JP2005214068A - Closed type reciprocating compressor - Google Patents

Closed type reciprocating compressor Download PDF

Info

Publication number
JP2005214068A
JP2005214068A JP2004021411A JP2004021411A JP2005214068A JP 2005214068 A JP2005214068 A JP 2005214068A JP 2004021411 A JP2004021411 A JP 2004021411A JP 2004021411 A JP2004021411 A JP 2004021411A JP 2005214068 A JP2005214068 A JP 2005214068A
Authority
JP
Japan
Prior art keywords
compression element
low
suction
stage
stage compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004021411A
Other languages
Japanese (ja)
Inventor
Masatoshi Yoshida
政敏 吉田
Kanji Sakata
寛二 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2004021411A priority Critical patent/JP2005214068A/en
Priority to TW094102349A priority patent/TWI274109B/en
Priority to KR1020050007903A priority patent/KR20050077784A/en
Priority to CNA2005100067515A priority patent/CN1648450A/en
Publication of JP2005214068A publication Critical patent/JP2005214068A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/005Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/18Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use for specific elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/14Check valves with flexible valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a closed type reciprocating compressor having a highly efficient low stage side compression element and a highly efficient high stage side compression element. <P>SOLUTION: This closed type reciprocating compressor of multi-stage type is formed so that the structures of the valve devices of the low stage side compression element and the high stage side compression element are different from each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は密閉型往復動圧縮機に係り、特に低段側圧縮要素と高段側圧縮要素の異なる弁装置を有する密閉型往復動圧縮機に関する。   The present invention relates to a hermetic reciprocating compressor, and more particularly to a hermetic reciprocating compressor having valve devices having different low-stage compression elements and high-stage compression elements.

蒸発圧力(温度)の異なる2つの蒸発器を有する冷凍冷蔵庫等の冷凍装置の冷凍サイクルに用いる圧縮機として、密閉容器内に低段側圧縮要素と高段側圧縮要素の2つの圧縮要素を備えた二段圧縮式の密閉型往復動圧縮機が知られている(例えば、特許文献1参照)。このような従来の圧縮型往復動圧縮機において、吸込孔とこの吸込孔を開閉する吸込弁及び吐出孔この吐出孔を開閉する吐出弁等からなる弁装置は、低段側圧縮要素用、高段側圧縮要素用共に孔径や弁の板厚等その構成が同一であった。   As a compressor used in a refrigeration cycle of a refrigeration apparatus such as a refrigerator / freezer having two evaporators having different evaporation pressures (temperatures), the compressor includes two compression elements, a low-stage compression element and a high-stage compression element, in a sealed container. A two-stage compression type hermetic reciprocating compressor is known (see, for example, Patent Document 1). In such a conventional compression type reciprocating compressor, a valve device comprising a suction hole, a suction valve that opens and closes the suction hole, and a discharge valve that opens and closes the discharge hole is used for a low-stage compression element. The configuration of the step-side compression element, such as the hole diameter and the valve thickness, was the same.

しかしながら、上記のような冷凍サイクルに用いられる二段圧縮式の圧縮機においては、低段側圧縮要素と高段側圧縮要素とで吸込圧力や吐出圧力の圧力条件、冷媒流量等が異なるため、圧縮機としての性能を十分に向上させることができなかった。
特開2003−83247号公報([0046]、図4)
However, in the two-stage compression type compressor used in the refrigeration cycle as described above, the suction pressure and discharge pressure conditions, the refrigerant flow rate, and the like are different between the low-stage compression element and the high-stage compression element. The performance as a compressor could not be improved sufficiently.
JP 2003-83247 A ([0046], FIG. 4)

本発明は上述した事情を考慮してなされたもので、高効率の低段側圧縮要素及び高段側圧縮要素を有する密閉型往復動圧縮機を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a highly efficient low-stage compression element and a hermetic reciprocating compressor having a high-stage compression element.

上記目的を達成するため、本発明の1つの態様によれば、低圧冷媒吸込管、中間圧冷媒吸込管及び吐出管が接続された密閉容器内に、電動機部によって駆動される低段側圧縮要素及び高段側圧縮要素を収納し、前記低圧側冷媒吸込管から低段側圧縮要素に低圧冷媒を吸込んで圧縮し吐出するとともに、前記低段側圧縮要素から吐出された冷媒及び中間圧冷媒吸込管から吸込まれた冷媒を吸込んで圧縮し、前記吐出管から吐出する密閉型往復動圧縮機において、前記低段側圧縮要素と高段側圧縮要素の弁装置の構成を異ならせたことを特徴とする密閉型往復動圧縮機が提供される。   In order to achieve the above object, according to one aspect of the present invention, a low-stage compression element driven by an electric motor unit in a sealed container to which a low-pressure refrigerant suction pipe, an intermediate-pressure refrigerant suction pipe, and a discharge pipe are connected. And the high-stage compression element, and the low-pressure refrigerant is sucked into the low-stage compression element from the low-pressure refrigerant suction pipe and compressed and discharged, and the refrigerant discharged from the low-stage compression element and the intermediate-pressure refrigerant suction In the hermetic reciprocating compressor that sucks and compresses the refrigerant sucked from the pipe and discharges it from the discharge pipe, the low-stage compression element and the high-stage compression element have different valve devices. A hermetic reciprocating compressor is provided.

