JP2005213821A - Joint structure of steel frame member and joining method - Google Patents

Joint structure of steel frame member and joining method Download PDF

Info

Publication number
JP2005213821A
JP2005213821A JP2004020441A JP2004020441A JP2005213821A JP 2005213821 A JP2005213821 A JP 2005213821A JP 2004020441 A JP2004020441 A JP 2004020441A JP 2004020441 A JP2004020441 A JP 2004020441A JP 2005213821 A JP2005213821 A JP 2005213821A
Authority
JP
Japan
Prior art keywords
steel
reinforced concrete
fiber
surface area
inorganic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004020441A
Other languages
Japanese (ja)
Inventor
Ilseung Yang
一承 梁
Isao Nishiyama
功 西山
Hiroshi Fukuyama
洋 福山
Haruhiko Suwada
晴彦 諏訪田
Kazuyoshi Shirai
一義 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Building Research Institute
Taiheiyo Cement Corp
National Institute for Land and Infrastructure Management
Original Assignee
Building Research Institute
Taiheiyo Cement Corp
National Institute for Land and Infrastructure Management
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Building Research Institute, Taiheiyo Cement Corp, National Institute for Land and Infrastructure Management filed Critical Building Research Institute
Priority to JP2004020441A priority Critical patent/JP2005213821A/en
Publication of JP2005213821A publication Critical patent/JP2005213821A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joint structure of steel frames which has large rigidity at a joint part and is easily installed, and also to provide a joining method using the same. <P>SOLUTION: In this method, steel frame members are confronted to each other while keeping a space between them, and coupled by steel materials. Thereafter fiber-reinforced concrete having compression strength of 40 N/mm<SP>2</SP>or more and destructive energy of 3 KN/mm or more is preferably filled into the space between the steel frame members and the steel members are integrally formed with the steel frame members. The space between the steel frame members is filled with the fiber-reinforced concrete, so that the joint structure which has large joint strength and excellent strength, rigidity or the like at the joint part is obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、接合部分の強度が大きく、かつ施工現場での寸法合わせが容易な鉄骨部材の接合構造とその方法に関する。   The present invention relates to a steel member joining structure and a method thereof, in which the strength of the joint portion is large and the size adjustment at the construction site is easy.

鉄骨部材とコンクリート部材の接合構造として、コンクリート部材を貫通するねじ鉄筋によってコンクリート部材の両側に鉄骨部材を接合した構造や、コンクリート部材にネジ鉄筋を埋設し、外側に突き出たネジ鉄筋の頭部に鉄骨部材を連結した構造が知られている(特許文献1)。また、並立したコンクリート柱の頭部に鉄骨梁を掛け渡し、鉄骨梁の両端に設けたフランジを介して鉄骨梁を順次連結し、この部分にコンクリートを打設して継ぎ足すことによって長スパン方向の鉄骨梁をコンクリート柱内部で接続した構造が知られている(特許文献2)。しかし、これらの接合構造は何れもコンクリート柱などに鉄骨を接続する構造であり、鉄骨どうしの接合構造ではない。   As a joint structure between a steel member and a concrete member, a structure in which steel members are joined to both sides of a concrete member by screw rebars penetrating the concrete member, or a screw rebar embedded in a concrete member and projecting to the head of the screw rebar protruding outward A structure in which steel members are connected is known (Patent Document 1). In addition, the steel beam is bridged over the heads of the side-by-side concrete columns, and the steel beam is sequentially connected through flanges provided at both ends of the steel beam. A structure in which steel beams are connected inside a concrete column is known (Patent Document 2). However, each of these joint structures is a structure in which a steel frame is connected to a concrete column or the like, and is not a joint structure between steel frames.

通常、鉄骨どうしを突き合わせて接続する場合には、両側の鉄骨端部に板材を張り渡して溶接やボルト接合などによって一体に固定する方法が一般的である。しかし、この方法は施工現場で溶接するのに手間がかかり、またボルト接合によって固定する場合には、ボルト孔を予め加工しなければならず、現場での寸法合わせが難しい場合がある。このような溶接やボルト接合に代わる簡便な接合構造として、鉄骨柱から側方に突き出たU型ブラケットを用い、このブラケットに鉄骨梁を差し込んで支持させ、隙間にコンクリートを充填した接合構造が提案されている(非特許文献1)。この方法は鉄骨梁を簡便に鉄骨柱に接合できる利点を有しているが、ブラケットに鉄骨梁が差し込まれ、隙間にコンクリートが充填されている構造であるため、解体が困難であるうえ再利用も困難である。
特開平7−252891号公報 特開2000−234387号公報 日本建築学会技術報告集、第14号、119−122頁、2001年12月号
In general, when connecting steel frames to each other, a method is generally used in which a plate material is stretched over the ends of the steel frames on both sides and fixed together by welding or bolt joining. However, this method requires time and labor for welding at the construction site, and when fixing by bolt joining, the bolt holes must be processed in advance, and it may be difficult to adjust the dimensions at the site. As a simple joint structure that replaces such welding and bolt joints, a joint structure is proposed in which a U-shaped bracket projecting laterally from a steel column is used, a steel beam is inserted into the bracket and supported, and the gap is filled with concrete. (Non-Patent Document 1). This method has the advantage that the steel beam can be easily joined to the steel column, but the steel beam is inserted into the bracket and the gap is filled with concrete, so it is difficult to disassemble and reuse. It is also difficult.
Japanese Patent Laid-Open No. 7-252891 JP 2000-234387 A Architectural Institute of Japan Technical Report, No. 14, pp. 119-122, December 2001

本発明はこのような従来の接合構造における問題を解決したものであり、接合部分の強度が大きく、かつ施工現場での寸法合わせや、解体・再利用が容易な鉄骨部材の接合構造とその方法を提供することを目的とする。なお、本発明においてコンクリートはモルタルおよびペーストを含む意味である。   The present invention solves such a problem in the conventional joining structure, and the joining structure and method of a steel member that has a large strength at the joining portion and that can be easily dimensioned, disassembled and reused at the construction site. The purpose is to provide. In the present invention, concrete means mortar and paste.

