JP2005213311A - Method for producing thermosetting resin composition - Google Patents

Method for producing thermosetting resin composition Download PDF

Info

Publication number
JP2005213311A
JP2005213311A JP2004019375A JP2004019375A JP2005213311A JP 2005213311 A JP2005213311 A JP 2005213311A JP 2004019375 A JP2004019375 A JP 2004019375A JP 2004019375 A JP2004019375 A JP 2004019375A JP 2005213311 A JP2005213311 A JP 2005213311A
Authority
JP
Japan
Prior art keywords
thermosetting resin
resin composition
voltage
liquid
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004019375A
Other languages
Japanese (ja)
Inventor
Satokazu Hamao
聡和 浜尾
Hideo Narita
秀夫 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2004019375A priority Critical patent/JP2005213311A/en
Publication of JP2005213311A publication Critical patent/JP2005213311A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a thermosetting resin composition, by which the resin composition can be dispersed in a simple apparatus and can be molded into a thick product without limiting the combination of materials and the crystal structures. <P>SOLUTION: This method for producing the thermosetting resin composition comprising inorganic particles having an average particle diameter of 5 to 100 nm and a thermosetting resin is characterized by dispersing a mixture of the inorganic particles with a volatile liquid in a liquid thermosetting resin in a non-cured state and then applying an AC voltage. The frequency of the applied AC voltage is preferably 1 to 10 kHz. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐熱性や軽量高強度の特性を必要とする、電動機の高分子ナノ複合材料の製造方法に関する。   The present invention relates to a method for producing a polymer nanocomposite material for an electric motor that requires heat resistance, light weight and high strength characteristics.

有機と無機のナノハイブリッド材料は、ナノハイブリッド効果を発現させるため、無機粒子を一次粒子として分散させる必要が有る。ナノ粒子単体は凝集して二次粒子となっており、それを混練などの機械的な処理で高分子中に分散させることは困難であり、つぎの方法がとられていた。
従来のナノ粒子分散方法として、クレイなどの層状粘土化合物にアミンなどの極性有機化合物をインターカレーションさせてナノサイズにはく離・分散させ、その極性有機化合物を重合して高分子を合成するものがある(例えば、特許文献1参照)。また、チタンやシリカのアルコキシドを、ゾルゲル法により加水分解させ、エポキシ樹脂骨格に取り込むことで合成させるものもある(例えば、特許文献2、3参照)。
前者の方法による樹脂の構造を図6に示す。図6は、従来の有機/無機ナノハイブリッド材料の構造を示す模式図である。図6において、111はクレイなどの層状粘土化合物にアミンなどの極性有機化合物をインターカレーションさせて有機化し、ナノサイズにはく離・分散させたものであり、その極性有機化合物を変性ポリマー112と重合して高分子を合成し、ポリマー113中にせん断力にて分散させている。このように、従来のナノ粒子分散方法では、高分子の原料を微粒子の原料に物理的膨潤させて、ナノ粒子を分散させた後、高分子を合成させるという手順がとられていた。
後者のゾルゲル法による分散方法では、チタンやシリカのアルコキシドを、ゾルゲル法により加水分解させ、エポキシ樹脂骨格に取り込むことで合成させている。このように、従来のナノ粒子分散方法では、高分子の原料と微粒子の原料を化学反応させて、ナノ粒子を析出させるという手順がとられていた。
特開平11−092677号公報 特開2000−319362号公報 特開2001−59013号公報
Organic and inorganic nanohybrid materials need to disperse inorganic particles as primary particles in order to develop the nanohybrid effect. Nanoparticles alone aggregate to form secondary particles, and it is difficult to disperse them in a polymer by mechanical treatment such as kneading, and the following method has been adopted.
As a conventional nanoparticle dispersion method, a layered clay compound such as clay is intercalated with a polar organic compound such as amine, separated and dispersed into a nanosize, and the polar organic compound is polymerized to synthesize a polymer. Yes (see, for example, Patent Document 1). In addition, some alkoxides of titanium and silica are synthesized by hydrolyzing by a sol-gel method and incorporated into an epoxy resin skeleton (see, for example, Patent Documents 2 and 3).
The structure of the resin by the former method is shown in FIG. FIG. 6 is a schematic diagram showing the structure of a conventional organic / inorganic nanohybrid material. In FIG. 6, 111 is a layered clay compound such as clay intercalated with a polar organic compound such as amine to make it organic, and separated and dispersed into a nanosize. The polar organic compound is polymerized with the modified polymer 112. Thus, a polymer is synthesized and dispersed in the polymer 113 by a shearing force. As described above, in the conventional nanoparticle dispersion method, the polymer raw material is physically swollen into the fine particle raw material, the nanoparticle is dispersed, and then the polymer is synthesized.
In the latter dispersion method by the sol-gel method, titanium or silica alkoxide is hydrolyzed by the sol-gel method and synthesized by incorporating it into an epoxy resin skeleton. As described above, in the conventional nanoparticle dispersion method, a procedure has been adopted in which a polymer raw material and a fine particle raw material are chemically reacted to precipitate nanoparticles.
Japanese Patent Laid-Open No. 11-092677 JP 2000-319362 A JP 2001-59013 A