本発明に係る密閉型往復動圧縮機によれば、高効率の低段側圧縮要素及び高段側圧縮要素を有する密閉型往復動圧縮機を提供することができる。   The hermetic reciprocating compressor according to the present invention can provide a hermetic reciprocating compressor having a high-efficiency low-stage compression element and a high-stage compression element.

以下、本発明に係わる密閉型往復動圧縮機の一実施形態について添付図面を参照して説明する。   Hereinafter, an embodiment of a hermetic reciprocating compressor according to the present invention will be described with reference to the accompanying drawings.

図1は本発明に係る密閉型往復動圧縮機の横断面図で、冷凍サイクルに組込んだ状態を示す。図2はその縦断面図である。   FIG. 1 is a cross-sectional view of a hermetic reciprocating compressor according to the present invention, showing a state where it is incorporated in a refrigeration cycle. FIG. 2 is a longitudinal sectional view thereof.

図1及び図2に示すように、本発明に係る密閉型往復動圧縮機1は、低圧冷媒吸込管2a、中間圧冷媒吸込管2b及び吐出管2cが接続された密閉容器2と、この密閉容器2に収容された電動機部3と、この電動機部3によって駆動される低段側圧縮要素4及び高段側圧縮要素5を有している。   As shown in FIGS. 1 and 2, a hermetic reciprocating compressor 1 according to the present invention includes a hermetic container 2 to which a low-pressure refrigerant suction pipe 2a, an intermediate-pressure refrigerant suction pipe 2b, and a discharge pipe 2c are connected. An electric motor unit 3 accommodated in the container 2, and a low-stage compression element 4 and a high-stage compression element 5 driven by the electric motor unit 3 are provided.

上記密閉容器2に接続された吐出管2cは、蒸発圧力(温度)の異なる2つの蒸発器を有する例えば冷凍冷蔵庫等の冷凍装置の凝縮器21に接続され、中間圧冷媒吸込管2bは冷蔵室用蒸発器22に接続され、低圧冷媒吸込管2aは冷藏室用蒸発器22よりも蒸発圧力の低い冷凍室用蒸発器23に接続される。   The discharge pipe 2c connected to the sealed container 2 is connected to a condenser 21 of a refrigeration apparatus such as a refrigerator / freezer having two evaporators having different evaporation pressures (temperatures), and the intermediate pressure refrigerant suction pipe 2b is a refrigerator compartment. The low-pressure refrigerant suction pipe 2a is connected to a freezer compartment evaporator 23 having a lower evaporation pressure than that of the cold compartment evaporator 22.

また、電動機部3は固定子3aと回転子3bからなり、この回転子3bはフレーム3cに支持された回転軸6に固着されている。   The electric motor unit 3 includes a stator 3a and a rotor 3b. The rotor 3b is fixed to a rotating shaft 6 supported by a frame 3c.

