JP2005213434A - Two-photon absorption material composed of pyran derivative having diarylamino group - Google Patents

Two-photon absorption material composed of pyran derivative having diarylamino group Download PDF

Info

Publication number
JP2005213434A
JP2005213434A JP2004023526A JP2004023526A JP2005213434A JP 2005213434 A JP2005213434 A JP 2005213434A JP 2004023526 A JP2004023526 A JP 2004023526A JP 2004023526 A JP2004023526 A JP 2004023526A JP 2005213434 A JP2005213434 A JP 2005213434A
Authority
JP
Japan
Prior art keywords
group
photon absorption
compound
absorption material
substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004023526A
Other languages
Japanese (ja)
Inventor
Tamejirou Hiyama
為次郎 檜山
Masaki Shimizu
正毅 清水
Emiko Hagiwara
恵美子 萩原
Muneyuki Shigeiwa
統之 茂岩
Shuichi Maeda
修一 前田
Seiji Akiyama
誠治 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Mitsubishi Chemical Corp
Hitachi Ltd
Kyoto University
Nippon Telegraph and Telephone Corp
Pioneer Corp
Original Assignee
Rohm Co Ltd
Mitsubishi Chemical Corp
Hitachi Ltd
Kyoto University
Nippon Telegraph and Telephone Corp
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd, Mitsubishi Chemical Corp, Hitachi Ltd, Kyoto University, Nippon Telegraph and Telephone Corp, Pioneer Electronic Corp filed Critical Rohm Co Ltd
Priority to JP2004023526A priority Critical patent/JP2005213434A/en
Publication of JP2005213434A publication Critical patent/JP2005213434A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Pyrane Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-photon absorption material having sufficient two-photon absorption property. <P>SOLUTION: The two-photon absorption material is composed of a compound expressed by formula (1) (Ar is a (substituted) aryl group or a (substituted) heterocyclic group; Ar groups may be the same or different). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、二光子吸収断面積の大きなジアリールアミノ基を有するピラン誘導体からなる二光子吸収材料に関する。   The present invention relates to a two-photon absorption material comprising a pyran derivative having a diarylamino group having a large two-photon absorption cross section.

最近、有機化合物の非線形光学特性の中でも二光子吸収特性を有する化合物が、光メモリ、生体組織の二光子造影、二光子フォトダイナミックセラピー(PDT)への応用という観点から非常に注目を集めている。   Recently, among the nonlinear optical properties of organic compounds, compounds having two-photon absorption properties have attracted a great deal of attention from the viewpoint of application to optical memory, two-photon imaging of biological tissues, and two-photon photodynamic therapy (PDT).

この大きな二光子吸収断面積を有する化合物として、下記の式(3)にかかる化合物が知られている。しかし、この化合物は、二光子吸収材料へと応用するための二光子吸収量の点から不十分であり、さらに大きな二光子吸収断面積を有する化合物の開発が望まれている。   As a compound having this large two-photon absorption cross section, a compound according to the following formula (3) is known. However, this compound is insufficient in terms of the amount of two-photon absorption for application to a two-photon absorption material, and development of a compound having a larger two-photon absorption cross section is desired.

Figure 2005213434
Figure 2005213434

ところで、ジシアノメチレンピラン誘導体に関し、非線形光学特性を示すことが、非特許文献1〜3により報告されているものの、二光子吸収特性に関する記載はない。
また、下記の式(4)〜(6)で示されるジシアノメチレンピラン誘導体等については、二光子吸収特性に関する理論計算が非特許文献4にされており、二光子吸収材料への可能性が示唆されている。
By the way, regarding the dicyanomethylenepyran derivative, although non-patent documents 1 to 3 show that nonlinear optical characteristics are shown, there is no description regarding two-photon absorption characteristics.
In addition, for dicyanomethylenepyran derivatives represented by the following formulas (4) to (6), the theoretical calculation regarding the two-photon absorption characteristics is described in Non-Patent Document 4, suggesting the possibility of a two-photon absorption material. Has been.