本発明は以下の構成からなる鉄骨部材の接合構造および接合方法に関する。
(1) 鉄骨部材が相互に間隔を保って突き合わされ、鋼材によって連結されていると共に鉄骨部材相互の上記間隔に繊維補強コンクリートが充填されて一体化されていることを特徴とする鉄骨部材の接合構造。
(2) 突き合わされた鉄骨部材の接合端部に端板が相対面するように各々固定されており、該端板を介して鉄骨部材が鋼材によって連結されており、さらに端板相互の空間に繊維補強コンクリートが充填されて一体化されている上記(1)に記載する鉄骨部材の接合構造。
(3) 鉄骨部材相互の間に、圧縮強度40N/mm2以上および破壊エネルギー3KN/mm以上の繊維補強コンクリートが充填されている上記(1)または(2)に記載する鉄骨部材の接合構造。
(4) 繊維補強コンクリートが、(A)ブレーン比表面積2500〜5000cm2/gのセメント100質量部と、(B)BET比表面積5〜25m2/gの微粒子10〜40質量部と、(C)ブレーン比表面積2500〜30000cm2/gで、かつ上記セメントよりも大きなブレーン比表面積を有する無機粒子15〜55質量部と、(D)金属繊維、有機質繊維、炭素繊維からなる群より選ばれる1種以上の繊維と、(E)減水剤と、(F)水とを含む配合物の硬化体からなる上記(1)、(2)または(3)に記載する鉄骨部材の接合構造。
(5) 上記無機粒子(C)が、ブレーン比表面積5000〜30000cm2/gの無機粒子A10〜50質量部と、ブレーン比表面積2500〜5000cm2/gの無機粒子B5〜35質量部とからなる上記(4)に記載する鉄骨部材の接合構造。
(6) 繊維補強コンクリートが、(F)粒径2mm以下の細骨材を含む上記(4)または(5)に記載する鉄骨部材の接合構造。
(7) 繊維補強コンクリートの充填部分を含む構築物表面にシート材が巻装されている上記(1)〜(6)のいずれかに記載する鉄骨部材の接合構造。
(8) 端部にフランジ状の端板を有する鉄骨部材を端板が相対面するように突き合わせ、該端板を介して鉄骨部材を鋼材によって連結し、さらに上記端板相互の空間に繊維補強コンクリートを充填して一体化することを特徴とする鉄骨部材の接合方法。
The present invention relates to a joining structure and joining method for steel members having the following configuration.
(1) Joining steel members characterized in that the steel members are butted against each other and connected by steel, and the above-mentioned intervals between the steel members are filled with fiber reinforced concrete and integrated. Construction.
(2) The end plates are fixed so as to face each other at the joining ends of the abutted steel members, and the steel members are connected by steel materials through the end plates. The steel member joining structure according to (1), wherein the fiber reinforced concrete is filled and integrated.
(3) The steel member joining structure according to (1) or (2), wherein fiber reinforced concrete having a compressive strength of 40 N / mm 2 or more and a fracture energy of 3 KN / mm or more is filled between the steel members.
(4) Fiber reinforced concrete comprises (A) 100 parts by mass of cement with a specific surface area of Blaine of 2500 to 5000 cm 2 / g, (B) 10 to 40 parts by mass of fine particles with a BET specific surface area of 5 to 25 m 2 / g, and (C 1) selected from the group consisting of 15 to 55 parts by mass of inorganic particles having a Blaine specific surface area of 2500 to 30000 cm 2 / g and a Blaine specific surface area larger than that of the cement, and (D) metal fiber, organic fiber and carbon fiber. The joining structure of a steel member according to the above (1), (2) or (3), comprising a cured product of a blend comprising at least seed fibers, (E) a water reducing agent, and (F) water.
(5) the inorganic particles (C) consists of the inorganic particles A10~50 parts by weight of the Blaine specific surface area 5000~30000cm 2 / g, the inorganic particles B5~35 parts by weight of the Blaine specific surface area 2500~5000cm 2 / g The steel member joining structure described in (4) above.
(6) The steel member joining structure according to (4) or (5), wherein the fiber reinforced concrete includes (F) a fine aggregate having a particle size of 2 mm or less.
(7) The steel member joining structure according to any one of the above (1) to (6), wherein a sheet material is wound around the surface of a structure including a filled portion of fiber reinforced concrete.
(8) A steel member having a flange-like end plate at the end is abutted so that the end plates face each other, and the steel member is connected by a steel material via the end plate, and fiber reinforcement is provided in the space between the end plates. A method for joining steel members characterized by filling and integrating concrete.

本発明の接合構造は、鉄骨部材どうしを相互に接合する構造であり、鉄骨部材がボルト等の鋼材によって連結されており、さらに鉄骨部材相互の空間が繊維補強コンクリートによって充填されているので接合強度が大きい接合構造である。とくに繊維補強コンクリートは通常の普通コンクリートよりも圧縮強度等が大きいので、接合部の耐力や剛性等も優れた接合構造を得ることができる。また鉄骨部材どうしは空間を保って連結するので施工現場での寸法合わせが容易であり、施工しやすい。   The joint structure of the present invention is a structure for joining steel members to each other, the steel members are connected by steel materials such as bolts, and the space between the steel members is filled with fiber reinforced concrete, so the joint strength Is a large joint structure. In particular, since fiber reinforced concrete has higher compressive strength and the like than ordinary ordinary concrete, it is possible to obtain a joint structure having excellent joint strength and rigidity. In addition, since the steel members are connected to each other while maintaining a space, it is easy to adjust the dimensions at the construction site, and the construction is easy.

〔接合構造〕
本発明に係る接合構造の一例を図1に示す。図示するように、鉄骨10、20が相互に間隔を保って突き合わされており、これらの鉄骨10、20の接合端部に端板11、21が相対面するようにおのおの溶接などによって固定されている。この端板11、21の間にボルト等の鋼材30が架け渡されており、鋼材30の両端が端板11、21にボルト接合や溶接などによって固定されている。この互いに相対面する端板11、21の間に繊維補強コンクリート31が充填されている。なお、繊維補強コンクリートの充填部分表面にシート材を巻装することによって接合部分の剛性をさらに高めることができる。
[Joint structure]
An example of the joining structure according to the present invention is shown in FIG. As shown in the figure, the steel frames 10 and 20 are abutted against each other, and are fixed by welding or the like so that the end plates 11 and 21 face each other at the joint ends of the steel frames 10 and 20. Yes. A steel material 30 such as a bolt is bridged between the end plates 11 and 21, and both ends of the steel material 30 are fixed to the end plates 11 and 21 by bolting or welding. A fiber reinforced concrete 31 is filled between the end plates 11 and 21 facing each other. In addition, the rigidity of a junction part can further be improved by winding a sheet material around the filling part surface of fiber reinforced concrete.

繊維補強コンクリートとしては、圧縮強度40N/mm2以上、および破壊エネルギー3KN/mm以上の繊維補強コンクリートを使用することが好ましい。圧縮強度が40N/mm2未満では接合部の耐力や剛性等が低下するので好ましくない。また、破壊エネルギーが3KN/mm未満では接合部の靱性等が低下するので好ましくない。なお、破壊エネルギーは、土木学会基準(JSCE-G 552−1999)に準拠した曲げタフネス試験において、供試体の撓みが1/150に達するまでの間の荷重−中央点変位の積分値を供試体断面で除した値によって示される。 As the fiber reinforced concrete, it is preferable to use fiber reinforced concrete having a compressive strength of 40 N / mm 2 or more and a fracture energy of 3 KN / mm or more. A compressive strength of less than 40 N / mm 2 is not preferable because the proof stress, rigidity, etc. of the joint are reduced. Further, if the fracture energy is less than 3 KN / mm, the toughness of the joint portion is not preferable. The fracture energy is the integral value of load-center point displacement until the deflection of the specimen reaches 1/150 in the bending toughness test in accordance with the Japan Society of Civil Engineers standard (JSCE-G 552-1999). It is indicated by the value divided by the cross section.

