteriorate the quality of the material.

電子制御部20は、電源15を含むトムソン効果制御系統10およびゼーベック効果制御系統12などとで構成され、電子制御部20内と導線8を介してガスセンサー1の導体端と接触するソケット5内とを結線し通電できるようにして構成されている。 The electronic control unit 20 includes a Thomson effect control system 10 including a power source 15, a Seebeck effect control system 12, and the like. In the electronic control unit 20 and the socket 5 in contact with the conductor end of the gas sensor 1 through the conductor 8. Are connected and can be energized.

トムソン効果制御系統10は、電源15からの直流電流の方向を切り換えることによりトムソン効果といわれる測温接点側の導体接合点2と電子制御部20内にあるゼーベック効果制御系統の温度補償回路側の基準接点とのエネルギーギャップからの発熱または吸熱する作用を適宜利用し、装着される触媒材の水素吸蔵合金を加熱または冷却して、水素吸蔵合金の水素放出または水素吸蔵を制御している。 The Thomson effect control system 10 switches the direction of the direct current from the power supply 15 to change the temperature of the temperature compensation circuit side of the Seebeck effect control system in the electronic control unit 20 and the conductor junction 2 on the temperature measuring contact side, which is called the Thomson effect. By appropriately using the action of heat generation or heat absorption from the energy gap with the reference contact, the hydrogen storage alloy of the catalyst material to be mounted is heated or cooled to control hydrogen release or hydrogen storage of the hydrogen storage alloy.

この金属線における熱電効果は、半導体等に比べきると極めて小さいため、水素吸蔵合金量が多くなる場合や熱量不足になる場合には、電気加熱器やペルチェ素子などを併用することもできる。 Since the thermoelectric effect in this metal wire is extremely small compared to a semiconductor or the like, an electric heater or a Peltier element can be used in combination when the amount of hydrogen storage alloy increases or the amount of heat becomes insufficient.

また、ゼーベック効果制御系統12は、ガスセンサー1の水素吸蔵合金が触媒作用で周囲の水素分子を水素原子に解離させて水素吸蔵合金内部に水素化物を生成する際、その水素化反応による発熱を受領したガスセンサー1の測温接点側の導体接合点2と、電子制御部20内のゼーベック効果制御系統の温度補償回路側にある基準接点とに温度差が発生し、ゼーベック効果といわれる電位差現象の熱起電力を計測している。 Further, the Seebeck effect control system 12 generates heat due to the hydrogenation reaction when the hydrogen storage alloy of the gas sensor 1 generates a hydride inside the hydrogen storage alloy by dissociating surrounding hydrogen molecules into hydrogen atoms by the catalytic action. A temperature difference occurs between the conductor junction 2 on the temperature measuring contact side of the received gas sensor 1 and the reference contact on the temperature compensation circuit side of the Seebeck effect control system in the electronic control unit 20, and a potential difference phenomenon called the Seebeck effect. The thermoelectromotive force is measured.

また、図示はないが触媒材に触媒機能を有する物質を拡散触媒層として用いる電気化学デバイスでは、電極層を両面に備えるプロトン伝導膜(体)の外面に拡散触媒層を設けた電気化学デバイスに熱電対の導体接合点を接合または挿入して一体化し、離脱着容器内に収納され、熱電対および電気化学デバイスの導線が離脱着容器を介して電子制御部と結線されている。 In addition, although not shown in the drawings, an electrochemical device using a catalyst material as a diffusion catalyst layer in a catalyst material is an electrochemical device in which a diffusion catalyst layer is provided on the outer surface of a proton conducting membrane (body) having electrode layers on both sides. The conductor junction points of the thermocouple are joined or inserted to be integrated, and housed in a release / receptacle container, and the thermocouple and the lead wires of the electrochemical device are connected to the electronic control unit via the attach / detach container.