Figure 2005213434
Figure 2005213434
Figure 2005213434
Figure 2005213434
Figure 2005213434
Figure 2005213434

J.Am.Chem.Soc.,1996,118,12950J. Am. Chem. Soc., 1996, 118, 12950 Journal of Molecular Structure(2001)570(1-3),43-51Journal of Molecular Structure (2001) 570 (1-3), 43-51 J.Phys.Chem.A 2003,107,3942J.Phys.Chem.A 2003,107,3942 THEOCHEM(2001)545 61-65THEOCHEM (2001) 545 61-65

しかしながら、上記の非特許文献4には、連結基に含まれる芳香環の効果しか記載されておらず、二光子吸収特性についてのアミノ基の置換基効果については触れられていない。   However, the above Non-Patent Document 4 only describes the effect of the aromatic ring contained in the linking group, and does not mention the substituent effect of the amino group on the two-photon absorption characteristics.

そこで、この発明は、十分な二光子吸収特性を有する二光子吸収材料を提供することを目的とする。   Accordingly, an object of the present invention is to provide a two-photon absorption material having sufficient two-photon absorption characteristics.

この発明は、下記式(1)にかかる化合物からなる二光子吸収材料を用いることにより、上記課題を解決したのである。   This invention solved the said subject by using the two-photon absorption material which consists of a compound concerning following formula (1).

Figure 2005213434
(上記式(1)中、Arは、置換基を有してもよいアリール基、又は置換基を有してもよいヘテロ環基を表す。また、それぞれのArは同一であっても異なってもよい。)
Figure 2005213434
(In the above formula (1), Ar represents an aryl group which may have a substituent or a heterocyclic group which may have a substituent. Further, each Ar may be the same or different. May be good.)

特定のジアリールアミノ基を有するピラン誘導体を用いるので、大きな二光子吸収断面積を得ることができ、二光子吸収材料として使用することができる。   Since a pyran derivative having a specific diarylamino group is used, a large two-photon absorption cross-section can be obtained, and it can be used as a two-photon absorption material.

以下、この発明について、詳細に説明する。
この発明にかかる二光子吸収材料は、下記式(1)にかかる化合物(以下、「化合物(1)」と称する。また、他の番号の化合物についても同様に表記する。)である、ジアリールアミノ基を有するピラン誘導体からなる。
The present invention will be described in detail below.
The two-photon absorption material according to the present invention is a diarylamino which is a compound according to the following formula (1) (hereinafter referred to as “compound (1)”. The same applies to compounds with other numbers). It consists of a pyran derivative having a group.

Figure 2005213434
Figure 2005213434

なお、上記式(1)中、Arは、置換基を有してもよいアリール基、又は置換基を有してもよいヘテロ環基を表す。また、それぞれのArは同一であっても異なってもよい。 In the above formula (1), Ar represents an aryl group which may have a substituent or a heterocyclic group which may have a substituent. Also, each Ar may be the same or different.

上記アリール基としては、フェニル基、ナフチル基、フェナントリル基、アントリル基等をあげることができ、特にフェニル基またはナフチル基が好ましく、特にフェニル基が好ましい。   Examples of the aryl group include a phenyl group, a naphthyl group, a phenanthryl group, and an anthryl group, and a phenyl group or a naphthyl group is particularly preferable, and a phenyl group is particularly preferable.

さらにまた、下記式(2)に示すように、ピラン環とアミノ基との間のArがフェニル基(フェニレン基)である化合物がより好ましい。なお、残りのArは、上記のArと同様のものが用いられる。   Furthermore, as shown in the following formula (2), a compound in which Ar between the pyran ring and the amino group is a phenyl group (phenylene group) is more preferable. The remaining Ar is the same as the above Ar.

Figure 2005213434
Figure 2005213434

上記ヘテロ環基としては、電子供与性を有するヘテロ環基がのぞましく、より好ましくはチエニル基、フリル基、ピロール基、チアゾール基、オキサゾール基、イミダゾール基、オキサジアゾール基、ベンゾイミダゾール基などがのぞましく、さらに好ましくは、チエニル基、チアゾール基、オキサジアゾール基である。   The heterocyclic group is preferably an electron donating heterocyclic group, more preferably a thienyl group, a furyl group, a pyrrole group, a thiazole group, an oxazole group, an imidazole group, an oxadiazole group, or a benzimidazole group. And more preferably a thienyl group, a thiazole group or an oxadiazole group.