なお、本発明において特に好ましい繊維補強コンクリートとしては、(A)ブレーン比表面積2500〜5000cm2/gのセメント100質量部と、(B)BET比表面積5〜25m2/gの微粒子10〜40質量部と、(C)ブレーン比表面積2500〜30000cm2/gで、かつ上記セメントよりも大きなブレーン比表面積を有する無機粒子15〜55質量部と、(D)金属繊維、有機質繊維、炭素繊維からなる群より選ばれる1種以上の繊維と、(E)減水剤と、(F)水とを含む配合物の硬化体からなる繊維補強コンクリートが挙げられる。この繊維補強コンクリートは、硬化前の流動性が高いので接合部の構築が容易であり、また硬化後の機械的特性にも優れており、圧縮強度および破壊エネルギーが大きいので、接合部の耐力や剛性等も優れた接合構造を得ることができる。 In the present invention, particularly preferable fiber reinforced concrete is (A) 100 parts by mass of cement having a specific surface area of 2500 to 5000 cm 2 / g and (B) 10 to 40 parts by mass of fine particles having a BET specific surface area of 5 to 25 m 2 / g. Parts, (C) 15-55 parts by mass of inorganic particles having a Blaine specific surface area of 2500-30000 cm 2 / g and a Blaine specific surface area larger than that of the cement, and (D) metal fibers, organic fibers, and carbon fibers. Examples thereof include fiber-reinforced concrete made of a cured product of a blend containing at least one fiber selected from the group, (E) a water reducing agent, and (F) water. This fiber reinforced concrete has high fluidity before curing, so it is easy to construct joints, and it has excellent mechanical properties after curing, and its compressive strength and fracture energy are large. A joined structure having excellent rigidity and the like can be obtained.

〔繊維補強コンクリートの材料と配合量〕
上記繊維補強コンクリートの材料であるセメントは、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントが挙げられる。早期強度を向上させる場合には早強ポルトランドセメントを使用することが好ましく、硬化前の配合物の流動性を向上させる場合には中庸熱ポルトランドセメントや低熱ポルトランドセメントを使用することが好ましい。
[Fiber-reinforced concrete materials and blending amounts]
Examples of the cement as the material for the fiber reinforced concrete include various Portland cements such as ordinary Portland cement, early-strength Portland cement, moderately hot Portland cement, and low heat Portland cement. In order to improve the early strength, it is preferable to use early-strength Portland cement. In order to improve the fluidity of the composition before curing, it is preferable to use moderately hot Portland cement or low-heat Portland cement.

上記繊維補強コンクリートに配合する微粒子としては、シリカフューム、シリカダスト、フライアッシュ、スラグ、火山灰、シリカゾル、沈降シリカなどが挙げられる。微粒子の粒径はBET比表面積が5〜25m2/gのものが適当であり、8〜25m2/gのものが好ましい。比表面積がこの範囲外では硬化体の機械的特性が低下するので好ましくない。一般に、シリカフュームやシリカダストは、そのBET比表面積が5〜25m2/gであり、粉砕等をする必要がないので、本発明の微粒子として好適である。また、微粒子の配合量は、セメント100質量部に対して10〜40質量部、好ましくは15〜40質量部である。配合量がこの範囲を外れると流動性が低下したり、硬化体の機械的特性(圧縮強度、曲げ強度等)が低下するので好ましくない。 Examples of the fine particles blended in the fiber reinforced concrete include silica fume, silica dust, fly ash, slag, volcanic ash, silica sol, and precipitated silica. Diameter of the particles is suitably BET specific surface area of 5~25m 2 / g, preferably from 8~25m 2 / g. If the specific surface area is out of this range, the mechanical properties of the cured product are deteriorated. In general, silica fume and silica dust have a BET specific surface area of 5 to 25 m 2 / g and do not need to be pulverized, and thus are suitable as the fine particles of the present invention. Moreover, the compounding quantity of microparticles | fine-particles is 10-40 mass parts with respect to 100 mass parts of cement, Preferably it is 15-40 mass parts. If the blending amount is out of this range, the fluidity is lowered or the mechanical properties (compressive strength, bending strength, etc.) of the cured product are lowered, which is not preferable.

上記繊維補強コンクリートに配合する無機粒子は、セメント以外の無機粒子であり、スラグ、石灰石粉末、長石類、ムライト類、アルミナ粉末、石英粉末、フライアッシュ、火山灰、シリカゾル、炭化物粉末、窒化物粉末等が挙げられる。このなかでスラグ、石灰石粉末、石英粉末はコストの点や硬化後の品質安定性の点で好ましい。この無機粒子はセメント粒子よりも大きなブレーン比表面積を有し、かつブレーン比表面積が2500〜30000cm2/gのものが適当であり、4500〜20000cm2/gのものが好ましい。無機粒子のブレーン比表面積がこの範囲を外れると流動性が低下したり、硬化体の機械的特性が低下するので好ましくない。 The inorganic particles blended in the fiber reinforced concrete are inorganic particles other than cement, such as slag, limestone powder, feldspar, mullite, alumina powder, quartz powder, fly ash, volcanic ash, silica sol, carbide powder, nitride powder, etc. Is mentioned. Among these, slag, limestone powder, and quartz powder are preferable in terms of cost and quality stability after curing. The inorganic particles have a large Blaine specific surface area than the cement particles, and Blaine specific surface area is suitably those 2500~30000cm 2 / g, preferably from 4500~20000cm 2 / g. When the Blaine specific surface area of the inorganic particles is out of this range, the fluidity is lowered or the mechanical properties of the cured product are lowered, which is not preferable.

無機粒子がセメントよりも大きなブレーン比表面積を有することによって、無機粒子がセメントと微粒子との間隙を埋める粒度を有することになり、硬化前には高い流動性(自己充填性)を確保することができるうえ、硬化後の機械的特性も向上することができる。無機粒子とセメントとのブレーン比表面積の差は、硬化前の流動性と硬化後の強度発現性の観点から、1000cm2/g以上が好ましく、2000cm2/g以上がより好ましい。 When the inorganic particles have a larger Blaine specific surface area than cement, the inorganic particles have a particle size that fills the gap between the cement and the fine particles, and can ensure high fluidity (self-filling property) before curing. In addition, the mechanical properties after curing can be improved. The difference in the brain specific surface area between the inorganic particles and the cement is preferably 1000 cm 2 / g or more, and more preferably 2000 cm 2 / g or more, from the viewpoints of fluidity before curing and strength development after curing.

無機粒子の配合量は、セメント100質量部に対して、15〜55質量部が適当であり、20〜50質量部が好ましい。配合量がこの範囲外では流動性が低下したり、硬化体の機械的特性が低下するので好ましくない。   As for the compounding quantity of an inorganic particle, 15-55 mass parts is suitable with respect to 100 mass parts of cement, and 20-50 mass parts is preferable. If the blending amount is out of this range, the fluidity is lowered or the mechanical properties of the cured product are lowered, which is not preferable.

無機粒子として異なる2種の無機粒子Aおよび無機粒子Bを併用することができる。この場合、無機粒子Aと無機粒子Bは、同じ種類の粉末(例えば、石灰石粉末)を使用してもよいし、異なる種類の粉末(例えば、石灰石粉末及び石英粉末)を使用してもよい。無機粒子Aはセメントおよび無機粒子Bよりもブレーン比表面積が大きく、かつブレーン比表面積が5000〜30000cm2/gのものが適当であり、6000〜20000cm2/gのものが好ましい。 Two different inorganic particles A and inorganic particles B can be used in combination as the inorganic particles. In this case, the inorganic particles A and the inorganic particles B may use the same type of powder (for example, limestone powder) or different types of powder (for example, limestone powder and quartz powder). The inorganic particles A have a Blaine specific surface area larger than that of the cement and the inorganic particles B, and those having a Blaine specific surface area of 5000 to 30000 cm 2 / g are suitable, and those having a Blaine specific surface area of 6000 to 20000 cm 2 / g are preferable.