また、円筒な電気化学デバイスでは、熱電対の導体接合点の外周面に、拡散触媒層、電極層、プロトン伝導膜(体)の機能膜が設けられて一体化し、離脱着容器内に収納され、熱電対および電気化学デバイスの導線が離脱着容器を介して電子制御部と結線されている。 In addition, in a cylindrical electrochemical device, functional membranes such as a diffusion catalyst layer, an electrode layer, and a proton conducting membrane (body) are provided on the outer peripheral surface of the thermocouple conductor junction, and are integrated and accommodated in a release / adsorption container. The conductors of the thermocouple and the electrochemical device are connected to the electronic control unit via the release / attachment container.

この電気化学デバイスの拡散触媒層を形成する機能膜の触媒材は、公知のもので特定するものではなく、一般には、金属または合金、酸化物、炭素を含む炭化物、酵素、など触媒機能を有する物質のいずれかの粉末であり、その粉末に金属または合金、酸化物、炭素を含む炭化物、高分子のいずれかの材料を用いてスパッタなどによる方法で微粒子として均質に分散担持させるか、CVD、PVDの放電式などを用いるほか溶剤で塗布するなどして被膜処理を施され用いられる。 The catalyst material of the functional membrane that forms the diffusion catalyst layer of this electrochemical device is not a known material and is generally not specified, and generally has a catalytic function such as metal or alloy, oxide, carbon-containing carbide, enzyme, etc. It is a powder of any substance, and the powder is uniformly dispersed and supported as fine particles by a method such as sputtering using a metal or alloy, oxide, carbide containing carbon, polymer, or CVD, In addition to using a PVD discharge type or the like, it is used after being coated with a solvent.

また、弾性表面波(SAW)デバイスを用いるガスセンサーでは、球体または面体の表面に電極と触媒材による拡散触媒層がスパッタ、CVD、PVDなどの方法を用いて成膜して形成され、このガス反応体に熱電対の導体接合点を接合または挿入され一体化し、離脱着容器内に収納され、熱電対および弾性表面波デバイスの導線が離脱着容器を介して電子制御部と結線されている。 In addition, in a gas sensor using a surface acoustic wave (SAW) device, a diffusion catalyst layer made of an electrode and a catalyst material is formed on the surface of a sphere or a face using a method such as sputtering, CVD, PVD, and the like. A conductor junction of a thermocouple is joined or inserted into and integrated with the reactant, and is accommodated in a detachable container, and the thermocouple and the surface acoustic wave device conductor are connected to the electronic control unit via the detachable container.

このようなガス反応体(電気化学デバイス、弾性表面波デバイス)3と熱電対の導体接合点との組み合わせたガスセンサーの場合では、ガス反応体3自身がガス濃度を計測しデータを制御部へ出力し、熱電対はゼーベック効果による温度計測とトムソン効果による計測環境の温度制御を行うことでガスセンサーの検知精度を向上させる。 In the case of a gas sensor in which such a gas reactant (electrochemical device, surface acoustic wave device) 3 and a thermocouple conductor junction are combined, the gas reactant 3 itself measures the gas concentration and sends the data to the controller. The thermocouple outputs and improves the detection accuracy of the gas sensor by measuring the temperature using the Seebeck effect and controlling the temperature of the measurement environment using the Thomson effect.

また、このようなガス反応体(電気化学デバイス、弾性表面波デバイス)3では、触媒材を適宜選定して用いることで、多種類のガス検知に対応できるため、多種類を同時に検知する複合ガスセンサーの小型化が可能となる。 Further, in such a gas reactant (electrochemical device, surface acoustic wave device) 3, it is possible to cope with various types of gas detection by appropriately selecting and using a catalyst material. The sensor can be downsized.