上記置換基としては、水素原子、メチル基、エチル基、プロピル基等の炭素数1〜20のアルキル基、フェニル基、ナフチル基等の炭素数6〜20のアリール基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基等の炭素数1〜20までのアルコキシル基、ジメチルアミノ基、ジフェニルアミノ基等の炭素数1〜20までのアミノ基等をあげることができる。これらの具体的な構造例としては下記に示す化合物(7)〜(14)をあげることができるが、これらに限定されるものではない。   Examples of the substituent include a hydrogen atom, a methyl group, an ethyl group, a propyl group and other alkyl groups having 1 to 20 carbon atoms, a phenyl group, an aryl group having 6 to 20 carbon atoms such as a naphthyl group, a hydroxyl group, a methoxy group, Examples thereof include alkoxy groups having 1 to 20 carbon atoms such as ethoxy group and phenoxy group, amino groups having 1 to 20 carbon atoms such as dimethylamino group and diphenylamino group. Specific examples of these structures include the following compounds (7) to (14), but are not limited thereto.

Figure 2005213434
Figure 2005213434

Figure 2005213434
Figure 2005213434

Figure 2005213434
Figure 2005213434

Figure 2005213434
Figure 2005213434

Figure 2005213434
Figure 2005213434

Figure 2005213434
Figure 2005213434

Figure 2005213434
Figure 2005213434

Figure 2005213434
Figure 2005213434

上記の各化合物は、上記非特許文献1に記載の方法で合成することができる。すなわち、ピラン環を有する化合物である、2,6−ジメチルー4H−ピランー4−イリデンマロノニトリルと、アミノ基を有するベンズアルデヒド化合物又はアミノ基を有するヘテロ環誘導体とを、2−プロパノール等の溶媒に溶解させ、ピペリジン等の塩基性触媒を室温で滴下し、加熱攪拌する。所定時間経過後、反応後室温まで冷却した後、析出した結晶を濾過、乾燥する。そして、得られた粗生成物を塩化メチレン・酢酸エチル・ヘキサン等を用いて再結晶することにより、製造することができる。   Each of the above compounds can be synthesized by the method described in Non-Patent Document 1. That is, 2,6-dimethyl-4H-pyran-4-ylidenemalononitrile, which is a compound having a pyran ring, and a benzaldehyde compound having an amino group or a heterocyclic derivative having an amino group in a solvent such as 2-propanol. After dissolution, a basic catalyst such as piperidine is added dropwise at room temperature and stirred with heating. After a predetermined time has elapsed, the reaction is cooled to room temperature, and then the precipitated crystals are filtered and dried. The obtained crude product can be produced by recrystallization using methylene chloride, ethyl acetate, hexane or the like.

これらの化合物は、大きな二光子吸収断面積を有するので、二光子吸収材料の主成分として使用することができる。   Since these compounds have a large two-photon absorption cross section, they can be used as a main component of a two-photon absorption material.

次に、この発明について、より具体的に実施例を用いて説明する。
(実施例1)
[化合物(7)の合成]
ジシアノメチレンピラン誘導体、特に上記化合物(7)は、上記非特許文献1に記載の方法で合成した。すなわち、下記化学反応式<1>に従い、下記の方法で合成した。
Next, the present invention will be described more specifically using examples.
(Example 1)
[Synthesis of Compound (7)]
The dicyanomethylenepyran derivative, particularly the compound (7) was synthesized by the method described in Non-Patent Document 1. That is, it was synthesized by the following method according to the following chemical reaction formula <1>.