無機粒子Aのブレーン比表面積が5000cm2/g未満であると、セメントや無機粒子Bとのブレーン比表面積の差が小さくなり、1種の無機粒子を用いた場合に比べて流動性等を向上させる効果が小さくなり、しかも2種の無機粒子を用いることによる材料の準備に手間がかかるので好ましくない。該ブレーン比表面積が30000cm2/gを超えると粉砕に手間がかかるために材料の入手が難しく、また所定の流動性を得るための水量が多くなるため、硬化体の機械的特性が低下するので好ましくない。 If the Blaine specific surface area of the inorganic particles A is less than 5000 cm 2 / g, the difference in Blaine specific surface area between the cement and the inorganic particles B is reduced, and the fluidity and the like are improved compared to the case of using one kind of inorganic particles. This is not preferable because the effect of the reduction is reduced and it takes time to prepare the material by using two kinds of inorganic particles. When the specific surface area of the branes exceeds 30000 cm 2 / g, it takes time and effort to grind, so it is difficult to obtain materials, and the amount of water for obtaining a predetermined fluidity increases, so the mechanical properties of the cured product deteriorate. It is not preferable.

また、無機粒子Aが、セメントおよび無機粒子Bよりも大きなブレーン比表面積を有することによって、無機粒子Aが、セメント及び無機粒子Bと微粒子との間隙を埋めるような粒度を有することになり、より優れた流動性や機械的特性を確保することができる。無機粒子Aとセメントおよび無機粒子Bとのブレーン比表面積の差(換言すれば、無機粒子Aと、セメントと無機粒子Bのうちブレーン比表面積の大きい方とのブレーン比表面積の差)は、硬化前の流動性と硬化後の機械的特性の観点から、1000cm2/g以上が好ましく、2000cm2/g以上がより好ましい。 Further, since the inorganic particles A have a larger Blaine specific surface area than the cement and the inorganic particles B, the inorganic particles A have a particle size that fills the gaps between the cement and the inorganic particles B and the fine particles. Excellent fluidity and mechanical properties can be secured. The difference in the specific surface area of Blaine between the inorganic particles A and the cement and the inorganic particles B (in other words, the difference in Blaine specific surface area between the inorganic particles A and the larger one of the cement and the inorganic particles B). From the viewpoint of the previous fluidity and mechanical properties after curing, it is preferably 1000 cm 2 / g or more, more preferably 2000 cm 2 / g or more.

無機粒子Bのブレーン比表面積は2500〜5000cm2/gのものが適当である。また、セメントと無機粒子Bとのブレーン比表面積の差は、硬化前の流動性と硬化後の機械的特性の観点から100cm2/g以上が好ましく、200cm2/g以上がより好ましい。無機粒子Bのブレーン比表面積が2500cm2/g未満であると、流動性が低下して自己充填性が得られ難くなるので好ましくない。また5000cm2/gを超えると、ブレーン比表面積が無機粒子Aに近づくため、1種の無機粒子を用いる場合と比べて、流動性等を向上させる効果が小さくなり、しかも2種の無機粒子を用いていることによる材料の準備に手間がかかるので、好ましくない。また、セメントと無機粒子Bとのブレーン比表面積の差が100cm2/g以上であることによって、配合物を構成する粒子の充填性が向上し、より優れた流動性や機械的特性を確保することができる。 The inorganic particles B preferably have a Blaine specific surface area of 2500 to 5000 cm 2 / g. Further, the difference in the Blaine specific surface area between the cement and the inorganic particles B is preferably 100 cm 2 / g or more, more preferably 200 cm 2 / g or more, from the viewpoints of fluidity before curing and mechanical properties after curing. If the Blaine specific surface area of the inorganic particles B is less than 2500 cm 2 / g, the fluidity is lowered and it becomes difficult to obtain the self-filling property. Further, if it exceeds 5000 cm 2 / g, the Blaine specific surface area approaches that of the inorganic particles A, the effect of improving the fluidity and the like is reduced compared to the case of using one kind of inorganic particles, and two kinds of inorganic particles are used. Since preparation of the material by using it takes time, it is not preferable. Further, the difference in the Blaine specific surface area between the cement and the inorganic particles B is 100 cm 2 / g or more, so that the filling property of the particles constituting the compound is improved, and more excellent fluidity and mechanical properties are ensured. be able to.

無機粒子Aの配合量は、セメント100質量部に対して10〜50質量部、好ましくは15〜40質量部である。無機粒子Bの配合量は、セメント100質量部に対して5〜35質量部、好ましくは10〜30質量部である。無機粒子A及び無機粒子Bの配合量が前記の数値範囲外では、前記の1種の無機粒子を用いる場合と比べて、流動性や強度発現性等を向上させる効果が小さくなるばかりか、2種の無機粒子を用いているために、材料の準備に手間がかかるので、好ましくない。無機粒子Aと無機粒子Bの合計量は、セメント100質量部に対して15〜55質量部、好ましくは20〜50質量部である。合計量がこの範囲を外れると流動性が低下したり、硬化体の機械的特性が低下するので好ましくない。   The compounding quantity of the inorganic particle A is 10-50 mass parts with respect to 100 mass parts of cement, Preferably it is 15-40 mass parts. The compounding quantity of the inorganic particle B is 5-35 mass parts with respect to 100 mass parts of cement, Preferably it is 10-30 mass parts. When the blending amount of the inorganic particles A and the inorganic particles B is out of the above numerical range, not only the effect of improving fluidity and strength development is reduced as compared with the case of using the one kind of inorganic particles, but 2 Since seed inorganic particles are used, it takes time to prepare the material, which is not preferable. The total amount of the inorganic particles A and the inorganic particles B is 15 to 55 parts by mass, preferably 20 to 50 parts by mass with respect to 100 parts by mass of the cement. If the total amount is out of this range, the fluidity is lowered or the mechanical properties of the cured product are lowered, which is not preferable.

上記繊維補強コンクリートに用いる金属繊維としては、鋼繊維、ステンレス繊維、アモルファス繊維等が挙げられる。このなかで鋼繊維は強度が大きく、またコストや入手のし易さの点からも好ましい。金属繊維の寸法は、配合物中における金属繊維の材料分離の防止や、曲げ強度や靭性の向上の点から、直径0.01〜1.0mm、長さが2〜30mmであるものが好ましく、直径0.05〜0.5mm、長さが5〜25mmのものがより好ましい。また、金属繊維のアスペクト比(繊維長/繊維直径)は20〜200が好ましく、40〜150がより好ましい。   Examples of metal fibers used for the fiber reinforced concrete include steel fibers, stainless fibers, and amorphous fibers. Of these, steel fibers are preferred because of their high strength and cost and availability. The dimensions of the metal fibers are preferably those having a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm from the viewpoint of preventing material separation of the metal fibers in the composition and improving bending strength and toughness. More preferably, the diameter is 0.05 to 0.5 mm and the length is 5 to 25 mm. Moreover, 20-200 are preferable and, as for the aspect-ratio (fiber length / fiber diameter) of a metal fiber, 40-150 are more preferable.

