JP2005214063A - Internal combustion engine and operation controller of internal combustion engine - Google Patents

Internal combustion engine and operation controller of internal combustion engine Download PDF

Info

Publication number
JP2005214063A
JP2005214063A JP2004021136A JP2004021136A JP2005214063A JP 2005214063 A JP2005214063 A JP 2005214063A JP 2004021136 A JP2004021136 A JP 2004021136A JP 2004021136 A JP2004021136 A JP 2004021136A JP 2005214063 A JP2005214063 A JP 2005214063A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust gas
turbine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004021136A
Other languages
Japanese (ja)
Other versions
JP4258388B2 (en
Inventor
Akitoshi Tomota
晃利 友田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004021136A priority Critical patent/JP4258388B2/en
Publication of JP2005214063A publication Critical patent/JP2005214063A/en
Application granted granted Critical
Publication of JP4258388B2 publication Critical patent/JP4258388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/07Mixed pressure loops, i.e. wherein recirculated exhaust gas is either taken out upstream of the turbine and reintroduced upstream of the compressor, or is taken out downstream of the turbine and reintroduced downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To rapidly recirculate an exhaust gas to an intake side in stratified operation. <P>SOLUTION: This internal combustion engine 1 comprises a turbo 10 having a turbine 10t and a compressor 10c connected to the turbine 10t and pressurizing air, an exhaust gas bypass valve 12 flowing the exhaust gas of the internal combustion engine 1 to the downstream side of the turbine 10t after bypassing the turbine 10t, an intake bypass valve 11 supplying the air to the internal combustion engine 1 after bypassing the compressor 10c, and an EGR valve 13 extracting the exhaust gas of the internal combustion engine 1 from the downstream side of the turbine 10 and recirculating it to the intake side of the internal combustion engine 1. When the operation of the internal combustion engine is transferred from a homogeneous lean operation in combination with supercharging to the stratified operation, the air is supplied to the internal combustion engine 1 after bypassing the compressor 10c by opening at least the intake bypass valve 11, and the exhaust gas of the internal combustion engine 1 is recirculated to the intake side by the EGR valve 13. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、均質リーン運転と成層運転とを切り替えて運転できるレシプロ式の内燃機関に関し、さらに詳しくは、均質リーン運転から成層運転時に切り替える際には、速やかに排気を吸気側へ還流できる内燃機関及び内燃機関の運転制御装置に関する。   The present invention relates to a reciprocating internal combustion engine that can be operated by switching between a homogeneous lean operation and a stratified operation, and more particularly, an internal combustion engine that can quickly return exhaust gas to the intake side when switching from a homogeneous lean operation to a stratified operation. And an operation control apparatus for an internal combustion engine.

レシプロ式の内燃機関は、乗用車やトラック等の車両に広く使用されている。このような内燃機関の性能向上を図るため、過給機により大気圧よりも高い圧力の空気を内燃機関に供給して出力を向上させたり、気筒内へ直接燃料を噴射して成層燃焼させることにより、燃料消費を低減させたりする技術が用いられている。特許文献1には、吸気通路へ燃料を噴射する筒外インジェクタと、気筒内へ燃料を噴射する筒内インジェクタとを備え、さらに過給装置を備えた内燃機関であって、過給圧に応じて筒内インジェクタと筒外インジェクタとの燃料噴射量の分担率を変更する技術が開示されている。   Reciprocating internal combustion engines are widely used in vehicles such as passenger cars and trucks. In order to improve the performance of such an internal combustion engine, air with a pressure higher than the atmospheric pressure is supplied to the internal combustion engine by a supercharger to improve the output, or fuel is injected directly into the cylinder for stratified combustion. Thus, a technique for reducing fuel consumption is used. Patent Document 1 discloses an internal combustion engine that includes an in-cylinder injector that injects fuel into an intake passage, and an in-cylinder injector that injects fuel into a cylinder, and further includes a supercharging device, and is configured to respond to supercharging pressure. Thus, a technique for changing the share ratio of the fuel injection amount between the in-cylinder injector and the out-cylinder injector is disclosed.

特開平11−351041号公報JP 11-351041 A

ところで、近年の内燃機関においては、均質希薄燃焼において過給を併用することにより、希薄燃焼領域を広げ、さらに、負荷、機関回転数の低い領域では成層運転に切り替えて、燃料消費を低減する提案がなされている。かかる技術を実現する場合、成層運転時には、内燃機関の排気を吸気側に還流させてNOxの発生を抑制する必要がある。しかし、過給圧力が速やかに低下しないことから、成層運転切り替え時において、速やかに排気を吸気側へ還流させることが難しいという問題がある。特許文献1には、かかる問題点に関しては何ら言及されておらず、過給圧に応じて筒内インジェクタと筒外インジェクタとの燃料噴射量の分担率を変更することでは、前記問題点は解決できない。   By the way, in recent internal combustion engines, a combination of supercharging in homogeneous lean combustion expands the lean combustion region, and further switches to stratified operation in regions where the load and engine speed are low, thereby reducing fuel consumption Has been made. When realizing such a technique, it is necessary to suppress the generation of NOx by returning the exhaust gas of the internal combustion engine to the intake side during the stratified operation. However, since the supercharging pressure does not decrease quickly, there is a problem that it is difficult to quickly recirculate the exhaust gas to the intake side when switching the stratified operation. Patent Document 1 does not mention any such problems, and the problem can be solved by changing the share ratio of the fuel injection amount between the in-cylinder injector and the out-cylinder injector according to the supercharging pressure. Can not.

そこで、本発明は、上記に鑑みてなされたものであって、過給を併用した均質燃焼運転から成層運転に切り替える際には、速やかに排気を吸気側へ還流できる内燃機関及び内燃機関の運転制御装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above, and when switching from a homogeneous combustion operation using supercharging to a stratified operation, the internal combustion engine capable of quickly returning exhaust gas to the intake side and the operation of the internal combustion engine An object is to provide a control device.

上述した課題を解決し、目的を達成するために、この内燃機関は、過給を併用する均質リーン運転と、成層運転とを運転条件によって切り替え可能な内燃機関であって、排気によって駆動されるタービンと、このタービンに連結されて空気を加圧するコンプレッサとを含んで構成される過給手段と、前記タービンをバイパスさせてから、前記タービンの下流へ前記内燃機関の排気を流す排気バイパス手段と、前記コンプレッサをバイパスさせてから、前記内燃機関へ空気を供給する吸気バイパス手段と、前記タービンの下流から前記内燃機関の排気を抽気して、前記内燃機関の吸気側へ還流させる排気還流手段と、を備え、過給を併用する均質リーン運転から成層運転へ移行する際には、少なくとも前記吸気バイパス手段により前記コンプレッサをバイパスさせてから前記内燃機関へ空気を供給するとともに、前記排気還流手段により前記内燃機関の排気を還流させることを特徴とする。   In order to solve the above-described problems and achieve the object, this internal combustion engine is an internal combustion engine that can switch between a homogeneous lean operation using supercharging and a stratified operation depending on operating conditions, and is driven by exhaust gas. A turbocharger configured to include a turbine and a compressor connected to the turbine to pressurize the air; and an exhaust bypass unit that causes the exhaust of the internal combustion engine to flow downstream of the turbine after bypassing the turbine Intake bypass means for supplying air to the internal combustion engine after bypassing the compressor; and exhaust recirculation means for extracting the exhaust of the internal combustion engine from the downstream of the turbine and returning it to the intake side of the internal combustion engine When the transition from homogeneous lean operation using supercharging to stratified operation to stratified operation is carried out, at least the compressor is used by the intake bypass means. Supplies air to the internal combustion engine from bypass the service, and wherein the recirculating exhaust of the internal combustion engine by the exhaust gas recirculation means.

この内燃機関は、過給を併用する均質リーン運転から、過給をしない成層運転に移行する場合、少なくとも過給手段のコンプレッサをバイパスさせて内燃機関へ空気を供給するとともに、排気を吸気側へ還流させる。これにより、吸気管圧力を大気圧とほぼ等しくした上で排気を吸気側へ還流できる。その結果、前記移行の際には速やかに排気を吸気側へ還流させることができる。   When this internal combustion engine shifts from a homogeneous lean operation with supercharging to a stratified operation without supercharging, at least the compressor of the supercharging means is bypassed and air is supplied to the internal combustion engine, and the exhaust is sent to the intake side. Reflux. As a result, the exhaust gas can be recirculated to the intake side with the intake pipe pressure substantially equal to the atmospheric pressure. As a result, the exhaust gas can be quickly returned to the intake side during the transition.

次の本発明に係る内燃機関は、前記内燃機関において、過給を併用する均質リーン運転から成層運転へ移行する際には、さらに、前記排気バイパス手段により前記内燃機関の排気を前記タービンの下流へ流すことを特徴とする。   In the internal combustion engine according to the present invention, when the internal combustion engine shifts from the homogeneous lean operation using supercharging to the stratified operation, the exhaust gas from the internal combustion engine is further downstream from the turbine by the exhaust bypass means. It is characterized by flowing to.

この内燃機関では、さらに、過給手段のタービンをバイパスさせて排気をタービン下流へ導いた上で、当該排気を吸気側へ還流する。これにより、タービンでの圧力損失をほぼ0にした状態で排気を吸気側へ還流できる。その結果、過給を併用する均質リーン運転から成層運転に移行するときには、速やかに排気を吸気側へ還流させることができる。   In this internal combustion engine, the turbine of the supercharging means is further bypassed to guide the exhaust downstream, and then the exhaust is recirculated to the intake side. As a result, the exhaust gas can be recirculated to the intake side while the pressure loss in the turbine is substantially zero. As a result, when shifting from the homogeneous lean operation using supercharging to the stratified operation, the exhaust gas can be quickly returned to the intake side.