さらに、低段側圧縮要素4は、シリンダ4aと、このシリンダ4a内を回転軸6の上部に形成されたクランク軸部6aによって往復動されるピストン4bと、シリンダ4aの端面に設けられた弁装置41を有し、低圧冷媒吸込管2aを介し蒸発圧力の低い冷凍室用蒸発器23から吸込まれるガス冷媒は、低段側吸込管4d、低段側吸込マフラ4e、低段側吸込室4f、弁装置41を介してシリンダ4a内に吸込まれ、ピストン4bによって圧縮されて、弁装置41、低段側吐出室4g、密閉容器2内に開口した低段側吐出管4hを介して、密閉容器2内に吐出するような構造になっている。低段側圧縮要素4と同様に、高段側圧績要素5はシリンダ5aと、このシリンダ5a内を回転軸6クランク軸部6aによって往復動されるピストン5bと、シリンダ5aの端面に設けられた弁装置51を有し、密閉容器2内に開口した高段側吸込管5dを介して吸込まれるガス冷媒は、高段側吸込室5f、弁装置51を介してシリンダ5a内に吸込まれ、ピストン5bによって圧縮されて、弁装置51、高段側吐出室5g、高段側吐出マフラ5e、高段側吐出管5hを介して、密閉容器2外の吐出管2cに吐出されるような構造になっている。この高段側圧縮要素5での圧縮行程において、高段側吸込管5dが吸込む冷媒は、低段側圧縮要素4で圧縮され密閉容器2内に吐出された冷媒に加えて、中間圧冷媒吸込管2bから密閉容器2内に吸込まれた中間圧の冷媒が密閉容器2で混合されたものである。   Further, the low-stage compression element 4 includes a cylinder 4a, a piston 4b reciprocated by a crankshaft portion 6a formed in the upper portion of the rotary shaft 6 in the cylinder 4a, and a valve provided on an end surface of the cylinder 4a. The gas refrigerant which has the apparatus 41 and is sucked from the evaporator 23 for the freezer compartment having a low evaporation pressure through the low-pressure refrigerant suction pipe 2a is a low-stage suction pipe 4d, a low-stage suction muffler 4e, and a low-stage suction chamber. 4f, sucked into the cylinder 4a through the valve device 41, and compressed by the piston 4b, through the valve device 41, the low-stage discharge chamber 4g, and the low-stage discharge pipe 4h opened in the sealed container 2, The structure is such that it is discharged into the sealed container 2. Similar to the low-stage compression element 4, the high-stage pressure element 5 is provided on a cylinder 5a, a piston 5b reciprocated in the cylinder 5a by a rotating shaft 6 and a crankshaft 6a, and an end surface of the cylinder 5a. The gas refrigerant having the valve device 51 and sucked through the high-stage suction pipe 5d opened in the sealed container 2 is sucked into the cylinder 5a through the high-stage suction chamber 5f and the valve device 51, A structure that is compressed by the piston 5b and discharged to the discharge pipe 2c outside the sealed container 2 through the valve device 51, the high-stage discharge chamber 5g, the high-stage discharge muffler 5e, and the high-stage discharge pipe 5h. It has become. In the compression stroke of the high-stage compression element 5, the refrigerant sucked by the high-stage suction pipe 5 d is intermediate pressure refrigerant suction in addition to the refrigerant compressed by the low-stage compression element 4 and discharged into the sealed container 2. An intermediate pressure refrigerant sucked into the sealed container 2 from the pipe 2 b is mixed in the sealed container 2.

また、吐出管2cに吐出された高圧冷媒は、凝縮器21で凝縮され、第1のキャピラリチューブ22aと冷蔵室用蒸発器22、第2のキャピラリチューブ23aと冷凍室用蒸発器23へと分流される。   The high-pressure refrigerant discharged to the discharge pipe 2c is condensed by the condenser 21, and is divided into the first capillary tube 22a and the refrigerator compartment evaporator 22, and the second capillary tube 23a and the freezer compartment evaporator 23. Is done.

上記冷媒は例えばイソブタン(R600a)であり、冷凍冷蔵庫の場合、低段側圧縮要素4の吸込圧力は、約0.1MPa、低段側圧縮要素4の吐出圧力すなわち、高段側圧縮要素5の吸込圧力は、約0.3MPa、高段側圧縮要素5の吐出圧力は、約0.9MPaになる。   The refrigerant is, for example, isobutane (R600a), and in the case of a refrigerator-freezer, the suction pressure of the low-stage compression element 4 is about 0.1 MPa, the discharge pressure of the low-stage compression element 4, that is, the high-stage compression element 5 The suction pressure is about 0.3 MPa, and the discharge pressure of the high-stage compression element 5 is about 0.9 MPa.

図3(a)〜(c)に示すように、上記低段側圧縮要素4の弁装置41及び高段側圧縮要素5の弁装置51は、同様の構成と形状をなし、その吸込孔及び吐出孔の直径のみが異なる。従って、弁装置41及び弁装置51を、符号を並列して同時に説明する。   As shown in FIGS. 3A to 3C, the valve device 41 of the low-stage compression element 4 and the valve device 51 of the high-stage compression element 5 have the same configuration and shape, and their suction holes and Only the diameter of the discharge hole is different. Therefore, the valve device 41 and the valve device 51 will be described at the same time with the symbols in parallel.