第4図の水素濃度別の変動グラフについて、ヒステリシスが小さい種類の水素吸蔵合金は、可逆的反応熱量が同等で水素圧力と温度に一定な関係を持つ平衡解離圧特性があるので、このガス反応体に触媒材として水素吸蔵合金を用いて、水素化機能と熱電対の熱電効果を利用した水素濃度の検出方法を説明する。 As shown in the fluctuation graph for each hydrogen concentration in FIG. 4, the hydrogen storage alloy of a type having a small hysteresis has an equilibrium dissociation pressure characteristic in which the reversible reaction heat quantity is equal and the hydrogen pressure and temperature have a constant relationship. A hydrogen concentration detection method using a hydrogen storage alloy as a catalyst material in the body and utilizing the hydrogenation function and the thermoelectric effect of a thermocouple will be described.

計測環境基準(モードデータ)の設定として、基本的には常温、常圧環境では、計測前に熱電対のゼーベック効果の電位差により環境温度を計測して計測環境基準の0点を定めることができるように分母データと予備データを電子制御部の記憶装置へ記録しておく。 Measurement environment standards (mode data) can be set basically at room temperature and normal pressure environments by measuring the environmental temperature based on the potential difference of the Seebeck effect of the thermocouple before measurement to determine the zero point of the measurement environment standard. Thus, the denominator data and the preliminary data are recorded in the storage device of the electronic control unit.

この場合、計測環境圧力が常圧以外で、特に圧力が変動する特別環境では、圧力センサーを併用して環境圧力を計測し計測環境基準の0点を定めるためのデータとして電子制御部の記憶装置へ予め記録しておく必要がある。 In this case, in a special environment where the measured environmental pressure is other than normal pressure, especially in a special environment where the pressure fluctuates, the storage device of the electronic control unit is used as data for measuring the environmental pressure using a pressure sensor and determining the zero point of the measured environmental standard. It is necessary to record in advance.

このため、予め計測環境に適合する水素吸蔵合金の種類を定め平衡解離圧特性を踏まえた上で、想定される圧力の段階ごとに計測環境基準(モードデータ)として最大熱量(分母データ)と最小熱量(予備データ)をそれぞれ計測し電子制御部の記憶装置へ記録しておく。 For this reason, the type of hydrogen storage alloy suitable for the measurement environment is determined in advance, taking into account the equilibrium dissociation pressure characteristics, and the maximum heat (denominator data) and minimum as the measurement environment standard (mode data) for each assumed pressure stage. The amount of heat (preliminary data) is measured and recorded in the storage device of the electronic control unit.

最大熱量(分母データ)は、水素濃度100%時のBグラフのP1からP4までの装着された水素吸蔵合金の水素化発熱の温度追尾と時間を計測した最大熱量を水素検出の分母用データとして電子制御部の記憶装置へ記録しておく。なお、温度H2レベルまでのP1からP5はセキュリティ用(危険度早期検出用)の計測ポイント。 The maximum calorific value (denominator data) is the hydrogen detection denominator data for the temperature tracking and time measurement of the hydrogenation heat generation of the hydrogen storage alloy from P1 to P4 of the B graph when the hydrogen concentration is 100%. It records in the memory | storage device of an electronic control part. Note that P1 to P5 up to the temperature H2 level are measurement points for security (for early detection of risk).

最小熱量(予備データ)は、主に水素吸蔵合金や熱電対など構成部材が放熱する熱量であり、水素濃度0%時のAグラフのP1からP2までの装着された水素吸蔵合金の水素化発熱の温度追尾と時間を計測して、最小熱量データとして電子制御部の記憶装置へ記録しておく。なお、温度H2レベルまでのP1からP3はセキュリティ用(危険度早期検出用)の計測ポイント。 The minimum amount of heat (preliminary data) is the amount of heat that is dissipated mainly by components such as hydrogen storage alloys and thermocouples, and the hydrogenation heat generation of the hydrogen storage alloys installed from P1 to P2 in the A graph when the hydrogen concentration is 0%. Temperature tracking and time are measured and recorded in the storage device of the electronic control unit as minimum heat quantity data. Note that P1 to P3 up to the temperature H2 level are measurement points for security (for early detection of risk).