次の本発明に係る内燃機関は、過給を併用する均質リーン運転と、成層運転とを運転条件によって切り替え可能な内燃機関であって、排気によって駆動されるタービンと、このタービンに連結されて空気を加圧するコンプレッサとを含んで構成される過給手段と、前記タービンをバイパスさせてから、前記タービンの下流へ前記内燃機関の排気を流す排気バイパス手段と、前記コンプレッサをバイパスさせてから、前記内燃機関へ空気を供給する吸気バイパス手段と、前記タービンの上流から前記内燃機関の排気を抽気して、前記内燃機関の排気を前記内燃機関の吸気側へ還流させる還流手段と、を備え、過給を併用する均質リーン運転から成層運転へ移行する際には、前記吸気バイパス手段により前記コンプレッサをバイパスさせてから前記内燃機関へ空気を供給するとともに、前記タービンへ前記内燃機関の排気を導入した状態で、前記排気還流手段により前記内燃機関の排気を還流させることを特徴とする。   An internal combustion engine according to the present invention is an internal combustion engine capable of switching between a homogeneous lean operation using supercharging and a stratified operation depending on operating conditions, and is connected to the turbine driven by exhaust gas. A supercharging means comprising a compressor for pressurizing air; an exhaust bypass means for allowing the exhaust of the internal combustion engine to flow downstream of the turbine after bypassing the turbine; and bypassing the compressor; Intake bypass means for supplying air to the internal combustion engine, and recirculation means for extracting the exhaust of the internal combustion engine from upstream of the turbine and returning the exhaust of the internal combustion engine to the intake side of the internal combustion engine, When shifting from homogeneous lean operation with supercharging to stratified operation, the compressor is bypassed by the intake bypass means before Supplies air to the internal combustion engine, while introducing exhaust of the internal combustion engine to the turbine, and wherein the recirculating exhaust of the internal combustion engine by the exhaust gas recirculation means.

この内燃機関では、過給手段が備えるタービンの上流側から排気を吸気側へ還流させる。そして、過給を併用する均質リーン運転から成層運転へ移行する際に、排気を吸気側へ還流させるにあたっては、過吸手段のコンプレッサをバイパスさせて空気を内燃機関に供給するとともに、過給手段のタービンへは排気を導いた状態にしておく。このようにすることによって、タービンの抵抗により、還流させる排気の圧力は吸気側の空気圧力より大きいこととなるので、排気を速やかに吸気側へ還流させることができる。   In this internal combustion engine, the exhaust gas is recirculated from the upstream side of the turbine included in the supercharging means to the intake side. When the exhaust gas is recirculated to the intake side during the transition from the homogeneous lean operation using supercharging to the stratified operation, the supercharging means bypasses the compressor of the supercharging means and supplies the air to the internal combustion engine. The exhaust is led to the turbine. By doing so, the pressure of the exhaust gas to be recirculated is larger than the air pressure on the intake side due to the resistance of the turbine, so that the exhaust gas can be quickly recirculated to the intake side.

次の本発明に係る内燃機関は、前記内燃機関において、前記内燃機関の吸気ポート内へ燃料を噴射するポート噴射弁と、前記内燃機関の気筒内へ燃料を噴射する筒内噴射弁とを備え、過給を併用する均質リーン運転においては、前記ポート噴射弁から燃料を噴射し、成層運転においては前記筒内噴射弁から燃料を噴射することを特徴とする。   An internal combustion engine according to the present invention includes a port injection valve that injects fuel into an intake port of the internal combustion engine and a cylinder injection valve that injects fuel into a cylinder of the internal combustion engine. In the homogeneous lean operation using supercharging, the fuel is injected from the port injection valve, and in the stratified operation, the fuel is injected from the in-cylinder injection valve.

次の本発明に係る内燃機関の運転制御装置は、過給を併用する均質リーン運転と、成層運転とを運転条件によって切り替え可能であるとともに、排気によって駆動されるタービン及び前記タービンに連結されて空気を加圧するコンプレッサを含んで構成される過給手段と、前記タービンの下流から前記内燃機関の排気を抽気して吸気側へ還流させる排気還流手段とを備える内燃機関の運転制御に用いるものであって、前記内燃機関が均質燃焼運転から成層運転へ移行する場合には、少なくとも前記コンプレッサをバイパスさせてから前記内燃機関へ空気を供給させる排気還流圧力制御部と、前記排気還流手段により前記内燃機関の排気を還流させる排気還流動作部と、を含んで構成されることを特徴とする。   An internal combustion engine operation control apparatus according to the present invention is capable of switching between a homogeneous lean operation using supercharging and a stratified operation depending on operating conditions, and is connected to a turbine driven by exhaust and the turbine. It is used for operation control of an internal combustion engine comprising supercharging means configured to include a compressor for pressurizing air and exhaust gas recirculation means for extracting the exhaust gas of the internal combustion engine from the downstream of the turbine and returning it to the intake side. When the internal combustion engine shifts from the homogeneous combustion operation to the stratified operation, at least the exhaust gas recirculation pressure control unit for supplying air to the internal combustion engine after bypassing the compressor and the exhaust gas recirculation means. And an exhaust gas recirculation operation unit that recirculates exhaust gas from the engine.

この内燃機関の運転制御装置は、内燃機関の運転状態を、過給を併用する均質リーン運転から、過給をしない成層運転に移行させる場合には、少なくとも過給手段のコンプレッサをバイパスさせて内燃機関へ空気を供給するとともに、排気を吸気側へ還流させる。これにより、吸気管圧力を大気圧とほぼ等しくした上で排気を吸気側へ還流できる。その結果、前記移行の際には速やかに排気を吸気側へ還流させることができる。   The internal combustion engine operation control device bypasses at least the compressor of the supercharging means when the operation state of the internal combustion engine is shifted from the homogeneous lean operation with supercharging to the stratified operation without supercharging. Air is supplied to the engine and exhaust gas is recirculated to the intake side. As a result, the exhaust gas can be recirculated to the intake side with the intake pipe pressure substantially equal to the atmospheric pressure. As a result, the exhaust gas can be quickly returned to the intake side during the transition.

次の本発明に係る内燃機関の運転制御装置は、過給を併用する均質リーン運転と、成層運転とを運転条件によって切り替え可能であるとともに、排気によって駆動されるタービン及び前記タービンに連結されて空気を加圧するコンプレッサを含んで構成される過給手段と、前記タービンの上流から前記内燃機関の排気を抽気して吸気側へ還流させる排気還流手段とを備える内燃機関の運転制御に用いるものであって、前記内燃機関が均質燃焼運転から成層運転へ移行する場合には、少なくとも前記コンプレッサをバイパスさせてから前記内燃機関へ空気を供給させるとともに、前記タービンへ前記内燃機関の排気を導入する排気還流圧力制御部と、前記排気還流手段により前記内燃機関の排気を還流させる排気還流動作部と、を含んで構成されることを特徴とする。   An internal combustion engine operation control apparatus according to the present invention is capable of switching between a homogeneous lean operation using supercharging and a stratified operation depending on operating conditions, and is connected to a turbine driven by exhaust and the turbine. It is used for operation control of an internal combustion engine comprising supercharging means configured to include a compressor for pressurizing air and exhaust gas recirculation means for extracting the exhaust gas of the internal combustion engine from the upstream side of the turbine and returning it to the intake side. When the internal combustion engine shifts from the homogeneous combustion operation to the stratified operation, at least the compressor is bypassed and then the air is supplied to the internal combustion engine and the exhaust gas that introduces the exhaust gas of the internal combustion engine to the turbine A recirculation pressure control unit; and an exhaust gas recirculation operation unit that recirculates exhaust gas of the internal combustion engine by the exhaust gas recirculation unit. And wherein the Rukoto.

この内燃機関の運転制御装置は、過給手段が備えるタービンの上流側から、排気を吸気側へ還流させる内燃機関の運転制御に用いるものである。そして、当該内燃機関の運転状態を、過給を併用する均質リーン運転から成層運転へ移行させるにあたって、過吸手段のコンプレッサをバイパスさせて空気を内燃機関に供給するとともに、過給手段のタービンへ排気を導いて、排気を吸気側へ還流させる。このようにすることによって、タービンの抵抗により、還流させる排気の圧力は吸気側の空気圧力よりも大きいこととなるので、排気を速やかに吸気側へ還流させることができる。   This internal combustion engine operation control apparatus is used for operation control of an internal combustion engine that recirculates exhaust gas to the intake side from the upstream side of a turbine provided in the supercharging means. When the operation state of the internal combustion engine is shifted from the homogeneous lean operation using supercharging to the stratified operation, the compressor of the supercharging means is bypassed and air is supplied to the internal combustion engine, and the turbine of the supercharging means is supplied. The exhaust is guided and the exhaust is recirculated to the intake side. By doing so, the pressure of the exhaust gas to be recirculated is larger than the air pressure on the intake side due to the resistance of the turbine, so that the exhaust gas can be quickly recirculated to the intake side.

本発明に係る内燃機関によれば、均質燃焼運転から成層運転に切り替える際には、速やかに排気を吸気側へ還流できるという効果を奏する。   According to the internal combustion engine of the present invention, when switching from homogeneous combustion operation to stratified operation, there is an effect that exhaust gas can be quickly recirculated to the intake side.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、以下に説明する実施例によりこの発明が限定されるものではない。また、以下の実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。また、本発明はレシプロ式の内燃機関に対して好適に適用でき、特に乗用車やバス、あるいはトラック等の車両に搭載される内燃機関に対して好ましい。   Hereinafter, the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the Example demonstrated below. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same. The present invention can be preferably applied to a reciprocating internal combustion engine, and is particularly preferable for an internal combustion engine mounted on a vehicle such as a passenger car, a bus, or a truck.

実施例1に係る内燃機関は、過給手段を備えるとともに、均質リーン運転と成層運転とを切り替え可能な内燃機関であって、排気を吸気側へ還流させる還流手段は、前記タービンの下流から前記排気を還流させるとともに、均質リーン運転から成層運転へ移行する際には、少なくとも前記吸気バイパス手段を開放する点に特徴がある。   The internal combustion engine according to the first embodiment is an internal combustion engine that includes a supercharging unit and can switch between a homogeneous lean operation and a stratified operation, and a recirculation unit that recirculates exhaust gas to the intake side is provided from the downstream of the turbine. It is characterized in that at least the intake bypass means is opened when the exhaust gas is recirculated and when the homogeneous lean operation is shifted to the stratified operation.