金属繊維の形状は直線状よりも、何らかの物理的付着力を付与する形状(例えば、螺旋状や波形)が好ましい。螺旋状等の形状にすれば、金属繊維とマトリックスとが引き抜けながら応力を担保するため、曲げ強度が向上する。金属繊維の好適な例としては、例えば、直径が0.5mm以下、引張強度が1〜3.5GPaの鋼繊維からなり、かつ、120MPaの圧縮強度を有するセメント系硬化体のマトリックスに対する界面付着強度(付着面の単位面積当たりの最大引張力)が3MPa以上であるものが挙げられる。金属繊維は波形または螺旋形の形状に加工することができる。また、金属繊維の周面上にマトリックスに対する運動(長手方向の滑り)に抵抗するための溝または突起を付けてもよい。また、金属繊維は、鋼繊維の表面に鋼繊維のヤング係数よりも小さなヤング係数を有する金属層(例えば、亜鉛、錫、銅、アルミニウム等から選ばれる1種以上からなるもの)を設けたものでもよい。   The shape of the metal fiber is preferably a shape that imparts some physical adhesion (for example, a spiral shape or a waveform) rather than a straight shape. If it is in a spiral shape or the like, the stress is secured while the metal fibers and the matrix are pulled out, so that the bending strength is improved. Preferable examples of metal fibers include, for example, interfacial adhesion strength to a matrix of a cemented hardened body made of steel fibers having a diameter of 0.5 mm or less and a tensile strength of 1 to 3.5 GPa and having a compressive strength of 120 MPa. Examples include those having a maximum tensile force per unit area of the adhering surface of 3 MPa or more. Metal fibers can be processed into corrugated or helical shapes. Moreover, you may attach the groove | channel or protrusion for resisting the motion (longitudinal slip) with respect to a matrix on the surrounding surface of a metal fiber. In addition, the metal fiber is provided with a metal layer (for example, one or more selected from zinc, tin, copper, aluminum, etc.) having a Young's modulus smaller than that of the steel fiber on the surface of the steel fiber. But you can.

金属繊維の配合量は、配合物中の体積百分率で、好ましくは0.1〜6.0%、より好ましくは0.5〜5.5%、特に好ましくは1.0〜5.0%である。この配合量が0.1%未満では硬化体の曲げ強度や靭性が低下するので好ましくない。一方、この配合量が6.0%を越えると、流動性等を確保するために単位水量が増大するうえ、配合量を増やしても金属繊維の補強効果が向上しないため経済的でなく、さらに、混練物中でいわゆるファイバーボールを生じ易くなるので、好ましくない。   The compounding amount of the metal fiber is preferably 0.1 to 6.0%, more preferably 0.5 to 5.5%, and particularly preferably 1.0 to 5.0% by volume percentage in the composition. is there. If the blending amount is less than 0.1%, the bending strength and toughness of the cured body are lowered, which is not preferable. On the other hand, if the blending amount exceeds 6.0%, the unit water amount increases in order to ensure fluidity and the like, and even if the blending amount is increased, the reinforcing effect of the metal fiber is not improved. This is not preferable because a so-called fiber ball is likely to be formed in the kneaded product.

有機繊維としては、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維等を用いることができる。このなかで、ビニロン繊維および/またはポリプロピレン繊維はコストや入手のし易さの点で好ましい。また、炭素繊維としてはPAN系炭素繊維やピッチ系炭素繊維が挙げられる。有機繊維および炭素繊維の寸法は、配合物中におけるこれら繊維の材料分離の防止や、硬化後の破壊エネルギーを高める観点から、直径0.005〜1.0mm、長さ2〜30mmであるものが好ましく、直径0.01〜0.5mm、長さ5〜25mmであるものがより好ましい。また、有機繊維および炭素繊維のアスペクト比(繊維長/繊維直径)は20〜200が好ましく、30〜150がより好ましい。   As the organic fiber, vinylon fiber, polypropylene fiber, polyethylene fiber, aramid fiber, or the like can be used. Among these, vinylon fibers and / or polypropylene fibers are preferable in terms of cost and availability. Examples of carbon fibers include PAN-based carbon fibers and pitch-based carbon fibers. The dimensions of the organic fiber and the carbon fiber are 0.005 to 1.0 mm in diameter and 2 to 30 mm in length from the viewpoint of preventing material separation of these fibers in the blend and increasing the fracture energy after curing. Those having a diameter of 0.01 to 0.5 mm and a length of 5 to 25 mm are more preferable. Moreover, 20-200 are preferable and, as for the aspect ratio (fiber length / fiber diameter) of organic fiber and carbon fiber, 30-150 are more preferable.

有機繊維および炭素繊維の配合量は、配合物中の体積百分率で、好ましくは10.0%以下、より好ましくは1.0〜9.0%、特に好ましくは2.0〜8.0%である。配合量が10.0%を超えると、流動性等を確保するために単位水量が増大するうえ、配合量を増やしても繊維の増強効果が向上しないため、経済的でなく、さらに、混練物中にいわゆるファイバーボールを生じ易くなるので、好ましくない。   The amount of the organic fiber and the carbon fiber is a volume percentage in the composition, preferably 10.0% or less, more preferably 1.0 to 9.0%, and particularly preferably 2.0 to 8.0%. is there. If the blending amount exceeds 10.0%, the unit water amount increases in order to ensure fluidity and the like, and even if the blending amount is increased, the fiber reinforcing effect is not improved. This is not preferable because a so-called fiber ball is likely to be generated therein.

上記繊維補強コンクリートは減水剤を配合したものが好ましい。減水剤としては、リグニン系、ナフタレンスルホン酸系、メラミン系、ポリカルボン酸系の減水剤、AE減水剤、高性能減水剤または高性能AE減水剤を使用することができる。これらのうち、減水効果の大きな高性能減水剤または高性能AE減水剤を使用することが好ましく、特に、ポリカルボン酸系の高性能減水剤または高性能AE減水剤を使用することが好ましい。   The fiber reinforced concrete preferably contains a water reducing agent. As the water reducing agent, a lignin-based, naphthalenesulfonic acid-based, melamine-based, or polycarboxylic acid-based water reducing agent, an AE water reducing agent, a high-performance water reducing agent, or a high-performance AE water reducing agent can be used. Among these, it is preferable to use a high performance water reducing agent or a high performance AE water reducing agent having a large water reducing effect, and it is particularly preferable to use a polycarboxylic acid-based high performance water reducing agent or a high performance AE water reducing agent.

減水剤の配合量は、セメント、微粒子および無機粒子の合計量100質量部に対して、固形分換算で0.1〜4.0質量部が好ましく、0.1〜2.0質量部がより好ましい。配合量が0.1質量部未満では、混練が困難になるとともに、流動性が極端に低下するので好ましくない。配合量が4.0質量部を超えると、材料分離や著しい凝結遅延が生じ、また、硬化体の機械的特性が低下することもあるので好ましくない。なお、減水剤は、液状または粉末状のいずれでも使用することができる。   The blending amount of the water reducing agent is preferably 0.1 to 4.0 parts by mass, more preferably 0.1 to 2.0 parts by mass in terms of solid content with respect to 100 parts by mass of the total amount of cement, fine particles and inorganic particles. preferable. If the blending amount is less than 0.1 parts by mass, kneading becomes difficult and the fluidity is extremely lowered, which is not preferable. If the blending amount exceeds 4.0 parts by mass, material separation and significant setting delay occur, and the mechanical properties of the cured product may be deteriorated. The water reducing agent can be used in a liquid or powder form.