水素濃度の検出手順は、まず、電子制御部に温度と圧力の情報から適合する計測環境基準(モードデータ)を選択して計測環境基準の0点を認識させる。 In the procedure for detecting the hydrogen concentration, first, the electronic control unit selects a suitable measurement environment standard (mode data) from the temperature and pressure information and recognizes the zero point of the measurement environment standard.

次いで、装着した水素吸蔵合金の水素を完全に放出させるために直流電流と熱電対の測温接点側の導体接合点をトムソン効果によって発熱させて、水素吸蔵合金の温度を温度H3レベル以上に高めて水素放出を完了後、直流電流を止めて自然に温度降下させる。 Next, in order to completely release the hydrogen of the attached hydrogen storage alloy, the conductor junction on the temperature measuring contact side of the direct current and thermocouple is caused to generate heat by the Thomson effect, and the temperature of the hydrogen storage alloy is raised to the temperature H3 level or higher. After completing the hydrogen release, stop the direct current and let the temperature drop naturally.

次いで、計測熱量(分子用データ)の計測として、CグラフのP1からP6まで装着された水素吸蔵合金の水素化発熱の温度追尾と時間を計測して電子制御部の記憶装置へ水素検出の分子用データとして送り記憶する。なお、温度H2レベルまでのP1からP7は、セキュリティ用(危険度早期検出用)の計測ポイントである。 Next, as the measurement of calorie (data for molecules), the temperature tracking and time of the hydrogenation exotherm of the hydrogen storage alloy attached from P1 to P6 of the C graph are measured, and the hydrogen detection molecules are stored in the storage device of the electronic control unit. Sent as data for storage. Note that P1 to P7 up to the temperature H2 level are measurement points for security (for early detection of risk).

計測熱量(分子データ)を受領した電子制御部は、選択された計測環境基準(モードデータ)の最大熱量(分母データ)から最小熱量(予備データ)を引いた値を分母に、計測熱量(分子データ)から最小熱量(予備データ)を引いた値を分子にして、水素濃度を演算し検出を行う。 The electronic control unit that has received the measured calorific value (numerator data) uses the value obtained by subtracting the minimum calorific value (preliminary data) from the maximum calorific value (denominator data) of the selected measurement environment standard (mode data) as the denominator. Data) is calculated by subtracting the minimum amount of heat (preliminary data) from the numerator, and the hydrogen concentration is calculated and detected.

また、水素の防爆検知が目的とされる場合で、特に水素関連施設や二次電池の過充電などの水素漏れを検知する場合などでは、熱量計測を温度レベルH3からH2までの値(危険度早期検出用)を用いると、計測時間を短縮して防爆回避ができるほか、予め設定するデータ一量を最小限にすることで安価なマイコン制御が容易となる。 In addition, when hydrogen explosion-proof detection is intended, especially when hydrogen leaks such as hydrogen-related facilities and secondary batteries are overcharged, calorific value is measured from temperature levels H3 to H2 (risk level). By using (for early detection), the measurement time can be shortened and explosion prevention can be avoided, and inexpensive microcomputer control is facilitated by minimizing the amount of data set in advance.

本発明について説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的または本発明の思想の範囲内において改良または変更が可能である。 Although the present invention has been described, the present invention is not limited to the above embodiment, and can be improved or modified within the scope of the purpose of the improvement or the idea of the present invention.

以上説明したようにガスセンサーが構成されると、ガスセンサーの小型化、極限環境での使用、低価格化などを可能にする。特に小型な装置において、利用しやすいという利点がある。   As described above, when the gas sensor is configured, the gas sensor can be miniaturized, used in an extreme environment, and reduced in price. In particular, in a small device, there is an advantage that it is easy to use.