図1は、実施例1に係る内燃機関の全体構成図である。実施例に係る内燃機関1は、ガソリンを燃料とする火花点火式のレシプロ式の内燃機関である。内燃機関1の気筒数は特に限定されるものではない。この内燃機関1は、気筒1s内の燃焼室1bへ直接燃料Fを噴射するための筒内噴射弁3を備える。この筒内噴射弁3から噴射された燃料Fは、気筒1s内の燃焼室1bで燃料噴霧Fmを形成し、吸気ポート22から燃焼室1b内へ導入される空気と混合気を形成する。この混合気は、火花点火手段である点火プラグ9によって点火されて燃焼し、燃焼ガスの圧力がピストン7を往復運動させる。   FIG. 1 is an overall configuration diagram of an internal combustion engine according to a first embodiment. The internal combustion engine 1 according to the embodiment is a spark ignition reciprocating internal combustion engine using gasoline as fuel. The number of cylinders of the internal combustion engine 1 is not particularly limited. The internal combustion engine 1 includes an in-cylinder injection valve 3 for directly injecting fuel F into the combustion chamber 1b in the cylinder 1s. The fuel F injected from the in-cylinder injection valve 3 forms a fuel spray Fm in the combustion chamber 1b in the cylinder 1s, and forms an air-fuel mixture with air introduced from the intake port 22 into the combustion chamber 1b. This air-fuel mixture is ignited and burned by a spark plug 9 which is a spark ignition means, and the pressure of the combustion gas causes the piston 7 to reciprocate.

この内燃機関1は、吸気ポート22内へ燃料Fを噴射して、吸気ポート22内で燃料噴霧Fmを形成するポート噴射弁5も備える。なお、筒内噴射弁3は、主として成層運転時に用いることが好ましいが、燃料噴霧を微細化したり、燃料噴射時期を変更したりすれば、均質希薄燃焼にも用いることができる。したがって、実施例1の内燃機関を実現するためには、少なくとも筒内噴射弁3を備えていればよい。ただし、吸気ポート22へ燃料Fを噴射すると、空気と燃料Fとが十分に混合されるため、均質希薄燃焼に適した混合気を形成することができる。このため、実施例1に係る内燃機関1では、成層運転時には筒内噴射弁3を使用して、均質希薄燃焼時にはポート噴射弁5を使用する。   The internal combustion engine 1 also includes a port injection valve 5 that injects fuel F into the intake port 22 to form a fuel spray Fm in the intake port 22. The in-cylinder injection valve 3 is preferably used mainly during the stratified operation, but can also be used for homogeneous lean combustion if the fuel spray is refined or the fuel injection timing is changed. Therefore, in order to realize the internal combustion engine of the first embodiment, at least the in-cylinder injection valve 3 may be provided. However, when the fuel F is injected into the intake port 22, the air and the fuel F are sufficiently mixed, so that an air-fuel mixture suitable for homogeneous lean combustion can be formed. For this reason, in the internal combustion engine 1 according to the first embodiment, the in-cylinder injection valve 3 is used during stratified operation, and the port injection valve 5 is used during homogeneous lean combustion.

内燃機関1は、過給手段を備える。この実施例においては、内燃機関1の排気によって駆動されるターボチャージャー(以下ターボという)10を過給手段として備えている。このターボ10は、コンプレッサ10cと、内燃機関1の排気によりコンプレッサ10cを駆動するタービン10tと、両者を連結する回転軸10sとで構成される。タービン10tには、エキゾーストマニホールド(タービン上流側排気通路)23から内燃機関1の排気が供給されて、当該排気により駆動される。なお、過給手段には、前記ターボ10の他にも、いわゆる電動アシストターボも用いることができる。   The internal combustion engine 1 includes supercharging means. In this embodiment, a turbocharger (hereinafter referred to as turbo) 10 driven by the exhaust of the internal combustion engine 1 is provided as a supercharging means. The turbo 10 includes a compressor 10c, a turbine 10t that drives the compressor 10c by exhaust of the internal combustion engine 1, and a rotary shaft 10s that couples both. Exhaust gas from the internal combustion engine 1 is supplied to the turbine 10t from an exhaust manifold (turbine upstream exhaust passage) 23, and is driven by the exhaust gas. In addition to the turbo 10, the so-called electric assist turbo can be used as the supercharging means.

ここで、タービン10tの下流とは、タービン10tを通過する排気の流れの下流側をいう。そして、タービン10tの上流とは、タービン10tに流入する排気の流れの上流側をいう。また、上流、下流というときには、内燃機関1に供給される空気、又は内燃機関が排出する排気の流れを基準として、上流、又は下流を判断する。また、内燃機関1の吸気側というときは、内燃機関1の吸気弁4よりも上流側をいい、内燃機関1の排気側というときは、内燃機関1の排気弁6よりも下流側をいう(以下同様)。   Here, the downstream of the turbine 10t means the downstream side of the flow of exhaust gas passing through the turbine 10t. And the upstream of the turbine 10t means the upstream side of the flow of the exhaust gas flowing into the turbine 10t. Further, when referring to upstream or downstream, upstream or downstream is determined based on the flow of air supplied to the internal combustion engine 1 or exhaust gas discharged from the internal combustion engine. Further, the intake side of the internal combustion engine 1 refers to the upstream side of the intake valve 4 of the internal combustion engine 1, and the exhaust side of the internal combustion engine 1 refers to the downstream side of the exhaust valve 6 of the internal combustion engine 1 ( The same applies below).

実施例1に係る内燃機関1は、過給手段による過給のあり、なしを切り替えることができる。このため、コンプレッサ上流側吸気通路20とコンプレッサ下流側吸気通路21との間には、吸気バイパス通路20bがターボ10のコンプレッサ10cをバイパスして接続している。また、吸気バイパス通路20bの途中には、吸気バイパス手段である吸気バイパス弁11が設けられている。過給をしない場合には、吸気バイパス弁11を開くことでコンプレッサ上流側吸気通路20とコンプレッサ下流側吸気通路21とを連通させて、ターボ10のコンプレッサ10cをバイパスさせて内燃機関1へ空気を供給することができる。一方、過給を併用する場合には、吸気バイパス弁11を閉じることで空気をターボ10のコンプレッサ10cへ導いて、過給した空気を内燃機関1へ空気を供給することができる。   The internal combustion engine 1 according to the first embodiment can switch between supercharging and non-supercharging by the supercharging means. For this reason, the intake bypass passage 20b bypasses the compressor 10c of the turbo 10 and is connected between the compressor upstream intake passage 20 and the compressor downstream intake passage 21. An intake bypass valve 11 serving as an intake bypass means is provided in the middle of the intake bypass passage 20b. When supercharging is not performed, the intake air bypass valve 11 is opened to connect the compressor upstream intake passage 20 and the compressor downstream intake passage 21 to bypass the compressor 10c of the turbo 10 and allow air to flow into the internal combustion engine 1. Can be supplied. On the other hand, when supercharging is used together, the air can be supplied to the internal combustion engine 1 by guiding the air to the compressor 10 c of the turbo 10 by closing the intake bypass valve 11.

また、この内燃機関1は、成層運転時においては、排気を内燃機関1の吸気側へ還流する、いわゆるEGR(Exhaust Gas Recirculation)を実行する。このため、タービン下流側排気通路24とコンプレッサ下流側吸気通路21とを結ぶ排気還流通路26が設けられている。排気還流通路26には、排気還流手段であるEGR弁13が設けられている。そして、これを開くことで、内燃機関1の排気を吸気側へ導くことができる。なお、この例においては触媒17の上流から排気を抽気する。   Further, the internal combustion engine 1 performs so-called EGR (Exhaust Gas Recirculation) in which the exhaust gas is recirculated to the intake side of the internal combustion engine 1 during the stratified operation. For this reason, an exhaust gas recirculation passage 26 connecting the turbine downstream exhaust passage 24 and the compressor downstream intake passage 21 is provided. The exhaust gas recirculation passage 26 is provided with an EGR valve 13 as exhaust gas recirculation means. And by opening this, the exhaust gas of the internal combustion engine 1 can be guided to the intake side. In this example, exhaust gas is extracted from the upstream side of the catalyst 17.

内燃機関1の運転を制御するエンジンECU30(Electronic Control Unit)は、内燃機関1に取り付けられるアクセル開度センサ41、エアフローセンサ43その他の各種センサ類からの出力を取得して、内燃機関1の運転を制御する。また、この内燃機関1は、アクチュエータ45により開閉されるスロットル弁14を備えている。エンジンECU30は、アクセル開度センサ41からの出力を取得するとともに、内燃機関1が成層運転であるか均質燃焼運転であるか等を考慮して、アクチュエータ45に制御信号を送り、適切なスロットル開度をスロットル弁14に与える。同時に、エンジンECU30は、アクセル開度センサ41やエアフローセンサ43からの出力から、内燃機関1に供給する燃料の量を算出する。また、内燃機関1の運転状態に応じて、吸気側へ還流させる排気の量を決定する。   An engine ECU 30 (Electronic Control Unit) that controls the operation of the internal combustion engine 1 acquires outputs from an accelerator opening sensor 41, an air flow sensor 43, and other various sensors attached to the internal combustion engine 1, and operates the internal combustion engine 1. To control. The internal combustion engine 1 also includes a throttle valve 14 that is opened and closed by an actuator 45. The engine ECU 30 acquires the output from the accelerator opening sensor 41 and sends a control signal to the actuator 45 in consideration of whether the internal combustion engine 1 is stratified operation or homogeneous combustion operation. The degree is given to the throttle valve 14. At the same time, the engine ECU 30 calculates the amount of fuel supplied to the internal combustion engine 1 from the outputs from the accelerator opening sensor 41 and the air flow sensor 43. Further, the amount of exhaust gas recirculated to the intake side is determined according to the operating state of the internal combustion engine 1.

次に、内燃機関1の運転について説明する。図2は、実施例1に係る内燃機関の運転時における燃焼領域の説明図である。図2中のλは空気過剰率であり、λ=1はストイキである。また、R/Lは走行抵抗である。実施例1に係る内燃機関1は、均質リーン運転と成層運転とを切り替え可能である。図2に示すように、内燃機関1の負荷KLと機関回転数NEとによって、均質リーン運転と成層運転とを切り替える。具体的には、低負荷、低回転数の領域においては、均質リーン運転から成層運転に切り替える。   Next, the operation of the internal combustion engine 1 will be described. FIG. 2 is an explanatory diagram of a combustion region during operation of the internal combustion engine according to the first embodiment. In FIG. 2, λ is an excess air ratio, and λ = 1 is stoichiometric. R / L is the running resistance. The internal combustion engine 1 according to the first embodiment can switch between a homogeneous lean operation and a stratified operation. As shown in FIG. 2, the homogeneous lean operation and the stratified operation are switched according to the load KL of the internal combustion engine 1 and the engine speed NE. Specifically, in the region of low load and low rotation speed, the operation is switched from homogeneous lean operation to stratified operation.