配合物を調製する際の水の量は、セメント、微粒子および無機粒子の合計量100質量部に対して、好ましくは10〜30質量部、より好ましくは12〜25質量部である。水の量が10質量部未満では、混練が困難になるとともに、流動性が極端に低下するので好ましくない。水の量が30質量部を超えると、硬化体の機械的特性が低下することもあるので好ましくない。   The amount of water in preparing the blend is preferably 10 to 30 parts by mass, more preferably 12 to 25 parts by mass with respect to 100 parts by mass of the total amount of cement, fine particles and inorganic particles. If the amount of water is less than 10 parts by mass, kneading becomes difficult and the fluidity is extremely lowered, which is not preferable. When the amount of water exceeds 30 parts by mass, the mechanical properties of the cured body may be deteriorated, which is not preferable.

上記繊維補強コンクリートには細骨材を配合することができる。細骨材としては、川砂、陸砂、海砂、砕砂、珪砂等またはこれらの混合物を使用することができる。細骨材は粒径2mm以下のものを用いることが好ましい。ここで、細骨材の粒径とは85%質量累積粒径である。細骨材の粒径が2mmを超えると硬化後の機械的特性が低下するので好ましくない。また、細骨材は75μm以下の粒子の含有量が2.0質量%以下のものを用いることが好ましい。該含有量が2.0質量%を超えると、配合物の流動性が低下するので、好ましくない。   Fine aggregate can be blended with the fiber reinforced concrete. As the fine aggregate, river sand, land sand, sea sand, crushed sand, silica sand and the like or a mixture thereof can be used. It is preferable to use a fine aggregate having a particle size of 2 mm or less. Here, the particle size of the fine aggregate is an 85% mass cumulative particle size. If the particle size of the fine aggregate exceeds 2 mm, the mechanical properties after hardening are not preferred. Further, it is preferable to use a fine aggregate having a content of particles of 75 μm or less of 2.0% by mass or less. When the content exceeds 2.0% by mass, the fluidity of the blend is lowered, which is not preferable.

なお、上記繊維補強コンクリートの機械的強度を高めるには、最大粒径2mm以下の細骨材を用いることが好ましく、最大粒径が1.5mm以下の細骨材を用いることがより好ましい。また、流動性等を高めるには75μm以下の粒子の含有量が1.5質量%以下である細骨材を用いることがより好ましい。細骨材の配合量は、配合物の流動性や硬化後の機械的特性の観点から、セメント、微粒子、無機粒子の合計量100質量部に対して130質量部以下であることが好ましく、自己収縮や乾燥収縮の低減、水和発熱量の低減等の観点から、10〜130質量部(さらには30〜130質量部、特に40〜130質量部)であることがより好ましい。   In order to increase the mechanical strength of the fiber reinforced concrete, it is preferable to use a fine aggregate having a maximum particle size of 2 mm or less, and more preferably a fine aggregate having a maximum particle size of 1.5 mm or less. In order to improve fluidity and the like, it is more preferable to use a fine aggregate having a content of particles of 75 μm or less of 1.5% by mass or less. The blending amount of the fine aggregate is preferably 130 parts by weight or less with respect to 100 parts by weight of the total amount of cement, fine particles, and inorganic particles from the viewpoint of fluidity of the blend and mechanical properties after curing. From the viewpoint of reducing shrinkage and drying shrinkage, reducing the amount of hydration heat, etc., it is more preferably 10 to 130 parts by mass (more preferably 30 to 130 parts by mass, particularly 40 to 130 parts by mass).

配合物の混練方法は限定されない。例えば、(a)水、繊維、減水剤以外の材料(具体的には、セメント、微粒子、無機粒子及び細骨材)を予め混合して、プレミックス材を調製しておき、該プレミックス材、水、繊維及び減水剤をミキサに投入し、混練する方法、(b)粉末状の減水剤を用意し、水、繊維以外の材料(具体的には、セメント、微粒子、無機粒子、減水剤及び細骨材)を予め混合して、プレミックス材を調製しておき、該プレミックス材、繊維及び水をミキサに投入し、混練する方法、(c)各材料を各々個別にミキサに投入し、混練する方法、等を採用することができる。混練に用いるミキサは、通常のコンクリートの混練に用いられるどのタイプのものでもよく、例えば、揺動型ミキサ、パンタイプミキサ、二軸練りミキサ等が用いられる。   The kneading method of the blend is not limited. For example, (a) materials other than water, fiber and water reducing agent (specifically, cement, fine particles, inorganic particles and fine aggregate) are mixed in advance to prepare a premix material, and the premix material , A method in which water, fiber and water reducing agent are put into a mixer and kneaded, (b) a powdered water reducing agent is prepared, and materials other than water and fiber (specifically, cement, fine particles, inorganic particles, water reducing agent) And fine aggregates) are mixed in advance to prepare a premix material, and the premix material, fiber and water are put into a mixer and kneaded. (C) Each material is put into the mixer individually. Then, a kneading method or the like can be employed. The mixer used for kneading may be of any type used for ordinary concrete kneading. For example, a rocking mixer, a pan type mixer, a biaxial kneading mixer, or the like is used.

〔接合構造の構築方法〕
本発明の接合構造を構築するには、例えば図1に示すように、鉄骨部材10、20の接合端部におのおのフランジ状の端板11、21を設けて溶接などによって固定する。この鉄骨部部材10、20を上記端板11、21が互いに面するように、相互に間隔を保って突き合わせて、ボルト等の鋼材30によって連結する。次いで、端板11、21相互の空間に繊維補強コンクリート31を充填して硬化させる。必要に応じ、コンクリート31が硬化した後に、この繊維補強コンクリート部分を含む構築物表面にシート材を巻装する。なお、シート材としては、ガラス繊維シート、炭素繊維シート、アラミド繊維シート、ポリエチレン繊維シートなどを使用することができる。
[Method of constructing joint structure]
In order to construct the joint structure of the present invention, for example, as shown in FIG. 1, flange-like end plates 11 and 21 are provided at the joint ends of the steel members 10 and 20 and fixed by welding or the like. The steel frame members 10 and 20 are butted against each other so that the end plates 11 and 21 face each other, and are connected by a steel material 30 such as a bolt. Next, the space between the end plates 11 and 21 is filled with fiber reinforced concrete 31 and cured. If necessary, after the concrete 31 has hardened, a sheet material is wound around the surface of the structure including the fiber-reinforced concrete portion. In addition, as a sheet material, a glass fiber sheet, a carbon fiber sheet, an aramid fiber sheet, a polyethylene fiber sheet, or the like can be used.