ところが、従来のインターカレーション法では、無機物の結晶構造や、無機物と膨潤物質との材質の組み合わせは、両者のもつイオン交換性や極性の組み合わせなどにより限定されるという問題があった。また、従来のゾルゲル法では、加水分解によって無機酸化物を生成させるが、その生成した無機物は、その原子数分の多量のアルコールを副生し、そのアルコールや添加した水分を除去するため薄膜しか製造できないというような問題もある。
そこで、本発明はこのような問題点に鑑みてなされたものであり、材質の組み合わせや結晶構造の制約が無く、厚肉化が可能で、簡単な装置にて分散させることができる方法を提供することを目的とする。
However, in the conventional intercalation method, there is a problem that the crystal structure of the inorganic substance and the combination of the inorganic substance and the swelling substance are limited by the combination of the ion exchange property and polarity of both. In addition, in the conventional sol-gel method, an inorganic oxide is produced by hydrolysis. The produced inorganic substance produces a large amount of alcohol as a by-product, and only a thin film is used to remove the alcohol and added water. There is also a problem that it cannot be manufactured.
Therefore, the present invention has been made in view of such problems, and provides a method that can be thickened and can be dispersed with a simple device without any restrictions on the combination of materials and crystal structure. The purpose is to do.

上記問題を解決するため、本発明は、次のようにしたものである。
請求項1に記載の発明は、平均粒子径が5nm以上100nm以下の無機粒子と熱硬化性樹脂とを混合してなる熱硬化性樹脂組成物の製造方法において、前記無機粒子と揮発性液体との混合物を未硬化の状態で液状の前記熱硬化性樹脂に分散させた後、交流電圧を印加するものである。
請求項2に記載の発明は、前記交流電圧の周波数を1kHz以上、10kHz以下としたものである。
請求項3に記載の発明は、前記電圧印加時に、前記液状の熱硬化性樹脂を攪拌するものである。
請求項4に記載の発明は、前記揮発性液体の沸点を前記電圧印加の雰囲気で200℃以下とするものである。
請求項5に記載の発明は、前記電圧印加時は雰囲気を大気圧以下に減圧するものである。
請求項6に記載の発明は、上記請求項1から5のいずれかに記載の製造方法によって得られる熱硬化性樹脂組成物である。
In order to solve the above problem, the present invention is as follows.
Invention of Claim 1 is a manufacturing method of the thermosetting resin composition formed by mixing the inorganic particle with an average particle diameter of 5 nm or more and 100 nm or less, and a thermosetting resin, The said inorganic particle, volatile liquid, After the mixture is dispersed in the liquid thermosetting resin in an uncured state, an alternating voltage is applied.
According to the second aspect of the present invention, the frequency of the AC voltage is 1 kHz or more and 10 kHz or less.
The invention according to claim 3 stirs the liquid thermosetting resin when the voltage is applied.
In a fourth aspect of the present invention, the boiling point of the volatile liquid is set to 200 ° C. or less in the atmosphere in which the voltage is applied.
According to a fifth aspect of the present invention, the atmosphere is reduced to an atmospheric pressure or lower when the voltage is applied.
Invention of Claim 6 is a thermosetting resin composition obtained by the manufacturing method in any one of the said Claim 1 to 5.