また、実施例1に係る内燃機関1で均質リーン運転する場合、ターボ10により空気を過給する。これにより、空気過剰率λは1を大きく超えることになる。なお、均質リーン運転のみならず、空気過剰率λ=1の領域やWOT(Wide Open Throttle:高負荷領域)においても空気を過給する。一方、成層運転時においては、原則として過給はしないで、筒内噴射弁3から気筒1s内の燃焼室1bへ直接燃料を噴射する。成層運転においては、排気を吸気側へ還流するため、空気過剰率λは均質リーン運転時よりは小さくなる。   Further, when the internal combustion engine 1 according to the first embodiment performs the homogeneous lean operation, the turbo 10 is used to supercharge the air. As a result, the excess air ratio λ greatly exceeds 1. Note that air is supercharged not only in the homogeneous lean operation but also in the region of excess air ratio λ = 1 and WOT (Wide Open Throttle: high load region). On the other hand, during stratified operation, in principle, the fuel is directly injected from the in-cylinder injection valve 3 into the combustion chamber 1b in the cylinder 1s without supercharging. In the stratified operation, since the exhaust gas is recirculated to the intake side, the excess air ratio λ is smaller than that in the homogeneous lean operation.

均質リーン運転の場合、エアクリーナ15でごみが取り除かれた空気は、コンプレッサ上流側吸気通路20に設けられるエアフローセンサ43によって流量が測定された後、ターボ10のコンプレッサ10cへ導入される。そして、コンプレッサ10cで圧縮された後、コンプレッサ下流側吸気通路21を通ってインタークーラー16を通過した後、スロットル弁14で空気量が調整される。スロットル弁14を通過した空気は、吸気ポート22を通って気筒1sの燃焼室1bへ供給される。このとき、均質リーン運転時には、吸気ポート22内にポート噴射弁5から燃料Fが供給されて、前記空気と混合気を形成する。   In the homogeneous lean operation, the air from which the dust has been removed by the air cleaner 15 is introduced into the compressor 10c of the turbo 10 after the flow rate is measured by the air flow sensor 43 provided in the compressor upstream intake passage 20. Then, after being compressed by the compressor 10 c and passing through the intercooler 16 through the compressor downstream side intake passage 21, the air amount is adjusted by the throttle valve 14. The air that has passed through the throttle valve 14 is supplied to the combustion chamber 1b of the cylinder 1s through the intake port 22. At this time, during the homogeneous lean operation, the fuel F is supplied from the port injection valve 5 into the intake port 22 to form an air-fuel mixture.

気筒1sの燃焼室1bへ供給された混合気は点火プラグ9により着火されて燃焼し、ピストン7を駆動する。ピストン7を駆動した後の排気は、エキゾーストマニホールド23へ排出された後、ターボ10のタービン10tへ供給されて、これを駆動する。タービン10tは、コンプレッサ10cを駆動して内燃機関1へ圧縮した空気を供給する。タービン10tを駆動した後の排気は、タービン下流側排気通路24を通って触媒17へ送られて、ここで浄化された後、触媒下流側排気通路25を通って大気中へ排出される。   The air-fuel mixture supplied to the combustion chamber 1b of the cylinder 1s is ignited and burned by the spark plug 9 to drive the piston 7. The exhaust gas after driving the piston 7 is discharged to the exhaust manifold 23 and then supplied to the turbine 10t of the turbo 10 to drive it. The turbine 10t drives the compressor 10c and supplies compressed air to the internal combustion engine 1. Exhaust gas after driving the turbine 10t is sent to the catalyst 17 through the turbine downstream side exhaust passage 24, purified there, and then exhausted to the atmosphere through the catalyst downstream side exhaust passage 25.

成層運転の場合、エアクリーナ15でごみが取り除かれた空気は、コンプレッサ上流側吸気通路20に設けられるエアフローセンサ43によって流量が測定される。成層燃焼の場合、ターボ10には用いないで、吸気バイパス通路20bから内燃機関1へ空気を供給する。このため、吸気バイパス弁11を開放することにより、コンプレッサ上流側吸気通路20とコンプレッサ下流側吸気通路21とを連通させる。これにより、ターボ10のコンプレッサ10cをバイパスさせて内燃機関1へ空気を供給する。   In the stratified operation, the flow rate of the air from which dust has been removed by the air cleaner 15 is measured by an air flow sensor 43 provided in the compressor upstream intake passage 20. In the case of stratified combustion, air is supplied to the internal combustion engine 1 from the intake bypass passage 20b without being used for the turbo 10. Therefore, by opening the intake bypass valve 11, the compressor upstream intake passage 20 and the compressor downstream intake passage 21 are communicated with each other. Thereby, the compressor 10c of the turbo 10 is bypassed and air is supplied to the internal combustion engine 1.

コンプレッサ10cをバイパスした空気は、コンプレッサ下流側吸気通路21に設けられるスロットル弁14で空気量が調整される。スロットル弁14を通過した空気は、吸気ポート22を通って気筒1sの燃焼室1bへ供給される。気筒1sの燃焼室1bへ供給された空気に対して、筒内噴射弁3から燃料Fが噴射される。燃料Fは、燃焼室1b内で点火プラグ9の方へ巻き上げられ、点火プラグ9の近傍で濃い混合気層を形成する。この混合気層は点火プラグ9により着火されて燃焼し、ピストン7を駆動する。   The amount of air that has bypassed the compressor 10 c is adjusted by the throttle valve 14 provided in the compressor downstream side intake passage 21. The air that has passed through the throttle valve 14 is supplied to the combustion chamber 1b of the cylinder 1s through the intake port 22. Fuel F is injected from the in-cylinder injection valve 3 into the air supplied to the combustion chamber 1b of the cylinder 1s. The fuel F is wound up toward the spark plug 9 in the combustion chamber 1 b and forms a rich air-fuel mixture layer in the vicinity of the spark plug 9. The air-fuel mixture layer is ignited by the spark plug 9 and burns to drive the piston 7.

ピストン7を駆動した後の排気は、エキゾーストマニホールド23へ排出される。成層運転において、排気を吸気側に還流させることで燃焼温度を低下させ、NOxの発生を抑制する。このため、排気バイパス手段である排気バイパス弁12(いわゆるウェストゲート)を開放して、内燃機関1の排気を排気バイパス通路23bへ導く。排気バイパス通路23b通った排気は、タービン下流側排気通路24へ流れる。ここで、排気還流手段であるEGR弁13が開放されているので、タービン下流側排気通路24を流れる排気は排気還流通路26を通って、吸気側であるコンプレッサ下流側吸気通路21へ供給される。   Exhaust gas after driving the piston 7 is discharged to the exhaust manifold 23. In the stratified operation, the exhaust gas is recirculated to the intake side to lower the combustion temperature and suppress the generation of NOx. Therefore, the exhaust bypass valve 12 (so-called waste gate), which is an exhaust bypass means, is opened to guide the exhaust gas from the internal combustion engine 1 to the exhaust bypass passage 23b. Exhaust gas that has passed through the exhaust bypass passage 23 b flows to the turbine downstream exhaust passage 24. Here, since the EGR valve 13 serving as the exhaust gas recirculation means is opened, the exhaust gas flowing through the turbine downstream exhaust passage 24 is supplied to the compressor downstream intake passage 21 serving as the intake side through the exhaust gas recirculation passage 26. .

なお、ターボ10により過給しない場合、コンプレッサ下流側吸気通路21内の圧力(以下吸気管圧力)Pbは、タービン下流側排気通路24内の圧力(以下タービン下流側排気圧力)P6よりも小さいため、排気を吸気側へ還流させることができる。しかし、ターボ10により過給する場合、前記吸気管圧力Pbは、前記タービン下流側排気圧力P6よりも大きくなる場合がある。このような場合、排気を吸気側へ還流させることはできないので、成層運転時に排気を吸気側へ還流させることができるのは、Pb<P6の場合である。実施例1では、成層運転時には原則として過給を中止して、排気を吸気側へ還流することにより、成層運転時に発生するNOxを低減する。   When turbocharging is not performed by the turbo 10, the pressure in the compressor downstream intake passage 21 (hereinafter referred to as intake pipe pressure) Pb is smaller than the pressure in the turbine downstream exhaust passage 24 (hereinafter referred to as turbine downstream exhaust pressure) P6. The exhaust can be recirculated to the intake side. However, when turbocharging is performed by the turbo 10, the intake pipe pressure Pb may be larger than the turbine downstream exhaust pressure P6. In such a case, since the exhaust cannot be recirculated to the intake side, the exhaust can be recirculated to the intake side during the stratified operation when Pb <P6. In the first embodiment, in principle, supercharging is stopped during stratified operation, and exhaust gas is recirculated to the intake side, thereby reducing NOx generated during stratified operation.

過給を併用する均質リーン運転から、過給をしない成層運転に移行する場合、移行と同時に排気を吸気側へ還流しないと、成層運転時にはNOxを大量に発生してしまう。一方、ターボ10のタービン10tは、極めて高い回転数(数万rpm〜10数万rpm)で回転しているため、急激に回転を落として過給を中止することは極めて困難である。このため、実施例1においては、均質リーン運転から成層運転に移行するときには、吸気バイパス弁11を開くとともに排気バイパス弁12を開く。   When shifting from a homogeneous lean operation with supercharging to a stratified operation without supercharging, a large amount of NOx is generated during the stratified operation unless the exhaust gas is recirculated to the intake side at the same time. On the other hand, since the turbine 10t of the turbo 10 is rotating at an extremely high rotation speed (tens of thousands rpm to tens of thousands rpm), it is extremely difficult to stop the supercharging by suddenly dropping the rotation. For this reason, in Example 1, when shifting from the homogeneous lean operation to the stratified operation, the intake bypass valve 11 and the exhaust bypass valve 12 are opened.

なお、過給手段に内燃機関1のクランクシャフトから取り出した動力によって駆動される機械式の過給機(いわゆるスーパーチャージャー)を用いる場合は、内燃機関1の排気は利用しないため、吸気バイパス弁11を開くだけでよい。また、コンプレッサ下流側吸気通路21内の圧力がタービン下流側排気通路24内の圧力よりも低くならなければ、排気は吸気側に還流しない。また、コンプレッサ下流側吸気通路21内の圧力も、タービン下流側排気通路24内の圧力も、大気圧よりも小さくはならない。このため、成層運転に移行する際に排気を還流させるためには、少なくとも吸気バイパス弁11を開いて、タービン下流側排気通路24内の圧力を大気圧に近づけることが必要である。   When a mechanical supercharger (so-called supercharger) driven by power extracted from the crankshaft of the internal combustion engine 1 is used as the supercharging means, the exhaust gas from the internal combustion engine 1 is not used. Just open. Further, unless the pressure in the compressor downstream side intake passage 21 is lower than the pressure in the turbine downstream side exhaust passage 24, the exhaust does not recirculate to the intake side. Further, neither the pressure in the compressor downstream side intake passage 21 nor the pressure in the turbine downstream side exhaust passage 24 becomes smaller than the atmospheric pressure. Therefore, in order to recirculate the exhaust gas when shifting to the stratified operation, it is necessary to open at least the intake bypass valve 11 and bring the pressure in the turbine downstream side exhaust passage 24 close to atmospheric pressure.