弁装置41、51は、2個の吸込孔41a、51a、2個の吐出孔41a、51aが設けられた弁座板41a、51aと、この弁座板41a、51aに取り付けられ吐出孔41a2、51aを開閉するU字形状の吐出弁41b、51bと、この吐出弁41b、51bの開度を制限する約U字形状の吐出弁押え41c、51cと、弁座板41a、51aの吐出弁41b、51bと反対面には吸込孔41a、51aを開閉する吸込弁41d、51dが設けられ、吸込弁41d、51dは弁座板41a、51aと略同一の形状を有しており、スリット41d、51dにより吸込弁部41d、51dが形成されている。なお、図3(a)、(c)中、符号41d、51dは吸込通路である。 The valve devices 41 and 51 are attached to the valve seat plates 41a and 51a provided with the two suction holes 41a 1 and 51a 1 and the two discharge holes 41a 2 and 51a 2 , and the valve seat plates 41a and 51a. discharge valve 41b of the U-shaped opening and closing the discharge hole 41A2,51a 2, 51b and, the discharge valve 41b, of approximately U-shaped to limit the opening of 51b discharge valve retainer 41c, and 51c, the valve seat plate 41a, Suction valves 41d and 51d for opening and closing suction holes 41a 1 and 51a 1 are provided on the surface opposite to the discharge valves 41b and 51b of 51a, and the suction valves 41d and 51d have substantially the same shape as the valve seat plates 41a and 51a. The suction valve portions 41d 2 and 51d 2 are formed by the slits 41d 1 and 51d 1 . In FIGS. 3A and 3C, reference numerals 41d 2 and 51d 2 denote suction passages.

図4に示すように、弁装置41の吐出孔41aの直径Ddは例えば4.5mmで、弁装置51の吐出孔51aの直径Ddの3.1mmに対して、Dd/Ddはほぼ1.5であり、この比率の根拠は後述の試験結果に基づくものであり、さらに、弁装置41の吸込孔41aの直径Dsは弁装置51の吸込孔51aの直径Dsよりも大きくなっている。 As shown in FIG. 4, the diameter Dd 1 of the discharge hole 41 a 2 of the valve device 41 is, for example, 4.5 mm, and Dd 1 / Dd with respect to 3.1 mm of the diameter Dd 2 of the discharge hole 51 a 2 of the valve device 51. 2 is substantially 1.5, the basis for this ratio is based on the test results described later, further, the diameter Ds of the suction holes 51a 1 having a diameter Ds 1 of the suction holes 41a 1 of the valve device 41 is a valve device 51 It is larger than 2 .

一般に往復動圧縮機において、図6に示すように、吐出孔部分の空間容積は、ピストンが上死点に位置したときに吐出ガスが残留し、この残留ガスはピストンが下死点に行く間に再膨張する。再膨張したガス容積のため吸込冷媒量が低下し、効率が低下する。このため、吐出孔部分の空間容積はできるだけ小さくなるように吐出孔の直径が設定される。しかしながら、吐出孔の直径が小さい(空間容積が小さい)と再膨張量が小さくなり、吸込冷媒量の低下は少なくなるが、流路抵抗が大きくなり過圧縮となり必要以上にシリンダ内圧力が上昇して圧縮仕事量が増加し効率を低下させる。この吐出孔の空間容積による吸込冷媒量の低減による効率低下と、吐出孔の流路抵抗の影響度は、吸込圧力と吐出圧力との関係及び吸込冷媒量によって異なる。   In general, in a reciprocating compressor, as shown in FIG. 6, the space volume of the discharge hole portion is such that the discharge gas remains when the piston is located at the top dead center, and this residual gas remains between the piston and the bottom dead center. Re-inflate. Due to the re-expanded gas volume, the amount of refrigerant sucked decreases, and the efficiency decreases. For this reason, the diameter of the discharge hole is set so that the spatial volume of the discharge hole portion becomes as small as possible. However, if the diameter of the discharge hole is small (the space volume is small), the re-expansion amount is small and the decrease in the suction refrigerant amount is small. However, the flow resistance is increased and over-compression occurs and the cylinder pressure rises more than necessary. As a result, compression work increases and efficiency decreases. The efficiency drop due to the reduction in the amount of suction refrigerant due to the space volume of the discharge hole and the degree of influence of the flow path resistance of the discharge hole differ depending on the relationship between the suction pressure and the discharge pressure and the amount of suction refrigerant.