本発明を実施例によって具体的に示す。
[1.使用材料]
以下に示す材料を使用し、表1に示す配合割合に従って試料(イ)(ロ)(ハ)を調製した。
(1)セメント;〔A〕早強ポルトランドセメント(太平洋セメント社製品、ブレーン比表面積4400cm2/g)、〔B〕低熱ポルトランドセメント(太平洋セメント社製品、ブレーン比表面積3200cm2/g)
(2)微粒子;シリカフューム(BET比表面積10m2/g)
(3)無機粒子A;石英粉末(ブレーン比表面積7500cm2/g)
(4)無機粒子B;石英粉末(ブレーン比表面積4000cm2/g)
(5)骨材;珪砂(最大粒径0.6mm、75μm以下の粒子の含有量0.3質量%)
(6)金属繊維;鋼繊維(直径:0.2mm、長さ:13mm)
(7)有機繊維;ポリエチレン繊維(直径:0.2mm、長さ:15mm)
(8)減水剤;ポリカルボン酸系高性能AE減水剤
(9)水;水道水
The present invention is specifically illustrated by examples.
[1. Materials used]
Samples (A), (B) and (C) were prepared according to the blending ratio shown in Table 1 using the materials shown below.
(1) Cement; [A] Early strong Portland cement (product of Taiheiyo Cement, Blaine specific surface area 4400 cm 2 / g), [B] Low heat Portland cement (Product of Taiheiyo Cement, Blaine specific surface area 3200 cm 2 / g)
(2) Fine particles; silica fume (BET specific surface area 10 m 2 / g)
(3) Inorganic particles A: quartz powder (Blaine specific surface area 7500 cm 2 / g)
(4) Inorganic particles B: quartz powder (Blaine specific surface area 4000 cm 2 / g)
(5) Aggregate: Silica sand (maximum particle size 0.6mm, content of particles less than 75μm 0.3% by mass)
(6) Metal fiber: Steel fiber (diameter: 0.2mm, length: 13mm)
(7) Organic fiber: Polyethylene fiber (diameter: 0.2mm, length: 15mm)
(8) Water reducing agent; polycarboxylic acid-based high-performance AE water reducing agent (9) Water; tap water

[2.配合物(モルタル)の調製・評価]
表1に示す試料(イ、ロ、ハ)について、各材料を個別に二軸練りミキサに投入して混練した。混練後、次のように配合物と硬化体の物性を測定して評価した。この結果を表1に示した。
(1)圧縮強度:各混練物を型枠(φ100×200mm)に流し込み、20℃で28日間気中養生して硬化体(3本)を作製した後、規格(JIS A 1108[コンクリートの圧縮試験方法])に準じて該硬化体の圧縮強度を測定した。各硬化体の測定値の平均値を圧縮強度とした。
(2)破壊エネルギーは、土木学会基準(JSCE-G 552−1999)に準拠した曲げタフネス試験において、供試体の撓みが1/150に達するまでの間の荷重−中央点変位の積分値を供試体断面で除した値によって示した。
[2. Preparation and evaluation of compound (mortar)]
For the samples (I, B, C) shown in Table 1, each material was individually put into a biaxial kneader and kneaded. After kneading, the physical properties of the blend and the cured product were measured and evaluated as follows. The results are shown in Table 1.
(1) Compressive strength: Each kneaded product was poured into a mold (φ100 × 200mm) and cured in air at 20 ° C for 28 days to prepare hardened bodies (3 pieces). The compressive strength of the cured body was measured according to the test method]). The average value of the measured values of each cured body was taken as the compressive strength.
(2) Fracture energy is the integral value of load-center point displacement until the bending of the specimen reaches 1/150 in the bending toughness test in accordance with JSCE-G 552-1999. It is indicated by the value divided by the cross section of the specimen.

表1に示すように、金属繊維や有機繊維を配合した繊維補強コンクリート(イ、ロ)は大きな圧縮強度と破壊エネルギーを有するが、これらを配合しないコンクリート(ハ)は破壊エネルギーが著しく低い。
As shown in Table 1, fiber reinforced concrete (I, B) blended with metal fibers and organic fibers has large compressive strength and fracture energy, but concrete (C) not blended with these has remarkably low fracture energy.

Figure 2005213821
Figure 2005213821

[3.接合構築物]
表1に示す材料を用い、これを表2に示す状態で使用し、図2(A)(B)に示す接合構造の試験体(No.1〜No.4)を形成した。この試験体について間柱の剪断力と回転角(振幅)の関係、ブレースの軸力と変位の関係を調べた。この結果を図3および図4に示した。図3(I)、(II)、(III)は本発明に係る試験体No.1〜3(繊維補強コンクリート充填体)の結果であり、図3(IV)は比較試験体No.4(モルタル充填体)の結果である。図示するように本発明に係る試験体No.1〜3では20×10-3ラジアン付近の振幅でも剪断力に耐える剛性を有するが、比較試験体No.4では小さい振幅で剪断破壊を生じた。また、本発明の試験体No.3はコンクリート充填部分の表面に繊維シートを巻き付けたものであるが、剪断力および振幅に対する剛性が高い。
[3. Joined structure]
Using the materials shown in Table 1 and using them in the state shown in Table 2, test specimens (No. 1 to No. 4) having the junction structure shown in FIGS. 2A and 2B were formed. The relationship between the shear force of the studs and the rotation angle (amplitude) and the relationship between the axial force of the brace and the displacement were investigated for this specimen. The results are shown in FIG. 3 and FIG. 3 (I), (II), and (III) are the results of specimens Nos. 1 to 3 (fiber reinforced concrete fillers) according to the present invention, and FIG. It is a result of a mortar filler. As shown in the figure, the specimens No. 1 to No. 3 according to the present invention have the rigidity to withstand the shear force even with an amplitude in the vicinity of 20 × 10 −3 radians, but the comparative specimen No. 4 caused a shear fracture with a small amplitude. . Specimen No. 3 of the present invention has a fiber sheet wound around the surface of a concrete-filled portion, and has high rigidity against shearing force and amplitude.

また、図4(I)に示すように本発明に係る試験体No.1では、繊維による横拘束効果とマルチクラックによってPC鋼棒の伸び性能を十分に発揮できるが、繊維無混入の比較試験体No.4では図4(II)に示すように、小さい変位で横拘束効果を失う。
In addition, as shown in FIG. 4 (I), in the test body No. 1 according to the present invention, the elongation performance of the PC steel bar can be sufficiently exerted by the lateral restraining effect by the fibers and the multi-cracks, but the comparative test without mixing of fibers. Body No. 4 loses its lateral restraint effect with a small displacement, as shown in FIG. 4 (II).

Figure 2005213821
Figure 2005213821

本発明に係る接合構造を示す模式図。The schematic diagram which shows the junction structure which concerns on this invention. (A)(B)実施例の試験体の構造を示す断面図、(A)は図3に結果を示す試験体の構造、(B)は図4に結果を示す試験体の構造である。(A) and (B) are cross-sectional views showing the structure of the test specimen of the example, (A) is the structure of the test specimen whose result is shown in FIG. 3, and (B) is the structure of the test specimen whose result is shown in FIG. (I)、(II)、(III)、(IV)間柱の剪断力と振幅の関係を示すグラフ。(I), (II), (III), (IV) The graph which shows the relationship between the shear force and the amplitude of a stud. (I)、(II)ブレースの軸力と変位の関係を示すグラフ。(I), (II) The graph which shows the relationship between the axial force and displacement of a brace.