本発明の一実施例の全体概要図であって、ガスセンサーと電子制御の系統概要を示している。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic diagram of one Example of this invention, Comprising: The system outline | summary of the gas sensor and electronic control is shown. 本発明の一実施例であって、主に常温・常圧域用の離脱着容器4内のガスセンサー1の断面構造を示している。1 shows an embodiment of the present invention, and mainly shows a cross-sectional structure of a gas sensor 1 in a release / attachment container 4 for normal temperature and normal pressure regions. 本発明の一実施例であって、主に耐熱・耐圧用の離脱着容器4内のガスセンサー1の断面構造を示している。1 shows an embodiment of the present invention, and mainly shows a cross-sectional structure of a gas sensor 1 in a heat-resistant / pressure-resistant release / attachment container 4. 本発明のガスセンサー1が計測する水素化反応熱の温度追尾と時間に関する水素濃度別の変動を示している。FIG. 3 shows the temperature tracking of the hydrogenation reaction heat measured by the gas sensor 1 of the present invention and the fluctuation of each hydrogen concentration with respect to time.

符号の説明Explanation of symbols

1 ガスセンサー
2 導体接合点
3 ガス反応体
4 離脱着容器
5 ソケット
8 導線
10 トムソン効果制御系統
12 ゼーベック効果制御系統
15 電源
20 電子制御部
DESCRIPTION OF SYMBOLS 1 Gas sensor 2 Conductor junction 3 Gas reactant 4 Detachment receptacle 5 Socket 8 Conductor 10 Thomson effect control system 12 Seebeck effect control system 15 Power supply 20 Electronic control part

Claims (5)