そこで、図3(a)〜(c)に示すような弁座板41aの板厚を一定にして吐出孔41aの直径を種々変えて試験したところ、低段側圧縮要素4の吐出孔41aの直径Dd、高段側圧縮要素5の吐出孔51aの直径Ddとすると、Dd/Ddを1よリ大きくすると圧縮機としての成績係数が向上することが分かった。これは、低段側圧縮要素4の吸込圧力と吐出圧力との圧力差が高段側圧縮要素5のそれより小さいため、残留ガスの再膨張による損失よりも、流路抵抗低減による圧縮仕事量の低減効果の割合が大きいためである。なお、Dd/Ddが2より大きいと成績係数が低下するので、1<Dd/Dd≦2であるのが好ましく、1.2≦Dd/Dd≦1.8であるのがより好ましい。 Therefore, the discharge hole 41a in FIG. 3 (a) ~ was variously varied test the diameter of the discharge holes 41a 2 and the thickness of the valve seat plate 41a as shown in (c) to a constant, low-stage compression element 4 second diameter Dd 1, when the diameter Dd 2 discharge holes 51a 2 of the high-stage compression element 5, the coefficient of performance of Dd 1 / Dd 2 as compressor 1 by Li greatly was improved. This is because the pressure difference between the suction pressure and the discharge pressure of the low-stage compression element 4 is smaller than that of the high-stage compression element 5, so that the compression work by reducing the flow resistance rather than the loss due to re-expansion of the residual gas. This is because the ratio of the reduction effect is large. Since the coefficient of performance decreases when Dd 1 / Dd 2 is greater than 2, it is preferable that 1 <Dd 1 / Dd 2 ≦ 2, and 1.2 ≦ Dd 1 / Dd 2 ≦ 1.8. Is more preferable.

次に、上記密閉型往復動圧縮機の圧縮運転について説明する。   Next, the compression operation of the hermetic reciprocating compressor will be described.

図1及び図2に示すように、電動機部3に通電して回転軸6を回転駆動すると、クランク軸部6aが一体に偏心回転する。この偏心回転に伴い、低段側圧縮要素4の弁装置41及び高段側圧縮要素5のピストン4b、5bが、同一方向に往復運動する。これら低段側圧縮要素4、高段側圧縮要素5のシリンダ4a、5aがほぼ180°対向する位置に配置されており、各ピストン4b、5bはそれぞれのシリンダ4a、5aにおいて互いに逆の行程をなす。   As shown in FIGS. 1 and 2, when the electric motor unit 3 is energized and the rotary shaft 6 is rotationally driven, the crankshaft portion 6a integrally rotates integrally. Along with this eccentric rotation, the valve device 41 of the low-stage compression element 4 and the pistons 4b and 5b of the high-stage compression element 5 reciprocate in the same direction. The cylinders 4a and 5a of the low-stage side compression element 4 and the high-stage side compression element 5 are arranged at positions almost opposite to each other by 180 °, and the pistons 4b and 5b perform reverse strokes in the cylinders 4a and 5a. Eggplant.

低段側圧縮要素4では、蒸発圧力の低いガス冷媒が、冷凍室用蒸発器23から低圧冷媒吸込管2a、低段側吸込管4d、低段側吸込マフラ4eを介して低段側吸込室4fに吸込まれる。低段側吸込室4fに吸込まれた蒸発圧力の低いガス冷媒は、弁装置41の吸込孔41aを通り、シリンダ4a内に吸込まれ、ピストン4bによって中間圧に圧縮されて、吐出弁装置41の吐出孔41a、低段側吐出室4g、密閉容器2内に開口した低段側吐出管4hを介して、密閉容器2内に吐出される。さらに、密閉容器2には中間圧冷媒吸込管2bから中間圧の冷媒が吸込まれ、上記低段側圧縮要素4で圧縮された冷媒と混合される。 In the low-stage compression element 4, gas refrigerant having a low evaporating pressure is supplied from the freezer evaporator 23 through the low-pressure refrigerant suction pipe 2a, the low-stage suction pipe 4d, and the low-stage suction muffler 4e. It is sucked into 4f. Low gas refrigerant evaporating pressure is sucked into the low-stage side suction chamber 4f passes through the suction hole 41a 1 of the valve device 41, is sucked into the cylinder 4a, is compressed to an intermediate pressure by the piston 4b, discharge valve system 41 The discharge hole 41a 2 , the low-stage discharge chamber 4g, and the low-stage discharge pipe 4h opened in the closed container 2 are discharged into the sealed container 2. Further, the sealed container 2 receives the intermediate pressure refrigerant from the intermediate pressure refrigerant suction pipe 2 b and mixes it with the refrigerant compressed by the low-stage compression element 4.