符号の説明Explanation of symbols

10、20−鉄骨部材、11、21−端板、30−鋼材、31−繊維補強コンクリート   10, 20-steel member, 11, 21-end plate, 30-steel, 31-fiber reinforced concrete

Claims (8)

鉄骨部材が相互に間隔を保って突き合わされ、鋼材によって連結されていると共に鉄骨部材相互の上記間隔に繊維補強コンクリートが充填されて一体化されていることを特徴とする鉄骨部材の接合構造。   A steel member joining structure characterized in that steel members are abutted with each other while being spaced apart from each other and connected by a steel material, and the above-mentioned spacing between the steel members is filled with fiber reinforced concrete and integrated. 突き合わされた鉄骨部材の接合端部に端板が相対面するように各々固定されており、該端板を介して鉄骨部材が鋼材によって連結されており、さらに端板相互の空間に繊維補強コンクリートが充填されて一体化されている請求項1に記載する鉄骨部材の接合構造。   The end plates are fixed so as to face each other at the joint ends of the steel members that are abutted, the steel members are connected by steel materials through the end plates, and fiber reinforced concrete is further provided in the space between the end plates. The structure for joining steel members according to claim 1, wherein the structure is filled and integrated. 鉄骨部材相互の間に、圧縮強度40N/mm2以上および破壊エネルギー3KN/mm以上の繊維補強コンクリートが充填されている請求項1または2に記載する鉄骨部材の接合構造。 The joint structure of steel members according to claim 1 or 2, wherein fiber reinforced concrete having a compressive strength of 40 N / mm 2 or more and a fracture energy of 3 KN / mm or more is filled between the steel members. 繊維補強コンクリートが、(A)ブレーン比表面積2500〜5000cm2/gのセメント100質量部と、(B)BET比表面積5〜25m2/gの微粒子10〜40質量部と、(C)ブレーン比表面積2500〜30000cm2/gで、かつ上記セメントよりも大きなブレーン比表面積を有する無機粒子15〜55質量部と、(D)金属繊維、有機質繊維、炭素繊維からなる群より選ばれる1種以上の繊維と、(E)減水剤と、(F)水とを含む配合物の硬化体からなる請求項1、2または3に記載する鉄骨部材の接合構造。 The fiber reinforced concrete comprises (A) 100 parts by mass of cement with a specific surface area of 2500 to 5000 cm 2 / g, (B) 10 to 40 parts by mass of fine particles with a BET specific surface area of 5 to 25 m 2 / g, 15 to 55 parts by mass of inorganic particles having a surface area of 2500 to 30000 cm 2 / g and a Blaine specific surface area larger than the cement, and (D) one or more selected from the group consisting of metal fibers, organic fibers, and carbon fibers The joining structure of a steel member according to claim 1, 2, or 3, comprising a cured product of a blend containing fibers, (E) a water reducing agent, and (F) water. 上記無機粒子(C)が、ブレーン比表面積5000〜30000cm2/gの無機粒子A10〜50質量部と、ブレーン比表面積2500〜5000cm2/gの無機粒子B5〜35質量部とからなる請求項4に記載する鉄骨部材の接合構造。 The inorganic particles (C) are, according to claim consisting of the inorganic particles A10~50 parts by weight of the Blaine specific surface area 5000~30000cm 2 / g, the inorganic particles B5~35 parts by weight of the Blaine specific surface area 2500~5000cm 2 / g 4 Steel structure joining structure described in 1. 繊維補強コンクリートが、(F)粒径2mm以下の細骨材を含む請求項4または5に記載する鉄骨部材の接合構造。   The joint structure of steel members according to claim 4 or 5, wherein the fiber-reinforced concrete includes (F) a fine aggregate having a particle size of 2 mm or less. 繊維補強コンクリートの充填部分を含む構築物表面にシート材が巻装されている請求項1〜6のいずれかに記載する鉄骨部材の接合構造。   The joining structure of a steel member according to any one of claims 1 to 6, wherein a sheet material is wound around the surface of the structure including a filled portion of fiber reinforced concrete. 端部にフランジ状の端板を有する鉄骨部材を端板が相対面するように突き合わせ、該端板を介して鉄骨部材を鋼材によって連結し、さらに上記端板相互の空間に繊維補強コンクリートを充填して一体化することを特徴とする鉄骨部材の接合方法。

A steel member having a flange-shaped end plate at the end is abutted so that the end plates face each other, the steel member is connected with the steel through the end plate, and fiber-reinforced concrete is filled in the space between the end plates. And a steel member joining method characterized in that they are integrated.

JP2004020441A 2004-01-28 2004-01-28 Joint structure of steel frame member and joining method Pending JP2005213821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020441A JP2005213821A (en) 2004-01-28 2004-01-28 Joint structure of steel frame member and joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020441A JP2005213821A (en) 2004-01-28 2004-01-28 Joint structure of steel frame member and joining method

Publications (1)

Publication Number Publication Date
JP2005213821A true JP2005213821A (en) 2005-08-11

Family

ID=34904357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020441A Pending JP2005213821A (en) 2004-01-28 2004-01-28 Joint structure of steel frame member and joining method

Country Status (1)

Country Link
JP (1) JP2005213821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007925A (en) * 2007-05-31 2009-01-15 Ihi Corp Floor slab for steel bridge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154923A (en) * 1987-12-14 1989-06-16 Fujita Corp Joining section of reinforced concrete post and beam
JPH07252891A (en) * 1994-03-10 1995-10-03 Kajima Corp Junction structure of steel member and concrete member
JP2002348167A (en) * 2001-05-29 2002-12-04 Taiheiyo Cement Corp Hydraulic composition
JP2004019332A (en) * 2002-06-19 2004-01-22 Jfe Steel Kk Joint structure of steel pipe column and steel pipe pile, and construction method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154923A (en) * 1987-12-14 1989-06-16 Fujita Corp Joining section of reinforced concrete post and beam
JPH07252891A (en) * 1994-03-10 1995-10-03 Kajima Corp Junction structure of steel member and concrete member
JP2002348167A (en) * 2001-05-29 2002-12-04 Taiheiyo Cement Corp Hydraulic composition
JP2004019332A (en) * 2002-06-19 2004-01-22 Jfe Steel Kk Joint structure of steel pipe column and steel pipe pile, and construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007925A (en) * 2007-05-31 2009-01-15 Ihi Corp Floor slab for steel bridge

Similar Documents

Publication Publication Date Title
KR100877026B1 (en) Hydraulic Composition
JP4969152B2 (en) Reinforcement structure and reinforcement method for concrete building
JP5938221B2 (en) Cementitious molded body
JP4348331B2 (en) Reinforcing structure and reinforcing method of concrete structure
JP2002348166A (en) Hydraulic composition
JP2004323294A (en) Concrete
JP4058554B2 (en) Composite concrete structure
JP2002348167A (en) Hydraulic composition
JP2004115315A (en) High-flow concrete
JP2004116216A (en) Reinforcement structure of existing floor slab by metal fiber contained high strength concrete pc board
JP2004123414A (en) Prestressed hydraulic hardened body
JP2017110399A (en) Precast floor slab, bridge structure and bridge structure formation method
JP2004155623A (en) Prestressed concrete
JP2005213821A (en) Joint structure of steel frame member and joining method
JP2005001959A (en) Cement-based heat insulating panel
JP2997893B2 (en) Highly-fillable concrete material, reinforced concrete structure and steel-concrete composite structure using the concrete material
JP2001279933A (en) Seismically strengthened panel
JP6802219B2 (en) Construction method of precast concrete members and joint structure of precast concrete members
JP2001226161A (en) Reusable precast member for concrete structure
JP4781303B2 (en) Adjustment ring
JP2015028281A (en) Bar reinforcement cement system structure
JP2013067993A (en) Column-beam joint method and structure in reinforced concrete structure
JP4220945B2 (en) Composite material
JP2004277221A (en) Segment ring
JP2004224639A (en) Slab member

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070816

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413