吸気バイパス弁11を開くことにより、吸気管圧力Pbを大気圧P0とほぼ等しくする。また、排気バイパス弁12を開くことにより、タービン10tでの圧力損失をほぼ0にして、圧力がほとんど低下していない状態の排気をタービン下流側排気通路24へ導入する。これにより、排気を吸気側へ還流させる場合には、吸気管圧力Pb<タービン下流側排気圧力P6の状態を速やかに作り出すことができる。その結果、均質リーン運転から成層運転に移行するときには、速やかに排気を吸気側へ還流させることができるので、成層運転の開始時からNOxの発生量を極めて少なくすることができる。また、内燃機関1の排気を吸気側へ還流させる際には、排気バイパス弁12を開いてタービン10tをバイパスさせるので、内燃機関1の排気抵抗を小さくできる。その結果、内燃機関1の燃料消費を低減することができる。   By opening the intake bypass valve 11, the intake pipe pressure Pb is made substantially equal to the atmospheric pressure P0. Further, by opening the exhaust bypass valve 12, the pressure loss in the turbine 10 t is made substantially zero, and the exhaust gas in a state where the pressure is hardly lowered is introduced into the turbine downstream side exhaust passage 24. Thus, when the exhaust gas is recirculated to the intake side, the state of the intake pipe pressure Pb <the turbine downstream side exhaust pressure P6 can be quickly created. As a result, when shifting from the homogeneous lean operation to the stratification operation, the exhaust gas can be quickly recirculated to the intake side, so that the amount of NOx generated can be extremely reduced from the start of the stratification operation. Further, when the exhaust gas of the internal combustion engine 1 is recirculated to the intake side, the exhaust gas bypass valve 12 is opened to bypass the turbine 10t, so that the exhaust resistance of the internal combustion engine 1 can be reduced. As a result, the fuel consumption of the internal combustion engine 1 can be reduced.

次に、実施例1に係る内燃機関の運転制御装置について説明する。図3は、実施例1に係る内燃機関の運転制御装置の構成を示す説明図である。ここで、実施例1に係る内燃機関の始動制御方法は、本発明の内燃機関の運転制御装置50によって実現できる。内燃機関の運転制御装置50は、エンジンECU30に組み込まれて構成されている。なお、エンジンECU30とは別個に、この実施例に係る内燃機関の運転制御装置50を用意し、これをエンジンECU30に接続してもよい。そして、この実施例に係る内燃機関の始動制御方法を実現するにあたっては、エンジンECU30が備える内燃機関1の制御機能を、前記内燃機関の運転制御装置50が利用できるように構成してもよい。   Next, an internal combustion engine operation control apparatus according to Embodiment 1 will be described. FIG. 3 is an explanatory diagram illustrating a configuration of the operation control apparatus for the internal combustion engine according to the first embodiment. Here, the internal combustion engine start control method according to the first embodiment can be realized by the operation control device 50 for an internal combustion engine of the present invention. The operation control device 50 for the internal combustion engine is built into the engine ECU 30. Separately from the engine ECU 30, an internal combustion engine operation control device 50 according to this embodiment may be prepared and connected to the engine ECU 30. When realizing the internal combustion engine start control method according to this embodiment, the control function of the internal combustion engine 1 provided in the engine ECU 30 may be configured so that the operation control device 50 of the internal combustion engine can be used.

内燃機関の運転制御装置50は、運転状態判定部51と、排気還流圧力制御部52と、排気還流動作部53とを含んで構成される。これらが、この実施例に係る内燃機関の始動制御方法を実行する部分となる。運転状態判定部51と、排気還流圧力制御部52と、排気還流動作部53とは、内燃機関の運転制御装置50の入出力ポート(I/O)39を介して接続される。これにより、運転状態判定部51と、排気還流圧力制御部52と、排気還流動作部53とは、それぞれ双方向でデータをやり取りできるように構成される。なお、装置構成上の必要に応じて片方向でデータを送受信するようにしてもよい(以下同様)。   The internal combustion engine operation control device 50 includes an operation state determination unit 51, an exhaust gas recirculation pressure control unit 52, and an exhaust gas recirculation operation unit 53. These are the parts that execute the start control method for the internal combustion engine according to this embodiment. The operation state determination unit 51, the exhaust gas recirculation pressure control unit 52, and the exhaust gas recirculation operation unit 53 are connected via an input / output port (I / O) 39 of the operation control device 50 of the internal combustion engine. Thus, the operation state determination unit 51, the exhaust gas recirculation pressure control unit 52, and the exhaust gas recirculation operation unit 53 are configured to exchange data in both directions. Note that data may be transmitted and received in one direction as required in the apparatus configuration (the same applies hereinafter).

内燃機関の運転制御装置50とエンジンECU30の主処理部30pと記憶部30mとは、エンジンECU30に備えられる入出力ポート(I/O)39を介して接続されており、これらの間で相互にデータをやり取りすることができる。これにより、内燃機関の運転制御装置50はエンジンECU30が有する内燃機関1の負荷や機関回転数その他の内燃機関の運転制御データを取得したり、内燃機関の運転制御装置50の制御をエンジンECU30の内燃機関の運転制御ルーチンに割り込ませたりすることができる。   The operation control device 50 of the internal combustion engine, the main processing unit 30p of the engine ECU 30, and the storage unit 30m are connected via an input / output port (I / O) 39 provided in the engine ECU 30, and are mutually connected. Data can be exchanged. Thereby, the operation control device 50 of the internal combustion engine acquires the load of the internal combustion engine 1 and the engine speed other than the engine ECU 30 and other operation control data of the internal combustion engine, or controls the operation control device 50 of the internal combustion engine. It is possible to interrupt the operation control routine of the internal combustion engine.

また、入出力ポート(I/O)39には、アクセル開度センサ41、回転数センサ42、エアフローセンサ43その他の、内燃機関1の運転状態に関する情報を取得する各種センサが接続されている。これにより、エンジンECU30や内燃機関の運転制御装置50は、内燃機関1の運転制御に必要な情報を取得することができる。また、入出力ポート(I/O)39には、吸気バイパス弁11、排気バイパス弁12、EGR弁13が接続されており、内燃機関の運転制御装置50の排気還流圧力制御部52やエンジンECU30の主処理部30pからの制御信号によりこれらが開閉されるように構成される。   In addition, the input / output port (I / O) 39 is connected to various sensors for acquiring information related to the operating state of the internal combustion engine 1, such as an accelerator opening sensor 41, a rotation speed sensor 42, an air flow sensor 43. As a result, the engine ECU 30 and the operation control device 50 for the internal combustion engine can acquire information necessary for operation control of the internal combustion engine 1. An intake bypass valve 11, an exhaust bypass valve 12, and an EGR valve 13 are connected to the input / output port (I / O) 39, and the exhaust gas recirculation pressure control unit 52 of the operation control device 50 of the internal combustion engine and the engine ECU 30 are connected. These are configured to be opened and closed by a control signal from the main processing unit 30p.

記憶部30mには、この実施例に係る内燃機関の始動制御方法の処理手順を含むコンピュータプログラムや、内燃機関1の運転制御に用いる燃料噴射量のデータマップ等が格納されている。ここで、記憶部30mは、RAM(Random Access Memory)のような揮発性のメモリ、フラッシュメモリ等の不揮発性のメモリ、あるいはこれらの組み合わせにより構成することができる。また、内燃機関の運転制御装置50やエンジンECU30の主処理部30pは、メモリ及びCPUにより構成することができる。   The storage unit 30m stores a computer program including a processing procedure of the start control method for the internal combustion engine according to this embodiment, a data map of a fuel injection amount used for operation control of the internal combustion engine 1, and the like. Here, the storage unit 30m can be configured by a volatile memory such as a RAM (Random Access Memory), a nonvolatile memory such as a flash memory, or a combination thereof. Further, the operation control device 50 of the internal combustion engine and the main processing unit 30p of the engine ECU 30 can be configured by a memory and a CPU.

上記コンピュータプログラムは、運転状態判定部51や排気還流圧力制御部52等へすでに記録されているコンピュータプログラムとの組み合わせによって、この実施例に係る内燃機関の始動制御方法の処理手順を実現できるものであってもよい。この内燃機関の運転制御装置50は、前記コンピュータプログラムの代わりに専用のハードウェアを用いて、運転状態判定部51、排気還流圧力制御部52、排気還流動作部53の機能を実現するものであってもよい。次に、この内燃機関の運転制御装置50を用いて、この実施例に係る内燃機関の始動制御方法を実現する手順を説明する。なお、この説明にあたっては、適宜図1、2を参照されたい。   The computer program can realize the processing procedure of the start control method of the internal combustion engine according to this embodiment, in combination with the computer program already recorded in the operating state determination unit 51, the exhaust gas recirculation pressure control unit 52, and the like. There may be. The internal combustion engine operation control device 50 realizes the functions of the operation state determination unit 51, the exhaust gas recirculation pressure control unit 52, and the exhaust gas recirculation operation unit 53 using dedicated hardware instead of the computer program. May be. Next, a procedure for realizing the internal combustion engine start control method according to this embodiment using the operation control device 50 for the internal combustion engine will be described. In this description, please refer to FIGS.

図4は、実施例1に係る内燃機関の始動制御方法の手順を示すフローチャートである。実施例1に係る内燃機関の運転制御を実行する場合、内燃機関の運転制御装置50の運転状態判定部51は、内燃機関1の機関回転数NE及び負荷KLから、内燃機関1が均質リーン運転で運転されているか否かを判定する(ステップS101)。内燃機関1が均質リーン運転で運転されていない場合(ステップS101;No)、再び内燃機関1の運転状態を監視する。   FIG. 4 is a flowchart illustrating a procedure of the internal combustion engine start control method according to the first embodiment. When executing the operation control of the internal combustion engine according to the first embodiment, the operation state determination unit 51 of the operation control device 50 for the internal combustion engine determines that the internal combustion engine 1 is in a homogeneous lean operation from the engine speed NE and the load KL of the internal combustion engine 1. It is determined whether or not the vehicle is being operated (step S101). When the internal combustion engine 1 is not operated in the homogeneous lean operation (step S101; No), the operation state of the internal combustion engine 1 is monitored again.