Figure 2005213434
Figure 2005213434

2,6−ジメチルー4H−ピラン−4−イリデンマロノニトリル(15)(東京化成工業(株)製:試薬)9.0g(0.052mol)と、4−(N,N−ジフェニルアミノ)ベンズアルデヒド(16)(東京化成工業(株)製:試薬)34.3g(0.13mol)の2−プロパノール溶液2.2リットルに、ピペリジン5.4mlを攪拌しながら室温で滴下し、滴下終了後100℃で加熱攪拌した。18時間経過後、ピペリジン5.4mlを反応溶液に追加し、さらに22時間攪拌した。反応後室温まで冷却した後、析出した結晶を濾過、乾燥した。得られた粗生成物を塩化メチレン・酢酸エチル・ヘキサンにて再結晶を行うことにより、化合物(7)6.7gを緑色の結晶として得た。
得られた化合物が化合物(7)であることを、NMR,IR,MSスペクトルにより目的物で有ることを確認した。また、下記の方法で二光子吸収断面積の評価を行った。その結果を表1に示す。なお、化合物(7)のNMR,IR,MSスペクトルのチャートを図1〜3に示す。
9.0 g (0.052 mol) of 2,6-dimethyl-4H-pyran-4-ylidenemalononitrile (15) (manufactured by Tokyo Chemical Industry Co., Ltd .: reagent) and 4- (N, N-diphenylamino) benzaldehyde (16) (Tokyo Chemical Industry Co., Ltd .: Reagent) Piperidine (5.4 ml) was added dropwise to 2.2 liters of 34.3 g (0.13 mol) of 2-propanol solution with stirring at room temperature. The mixture was heated and stirred at ° C. After 18 hours, 5.4 ml of piperidine was added to the reaction solution, and the mixture was further stirred for 22 hours. After the reaction, the mixture was cooled to room temperature, and the precipitated crystals were filtered and dried. The obtained crude product was recrystallized from methylene chloride / ethyl acetate / hexane to obtain 6.7 g of Compound (7) as green crystals.
It was confirmed by NMR, IR, and MS spectra that the obtained compound was the compound (7). Moreover, the two-photon absorption cross section was evaluated by the following method. The results are shown in Table 1. In addition, the chart of NMR, IR, and MS spectrum of compound (7) is shown in FIGS.

(比較例1〜3)
化合物として、下記の3種の化合物(17)〜(19)を用いて、下記の方法で二光子吸収断面積の評価を行った。その結果を表1に示す。
(Comparative Examples 1-3)
Using the following three types of compounds (17) to (19) as compounds, the two-photon absorption cross-sectional area was evaluated by the following method. The results are shown in Table 1.

Figure 2005213434
Figure 2005213434

Figure 2005213434
Figure 2005213434

Figure 2005213434
Figure 2005213434

なお、上記化合物(17)〜(19)は、以下の方法で合成した。
[化合物(17)及び化合物(18)の合成]
反応容器(二つ口ナス型フラスコ,50mL)に,(2,6ジメチル−4H−ピラン−4−イリデン)マロノニトリル(83.7mg,0.49mmol)(東京化成工業(株)製),4−(N,N−ジメチルアミノ)ベンズアルデヒド(171mg,1.15mmol)(東京化成工業(株)製),及び2−プロパノール(20mL)を順次加えた後,室温でピペリジン(50μL,0.50mmol)を滴下し、110℃で18時間加熱撹拌した。主生成物(2−(2−(4−(ジメチルアミノ)フェニル)エテニル)−6−メチル−4H−ピラン−4−イリデン)プロパンジニトリル17(DCM)を得た。さらにピペリジン(50μL,0.50mmol)を滴下し、18時間加熱還流した。反応終了後、反応溶液を室温まで冷却し,減圧下に溶媒及びピペリジンを留去した。得られた粗生成物をシリカゲルカラム(展開溶媒:酢酸エチル/ヘキサン = 1/3〜2/3)にて分離精製し、目的の18(106mg,50%)を暗赤色固体として得た。これらの化合物はFABMassスペクトルにより上記化合物であることを確認した。
化合物(17):FABmass:303
化合物(18):FABmass:434
In addition, the said compounds (17)-(19) were synthesize | combined with the following method.
[Synthesis of Compound (17) and Compound (18)]
To a reaction vessel (two-necked eggplant type flask, 50 mL), (2,6 dimethyl-4H-pyran-4-ylidene) malononitrile (83.7 mg, 0.49 mmol) (manufactured by Tokyo Chemical Industry Co., Ltd.), 4- (N, N-dimethylamino) benzaldehyde (171 mg, 1.15 mmol) (manufactured by Tokyo Chemical Industry Co., Ltd.) and 2-propanol (20 mL) were sequentially added, and then piperidine (50 μL, 0.50 mmol) was added at room temperature. The solution was added dropwise and stirred at 110 ° C. for 18 hours. The main product (2- (2- (4- (dimethylamino) phenyl) ethenyl) -6-methyl-4H-pyran-4-ylidene) propanedinitrile 17 (DCM) was obtained. Piperidine (50 μL, 0.50 mmol) was further added dropwise, and the mixture was heated to reflux for 18 hours. After completion of the reaction, the reaction solution was cooled to room temperature, and the solvent and piperidine were distilled off under reduced pressure. The obtained crude product was separated and purified on a silica gel column (developing solvent: ethyl acetate / hexane = 1/3 to 2/3) to obtain the target 18 (106 mg, 50%) as a dark red solid. These compounds were confirmed to be the above compounds by FAB Mass spectrum.
Compound (17): FABmass: 303
Compound (18): FABmass: 434