密閉容器2の中間圧冷媒は、密閉容器2内に開口した高段側吸込管5dを介して高段側吸込室5fに吸込まれる。高段側吸込室5fに吸込まれた中間圧のガス冷媒は弁装置51の吸込孔51aを通り、シリンダ5a内に吸込まれ、ピストン5bによって高圧に圧縮されて、弁装置51の吐出孔51a、高段側吐出室5g、高段側吸込マフラ5eを介して密閉容器2外の吐出管2c吐出される。 The intermediate pressure refrigerant in the sealed container 2 is sucked into the high-stage suction chamber 5f through the high-stage suction pipe 5d opened in the sealed container 2. Gas refrigerant of the high-stage suction chamber 5f in drawn-in intermediate pressure passes through the suction hole 51a 1 of the valve device 51, is sucked into the cylinder 5a, is compressed to a high pressure by the piston 5b, the discharge hole 51a of the valve device 51 2. The discharge pipe 2c outside the hermetic container 2 is discharged through the high-stage side discharge chamber 5g and the high-stage side suction muffler 5e.

上記のような低段側圧縮要素4による低圧から中間圧への圧縮行程、高段側圧縮要素5による中間圧から高圧への圧縮行程において、吸込孔41a、51a、吐出孔41a、51aの大きさはガスの流路抵抗とガスの再膨張のため圧縮効率に影響を与えるが、低圧側圧縮要素4の吐出孔41bの直径Ddと高段側圧縮要素5の吐出孔41bの直径Ddの比Dd/Ddが、1より大きく形成されているので、圧縮機としての成績係数が向上する。これは、低段側圧縮要素4の吸込圧力と吐出圧力との圧力差が高段側圧績要素のそれより小さいため、残留ガスの再膨張による損失よりも、流路抵抗低減による圧縮仕事量の低減効果の割合が大きいためである。 In the compression stroke from the low pressure to the intermediate pressure by the low-stage compression element 4 and the compression stroke from the intermediate pressure to the high pressure by the high-stage compression element 5 as described above, the suction holes 41a 1 , 51a 1 , the discharge holes 41a 2 , The size of 51a 2 affects the compression efficiency due to gas flow resistance and gas re-expansion, but the diameter Dd 1 of the discharge hole 41b of the low-pressure compression element 4 and the discharge hole 41b of the high-stage compression element 5 Since the ratio Dd 1 / Dd 2 of the diameter Dd 2 is larger than 1, the coefficient of performance as a compressor is improved. This is because the pressure difference between the suction pressure and the discharge pressure of the low-stage compression element 4 is smaller than that of the high-stage pressure element, so that the compression work due to the flow resistance reduction is less than the loss due to re-expansion of the residual gas. This is because the ratio of the reduction effect is large.

また、一般に吸込弁は、圧縮行程時にシリンダ内圧と吸込室の圧力との差圧により、弁部分は吸込孔に押され応力が発生すし、この応力が大きくなると弁の破損に至る。このため、吸込孔は吸込弁に生じる応力を小さくできる大きさに設定される。しかしながら、吸込孔の大きさが小さいと流路抵抗は大きくなり吸込ガス量が低下し効率が低下する。弁の受ける応力は、
[数1]
σ=1.24(pa)/t
の式で表される。ここでσ:最大応力、p:弁部分両側の差圧、a:弁の接する吸込孔部分の半径、t:弁の板厚である。密閉型往復動圧縮機1において、低段側圧縮要素の圧力差が高圧側圧縮要素の圧力差より小さいため、低段側圧縮要素の吸込孔41aの大きさを高段側圧縮要素5の吸込孔51aの大きさより大きくすることにより、吸込弁41dの受ける応力を大きくすることなく、吸込流路抵抗を小さくして密閉型往復動圧縮機の成績係数を向上することができる。
In general, in the suction valve, during the compression stroke, the valve portion is pushed into the suction hole due to the pressure difference between the cylinder internal pressure and the pressure in the suction chamber, and stress is generated. When this stress increases, the valve is damaged. For this reason, the suction hole is set to a size that can reduce the stress generated in the suction valve. However, if the size of the suction hole is small, the flow path resistance increases, the amount of suction gas decreases, and the efficiency decreases. The stress that the valve receives is
[Equation 1]
σ = 1.24 (pa 2 ) / t 2
It is expressed by the following formula. Where σ: maximum stress, p: differential pressure on both sides of the valve portion, a: radius of the suction hole portion in contact with the valve, and t: plate thickness of the valve. In the hermetic reciprocating compressor 1, since the pressure difference of the low-stage compression element is smaller than the pressure difference of the high-pressure compression element, the size of the suction hole 41 a 1 of the low-stage compression element is the same as that of the high-stage compression element 5. by larger than the size of suction holes 51a 1, it is possible to improve the coefficient of performance without hermetic reciprocating compressor by reducing the suction flow path resistance by increasing the stress experienced by the suction valve 41d.