内燃機関1が均質リーン運転で運転されている場合(ステップS101;Yes)、運転状態判定部52は、内燃機関1の機関回転数NE及び負荷KLから、内燃機関1が成層運転に移行するか否かを判定する(ステップS102)。内燃機関1が成層運転に移行しない場合(ステップS102;No)、再び内燃機関1の運転状態を監視する。   When the internal combustion engine 1 is operated in the homogeneous lean operation (step S101; Yes), the operation state determination unit 52 determines whether the internal combustion engine 1 shifts to the stratified operation from the engine speed NE and the load KL of the internal combustion engine 1. It is determined whether or not (step S102). When the internal combustion engine 1 does not shift to the stratified operation (step S102; No), the operation state of the internal combustion engine 1 is monitored again.

内燃機関1が成層運転に移行する場合(ステップS102;Yes)、排気還流圧力制御部52は、吸気バイパス弁(A/B弁)11及び排気バイパス弁(E/B弁)12を開く(ステップS103)。これにより、吸気管圧力Pb<タービン下流側排気圧力P6の状態を瞬時に達成できる。そして、排気還流動作部53はEGR弁13を開けて(ステップS104)、内燃機関1の排気を吸気側へ還流させる。同時に、エンジンECU30の主処理部30pは、エアフローセンサ43、アクセル開度センサ41等からの情報に基づいて求めた燃料噴射量で筒内噴射弁3から燃料を噴射させて、成層運転へ移行する。   When the internal combustion engine 1 shifts to the stratified operation (step S102; Yes), the exhaust gas recirculation pressure control unit 52 opens the intake bypass valve (A / B valve) 11 and the exhaust bypass valve (E / B valve) 12 (step). S103). Thereby, the state of intake pipe pressure Pb <turbine downstream exhaust pressure P6 can be achieved instantaneously. Then, the exhaust gas recirculation operation unit 53 opens the EGR valve 13 (step S104) to recirculate the exhaust gas of the internal combustion engine 1 to the intake side. At the same time, the main processing unit 30p of the engine ECU 30 injects fuel from the in-cylinder injection valve 3 with the fuel injection amount obtained based on information from the airflow sensor 43, the accelerator opening sensor 41, etc., and shifts to the stratified operation. .

以上、実施例1によれば、過給を併用する均質リーン運転から、過給をしない成層運転に移行する場合、吸気バイパス弁を開くとともに排気バイパス弁を開く。これにより、吸気管圧力を大気圧とほぼ等しくするとともに、タービンでの圧力損失をほぼ0にして、圧力がほとんど低下していない状態の排気を吸気側へ還流できる。その結果、過給を併用する均質リーン運転から成層運転に移行するときには、速やかに排気を吸気側へ還流させることができるので、成層運転の開始時からNOxの発生量を極めて少なくすることができる。また、内燃機関の排気を吸気側へ還流させる際には、排気バイパス弁を開いてタービンをバイパスさせるので、内燃機関の排気抵抗を小さくできる。その結果、内燃機関の燃料消費を低減することができる。   As described above, according to the first embodiment, when shifting from the homogeneous lean operation using supercharging to the stratified operation without supercharging, the intake bypass valve is opened and the exhaust bypass valve is opened. As a result, the intake pipe pressure can be made substantially equal to the atmospheric pressure, the pressure loss at the turbine can be made almost zero, and the exhaust gas in a state where the pressure has hardly decreased can be recirculated to the intake side. As a result, when shifting from the homogeneous lean operation using supercharging to the stratification operation, the exhaust gas can be quickly returned to the intake side, so that the amount of NOx generated can be extremely reduced from the start of the stratification operation. . Further, when the exhaust gas of the internal combustion engine is recirculated to the intake side, the exhaust bypass valve is opened to bypass the turbine, so that the exhaust resistance of the internal combustion engine can be reduced. As a result, the fuel consumption of the internal combustion engine can be reduced.

実施例2に係る内燃機関は、実施例1に係る内燃機関とほぼ同様の構成であるが、ターボが備えるタービンの上流から排気を吸気側へ還流させる点が異なる。他の構成は実施例1と同様なのでその説明を省略するとともに、同一の構成に対しては同一の符号を付す。図5は、実施例2に係る内燃機関の全体構成図である。図6は、実施例2に係る内燃機関の始動制御方法の手順を示すフローチャートである。なお、実施例2に係る内燃機関の運転制御方法は、実施例1に係る内燃機関の運転制御装置50によって実現できる。   The internal combustion engine according to the second embodiment has substantially the same configuration as the internal combustion engine according to the first embodiment, except that the exhaust gas is recirculated from the upstream side of the turbine provided in the turbo to the intake side. Since other configurations are the same as those of the first embodiment, the description thereof is omitted, and the same components are denoted by the same reference numerals. FIG. 5 is an overall configuration diagram of the internal combustion engine according to the second embodiment. FIG. 6 is a flowchart illustrating the procedure of the internal combustion engine start control method according to the second embodiment. The operation control method for the internal combustion engine according to the second embodiment can be realized by the operation control device 50 for the internal combustion engine according to the first embodiment.

この内燃機関1'も、成層運転時においては、排気を内燃機関1の吸気側へ還流する、いわゆるEGR(Exhaust Gas Recirculation)を実行する。このため、タービン上流側排気通路23とコンプレッサ下流側吸気通路21とを結ぶ排気還流通路26'が設けられている。この排気還流通路26'には、排気還流手段であるEGR弁13が設けられており、これを開くことで、内燃機関1の排気を吸気側へ導くことができる。   The internal combustion engine 1 ′ also performs so-called EGR (Exhaust Gas Recirculation) in which exhaust gas is recirculated to the intake side of the internal combustion engine 1 during stratified operation. For this reason, an exhaust gas recirculation passage 26 ′ connecting the turbine upstream side exhaust passage 23 and the compressor downstream side intake passage 21 is provided. The exhaust gas recirculation passage 26 'is provided with an EGR valve 13 as exhaust gas recirculation means. By opening this, the exhaust gas from the internal combustion engine 1 can be guided to the intake side.

均質リーン運転から成層運転へ移行する際に過給を中止して、排気を吸気側へ還流させるにあたっては、吸気バイパス弁11を開くとともに、排気バイパス弁12は閉じたままとする。このようにすることによって、タービン10tの抵抗により、タービン上流側排気圧力P5は、タービン下流側排気圧力P6よりも大きくなる。また、吸気バイパス弁11を開くことにより、吸気管圧力Pb=大気圧(P0)となる。これにより、排気還流通路入口26i'における還流排気の圧力、すなわちタービン上流側排気圧力P5>吸気管圧力Pbとなるので、成層運転時において、内燃機関1の排気を吸気側へ還流させることができる。   In stopping the supercharging when shifting from the homogeneous lean operation to the stratified operation and returning the exhaust gas to the intake side, the intake bypass valve 11 is opened and the exhaust bypass valve 12 is kept closed. By doing so, the turbine upstream exhaust pressure P5 becomes larger than the turbine downstream exhaust pressure P6 due to the resistance of the turbine 10t. Further, by opening the intake bypass valve 11, the intake pipe pressure Pb becomes atmospheric pressure (P0). As a result, the pressure of the recirculated exhaust gas at the exhaust recirculation passage inlet 26i ′, that is, the turbine upstream exhaust pressure P5> the intake pipe pressure Pb is satisfied, so that the exhaust gas of the internal combustion engine 1 can be recirculated to the intake side during the stratified operation. .

このように、タービン上流側排気通路23から排気を還流させると、タービン上流側排気圧力P5と吸気管圧力Pbとの圧力差(P5−Pb)が常に正圧になる。これによって、安定して排気を吸気側へ還流させてNOxの発生を抑制できる。また、前記圧力差(P5−Pb)が常に正圧なので、EGR弁13を開くと排気が速やかに吸気側へ還流して、速やかにNOx低減の効果が得られる。   As described above, when the exhaust gas is recirculated from the turbine upstream side exhaust passage 23, the pressure difference (P5-Pb) between the turbine upstream side exhaust pressure P5 and the intake pipe pressure Pb is always positive. As a result, the exhaust gas is stably recirculated to the intake side, and generation of NOx can be suppressed. Further, since the pressure difference (P5-Pb) is always positive, when the EGR valve 13 is opened, the exhaust gas quickly returns to the intake side, and the effect of reducing NOx can be obtained quickly.

また、実施例2に係る内燃機関1'では、成層運転へ移行した後、吸気管圧力Pbが十分に低下するまでの所定時間は、排気バイパス弁12を閉じて吸気側へ排気を還流させ、その後、排気バイパス弁12を開くようにしてもよい。これにより、吸気管圧力Pbが十分に低下(例えば大気圧近傍まで)するまでは、タービン上流側排気圧力P5と吸気管圧力Pbとの差を大きくできるので、安定して内燃機関1の排気を吸気側へ還流できる。そして、安定して吸気側へ排気が還流し始めてからは、排気バイパス弁12を開くことにより、タービン上流側排気通路23におけるタービン上流側排気圧力P5を低くできるので、内燃機関1の排気抵抗を低くして、燃料消費を低減することができる。   Further, in the internal combustion engine 1 ′ according to the second embodiment, after the shift to the stratified operation, for a predetermined time until the intake pipe pressure Pb sufficiently decreases, the exhaust bypass valve 12 is closed and the exhaust gas is recirculated to the intake side. Thereafter, the exhaust bypass valve 12 may be opened. As a result, the difference between the turbine upstream side exhaust pressure P5 and the intake pipe pressure Pb can be increased until the intake pipe pressure Pb is sufficiently reduced (for example, to near atmospheric pressure). It can return to the intake side. Then, after the exhaust gas starts to recirculate stably to the intake side, the exhaust gas bypass valve 12 is opened to reduce the turbine upstream exhaust pressure P5 in the turbine upstream exhaust passage 23, so that the exhaust resistance of the internal combustion engine 1 is reduced. Lowering can reduce fuel consumption.