熱電対の測温接点側の導体接合点とガス反応体による複合素子手段と、
前記複合素子手段を離脱着容器内に収納させた離脱着手段と、
前記複合素子手段を制御する電源を含むトムソン効果制御系統およびゼーベック効果制御系統などからなる電子制御部による電子制御手段とで構成したことを特徴とするガスセンサー。
Composite element means by a conductor junction on the temperature measuring contact side of the thermocouple and a gas reactant,
Detachment / attachment means for accommodating the composite element means in a release / removal container;
A gas sensor comprising: a Thomson effect control system including a power source for controlling the composite element means; and an electronic control means by an electronic control unit comprising a Seebeck effect control system.
ガス反応体は、次の1〜4のいずれかであって、ガス検知素子を構成したことを特徴とする請求項1記載のガスセンサー。
1.触媒材であり、熱電対の導体接合点の周囲に装着したものであること。
2.電極層を両面に備えるプロトン伝導膜(体)の外面に触媒材による拡散触媒層を形成した電気化学デバイスであり、熱電対の導体接合点を接合または挿入したものであること。
3.熱電対の導体接合点の外周に、触媒材による拡散触媒層、電極層、プロトン伝導膜(体)を形成した円筒な電気化学デバイスであること。
4.球体もしくは面体の弾性表面波(SAW)デバイスであり、熱電対の導体接合点を接合または挿入したものであること。
2. The gas sensor according to claim 1, wherein the gas reactant is any one of the following items 1 to 4 and constitutes a gas detection element.
1. It is a catalyst material and must be attached around the conductor junction of the thermocouple.
2. It is an electrochemical device in which a diffusion catalyst layer made of a catalyst material is formed on the outer surface of a proton conducting membrane (body) having electrode layers on both sides, and a conductor junction point of a thermocouple is joined or inserted.
3. A cylindrical electrochemical device in which a diffusion catalyst layer made of a catalyst material, an electrode layer, and a proton conductive membrane (body) are formed on the outer periphery of the conductor junction of the thermocouple.
4). It is a spherical or planar surface acoustic wave (SAW) device, and has a thermocouple conductor junction joined or inserted.
触媒材は、金属または合金、酸化物、炭素を含む炭化物、酵素、など触媒機能を有する物質のいずれかの粉末であり、その粉末に金属または合金、酸化物、炭化物、高分子のいずれかの材料を用いて微粒子として担持させるか被膜処理を施したことを特徴とする請求項1、2記載のガスセンサー。 The catalyst material is a powder of any substance having a catalytic function such as a metal or alloy, oxide, carbon-containing carbide, enzyme, etc., and the powder is any of metal, alloy, oxide, carbide, or polymer. 3. The gas sensor according to claim 1, wherein the gas sensor is supported as a fine particle by using a material or is subjected to a coating treatment. 導体接合点とガス反応体が容器内に一体化して収納され、素子部が離脱着することを特徴とする請求項1、2、3記載のガスセンサー。 4. The gas sensor according to claim 1, 2 or 3, wherein the conductor junction and the gas reactant are integrally stored in the container, and the element portion is detached and attached. 熱電対のゼーベック効果の電位差により環境温度と圧力センサーで環境圧力を計測して計測環境基準の0点を定めることができるように、予め計測環境に適合する水素吸蔵合金の種類を定めた上で、想定される圧力の段階ごとに計測環境基準(モードデータ)として、水素濃度100%時の最大熱量(分母データ)と、水素濃度0%時の最小熱量(予備データ)を、それぞれ一定温度間の装着された水素吸蔵合金の水素化発熱の温度追尾と時間を計測し電子制御部の記憶装置へ記録して設定する。
水素濃度検出手順は、まず、電子制御部が温度と圧力の情報から適合する計測環境基準(モードデータ)を選択して計測環境基準の0点を認識させる。
次いで、装着した水素吸蔵合金の水素を完全に放出させるために直流電流と熱電対の測温接点側の導体接合点をトムソン効果によって発熱させて、水素吸蔵合金の温度を一定温度以上に高めて水素放出を完了後、直流電流を止めて自然に温度降下させる。
次いで、計測熱量(分子データ)の計測として、一定温度間で装着された水素吸蔵合金の水素化発熱の温度追尾と時間を計測して電子制御部の記憶装置へ水素検出の分子用データとして送り記憶する。
次いで、計測熱量(分子データ)を受領した電子制御部は、選択された計測環境基準(モードデータ)の最大熱量(分母データ)から最小熱量(予備データ)を引いた値を分母に、計測熱量(分子データ)から最小熱量(予備データ)を引いた値を分子にして、水素濃度を演算し検出を行う水素濃度検出方法。
In order to determine the zero point of the measurement environment standard by measuring the environmental pressure with the environmental temperature and pressure sensor based on the potential difference of the Seebeck effect of the thermocouple, the type of hydrogen storage alloy that suits the measurement environment is determined in advance. As the measurement environment standard (mode data) for each assumed pressure stage, the maximum heat value (denominator data) at a hydrogen concentration of 100% and the minimum heat value (preliminary data) at a hydrogen concentration of 0% are kept at a constant temperature. The temperature tracking and time of the hydrogenation exotherm of the hydrogen storage alloy attached to is measured, recorded in the storage device of the electronic control unit, and set.
In the hydrogen concentration detection procedure, first, the electronic control unit selects a suitable measurement environment standard (mode data) from the temperature and pressure information, and recognizes zero point of the measurement environment standard.
Next, in order to completely release the hydrogen of the attached hydrogen storage alloy, the conductor junction point on the temperature measuring contact side of the direct current and thermocouple is caused to generate heat by the Thomson effect, and the temperature of the hydrogen storage alloy is raised above a certain temperature. After completing the hydrogen release, the direct current is stopped and the temperature drops naturally.
Next, as measurement of calorific value (molecular data), the temperature tracking and time of the hydrogenation exotherm of the hydrogen storage alloy mounted at a fixed temperature is measured and sent to the storage device of the electronic control unit as molecular data for hydrogen detection. Remember.
Next, the electronic control unit that has received the measured calorific value (numerical data) uses the value obtained by subtracting the minimum calorific value (preliminary data) from the maximum calorific value (denominator data) of the selected measurement environment standard (mode data) as the measured calorific value. A hydrogen concentration detection method in which a value obtained by subtracting the minimum calorific value (preliminary data) from (molecule data) is used as a numerator to calculate and detect hydrogen concentration.
JP2004019055A 2004-01-27 2004-01-27 Gas sensor and hydrogen concentration detection method Pending JP2005214677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004019055A JP2005214677A (en) 2004-01-27 2004-01-27 Gas sensor and hydrogen concentration detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004019055A JP2005214677A (en) 2004-01-27 2004-01-27 Gas sensor and hydrogen concentration detection method