[化合物(19)の合成]
化合物(19)は、B.A.Reinhardt, L.L.Brott, S.J.Clarson, A.G.Dillard, J.C.Bhatt and R.Kannan, Chem. Mater., 1998, 10, 1863-1874の論文を基に合成をおこない、黄色の固体として得た。この化合物はNMR、元素分析、DEI−MSにより確認した。
[Synthesis of Compound (19)]
Compound (19) was synthesized based on the papers of BALeinhardt, LLBrott, SJClarson, AGDillard, JCBhatt and R. Kannan, Chem. Mater., 1998, 10, 1863-1874, and obtained as a yellow solid. This compound was confirmed by NMR, elemental analysis, and DEI-MS.

1H-NMR(CD2Cl2)δ 0.45-0.76(m,4H), 0.826(6H,t,J=7Hz),0.98-1.30(28H,m),1.8-2.0(4H,m),6.97-7.12(m,9H),7.21-7.28(4H,m),7.37-7.43(3H,m),7.49-7.52(2H,m),7.56-7.63(2H,m),8.53(2H,d,J=6.0Hz) 1 H-NMR (CD 2 Cl 2 ) δ 0.45-0.76 (m, 4H), 0.826 (6H, t, J = 7Hz), 0.98-1.30 (28H, m), 1.8-2.0 (4H, m), 6.97-7.12 (m, 9H), 7.21-7.28 (4H, m), 7.37-7.43 (3H, m), 7.49-7.52 (2H, m), 7.56-7.63 (2H, m), 8.53 (2H, d , J = 6.0Hz)

・Anal.Calcd for C52H64N2:C,87.10;H,9.00;N,3.90.Found:C,86.97;H,8.84;N,3.83
・DEI-MSm/z716.4(M+)
Anal.Calcd for C 52 H 64 N 2 : C, 87.10; H, 9.00; N, 3.90.Found: C, 86.97; H, 8.84; N, 3.83
・ DEI-MSm / z716.4 (M + )

[二光子吸収断面積の評価]
上記の方法で得られた化合物(7)を、下記に示す方法にて測定した。その結果をGM単位で表1に示す。
二光子吸収断面積の評価はGuang S. He, Lixiang Yuan, Ning Cheng, Jayant D. Bhawalkar, Paras N. Prasad, Lawrence L. Brott, Stephen J. Clarson, Bruce A. Reinhardt, J. Opt. Soc. Am. B Vol.14, No.5(1997)pp.1079-1087記載の方法を参考にして行った。測定システム概略図を図4に示す。
なお、チタンサファイアレーザは、カントロニクス(Quantronix)社製:インテグラ(Integra)、フォトディテクタは、ニューポート(Newport)社製:円筒型ディテクターMODEL 818-SL、増幅器等は、スタンフォードリサーチシステム(STANFORD RESEARCH SYSTEMS)社製:ローノイズカレントプリアンプリファイア(LOW-NOISE CURRENT PREAMPLIFIER)MODEL SR570とゲーティッドインテテグレータ&ボックスカーアベレージャ(GATED INTEGRATOR & BOXCAR AVERAGER)MODEL SR250を用いた。
[Evaluation of two-photon absorption cross section]
The compound (7) obtained by the above method was measured by the method shown below. The results are shown in Table 1 in GM units.
Two-photon absorption cross sections are evaluated by Guang S. He, Lixiang Yuan, Ning Cheng, Jayant D. Bhawalkar, Paras N. Prasad, Lawrence L. Brott, Stephen J. Clarson, Bruce A. Reinhardt, J. Opt. Soc. Am. B Vol.14, No.5 (1997) pp. 1079-1087 A schematic diagram of the measurement system is shown in FIG.
The titanium sapphire laser is manufactured by Quantronix, Inc .: Integra, the photo detector is manufactured by Newport, the cylindrical detector MODEL 818-SL, the amplifier, etc., is a Stanford Research System (STANFORD RESEARCH SYSTEMS ) Manufactured by: Low noise current preamplifier (LOW-NOISE CURRENT PREAMPLIFIER) MODEL SR570 and gated integrator & BOXCAR AVERAGER MODEL SR250.