請求項1に記載の発明によると、無機粒子と揮発性液体と(気体)の混合物を未硬化状態で分散させた熱硬化性樹脂に交流電圧を印加するので、気体中に発生した放電によって揮発性液体が蒸発し、無機粒子の凝集を解いて一次粒子に分散できるため、アルコールや水分などの除去が不要となり、簡単な装置にて材質の組み合わせや結晶構造の制約をなくすことができ、かつ厚肉化ができる。
請求項2に記載の発明によると、交流電圧の周波数を1kHz以上としたので、気体中の放電エネルギーが大きくなり分散しやすくなるとともに、10kHz以下としたので、液状樹脂の誘電損による熱劣化を抑制することができるため、材質の組み合わせや結晶構造の制約をなくすことができる。
請求項3に記載の発明によると、電圧印加時に液状の熱硬化性樹脂組成物を攪拌するので、揮発性液体の蒸発によって凝集を解かれた一次粒子を速やかに熱硬化性樹脂中に分散させ放電による有機物の熱劣化を抑制できるため、材質の組み合わせや結晶構造の制約をなくすことができる。
請求項4に記載の発明によると、揮発性液体の沸点を200℃以下としたので、速やかに一次粒子を熱硬化性樹脂中に分散させることができ、放電時の液状樹脂の熱劣化を抑制できるため、材質の組み合わせや結晶構造の制約をなくすことができる。
請求項5に記載の発明によると、電圧印加時に雰囲気を大気圧以下に減圧するので、液状樹脂の沸点を下げ、速やかに一次粒子を熱硬化性樹脂中に分散させることができ、放電時の液状樹脂の熱劣化を抑制できるため、材質の組み合わせや結晶構造の制約をなくすことができる。
請求項6に記載の発明によると、上記請求項1から5のいずれかに記載の製造方法によって得られた熱硬化性樹脂組成物は、無機粒子の凝集を解いて一次粒子に分散できるため、耐熱性が大きく、軽量高強度の電動機用の樹脂組成物を得ることができる。
According to the first aspect of the present invention, an AC voltage is applied to a thermosetting resin in which a mixture of inorganic particles, volatile liquid, and (gas) is dispersed in an uncured state, and therefore, volatilization occurs due to discharge generated in the gas. Since the ionic liquid evaporates and disperses the primary particles by aggregating the inorganic particles, it is not necessary to remove alcohol, moisture, etc., eliminating restrictions on the combination of materials and crystal structure with a simple device, and Can be thickened.
According to the invention described in claim 2, since the frequency of the alternating voltage is set to 1 kHz or more, the discharge energy in the gas is increased and easily dispersed, and the frequency is set to 10 kHz or less. Since it can suppress, the restrictions of a combination of materials and a crystal structure can be eliminated.
According to the invention described in claim 3, since the liquid thermosetting resin composition is agitated when a voltage is applied, the primary particles that have been flocculated by evaporation of the volatile liquid are quickly dispersed in the thermosetting resin. Since it is possible to suppress the thermal deterioration of the organic matter due to the discharge, it is possible to eliminate restrictions on the combination of materials and the crystal structure.
According to the invention described in claim 4, since the boiling point of the volatile liquid is set to 200 ° C. or lower, the primary particles can be quickly dispersed in the thermosetting resin, and the thermal deterioration of the liquid resin during discharge is suppressed. Therefore, restrictions on the combination of materials and the crystal structure can be eliminated.
According to the invention described in claim 5, since the atmosphere is reduced to atmospheric pressure or lower during voltage application, the boiling point of the liquid resin can be lowered, and the primary particles can be quickly dispersed in the thermosetting resin. Since the thermal deterioration of the liquid resin can be suppressed, restrictions on the combination of materials and the crystal structure can be eliminated.
According to the invention described in claim 6, since the thermosetting resin composition obtained by the manufacturing method according to any one of claims 1 to 5 can disperse the inorganic particles and disperse in the primary particles, A resin composition for an electric motor having a large heat resistance and a light weight and high strength can be obtained.

以下、本発明の方法の具体的実施例について、図に基づいて説明する。   Hereinafter, specific examples of the method of the present invention will be described with reference to the drawings.

図1は、本発明の方法を適用するナノ粒子分散装置の構成を示す断面図である。図において、1は二次粒子、2は一次粒子、3は揮発性液体、4は気泡、5は液状の熱硬化性樹脂、6は攪拌容器、7は交流電源、8は電極、9は攪拌羽根である。
二次粒子1は、製造過程で生成するもので図2にその詳細を示す。図2は、ナノ粒子が凝集した二次粒子の拡大断面図である。
ナノ微粒子が凝集した二次粒子1は、一次粒子2、揮発性液体3、気泡4からなっており、液状の熱硬化性樹脂5に分散されている。また、攪拌容器6は、交流電源7から配線された電極8を備え、二次粒子1と液状の熱硬化性樹脂5の混合物に交流電圧をかけられるようになっている。また、攪拌羽根9を電極8と兼用することで、二次粒子1と液状の熱硬化性樹脂5の混合物に交流電圧をかけながら攪拌によるせん断を与えられるようになっている。
つぎに、本発明の熱硬化性樹脂組成物の製造方法を図3を用いて説明する。
図3はナノ粒子を一次粒子に分散させる処理手順を示すフローチャートである。
(1)先ず、ステップ1で、揮発性液体3をナノ微粒子粉末の吸液量以下の量で添加し混練して、その雰囲気の気体を気泡4として内包したペーストを作製する。
(2)ステップ2で、攪拌容器6にステップ1で作製したペーストと液状樹脂5を投入し、攪拌羽根9を回転させると、ペーストは液状樹脂5中に細かく分散されて二次粒子1となる。
(3)ステップ3で電極8間に交流電圧をかける。電圧は、1kV/minの速度で昇圧させながら、交流電源7に設けられた図示しない電流計により、二次粒子1内の気泡4内に生じる部分放電の電流を観察する。部分放電の電流の増加が飽和すると、飽和時点の電圧以上の所定電圧に固定し、部分放電が停止すると電圧の印加を停止する。電圧の印加中も攪拌を継続する。
(4)最後にステップ4で、ナノ粒子を分散させた樹脂に硬化剤を添加・混合し、所定の形状に硬化させる。
このように、二次粒子1中に発生した部分放電による放電エネルギが、揮発性液体を蒸発・膨張させることでナノ粒子の凝集を解き、一次粒子を液状樹脂中に分散させることができる。
次に、本発明の実施例として、液状の熱硬化性樹脂にエポキシ樹脂を用いて説明する。 本発明のエポキシ樹脂組成物に用いた材料は以下のとおりである。
A.ナノ粒子:噴霧シリカ(平均粒径7nm)、酸化チタン(平均粒径30nm)、研磨用アルミナ(平均粒径100nm)、結晶性シリカ(平均粒径500nm)
B.揮発性液体:メタノール、アセトン
C.液状樹脂:ビスフェノールA型エポキシ樹脂(エポキシ当量190)
D.硬化剤:3フッ化ホウ素モノエチルアミン錯体
本発明のエポキシ樹脂組成物と電圧印加条件とを種々組み合わせた製造条件を表1に示す。なお、比較例として、平均粒子径が500nmと大きな結晶性シリカを分散したものおよび電圧を印加しない従来のものも加えた。また、これらの混合物の硬化条件は全て150℃、5hrとした。
表1に示す条件で作製した硬化物について、各温度に対する動的粘弾性(貯蔵弾性率)を測定した。その結果を図4に示す。図4を基に貯蔵弾性率の低下度を簡略化して記号で評価した結果を表1の評価欄に示す。
図4より、電圧印加を施さなかった従来例は、エポキシ樹脂のガラス転移温度(約150℃)にて貯蔵弾性率が1桁以上低下し、明確なガラス転移現象が現れた。一方、電圧印加を施した実施例は全て、ガラス転移温度における弾性率の低下幅が小さくなり、ナノ粒子のハイブリッド効果による、エポキシ樹脂の分子運動を拘束する効果が見られた。中でも、粒子径の小さな噴霧シリカの低下幅が最も小さく、電圧印加条件が高電圧、高周波ほど低下幅が小さくなった。また、粒子径が小さいほどエポキシ樹脂分子鎖を拘束する効果が大きいという、ナノハイブリッド効果に見られる一般的な傾向が現れ、また高電圧、高周波ほど短期間で揮発性液体が蒸発し、一次粒子が完全分散しやすくなっていた。
平均粒子径が500nmと大きなシリカを分散した比較例は、電圧印加の有無に関わらず明確なガラス転移現象が現れた。これは、ナノハイブリッド効果が発現されにくい粒子径であることと、攪拌のみによって容易に一次分散可能な粒子径であるためと考えられる。よって、本発明に用いる粒子径の上限は、おおよそ100nmであることがわかる。
ちなみに、周波数を10kHz以上で処理した場合は、液状樹脂5の誘電発熱に起因すると思われる発熱で、攪拌容器内全体が過熱された。よって、周波数は10kHz以下が好ましい。なお、周波数の下限は、放電を生じればよいので商用周波数の50Hzでも良く、電圧印加の効率を高めるためには1kHz以上が望ましい。
FIG. 1 is a cross-sectional view showing the configuration of a nanoparticle dispersion apparatus to which the method of the present invention is applied. In the figure, 1 is a secondary particle, 2 is a primary particle, 3 is a volatile liquid, 4 is a bubble, 5 is a liquid thermosetting resin, 6 is a stirring vessel, 7 is an AC power source, 8 is an electrode, and 9 is stirring. It is a feather.
The secondary particles 1 are produced during the manufacturing process, and the details are shown in FIG. FIG. 2 is an enlarged cross-sectional view of secondary particles in which nanoparticles are aggregated.
The secondary particles 1 in which the nanoparticles are aggregated are composed of primary particles 2, a volatile liquid 3, and bubbles 4, and are dispersed in a liquid thermosetting resin 5. The stirring vessel 6 includes an electrode 8 wired from an AC power source 7 so that an AC voltage can be applied to the mixture of the secondary particles 1 and the liquid thermosetting resin 5. Further, by using the stirring blade 9 also as the electrode 8, shearing by stirring is given to the mixture of the secondary particles 1 and the liquid thermosetting resin 5 while applying an AC voltage.
Next, a method for producing the thermosetting resin composition of the present invention will be described with reference to FIG.
FIG. 3 is a flowchart showing a processing procedure for dispersing nanoparticles into primary particles.
(1) First, in Step 1, the volatile liquid 3 is added in an amount equal to or less than the liquid absorption amount of the nanoparticulate powder and kneaded to prepare a paste containing the gas in the atmosphere as bubbles 4.
(2) In Step 2, when the paste prepared in Step 1 and the liquid resin 5 are put into the stirring vessel 6 and the stirring blade 9 is rotated, the paste is finely dispersed in the liquid resin 5 and becomes the secondary particles 1. .
(3) In step 3, an AC voltage is applied between the electrodes 8. The voltage is increased at a rate of 1 kV / min, and the partial discharge current generated in the bubbles 4 in the secondary particles 1 is observed by an ammeter (not shown) provided in the AC power supply 7. When the increase in the partial discharge current is saturated, the voltage is fixed at a predetermined voltage equal to or higher than the voltage at the time of saturation, and when the partial discharge is stopped, the voltage application is stopped. Stirring is continued during voltage application.
(4) Finally, in step 4, a curing agent is added to and mixed with the resin in which the nanoparticles are dispersed, and cured to a predetermined shape.
As described above, the discharge energy generated by the partial discharge generated in the secondary particles 1 evaporates and expands the volatile liquid, so that the nanoparticles can be aggregated and the primary particles can be dispersed in the liquid resin.
Next, as an example of the present invention, a liquid thermosetting resin will be described using an epoxy resin. The materials used for the epoxy resin composition of the present invention are as follows.
A. Nanoparticles: sprayed silica (average particle size 7 nm), titanium oxide (average particle size 30 nm), polishing alumina (average particle size 100 nm), crystalline silica (average particle size 500 nm)
B. Volatile liquid: methanol, acetone C.I. Liquid resin: bisphenol A type epoxy resin (epoxy equivalent 190)
D. Curing agent: Boron trifluoride monoethylamine complex Table 1 shows production conditions obtained by variously combining the epoxy resin composition of the present invention and voltage application conditions. In addition, as a comparative example, a dispersion in which crystalline silica having a large average particle diameter of 500 nm and a conventional one in which no voltage is applied were also added. The curing conditions for these mixtures were all set to 150 ° C. and 5 hours.
About the hardened | cured material produced on the conditions shown in Table 1, the dynamic viscoelasticity (storage elastic modulus) with respect to each temperature was measured. The result is shown in FIG. The evaluation results in Table 1 are shown in Table 1 with the results of simplifying the degree of decrease in storage modulus based on FIG.
From FIG. 4, in the conventional example in which no voltage was applied, the storage elastic modulus decreased by one digit or more at the glass transition temperature (about 150 ° C.) of the epoxy resin, and a clear glass transition phenomenon appeared. On the other hand, in all the examples to which voltage was applied, the decrease in elastic modulus at the glass transition temperature was reduced, and the effect of restraining the molecular motion of the epoxy resin due to the hybrid effect of the nanoparticles was observed. Among them, the decrease width of sprayed silica having a small particle diameter was the smallest, and the decrease width was smaller as the voltage application conditions were higher voltage and higher frequency. In addition, the general tendency seen in the nano-hybrid effect appears that the smaller the particle size, the greater the effect of constraining the epoxy resin molecular chains, and the higher the voltage and the higher the frequency, the volatile liquid evaporates in a shorter period of time. It was easy to disperse completely.
In the comparative example in which a large silica having an average particle size of 500 nm was dispersed, a clear glass transition phenomenon appeared regardless of the presence or absence of voltage application. This is presumably because the particle size is such that the nano-hybrid effect is difficult to be exhibited and the particle size can be easily primary dispersed only by stirring. Therefore, it can be seen that the upper limit of the particle diameter used in the present invention is approximately 100 nm.
Incidentally, when the treatment was performed at a frequency of 10 kHz or more, the entire stirring vessel was overheated due to heat generation that was probably caused by dielectric heat generation of the liquid resin 5. Therefore, the frequency is preferably 10 kHz or less. The lower limit of the frequency may be 50 Hz, which is a commercial frequency, as long as discharge is generated, and is preferably 1 kHz or more in order to increase the efficiency of voltage application.

Figure 2005213311
Figure 2005213311

本実施例では、揮発性液体の沸点と、電圧印加時における攪拌容器内雰囲気の減圧の有効性について検討した。エポキシ樹脂組成物に用いた材料は以下のとおりである。
A.ナノ粒子:噴霧シリカ(中心粒径7nm)
B.揮発性液体:ジエチルエーテル(標準沸点34.5℃)、メタノール(標準沸点64.7℃)、クレゾール(標準沸点201℃)
C.液状樹脂:ビスフェノールA型エポキシ樹脂(エポキシ当量190)
D.硬化剤:3フッ化ホウ素モノエチルアミン錯体
本発明のエポキシ樹脂組成物の材料構成と減圧の有無を表2に示す。なお、これらの混合物の硬化条件は150℃、5hrとした。電圧印加条件は、500V、1kHz、20秒とした。減圧は油回転式ロータリーポンプにて行った。その圧力はおよそ0.1torrである。
表2に示す条件で作製した硬化物について、実施例1と同様に各温度に対する動的粘弾性(貯蔵弾性率)を測定した。その結果を図5に示す。図5を基に貯蔵弾性率の低下度を簡略化して記号で評価した結果を表2の評価欄に示す。
図5より、大気圧下で電圧印加した試料7〜9は、標準沸点が低い揮発性液体ほどガラス転移温度での弾性率の低下が小さく、本発明の、放電エネルギーで速やかに気化させた効果が顕著に表れた。また、揮発性液体の沸点が200℃を超える試料9では、一部構成材料の炭化と思われる着色が観察された。これに対して、本発明の減圧を行った試料10〜12は、大気圧下で電圧印加した条件7〜9よりも弾性率の低下が小さくなっており、本発明の、沸点を低下させた効果がさらに顕著に表れた。
In this example, the boiling point of the volatile liquid and the effectiveness of reducing the pressure in the stirring vessel atmosphere during voltage application were examined. The materials used for the epoxy resin composition are as follows.
A. Nanoparticle: Sprayed silica (center particle size 7nm)
B. Volatile liquid: diethyl ether (standard boiling point 34.5 ° C), methanol (standard boiling point 64.7 ° C), cresol (standard boiling point 201 ° C)
C. Liquid resin: bisphenol A type epoxy resin (epoxy equivalent 190)
D. Curing agent: Boron trifluoride monoethylamine complex Table 2 shows the material composition of the epoxy resin composition of the present invention and the presence or absence of reduced pressure. The curing conditions for these mixtures were 150 ° C. and 5 hours. The voltage application conditions were 500 V, 1 kHz, and 20 seconds. The pressure was reduced with an oil rotary rotary pump. The pressure is approximately 0.1 torr.
About the hardened | cured material produced on the conditions shown in Table 2, the dynamic viscoelasticity (storage elastic modulus) with respect to each temperature was measured similarly to Example 1. FIG. The result is shown in FIG. The evaluation results of Table 2 are shown in Table 2 with the results of simplifying the degree of decrease in storage modulus based on FIG.
As can be seen from FIG. 5, in Samples 7 to 9 where voltage was applied under atmospheric pressure, the lower the normal boiling point, the smaller the decrease in the elastic modulus at the glass transition temperature, and the effect of the present invention that was quickly vaporized with the discharge energy. Appeared remarkably. Further, in Sample 9 where the boiling point of the volatile liquid exceeded 200 ° C., coloring that was considered to be carbonization of some constituent materials was observed. On the other hand, the samples 10 to 12 subjected to the decompression of the present invention showed a smaller decrease in elastic modulus than the conditions 7 to 9 in which a voltage was applied under atmospheric pressure, and lowered the boiling point of the present invention. The effect was even more pronounced.

Figure 2005213311
Figure 2005213311

ナノ粒子の二次粒子と液状樹脂に電圧印加を施しながら攪拌混合するという手順をとるため、二次粒子を一次粒子として液状の樹脂に分散できて、耐熱性や強度を必要とする厚肉部品という用途にも適用できる。   Thick parts that require heat resistance and strength because the secondary particles can be dispersed in the liquid resin as primary particles because the procedure is to stir and mix while applying voltage to the secondary particles of nanoparticles and the liquid resin. It can also be applied to such applications

本発明の方法を適用するナノ粒子分散装置の構成を示す断面図Sectional drawing which shows the structure of the nanoparticle dispersion | distribution apparatus to which the method of this invention is applied. 本発明における二次粒子の構造を示す拡大断面図Enlarged sectional view showing the structure of secondary particles in the present invention 本発明の方法の処理手順を示すフローチャートThe flowchart which shows the process sequence of the method of this invention. 実施例1の熱硬化性樹脂組成物の動的粘弾性特性を示すグラフThe graph which shows the dynamic viscoelastic property of the thermosetting resin composition of Example 1 実施例2の熱硬化性樹脂組成物の動的粘弾性特性を示すグラフThe graph which shows the dynamic viscoelastic property of the thermosetting resin composition of Example 2 従来の方法にて作製した有機/無機ナノハイブリッド材料の構成を示す模式図Schematic diagram showing the structure of an organic / inorganic nanohybrid material produced by a conventional method

符号の説明Explanation of symbols

1 二次粒子
2 一次粒子
3 揮発性液体
4 気泡
5 液状の熱硬化性樹脂
6 攪拌容器
7 交流電源
8 電極
9 攪拌羽根
111 クレイなどの層状粘土化合物
112 変性ポリマー
113 ポリマー
DESCRIPTION OF SYMBOLS 1 Secondary particle 2 Primary particle 3 Volatile liquid 4 Bubble 5 Liquid thermosetting resin 6 Stirrer container 7 AC power source 8 Electrode 9 Stirrer blade 111 Layered clay compound 112 such as clay 112 Modified polymer 113 Polymer

Claims (6)

平均粒子径が5nm以上100nm以下の無機粒子と熱硬化性樹脂とを混合してなる熱硬化性樹脂組成物の製造方法において、
前記無機粒子と揮発性液体との混合物を未硬化の状態で液状の前記熱硬化性樹脂に分散させた後、交流電圧を印加することを特徴とする熱硬化性樹脂組成物の製造方法。
In the method for producing a thermosetting resin composition obtained by mixing inorganic particles having an average particle diameter of 5 nm or more and 100 nm or less and a thermosetting resin,
A method for producing a thermosetting resin composition, wherein an alternating voltage is applied after a mixture of the inorganic particles and a volatile liquid is dispersed in the liquid thermosetting resin in an uncured state.
前記交流電圧の周波数が1kHz以上、10kHz以下であることを特徴とする請求項1記載の熱硬化性樹脂組成物の製造方法。   The method for producing a thermosetting resin composition according to claim 1, wherein the frequency of the AC voltage is 1 kHz or more and 10 kHz or less. 前記電圧印加時に、前記液状の熱硬化性樹脂を攪拌することを特徴とする請求項1または2記載の熱硬化性樹脂組成物の製造方法。   The method for producing a thermosetting resin composition according to claim 1 or 2, wherein the liquid thermosetting resin is stirred when the voltage is applied. 前記揮発性液体は、前記電圧印加の雰囲気での沸点を200℃以下とすることを特徴とする請求項1から3のいずれか1項に記載の熱硬化性樹脂組成物の製造方法。   The method for producing a thermosetting resin composition according to any one of claims 1 to 3, wherein the volatile liquid has a boiling point of 200 ° C or less in the atmosphere in which the voltage is applied. 前記電圧印加時は雰囲気を大気圧以下に減圧することを特徴とする請求項1から4のいずれか1項に記載の熱硬化性樹脂組成物の製造方法。   The method for producing a thermosetting resin composition according to any one of claims 1 to 4, wherein the atmosphere is reduced to an atmospheric pressure or lower when the voltage is applied. 請求項1から5のいずれかに記載の熱硬化性樹脂組成物の製造方法によって得られることを特徴とする熱硬化性樹脂組成物。   A thermosetting resin composition obtained by the method for producing a thermosetting resin composition according to claim 1.
JP2004019375A 2004-01-28 2004-01-28 Method for producing thermosetting resin composition Pending JP2005213311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004019375A JP2005213311A (en) 2004-01-28 2004-01-28 Method for producing thermosetting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004019375A JP2005213311A (en) 2004-01-28 2004-01-28 Method for producing thermosetting resin composition

Publications (1)

Publication Number Publication Date
JP2005213311A true JP2005213311A (en) 2005-08-11

Family

ID=34903603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004019375A Pending JP2005213311A (en) 2004-01-28 2004-01-28 Method for producing thermosetting resin composition

Country Status (1)

Country Link
JP (1) JP2005213311A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221305A1 (en) 2005-07-22 2010-08-25 Mitsubishi Tanabe Pharma Corporation Method for synthesizing intermediate compound for synthesizing a pharmaceutical agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221305A1 (en) 2005-07-22 2010-08-25 Mitsubishi Tanabe Pharma Corporation Method for synthesizing intermediate compound for synthesizing a pharmaceutical agent

Similar Documents

Publication Publication Date Title
CN112961469B (en) Epoxy resin-based high-thermal-conductivity insulating material and preparation method thereof
CN107298924A (en) A kind of graphene conductive slurry and preparation method thereof, application process
JP6778662B2 (en) Manufacturing method of granulated silica
JPWO2020153505A1 (en) Filler composition, silicone resin composition and heat dissipation parts
CN107033502A (en) Sour barium/organic matrix composite membrane of the neodymium-doped titanium of a kind of simple high energy storage density and preparation method thereof
US20160167011A1 (en) Method for producing a graphene
JP2020100561A (en) Silane-treated forsterite microparticles and method for producing the same, organic solvent dispersion of silane-treated forsterite microparticles, and method for producing the same
CN109054160B (en) Nano zeolite particle modified polyethylene composite material and preparation method thereof
JP6746443B2 (en) Hexagonal boron nitride powder
KR101209308B1 (en) Epoxy-microsilica-organically modified nano layered silicate mixed composite for insulation using electric field and product thereby
JP2005213311A (en) Method for producing thermosetting resin composition
WO2020012553A1 (en) Coating liquid and coating film
CN108299579A (en) A kind of graphene/nanometer silica/Polystyrene Hybrid Material and its preparation method and application
Salehi‐Mobarakeh et al. Modifying montmorillonite clay via silane grafting and interfacial polycondensation for melt compounding of nylon‐66 nanocomposite
JP2014009146A (en) Particle having voids therein and manufacturing method of the same
JP5062978B2 (en) Manufacturing method of inorganic film
WO2020202819A1 (en) Porous carbon material and resin composition
JP6209403B2 (en) Electrical insulating resin and high voltage equipment using it
JPH09321185A (en) Manufacture of thermally conductive macromolecule sheet
JP5170437B2 (en) Method for producing soft agglomerated powder and method for producing inorganic particle-organic polymer composite paste
Bao et al. Effect of electrostatic heterocoagulation of PVM/MA grafted carbon black and attapulgite nanorods on electrical and mechanical behaviors of waterborne polyurethane nanocomposites
KR102195412B1 (en) Alkylsilane-modified micro silicon carbide treated with alkylsilazane, and silicone rubber/nanosilica/micro silicon carbide composite for high voltage insulation using it
JP7438443B1 (en) Boron nitride aggregated particles, sheet member, and method for producing boron nitride aggregated particles
JP7361909B2 (en) Cured sheet and manufacturing method thereof
CN114854226B (en) Insulating material and preparation method and application thereof