Publications (1)

Publication Number Publication Date
JP2005214677A true JP2005214677A (en) 2005-08-11

Family

ID=34903390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004019055A Pending JP2005214677A (en) 2004-01-27 2004-01-27 Gas sensor and hydrogen concentration detection method

Country Status (1)

Country Link
JP (1) JP2005214677A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271577A (en) * 2006-03-31 2007-10-18 Ball Semiconductor Kk Sensor head and gas sensor
JP2009042047A (en) * 2007-08-08 2009-02-26 Tdk Corp Hydrogen gas sensor
CN108459046A (en) * 2018-05-09 2018-08-28 哈尔滨工业大学 The test device of film-type thermoelectric material Seebeck coefficient and conductivity
JP2020529609A (en) * 2017-08-10 2020-10-08 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Combustible gas sensors, detectors, and methods for detecting flammable gases
JP7129580B1 (en) * 2022-04-11 2022-09-01 東京瓦斯株式会社 Hydrogen gas concentration meter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271577A (en) * 2006-03-31 2007-10-18 Ball Semiconductor Kk Sensor head and gas sensor
JP2009042047A (en) * 2007-08-08 2009-02-26 Tdk Corp Hydrogen gas sensor
JP2020529609A (en) * 2017-08-10 2020-10-08 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Combustible gas sensors, detectors, and methods for detecting flammable gases
JP7137283B2 (en) 2017-08-10 2022-09-14 インターナショナル・ビジネス・マシーンズ・コーポレーション Combustible gas sensor, detector and method of detecting combustible gas
CN108459046A (en) * 2018-05-09 2018-08-28 哈尔滨工业大学 The test device of film-type thermoelectric material Seebeck coefficient and conductivity
JP7129580B1 (en) * 2022-04-11 2022-09-01 東京瓦斯株式会社 Hydrogen gas concentration meter

Similar Documents

Publication Publication Date Title
JP4061556B2 (en) Hydrogen amount sensor and hydrogen storage device
JP6964121B2 (en) Gas detection method
WO2014069437A1 (en) Device for estimating battery life and system for estimating battery life
US20060185979A1 (en) Hydrogen gas sensor
CN101558294A (en) High temperature and pressure sensor
JP2006317196A (en) Hydrogen gas sensor
US20080303532A1 (en) Combustible-gas sensor, fuel cell system, abnormality detecting method, and fuel cell system control method
JP2000081404A (en) Hydrogen quantity measuring device
Morishita et al. Calorimetric study of nickel molybdate: heat capacity, enthalpy, and Gibbs energy of formation
JP4238309B2 (en) Combustible gas sensor
JP2005214677A (en) Gas sensor and hydrogen concentration detection method
WO2009081814A1 (en) Fuel cell and temperature measurement method
JP2009198410A (en) Hydrogen gas sensor
JP2011232141A (en) Hydrogen sensor and hydrogen detector
JPH10115600A (en) Electrochemical gas sensor and its correction method
JP2004233097A (en) Hydrogen sensor and hydrogen concentration measuring method
JP2007248335A (en) Reducible gas sensor
JP2004075480A (en) Heat treatment apparatus
Arndt Micromachined thermal conductivity hydrogen detector for automotive applications
CN109478697B (en) Battery cell with temperature sensor
JP2007278876A (en) Hydrogen sensor
JP2005189214A (en) Hydrogen sensor, hydrogen concentration measuring instrument, and hydrogen concentration measuring method
JP2005164584A (en) Hydrogen gas sensor
KR20070013385A (en) Method for measurement of hydrogen content in metallic hydride for fuel cell car
JP2004028749A (en) Method and device for measuring concentration of flammable gas