測定光源には、フェムト秒チタンサファイアレーザ(波長:800nm、パルス幅:100fs、繰り返し:1kHz、平均出力:2W、強度:2mJ/pulse、ビーム径:10mmφ、ピークパワー:20GW)を用いた。レーザ出力の一部(以下、参照光とする)をビームスプリッタにより分岐し、フォトディテクタで強度を測定することにより入射光強度の揺らぎを補正した。レーザ出力の残りはNDフィルタにより10mW程度に減衰させた後、集光レンズにより集光した。この集光されている光路部分に試料溶液を充填した石英セル(光路長:10mm)を置き、その位置を光路に沿って移動させることによりZ−scan測定を実施した。これにより励起光密度を1GW/cm2〜40GW/cm2の範囲で変化させた。 As a measurement light source, a femtosecond titanium sapphire laser (wavelength: 800 nm, pulse width: 100 fs, repetition rate: 1 kHz, average output: 2 W, intensity: 2 mJ / pulse, beam diameter: 10 mmφ, peak power: 20 GW) was used. A part of the laser output (hereinafter referred to as reference light) was branched by a beam splitter, and the intensity was measured by a photodetector to correct the fluctuation of the incident light intensity. The remainder of the laser output was attenuated to about 10 mW by an ND filter and then condensed by a condenser lens. A quartz cell (optical path length: 10 mm) filled with the sample solution was placed in the condensed optical path portion, and the position was moved along the optical path to perform Z-scan measurement. Thus changing the excitation light density in the range of 1GW / cm 2 ~40GW / cm 2 .

測定試料は、次にように調整した。
・実施例1…1mMの化合物(7)のトルエン溶液
・比較例1…5mMの化合物(17)のトルエン溶液
・比較例2…0.5mMの化合物(18)のトルエン溶液
・比較例3…3.3mMの化合物(19)のトルエン溶液
The measurement sample was prepared as follows.
-Example 1-1 mM compound (7) in toluene solution-Comparative example 1-5 mM compound (17) in toluene solution-Comparative example 2-0.5 mM compound (18) in toluene solution-Comparative example 3 ... 3 .Toluene solution of 3 mM compound (19)

また、試料セルは光路長10mmの石英セルを用いた。試料セルを透過したレーザ光(以下、透過光とする)はNDフィルタにより適当に減衰させ、R72などの色ガラスフィルタを通過させた後、フォトディテクタにより強度を測定した。複数の励起光密度に対してこの測定を実施し、透過光強度を参照光強度で除することにより規格化溶液透過光強度を求めた。   Further, a quartz cell having an optical path length of 10 mm was used as the sample cell. Laser light transmitted through the sample cell (hereinafter referred to as transmitted light) was appropriately attenuated by an ND filter, passed through a colored glass filter such as R72, and the intensity was measured by a photodetector. This measurement was performed for a plurality of excitation light densities, and the normalized solution transmitted light intensity was obtained by dividing the transmitted light intensity by the reference light intensity.

同様の測定配置で試料セルに溶媒のみを充填させ同じ測定を行い、規格化溶媒透過光強度を求めた。さらに、規格化溶液透過光強度を規格化溶媒透過光強度で除することにより透過率を求めた。   In the same measurement arrangement, the sample cell was filled with only the solvent, the same measurement was performed, and the normalized solvent transmitted light intensity was obtained. Further, the transmittance was determined by dividing the normalized solution transmitted light intensity by the normalized solvent transmitted light intensity.

上記のような手順で透過率の励起光密度依存性を測定し、この結果を上記文献に記載されている理論式(i)によりフィッティングし非線形吸収係数を求めた。
Ti=[ln(1+I00β)]/I00β (i)
(式中、Tiは透過率(%)、I0は励起光密度[GW/cm2]、L0は試料セル長[cm]、βは非線形吸収係数[cm/GW]を示す。)
The dependence of the transmittance on the excitation light density was measured by the procedure as described above, and the result was fitted by the theoretical formula (i) described in the above document to obtain the nonlinear absorption coefficient.
Ti = [ln (1 + I 0 L 0 β)] / I 0 L 0 β (i)
(In the formula, Ti represents transmittance (%), I 0 represents excitation light density [GW / cm 2 ], L 0 represents sample cell length [cm], and β represents nonlinear absorption coefficient [cm / GW].)