上記本実施形態の密閉型往復動圧縮機のように、シリンダ容積、圧縮比により吸込孔、吐出孔の大きさを低段側圧縮要素と高段側圧績要素とで適正な大きさにすることにより、その効率を向上させることができる。   As in the above-described closed type reciprocating compressor of the present embodiment, the size of the suction hole and the discharge hole should be set appropriately between the low-stage compression element and the high-stage pressure element depending on the cylinder volume and compression ratio. Therefore, the efficiency can be improved.

なお、上記実施形態では、低段側圧縮要素の吸込孔、吐出孔の両方の大きさを、高段側圧縮要素の吸込孔、吐出孔の大きさより大きくする例で説明したが、一方のみを高段側圧縮要素の吸込孔又は吐出孔より大きくするようにしても良い。また、低段圧縮要素の吸込孔はその径を大きくする代わりに、吸込弁の板厚を高段側圧縮要素の吸込弁の板厚よりも薄くすることにより、吸込弁のバネ力を小さくし、小さい圧力で吸込弁の開閉を可能にし、吸込ガスの流路抵抗を小さくして吸込効率を向上するようにしてもよい。   In the above embodiment, the size of both the suction hole and the discharge hole of the low stage side compression element is described as being larger than the size of the suction hole and the discharge hole of the high stage side compression element. You may make it make it larger than the suction hole or discharge hole of a high stage side compression element. Also, instead of increasing the diameter of the suction hole of the low-stage compression element, the spring force of the suction valve is reduced by making the thickness of the suction valve thinner than the thickness of the suction valve of the high-stage compression element. The suction valve may be opened and closed with a small pressure, and the suction passage efficiency of the suction gas may be reduced to improve the suction efficiency.

本発明に係わる密閉型往復動圧縮機を冷凍サイクルに組込んだ状態を示す横断面図。The cross-sectional view which shows the state which incorporated the closed type reciprocating compressor concerning this invention in the refrigerating cycle. 本発明に係わる密閉型往復動圧縮機の横断面図。The cross-sectional view of the hermetic reciprocating compressor according to the present invention. 本発明に係わる密閉型往復動圧縮機に用いられる弁装置の分解図で、(a)は吐出弁と弁座板の平面図、(b)はその側面図、(c)は吸込弁の平面図。BRIEF DESCRIPTION OF THE DRAWINGS It is an exploded view of the valve apparatus used for the hermetic reciprocating compressor concerning this invention, (a) is a top view of a discharge valve and a valve seat plate, (b) is the side view, (c) is a plane of a suction valve Figure. 本発明に係わる密閉型往復動圧縮機に用いられる弁装置の弁座板の一部拡大図。1 is a partially enlarged view of a valve seat plate of a valve device used in a hermetic reciprocating compressor according to the present invention. 本発明に係わる密閉型往復動圧縮機の吐出孔比と成績係数の試験結果を示す相関図。The correlation diagram which shows the test result of the discharge hole ratio of a closed type reciprocating compressor concerning this invention, and a coefficient of performance. 一般的な密閉型往復動圧縮機の吐出孔と成績係数の相関図。The correlation diagram of the discharge hole and coefficient of performance of a general hermetic reciprocating compressor.

符号の説明Explanation of symbols

1…密閉型往復動圧縮機、2…密閉容器、3…電動機部、4…低段側圧縮要素、41…弁装置、41a…弁座板、41a…吸込孔、41a…吐出孔、5…高段側圧縮要素、51…弁装置、51a…弁座板、51a…吸込孔、51a…吐出孔、6b…回転軸、6a…クランク軸部。 1 ... hermetic reciprocating compressor, 2 ... sealed container, 3 ... motor unit, 4 ... low-stage compression element, 41 ... valve device, 41a ... valve seat plate, 41a 1 ... suction hole 41a 2 ... discharge hole, 5 ... high-stage compression element, 51 ... valve device, 51a ... valve seat plate, 51a 1 ... suction hole, 51a 2 ... discharge hole, 6b ... rotary shaft, 6a ... crankshaft.

Claims (2)

低圧冷媒吸込管、中間圧冷媒吸込管及び吐出管が接続された密閉容器内に、電動機部によって駆動される低段側圧縮要素及び高段側圧縮要素を収納し、前記低圧側冷媒吸込管から低段側圧縮要素に低圧冷媒を吸込んで圧縮し吐出するとともに、前記低段側圧縮要素から吐出された冷媒及び中間圧冷媒吸込管から吸込まれた冷媒を吸込んで圧縮し、前記吐出管から吐出する密閉型往復動圧縮機において、前記低段側圧縮要素と高段側圧縮要素の弁装置の構成を異ならせたことを特徴とする密閉型往復動圧縮機。 A low-stage compression element and a high-stage compression element driven by an electric motor unit are housed in a sealed container to which a low-pressure refrigerant suction pipe, an intermediate-pressure refrigerant suction pipe, and a discharge pipe are connected. Low-pressure refrigerant is sucked into the low-stage compression element and compressed and discharged, and the refrigerant discharged from the low-stage compression element and the refrigerant sucked from the intermediate-pressure refrigerant suction pipe are sucked and compressed and discharged from the discharge pipe. In the hermetic reciprocating compressor, the hermetic reciprocating compressor is characterized in that the configurations of the valve devices of the low stage side compression element and the high stage side compression element are different. 前記低段側圧縮要素の吐出孔及び吸込孔の少なくとも一方の大きさを、これに対応する高段側圧縮要素の吐出孔又は吸込孔より大きくしたことを特徴とする請求項1に記載の密閉型往復動圧縮機。 2. The hermetic seal according to claim 1, wherein a size of at least one of a discharge hole and a suction hole of the low-stage compression element is larger than a discharge hole or a suction hole of a corresponding high-stage compression element. Type reciprocating compressor.
JP2004021411A 2004-01-29 2004-01-29 Closed type reciprocating compressor Pending JP2005214068A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004021411A JP2005214068A (en) 2004-01-29 2004-01-29 Closed type reciprocating compressor
TW094102349A TWI274109B (en) 2004-01-29 2005-01-26 Closed reciprocating compressor
KR1020050007903A KR20050077784A (en) 2004-01-29 2005-01-28 Hermetric reciprocating type compressor
CNA2005100067515A CN1648450A (en) 2004-01-29 2005-01-31 Closed reciprocating compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021411A JP2005214068A (en) 2004-01-29 2004-01-29 Closed type reciprocating compressor

Publications (1)

Publication Number Publication Date
JP2005214068A true JP2005214068A (en) 2005-08-11

Family

ID=34879086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021411A Pending JP2005214068A (en) 2004-01-29 2004-01-29 Closed type reciprocating compressor

Country Status (4)

Country Link
JP (1) JP2005214068A (en)
KR (1) KR20050077784A (en)
CN (1) CN1648450A (en)
TW (1) TWI274109B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223140A (en) * 2009-03-24 2010-10-07 Fujitsu General Ltd Two-stage compression rotary compressor
WO2018003525A1 (en) * 2016-06-29 2018-01-04 株式会社デンソー Compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108194326B (en) * 2018-01-31 2019-11-22 珠海格力电器股份有限公司 A kind of compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223140A (en) * 2009-03-24 2010-10-07 Fujitsu General Ltd Two-stage compression rotary compressor
WO2018003525A1 (en) * 2016-06-29 2018-01-04 株式会社デンソー Compressor
JPWO2018003525A1 (en) * 2016-06-29 2018-10-25 株式会社デンソー Compressor

Also Published As

Publication number Publication date
TW200532113A (en) 2005-10-01
TWI274109B (en) 2007-02-21
CN1648450A (en) 2005-08-03
KR20050077784A (en) 2005-08-03

Similar Documents

Publication Publication Date Title
AU2005240929B2 (en) Rotary compressor
EP2357427A1 (en) Refrigeration device
JPWO2009028632A1 (en) Rotary compressor and refrigeration cycle apparatus
US20060045762A1 (en) Suction muffler for compressor
JP2006057634A (en) Refrigerant suction guide structure for reciprocating compressor
JPH0942151A (en) Compressor
KR20110072312A (en) Twin type rotary compressor
JP2006152839A (en) Rotary two-stage compressor and air conditioner using the compressor
EP3184822B1 (en) Rotary compressor and refrigeration cycle device
TWI274109B (en) Closed reciprocating compressor
WO2016076064A1 (en) Rotating compressor and refrigeration cycle device
JP4790664B2 (en) Rotary type two-stage compressor and air conditioner
KR20130092879A (en) Check valve assembly for compressor
JP5338231B2 (en) Two-stage compressor
JP3987323B2 (en) Two-stage compression reciprocating compressor and refrigeration cycle equipment
JP2009074445A (en) Two-cylinder rotary compressor and refrigerating cycle device
JP2007092639A (en) Hermetically sealed reciprocating compressor and refrigerating cycle device
JP2010156246A (en) Compressor
KR100228857B1 (en) Flapper type valve structure of a compressor
JP3984057B2 (en) Reciprocating hermetic electric compressor
JP2003083247A (en) Compressor and refrigerating cycle device
JPH11230070A (en) Compressor
KR100508294B1 (en) That noise type outletvalve of refrigerator compressibility
JP2005214070A (en) Sealed reciprocating compressor
KR100202932B1 (en) Flapper type valve system of a compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609