さらに、実施例2に係る内燃機関1'では、吸気バイパス弁11を完全に開放せず、開度を調整することにより、成層運転においても、低い圧力で過給しながら排気を吸気側へ還流することもできる。このときは、吸気管圧力Pb<タービン上流側排気圧力P5の関係を満たすように、内燃機関1に対する過給圧力を調整する。   Further, in the internal combustion engine 1 ′ according to the second embodiment, the exhaust gas is recirculated to the intake side while supercharging at a low pressure even in the stratified operation by adjusting the opening degree without opening the intake bypass valve 11 completely. You can also At this time, the supercharging pressure for the internal combustion engine 1 is adjusted so as to satisfy the relationship of intake pipe pressure Pb <turbine upstream exhaust pressure P5.

次に、実施例2に係る内燃機関の運転制御の手順について説明する。まず、内燃機関の運転制御装置50の運転状態判定部51は、内燃機関1の機関回転数NE及び負荷KLから、内燃機関1が均質リーン運転で運転されているか否かを判定する(ステップS201)。内燃機関1が均質リーン運転で運転されていない場合(ステップS201;No)、再び内燃機関1の運転状態を監視する。   Next, a procedure for operation control of the internal combustion engine according to the second embodiment will be described. First, the operation state determination unit 51 of the operation control device 50 for the internal combustion engine determines whether the internal combustion engine 1 is operated in a homogeneous lean operation from the engine speed NE and the load KL of the internal combustion engine 1 (step S201). ). When the internal combustion engine 1 is not operated in the homogeneous lean operation (step S201; No), the operation state of the internal combustion engine 1 is monitored again.

内燃機関1が均質リーン運転で運転されている場合(ステップS201;Yes)、運転状態判定部52は、内燃機関1の機関回転数NE及び負荷KLから、内燃機関1が成層運転に移行するか否かを判定する(ステップS202)。内燃機関1が成層運転に移行しない場合(ステップS202;No)、再び内燃機関1の運転状態を監視する。内燃機関1が成層運転に移行する場合(ステップS202;Yes)、排気還流圧力制御部52は、吸気バイパス弁(A/B弁)11を開くとともに、排気バイパス弁(E/B弁)12を閉じる(ステップS203)。これにより、吸気管圧力Pb<タービン下流側排気圧力P6の状態を瞬時に達成できる。そして、排気還流動作部53はEGR弁13を開けて(ステップS204)、内燃機関1の排気を吸気側へ還流させる。同時に、エンジンECU30の主処理部30pは、エアフローセンサ43、アクセル開度センサ41等からの情報に基づいて求めた燃料噴射量で筒内噴射弁3から燃料を噴射させて、成層運転へ移行する。   When the internal combustion engine 1 is operated in the homogeneous lean operation (step S201; Yes), the operation state determination unit 52 determines whether the internal combustion engine 1 shifts to the stratified operation from the engine speed NE and the load KL of the internal combustion engine 1. It is determined whether or not (step S202). When the internal combustion engine 1 does not shift to the stratified operation (step S202; No), the operation state of the internal combustion engine 1 is monitored again. When the internal combustion engine 1 shifts to the stratified operation (step S202; Yes), the exhaust gas recirculation pressure control unit 52 opens the intake bypass valve (A / B valve) 11 and opens the exhaust bypass valve (E / B valve) 12. Close (step S203). Thereby, the state of intake pipe pressure Pb <turbine downstream exhaust pressure P6 can be achieved instantaneously. Then, the exhaust gas recirculation operation unit 53 opens the EGR valve 13 (step S204) and recirculates the exhaust gas of the internal combustion engine 1 to the intake side. At the same time, the main processing unit 30p of the engine ECU 30 injects fuel from the in-cylinder injection valve 3 with the fuel injection amount obtained based on information from the airflow sensor 43, the accelerator opening sensor 41, etc., and shifts to the stratified operation. .

以上、実施例2に係る内燃機関では、ターボ上流側排気通路から排気を吸気側へ還流させる。そして、過給を併用する均質リーン運転から過給を用いない成層運転へ移行する際に、排気を吸気側へ還流させるにあたっては、吸気バイパス弁を開くとともに、排気バイパス弁12は閉じたままとする。このようにすることによって、タービンの抵抗により、排気還流通路入口における還流排気の圧力は常に吸気管圧力よりも大きくできるので、成層運転時においては、内燃機関の排気を安定して吸気側へ還流させてNOxの発生を抑制できる。また、還流させる排気の圧力は常に吸気管圧力よりも大きいので、当該排気の圧力は、吸気管圧力よりも大きいこととなる。これにより、EGR弁を開くと排気が速やかに吸気側へ還流して、速やかにNOx低減の効果が得られる。   As described above, in the internal combustion engine according to the second embodiment, the exhaust gas is recirculated from the turbo upstream exhaust passage to the intake side. When shifting from the homogeneous lean operation using supercharging to the stratified operation not using supercharging, when returning the exhaust gas to the intake side, the intake bypass valve 12 is opened and the exhaust bypass valve 12 is kept closed. To do. By doing so, the pressure of the recirculated exhaust gas at the inlet of the exhaust gas recirculation passage can always be higher than the intake pipe pressure due to the resistance of the turbine. Therefore, during stratified operation, the exhaust gas of the internal combustion engine is stably recirculated to the intake side. Thus, the generation of NOx can be suppressed. Moreover, since the pressure of the exhaust gas to be recirculated is always higher than the intake pipe pressure, the pressure of the exhaust gas is higher than the intake pipe pressure. As a result, when the EGR valve is opened, the exhaust gas quickly returns to the intake side, and the effect of reducing NOx can be obtained quickly.

以上のように、本発明に係る内燃機関は、過給を併用する均質リーン運転と成層運転とを切り替え可能な内燃機関に有用であり、特に、成層運転に移行する際に、速やかに排気を吸気側に供給することに適している。   As described above, the internal combustion engine according to the present invention is useful for an internal combustion engine capable of switching between a homogeneous lean operation and a stratified operation in combination with supercharging. In particular, when shifting to a stratified operation, the exhaust gas is quickly discharged. Suitable for supply to the intake side.

実施例1に係る内燃機関の全体構成図である。1 is an overall configuration diagram of an internal combustion engine according to a first embodiment. 実施例1に係る内燃機関の運転時における燃焼領域の説明図である。3 is an explanatory diagram of a combustion region during operation of the internal combustion engine according to Embodiment 1. FIG. 実施例1に係る内燃機関の運転制御装置の構成を示す説明図である。1 is an explanatory diagram illustrating a configuration of an operation control device for an internal combustion engine according to a first embodiment. FIG. 実施例1に係る内燃機関の始動制御方法の手順を示すフローチャートである。3 is a flowchart illustrating a procedure of a start control method for the internal combustion engine according to the first embodiment. 実施例2に係る内燃機関の全体構成図である。3 is an overall configuration diagram of an internal combustion engine according to Embodiment 2. FIG. 実施例2に係る内燃機関の始動制御方法の手順を示すフローチャートである。7 is a flowchart illustrating a procedure of a start control method for an internal combustion engine according to a second embodiment.

符号の説明Explanation of symbols

1 内燃機関
3 筒内噴射弁
4 吸気弁
5 ポート噴射弁
6 排気弁
10 ターボ(ターボチャージャー)
10c コンプレッサ
10t タービン
11 吸気バイパス弁
12 排気バイパス弁
13 EGR弁
20 コンプレッサ上流側吸気通路
20b 吸気バイパス通路
21 コンプレッサ下流側吸気通路
22 吸気ポート
23 エキゾーストマニホールド(タービン上流側排気通路)
23b 排気バイパス通路
24 タービン下流側排気通路
30 エンジンECU
50 内燃機関の運転制御装置
51 運転状態判定部
52 排気還流圧力制御部
52 運転状態判定部
53 排気還流動作部
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 3 In-cylinder injection valve 4 Intake valve 5 Port injection valve 6 Exhaust valve 10 Turbo (turbocharger)
10c Compressor 10t Turbine 11 Intake bypass valve 12 Exhaust bypass valve 13 EGR valve 20 Compressor upstream intake passage 20b Intake bypass passage 21 Compressor downstream intake passage 22 Intake port 23 Exhaust manifold (turbine upstream exhaust passage)
23b Exhaust bypass passage 24 Turbine downstream exhaust passage 30 Engine ECU
DESCRIPTION OF SYMBOLS 50 Operation control apparatus of internal combustion engine 51 Operation state determination part 52 Exhaust gas recirculation pressure control part 52 Operation state determination part 53 Exhaust gas recirculation operation part

Claims (6)