この非線形吸収係数から、下記式(ii)により2光子吸収断面積δを求めた。(δの単位は1GM=1×10-50cm4・s・photon-1である。)
δ=1000×hνβ/NA
(上記式中、hはプランク定数[J・s]、νは入射レーザ光の振動数[s−1]、NAはアボガドロ数、Cは溶液濃度[mol/L]を示す。)
From this nonlinear absorption coefficient, the two-photon absorption cross section δ was determined by the following equation (ii). (The unit of δ is 1GM = 1 × 10 −50 cm 4 · s · photon −1 .)
δ = 1000 × hνβ / N A C
(In the above formula, h is Planck's constant [J · s], ν is the frequency [s−1] of the incident laser beam, N A is the Avogadro number, and C is the solution concentration [mol / L].)

Figure 2005213434
Figure 2005213434

化合物(7)のNMRチャートNMR chart of compound (7) 化合物(7)のIRチャートIR chart of compound (7) 化合物(7)のMSスペクトルチャートMS spectrum chart of compound (7) 二光子吸収断面積の評価で用いた測定システム概略図Schematic diagram of measurement system used in evaluation of two-photon absorption cross section

Claims (2)

下記式(1)にかかる化合物からなる二光子吸収材料。
Figure 2005213434
(上記式(1)中、Arは、置換基を有してもよいアリール基、又は置換基を有してもよいヘテロ環基を表す。また、それぞれのArは同一であっても異なってもよい。)
The two-photon absorption material which consists of a compound concerning following formula (1).
Figure 2005213434
(In the above formula (1), Ar represents an aryl group which may have a substituent or a heterocyclic group which may have a substituent. Further, each Ar may be the same or different. May be good.)
下記式(2)にかかる化合物からなる二光子吸収材料。
Figure 2005213434
(上記式(2)中、Arは、置換基を有してもよいアリール基、又は置換基を有してもよいヘテロ環基を表す。また、それぞれのArは同一であっても異なってもよい。)
A two-photon absorption material comprising a compound according to the following formula (2).
Figure 2005213434
(In the above formula (2), Ar represents an aryl group which may have a substituent or a heterocyclic group which may have a substituent. Also, each Ar may be the same or different. May be good.)
JP2004023526A 2004-01-30 2004-01-30 Two-photon absorption material composed of pyran derivative having diarylamino group Pending JP2005213434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023526A JP2005213434A (en) 2004-01-30 2004-01-30 Two-photon absorption material composed of pyran derivative having diarylamino group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004023526A JP2005213434A (en) 2004-01-30 2004-01-30 Two-photon absorption material composed of pyran derivative having diarylamino group

Publications (1)

Publication Number Publication Date
JP2005213434A true JP2005213434A (en) 2005-08-11

Family

ID=34906515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023526A Pending JP2005213434A (en) 2004-01-30 2004-01-30 Two-photon absorption material composed of pyran derivative having diarylamino group

Country Status (1)

Country Link
JP (1) JP2005213434A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246422A (en) * 2006-03-15 2007-09-27 Ricoh Co Ltd Two-photon absorbing material and application of the same
JP2008074708A (en) * 2006-09-19 2008-04-03 Hodogaya Chem Co Ltd Distyrylbenzene derivative and material for forming three dimensional memory, light limiting material, curing material for photocurable resin for use in photofabrication, and fluorescent pigment material for use in two-photon fluorescent microscope, each comprising the same
JP2008214303A (en) * 2007-03-07 2008-09-18 Ricoh Co Ltd Two-photon absorbing material and its use
KR100870243B1 (en) 2007-05-25 2008-11-25 고려대학교 산학협력단 Two photon probe for real time monitoring of cells, method for preparing the same and method for real time monitoring of cells
EP2159227A1 (en) 2008-08-26 2010-03-03 Ricoh Company, Ltd. Two-photon absorption material and application thereof
CN109134411A (en) * 2018-10-17 2019-01-04 温州大学 Asymmetric 4H- pyran derivate and preparation method thereof and purposes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246422A (en) * 2006-03-15 2007-09-27 Ricoh Co Ltd Two-photon absorbing material and application of the same
JP2008074708A (en) * 2006-09-19 2008-04-03 Hodogaya Chem Co Ltd Distyrylbenzene derivative and material for forming three dimensional memory, light limiting material, curing material for photocurable resin for use in photofabrication, and fluorescent pigment material for use in two-photon fluorescent microscope, each comprising the same
JP2008214303A (en) * 2007-03-07 2008-09-18 Ricoh Co Ltd Two-photon absorbing material and its use
KR100870243B1 (en) 2007-05-25 2008-11-25 고려대학교 산학협력단 Two photon probe for real time monitoring of cells, method for preparing the same and method for real time monitoring of cells
EP2159227A1 (en) 2008-08-26 2010-03-03 Ricoh Company, Ltd. Two-photon absorption material and application thereof
US8207330B2 (en) 2008-08-26 2012-06-26 Ricoh Company, Ltd. Two-photon absorption material and application thereof
CN109134411A (en) * 2018-10-17 2019-01-04 温州大学 Asymmetric 4H- pyran derivate and preparation method thereof and purposes
CN109134411B (en) * 2018-10-17 2022-05-31 温州大学 Asymmetric 4H-pyran derivative and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Kryman et al. Synthesis and properties of heavy chalcogen analogues of the Texas reds and related rhodamines
CA1254896A (en) Fluorescent indicator dyes for calcium ions
Strachan et al. Rational synthesis of meso-substituted chlorin building blocks
Serra et al. Halogen atom effect on photophysical and photodynamic characteristics of derivatives of 5, 10, 15, 20-tetrakis (3-hydroxyphenyl) porphyrin
Clapp The phosphorescence of tetraphenylmethane and certain related substances
Badshah et al. Synthesis of novel fluorescent cyclohexenone derivatives and their partitioning study in ionic micellar media
WO2013131235A1 (en) Two-photon fluorescent probe using naphthalene as matrix and preparation method and use thereof
Singh et al. Synthesis and photophysical properties of novel chloroquinoline based chalcone derivates containing 1, 2, 3-triazole moiety
Traven et al. Polymethine dyes derived from boron complexes of acetylhydroxycoumarins
Yamada et al. Photochemical generation of the 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO) radical from caged nitroxides by near-infrared two-photon irradiation and its cytocidal effect on lung cancer cells
JP2005213434A (en) Two-photon absorption material composed of pyran derivative having diarylamino group
You et al. Core-modified porphyrins. Part 5: Electronic effects on photophysical and biological properties in vitro
Arrousse et al. An intelligent and efficient synthesis of new inhibitors against corrosion of mild steel in acidic media
JP2005500394A (en) Multiphoton absorption cross-section enhanced porphyrin for photodynamic therapy
JP2000109452A (en) Luminescent indicator for measuring calcium ion
Fasani et al. Photochemistry of 4‐(2‐nitrophenyl)‐1, 4‐dihydropyridines. Evidence for electron transfer and formation of an intermediate
Podsiadły et al. Synthesis and photochemical reaction of benzo [a] quinoxalino [2, 3‐c] phenazine dyes
JP2005263738A (en) Two-photon-absorbing material comprising porphyrin oligomer derivative
RU2665471C1 (en) Cyanoporphyrin free base and its use
Can et al. Exploration of two different strategies in near ir absorbing boron dipyrromethene derivatives for photodynamic and bioimaging purposes
ES2333006T3 (en) TETRAPIRROLIC MACROCICLES AS PHOTODYNAMIC AGENTS.
Santiko et al. Synthesis, Characterization, and Application of a Cyclic Stilbene Derivative with Simultaneous Two-photon Absorption Character
Luyksaar et al. Synthesis of photochromic bisfulgimides by the condensation of (3 Z)-3-[1-(2, 5-dimethyl-3-thienyl)-ethylidene]-4-isopropylidene-2, 5-furandione with aromatic diamines
Levchenko et al. Synthesis and properties of photosensitive compounds based on bromine-containing 3-acyl-2-furylchromones
RU2725641C1 (en) Tetra(pyren-1-yl)tetracyanoporphyrazine as a multifunctional agent for therapy of malignant growths