過給を併用する均質リーン運転と、成層運転とを運転条件によって切り替え可能な内燃機関であって、
排気によって駆動されるタービンと、このタービンに連結されて空気を加圧するコンプレッサとを含んで構成される過給手段と、
前記タービンをバイパスさせてから、前記タービンの下流へ前記内燃機関の排気を流す排気バイパス手段と、
前記コンプレッサをバイパスさせてから、前記内燃機関へ空気を供給する吸気バイパス手段と、
前記タービンの下流から前記内燃機関の排気を抽気して、前記内燃機関の吸気側へ還流させる排気還流手段と、を備え、
過給を併用する均質リーン運転から成層運転へ移行する際には、少なくとも前記吸気バイパス手段により前記コンプレッサをバイパスさせてから前記内燃機関へ空気を供給するとともに、前記排気還流手段により前記内燃機関の排気を還流させることを特徴とする内燃機関。
An internal combustion engine capable of switching between a homogeneous lean operation using supercharging together with a stratified operation according to operating conditions,
A supercharging means including a turbine driven by exhaust and a compressor connected to the turbine and pressurizing air;
Exhaust bypass means for flowing the exhaust of the internal combustion engine downstream of the turbine after bypassing the turbine;
Intake bypass means for supplying air to the internal combustion engine after bypassing the compressor;
An exhaust gas recirculation means for extracting the exhaust gas of the internal combustion engine from the downstream of the turbine and recirculating the exhaust gas to the intake side of the internal combustion engine,
When shifting from a homogeneous lean operation using supercharging to a stratified operation, air is supplied to the internal combustion engine after bypassing the compressor by at least the intake bypass means, and the internal combustion engine is supplied by the exhaust gas recirculation means. An internal combustion engine that recirculates exhaust gas.
過給を併用する均質リーン運転から成層運転へ移行する際には、さらに、前記排気バイパス手段により前記内燃機関の排気を前記タービンの下流へ流すことを特徴とする請求項1に記載の内燃機関。   2. The internal combustion engine according to claim 1, wherein when shifting from the homogeneous lean operation using supercharging to the stratified operation, the exhaust of the internal combustion engine is further caused to flow downstream of the turbine by the exhaust bypass means. . 過給を併用する均質リーン運転と、成層運転とを運転条件によって切り替え可能な内燃機関であって、
排気によって駆動されるタービンと、このタービンに連結されて空気を加圧するコンプレッサとを含んで構成される過給手段と、
前記タービンをバイパスさせてから、前記タービンの下流へ前記内燃機関の排気を流す排気バイパス手段と、
前記コンプレッサをバイパスさせてから、前記内燃機関へ空気を供給する吸気バイパス手段と、
前記タービンの上流から前記内燃機関の排気を抽気して、前記内燃機関の排気を前記内燃機関の吸気側へ還流させる還流手段と、を備え、
過給を併用する均質リーン運転から成層運転へ移行する際には、前記吸気バイパス手段により前記コンプレッサをバイパスさせてから前記内燃機関へ空気を供給するとともに、前記タービンへ前記内燃機関の排気を導入した状態で、前記排気還流手段により前記内燃機関の排気を還流させることを特徴とする内燃機関。
An internal combustion engine capable of switching between a homogeneous lean operation using supercharging together with a stratified operation according to operating conditions,
A supercharging means including a turbine driven by exhaust and a compressor connected to the turbine and pressurizing air;
Exhaust bypass means for flowing the exhaust of the internal combustion engine downstream of the turbine after bypassing the turbine;
Intake bypass means for supplying air to the internal combustion engine after bypassing the compressor;
Recirculation means for extracting the exhaust of the internal combustion engine from the upstream of the turbine and recirculating the exhaust of the internal combustion engine to the intake side of the internal combustion engine;
When shifting from homogeneous lean operation with supercharging to stratified operation, air is supplied to the internal combustion engine after the compressor is bypassed by the intake bypass means, and exhaust of the internal combustion engine is introduced into the turbine In this state, the exhaust gas from the internal combustion engine is recirculated by the exhaust gas recirculation means.
前記内燃機関の吸気ポート内へ燃料を噴射するポート噴射弁と、前記内燃機関の気筒内へ燃料を噴射する筒内噴射弁とを備え、過給を併用する均質リーン運転においては、前記ポート噴射弁から燃料を噴射し、成層運転においては前記筒内噴射弁から燃料を噴射することを特徴とする請求項1〜3のいずれか1項に記載の内燃機関。   In the homogeneous lean operation that includes a port injection valve that injects fuel into the intake port of the internal combustion engine and an in-cylinder injection valve that injects fuel into the cylinder of the internal combustion engine, and uses supercharging together, the port injection The internal combustion engine according to any one of claims 1 to 3, wherein fuel is injected from a valve, and fuel is injected from the in-cylinder injection valve in stratified operation. 過給を併用する均質リーン運転と、成層運転とを運転条件によって切り替え可能であるとともに、排気によって駆動されるタービン及び前記タービンに連結されて空気を加圧するコンプレッサを含んで構成される過給手段と、前記タービンの下流から前記内燃機関の排気を抽気して吸気側へ還流させる排気還流手段とを備える内燃機関の運転制御に用いるものであって、
前記内燃機関が均質燃焼運転から成層運転へ移行する場合には、少なくとも前記コンプレッサをバイパスさせてから前記内燃機関へ空気を供給させる排気還流圧力制御部と、
前記排気還流手段により前記内燃機関の排気を還流させる排気還流動作部と、
を含んで構成されることを特徴とする内燃機関の運転制御装置。
A supercharging means that can switch between a homogeneous lean operation using supercharging and a stratified operation depending on operating conditions, and includes a turbine driven by exhaust and a compressor that is connected to the turbine and pressurizes air. And exhaust gas recirculation means for extracting the exhaust gas of the internal combustion engine from the downstream of the turbine and recirculating the exhaust gas to the intake side,
When the internal combustion engine transitions from the homogeneous combustion operation to the stratified operation, an exhaust gas recirculation pressure control unit that supplies air to the internal combustion engine after bypassing at least the compressor;
An exhaust gas recirculation operation unit for recirculating exhaust gas of the internal combustion engine by the exhaust gas recirculation means;
An operation control device for an internal combustion engine, comprising:
過給を併用する均質リーン運転と、成層運転とを運転条件によって切り替え可能であるとともに、排気によって駆動されるタービン及び前記タービンに連結されて空気を加圧するコンプレッサを含んで構成される過給手段と、前記タービンの上流から前記内燃機関の排気を抽気して吸気側へ還流させる排気還流手段とを備える内燃機関の運転制御に用いるものであって、
前記内燃機関が均質燃焼運転から成層運転へ移行する場合には、少なくとも前記コンプレッサをバイパスさせてから前記内燃機関へ空気を供給させるとともに、前記タービンへ前記内燃機関の排気を導入する排気還流圧力制御部と、
前記排気還流手段により前記内燃機関の排気を還流させる排気還流動作部と、
を含んで構成されることを特徴とする内燃機関の運転制御装置。
A supercharging means that can switch between a homogeneous lean operation using supercharging and a stratified operation depending on operating conditions, and includes a turbine driven by exhaust and a compressor that is connected to the turbine and pressurizes air. And an exhaust gas recirculation means for extracting the exhaust gas from the internal combustion engine from the upstream side of the turbine and recirculating the exhaust gas to the intake side.
When the internal combustion engine shifts from the homogeneous combustion operation to the stratified operation, at least the compressor is bypassed and then the air is supplied to the internal combustion engine, and the exhaust gas recirculation pressure control is introduced into the turbine. And
An exhaust gas recirculation operation unit for recirculating exhaust gas of the internal combustion engine by the exhaust gas recirculation means;
An operation control device for an internal combustion engine, comprising:
JP2004021136A 2004-01-29 2004-01-29 Internal combustion engine and operation control device for internal combustion engine Expired - Fee Related JP4258388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021136A JP4258388B2 (en) 2004-01-29 2004-01-29 Internal combustion engine and operation control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021136A JP4258388B2 (en) 2004-01-29 2004-01-29 Internal combustion engine and operation control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005214063A true JP2005214063A (en) 2005-08-11
JP4258388B2 JP4258388B2 (en) 2009-04-30

Family

ID=34904867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021136A Expired - Fee Related JP4258388B2 (en) 2004-01-29 2004-01-29 Internal combustion engine and operation control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4258388B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2908475A1 (en) * 2006-11-15 2008-05-16 Renault Sas Petrol internal combustion engine for motor vehicle, has flow regulation valve regulating flow of inlet air in air inlet pipe arranged in upstream of air recirculation circuit having inlet and outlet arranged in compressor
DE102007017828A1 (en) * 2007-04-16 2008-10-23 Siemens Ag Turbocharger, turbocharged internal combustion engine, method and use
WO2013111273A1 (en) 2012-01-24 2013-08-01 トヨタ自動車株式会社 Exhaust circulation apparatus for internal combustion engine
WO2014208359A1 (en) 2013-06-27 2014-12-31 三菱自動車工業株式会社 Engine control device
WO2014208360A1 (en) 2013-06-27 2014-12-31 三菱自動車工業株式会社 Engine control device
WO2014208361A1 (en) 2013-06-27 2014-12-31 三菱自動車工業株式会社 Engine control device
JP2015224564A (en) * 2014-05-26 2015-12-14 本田技研工業株式会社 Internal combustion engine combustion control unit

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2908475A1 (en) * 2006-11-15 2008-05-16 Renault Sas Petrol internal combustion engine for motor vehicle, has flow regulation valve regulating flow of inlet air in air inlet pipe arranged in upstream of air recirculation circuit having inlet and outlet arranged in compressor
DE102007017828A1 (en) * 2007-04-16 2008-10-23 Siemens Ag Turbocharger, turbocharged internal combustion engine, method and use
WO2013111273A1 (en) 2012-01-24 2013-08-01 トヨタ自動車株式会社 Exhaust circulation apparatus for internal combustion engine
US9567945B2 (en) 2012-01-24 2017-02-14 Toyota Jidosha Kabushiki Kaisha Exhaust circulation apparatus for internal combustion engine
WO2014208359A1 (en) 2013-06-27 2014-12-31 三菱自動車工業株式会社 Engine control device
WO2014208360A1 (en) 2013-06-27 2014-12-31 三菱自動車工業株式会社 Engine control device
WO2014208361A1 (en) 2013-06-27 2014-12-31 三菱自動車工業株式会社 Engine control device
JP2015010520A (en) * 2013-06-27 2015-01-19 三菱自動車工業株式会社 Control device of engine
US9879617B2 (en) 2013-06-27 2018-01-30 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus of engine
US9885308B2 (en) 2013-06-27 2018-02-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus of engine
US9885293B2 (en) 2013-06-27 2018-02-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus of engine
JP2015224564A (en) * 2014-05-26 2015-12-14 本田技研工業株式会社 Internal combustion engine combustion control unit

Also Published As

Publication number Publication date
JP4258388B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5904290B2 (en) Turbocharged engine
CN106121873B (en) Engine with low pressure EGR system and control method thereof
JP5243637B1 (en) Internal combustion engine system
JP5187123B2 (en) Control device for internal combustion engine
JP2005146893A (en) Internal combustion engine and control method of internal combustion engine
US10344688B2 (en) Apparatus and method for engine control
JP2009191745A (en) Control device for internal combustion engine
JP2009209809A (en) Supercharging device for engine
KR20110112287A (en) Internal combustion heat engine, control system, method for dimensioning the engine, and automobile with said engine
JP2013170455A (en) Internal combustion engine, exhaust circulating method therefor, and control method therefor
JP2009216059A (en) Control device for internal combustion engine
JP4258388B2 (en) Internal combustion engine and operation control device for internal combustion engine
JP4736969B2 (en) Diesel engine control device
JP2009191727A (en) Supercharger of engine
JP2014222047A (en) Intake system of internal combustion engine
JP4114008B2 (en) Control device for spark ignition direct injection engine with turbocharger
JP5472082B2 (en) Combustion mode control system for compression ignition internal combustion engine
JP5688959B2 (en) Control device for internal combustion engine
JP5765921B2 (en) Internal combustion engine
US20180100428A1 (en) Engine system
JP2012225315A (en) Controller of internal-combustion engine
JP2012163009A (en) Control device for internal combustion engine
US9046032B2 (en) Stratified charge engine with turbocharger
JP4206934B2 (en) Supercharging system for internal combustion engines
JP5769506B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees