JP2005213195A - New sialic acid donor and method for producing the same and method for introducing sialic acid using the same - Google Patents

New sialic acid donor and method for producing the same and method for introducing sialic acid using the same Download PDF

Info

Publication number
JP2005213195A
JP2005213195A JP2004021766A JP2004021766A JP2005213195A JP 2005213195 A JP2005213195 A JP 2005213195A JP 2004021766 A JP2004021766 A JP 2004021766A JP 2004021766 A JP2004021766 A JP 2004021766A JP 2005213195 A JP2005213195 A JP 2005213195A
Authority
JP
Japan
Prior art keywords
sialic acid
compound
introducing
same
donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004021766A
Other languages
Japanese (ja)
Inventor
Koji Matsuoka
浩司 松岡
Hiroaki Terunuma
大陽 照沼
Takeshi Hatano
健 幡野
Nobuo Sakairi
信夫 坂入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004021766A priority Critical patent/JP2005213195A/en
Publication of JP2005213195A publication Critical patent/JP2005213195A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Saccharide Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for introducing a sialic acid into a sugar chain in high efficiency by a simple means without using any sulfur compound emitting intense offensive odor. <P>SOLUTION: A new sialic acid donor is provided, being represented by formula(I)( wherein, R is a 6-15C long-chain alkyl; and R' is a protective group ). The method for introducing a sialic acid involves using the donor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この出願の発明は、糖誘導体等にシアル酸を導入するためのシアル酸供与体に関するものである。さらに詳しくは、この出願の発明は、強い悪臭を有する硫黄化合物を用いることなく、簡便な方法により高効率で糖鎖にシアル酸を導入する方法と、そのためのシアル酸供与体に関するものである。   The invention of this application relates to a sialic acid donor for introducing sialic acid into a sugar derivative or the like. More specifically, the invention of this application relates to a method for introducing sialic acid into a sugar chain with high efficiency by a simple method without using a sulfur compound having a strong malodor, and a sialic acid donor for the method.

この出願の発明は、新規分岐状シアロ糖分子に関するものである。さらに詳しくは、この出願の発明は、インフルエンザウィルスの宿主域の変異や抗原性の変異に対応でき、すべてのヒトおよび動物由来のA型インフルエンザウィルスおよびB型インフルエンザウィルスの感染を阻止できる医薬品やウィルス除去用フィルター等の吸着剤として有用な新規分岐状シアロ糖分子に関するものである。   The invention of this application relates to a novel branched sialoglycomolecule. More specifically, the invention of this application relates to pharmaceuticals and viruses that can cope with variations in the host range and antigenic variation of influenza viruses and can prevent infection of all human and animal-derived influenza A and B viruses. The present invention relates to a novel branched sialoglycomolecule useful as an adsorbent for removal filters and the like.

シアル酸は9つの骨格炭素からなるカルボキシル基をもつ2-ケト-3-デオキシノノン酸の総称であり、N-アセチルノイラミン酸(Neu5Ac)、N-グリコリルノイラミン酸(Neu5Gc)、デアミノノイラミン酸(KDN)の3大分子種と、それらのアセチル化、ラクチル化、硫酸化などの修飾シアル酸が知られている。このような単糖の分子種の多様性は、他の単糖にはない特徴であり、シアル酸が独特な生物学的機能をもつと考えられる一つの根拠となっている。   Sialic acid is a generic name for 2-keto-3-deoxynononic acid with a carboxyl group consisting of nine skeletal carbons. N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), deaminoneuron Three major molecular species of laminic acid (KDN) and their modified sialic acids such as acetylation, lactylation and sulfation are known. Such diversity of molecular species of monosaccharides is a feature not found in other monosaccharides, and is one basis on which sialic acid is considered to have a unique biological function.

また、シアル酸は糖タンパク質や糖脂質の糖鎖の周辺部分に位置する様々な機能性糖鎖の重要な構成要素であり、ラクトースやN-アセチルラクトサミンに結合することにより、癌や老化などに関与するマーカーやウィルス等のレセプターとなることが知られている。したがって、生化学あるいは生医学的見地からも極めて重要な糖と考えられている。   In addition, sialic acid is an important component of various functional sugar chains located in the peripheral part of glycoproteins and glycolipids. By binding to lactose and N-acetyllactosamine, cancer, aging, etc. It is known to be a receptor for markers and viruses involved in Therefore, it is considered an extremely important sugar from the biochemical or biomedical viewpoint.

例えば、日本において、毎年数10万人〜100万人を超える患者が発生するインフルエンザへの感染は、ウィルス糖タンパク質であるヘマグルチニン(HA)が宿主細胞表面に存在するシアル酸含有糖鎖に結合することにより起こることが知られている(非特許文献1〜3)。そこで、このシアル酸含有糖鎖が広く研究され、抗インフルエンザウィルス剤として各種のシアル酸含有糖鎖(シアロ糖鎖)化合物が報告されている(非特許文献4〜5、特許文献1)。   For example, in Japan, infection with influenza, which occurs in several hundred thousand to over one million patients every year, binds hemagglutinin (HA), a viral glycoprotein, to sialic acid-containing sugar chains present on the host cell surface. It is known that this occurs (Non-Patent Documents 1 to 3). Therefore, this sialic acid-containing sugar chain has been extensively studied, and various sialic acid-containing sugar chain (sialog sugar chain) compounds have been reported as anti-influenza virus agents (Non-Patent Documents 4 to 5, Patent Document 1).

しかし、天然から抽出できるシアル酸含有糖の量は限られているため、これらの化合物を市場に大量に供給するためには、化学合成を行う必要がある。シアル酸を導入した糖鎖の構築方法は、これまでにいくつか報告されているが、合成の効率化や誘導体化に関連したさらなる改良が望まれているのが実情である。また、従来報告されている糖鎖へのシアル酸の導入方法では、チオグリコシドを利用したグリコシル化により得られるシアル酸供与体が用いられていたが、このようなグリコシル化反応で使用されるメルカプタン類は、悪臭が強いという問題があった。さらに、生成物の収率や立体選択性が低いため、精製工程が煩雑となるという問題もあった。
Suzuki, Y.: Progress in Lipid Research, 33, 429-457 (1994) Paulson, J.C.: The Receptors, Vol.2. Academic Press, Orlando, pp.131-219 (1985) Wiley, D.C. and Skehel, J.J.: Annual Review of Biochemistry, 56, 365-394 (1987) Fujimoto, K., Hayashida, O., Aoyama, Y., Guo, C.T., Hidari, K.I.P.J., and Suzuki, Y.: Chemistry Letter, 1259-1260 (1999) Suzuki, Y., Sato, K., Kiso, M., and Hasegawa, A.: Glycoconj J. 7, 349-54 (1990) Marra, A. and Sinay, P., Carbohydrate Research, 190 (1989) 317-322. 特願2001−75081
However, since the amount of sialic acid-containing sugars that can be extracted from nature is limited, it is necessary to perform chemical synthesis in order to supply these compounds in large quantities to the market. Several methods for constructing sugar chains into which sialic acid has been introduced have been reported so far, but the actual situation is that further improvements relating to the efficiency of synthesis and derivatization are desired. In addition, sialic acid donors obtained by glycosylation utilizing thioglycosides have been used in the conventionally reported methods for introducing sialic acid into sugar chains, but mercaptans used in such glycosylation reactions have been used. There was a problem that the kind had a strong odor. Furthermore, since the yield and stereoselectivity of the product are low, there is a problem that the purification process becomes complicated.
Suzuki, Y .: Progress in Lipid Research, 33, 429-457 (1994) Paulson, JC: The Receptors, Vol. 2. Academic Press, Orlando, pp. 131-219 (1985) Wiley, DC and Skehel, JJ: Annual Review of Biochemistry, 56, 365-394 (1987) Fujimoto, K., Hayashida, O., Aoyama, Y., Guo, CT, Hidari, KIPJ, and Suzuki, Y .: Chemistry Letter, 1259-1260 (1999) Suzuki, Y., Sato, K., Kiso, M., and Hasegawa, A .: Glycoconj J. 7, 349-54 (1990) Marra, A. and Sinay, P., Carbohydrate Research, 190 (1989) 317-322. Japanese Patent Application 2001-75081

そこで、この出願の発明は、以上のとおりの事情に鑑みてなされたものであり、従来技術の問題点を解消し、強い悪臭を有する硫黄化合物を用いることなく、簡便な方法により高効率で糖鎖にシアル酸を導入する方法を提供することを課題としている。   Therefore, the invention of this application has been made in view of the circumstances as described above, solves the problems of the prior art, and does not use a sulfur compound having a strong malodor and is highly efficient by a simple method. It is an object to provide a method for introducing sialic acid into a chain.

この出願の発明は、上記の課題を解決するものとして、第1には、次式(I)   In order to solve the above problems, the invention of this application includes, firstly, the following formula (I):

Figure 2005213195
Figure 2005213195

(ただし、Rは炭素数6〜15の長鎖アルキル基であり、R’は保護基を表す)
で表される新規シアル酸供与体を提供する。
(However, R is a long-chain alkyl group having 6 to 15 carbon atoms, and R ′ represents a protecting group.)
A novel sialic acid donor represented by the formula:

この出願の発明は、第2には、次式(II)   The invention of this application is, secondly, the following formula (II)

Figure 2005213195
Figure 2005213195

(ただし、R’は保護基を表す)
で表されるシアル酸メチルエステル完全保護体と炭素数6〜15の長鎖アルキル基を有するアルカンチオールを反応させ、シアル酸メチルエステル完全保護体におけるアノメリックなR'O基をアルキルチオ基に変換することを特徴とする新規シアル酸供与体の製造方法を提供する。
(Where R ′ represents a protecting group)
Is reacted with an alkanethiol having a long-chain alkyl group having 6 to 15 carbon atoms to convert the anomeric R′O group in the fully protected sialic acid methyl ester into an alkylthio group. And a method for producing a novel sialic acid donor.

そして、この出願の発明は、第3には、次式(I)   The third aspect of the invention of this application is the following formula (I):

Figure 2005213195
Figure 2005213195

(ただし、Rは炭素数6〜15の長鎖アルキル基であり、R’は保護基を表す)
で表されるアルキルチオグリコシドを活性化させ、活性化されたアルキルチオグリコシドとシアル酸を導入したい化合物をモレキュラーシーブスの存在下に反応させることを特徴とする糖誘導体へのシアル酸の導入方法を提供する。
(However, R is a long-chain alkyl group having 6 to 15 carbon atoms, and R ′ represents a protecting group.)
A method for introducing sialic acid into a sugar derivative is provided, wherein the activated alkylthioglycoside and a compound to which sialic acid is to be introduced are reacted in the presence of molecular sieves. .

前記第1の発明の新規シアル酸供与体は、臭いの少ない長鎖アルカンチオールとシアル酸の完全保護体を反応することにより効率よく容易に合成されることから、従来のシアル酸供与体に比較して作業性が高い。また、このような新規シアル酸供与体の5位のRHN基をアミノ基に変換すれば、アジド体を得ることも可能となる。   Since the novel sialic acid donor of the first invention is efficiently and easily synthesized by reacting a long-chain alkanethiol with a low odor and a complete protector of sialic acid, it is compared with the conventional sialic acid donor. Workability is high. Further, if the RHN group at the 5-position of such a novel sialic acid donor is converted to an amino group, an azide can be obtained.

また、前記第2の発明の方法により生成される新規シアル酸供与体は、アノマー混合物として得られるが、これらの分離は容易であることから、煩雑な精製工程を要しない。   Further, the novel sialic acid donor produced by the method of the second invention can be obtained as an anomeric mixture, but since these can be easily separated, a complicated purification step is not required.

さらに、前記第3の発明のシアル酸の導入方法では、新規シアル酸供与体を用いて糖鎖等のグリコシル化反応を行うが、いずれのアノマー(α体、β体)を使用した場合にも、α体が立体選択性高く得られる。したがって、利便性の高いシアル酸導入方法であるといえる。   Furthermore, in the method for introducing sialic acid according to the third aspect of the invention, a glycosylation reaction of a sugar chain or the like is performed using a novel sialic acid donor, and any anomers (α-form, β-form) are used. , Α form can be obtained with high stereoselectivity. Therefore, it can be said that this is a highly convenient sialic acid introduction method.

この出願の発明の新規シアル酸供与体は、次式(I)   The novel sialic acid donor of the invention of this application has the following formula (I)

Figure 2005213195
Figure 2005213195

で表されるものである。このとき、Rは長鎖アルキル基、具体的には、炭素数6〜15の長鎖アルキル基である。また、R’は保護基を表し、Ac(アセチル)、Bz(ベンゾイル)等のエステル系やBn(ベンジル)等のアルキル系の保護基が例示される。中でもエステル系保護基が好ましい。 It is represented by At this time, R is a long-chain alkyl group, specifically, a long-chain alkyl group having 6 to 15 carbon atoms. R 'represents a protecting group, and examples thereof include ester-based protecting groups such as Ac (acetyl) and Bz (benzoyl) and alkyl-based protecting groups such as Bn (benzyl). Of these, ester protecting groups are preferred.

このような新規シアル酸供与体は、シアル酸の完全保護体、すなわち、次式(II)   Such a novel sialic acid donor is a complete protector of sialic acid, that is, the following formula (II)

Figure 2005213195
Figure 2005213195

で表されるアセトシアル酸メチルエステルと、アルキル基の長さがC6〜15であるアルカンチオールを反応させることにより得られるものである。アルカンチオールとしては、ヘキサンチオール、ヘプタンチオール、オクタンチオール、ノナンチオール、デカンチオール、ウンデカンチオール、ドデカンチオール、トリデカンチオール、テトラデカンチオール、ペンタデカンチオールが例示される。このとき、アルキル基は直鎖状であっても分岐状であってもよい。 It is obtained by reacting acetosialic acid methyl ester represented by the formula (I) with an alkanethiol having an alkyl group length of C6-15. Examples of the alkanethiol include hexanethiol, heptanethiol, octanethiol, nonanethiol, decanethiol, undecanethiol, dodecanethiol, tridecanethiol, tetradecanethiol, and pentadecanethiol. At this time, the alkyl group may be linear or branched.

このような反応において、反応基質の濃度や反応温度、反応系の雰囲気等はとくに限定されないが、例えば、アセトシアル酸メチルエステル1当量に対してアルカンチオールを過剰量、具体的には1.2〜4当量加え、氷冷することができる。このとき、反応溶媒としてクロロホルム、ジクロロメタン、トルエン等の有機溶媒を使用してもよい。なお、アノメリックなR'O基を活性化し、アルカンチオールによる攻撃が起こりやすくするために、トリメチルシリルトリフルオロメタンスルフォネートや三フッ化ホウ素ジエチルエーテル錯体等のルイス酸を加えることができる。中でも三フッ化ホウ素ジエチルエーテル錯体は、安価で入手が容易なことから、好ましく用いられる。   In such a reaction, the concentration of the reaction substrate, the reaction temperature, the atmosphere of the reaction system and the like are not particularly limited. For example, an excess of alkanethiol, specifically 1.2 to 4 equivalents, per equivalent of acetosialic acid methyl ester In addition, it can be ice-cooled. At this time, you may use organic solvents, such as chloroform, a dichloromethane, and toluene, as a reaction solvent. A Lewis acid such as trimethylsilyl trifluoromethanesulfonate or boron trifluoride diethyl ether complex can be added in order to activate the anomeric R′O group and facilitate attack by alkanethiol. Among these, boron trifluoride diethyl ether complex is preferably used because it is inexpensive and easily available.

以上のとおりの反応により、アセトシアル酸メチルエステルにおける2位のアノメリックなR'O基がアルキルチオ基に変換され、前記の新規シアル酸供与体が得られる。このような反応では、使用されるアルカンチオールのアルキル鎖長がC6〜15と長く、臭いが少ないため、悪臭を有する硫黄化合物を使用する従来のシアル酸供与体に比べ、作業性がよい。   By the reaction as described above, the anomeric R′O group at the 2-position in acetosialic acid methyl ester is converted to an alkylthio group, and the novel sialic acid donor is obtained. In such a reaction, since the alkyl chain length of the alkanethiol used is as long as C6 to 15 and there is little odor, the workability is better than the conventional sialic acid donor using a sulfur compound having a bad odor.

また、この出願の発明の新規シアル酸供与体は、アノマー混合物として生成されるが、洗浄、抽出、乾燥、カラムクロマトグラフィー等の一般的な精製工程を経て容易にα−アルキルチオグリコシドとβ−アルキルチオグリコシドに単離できる。α−アルキルチオグリコシドとβ−アルキルチオグリコシドの生成比は反応条件等によっても若干異なるが、通常β−アルキルチオ体が選択的に生成される。   In addition, the novel sialic acid donor of the invention of this application is produced as an anomeric mixture, but it can be easily subjected to α-alkylthioglycoside and β-alkylthioside through general purification steps such as washing, extraction, drying and column chromatography. Can be isolated to glycosides. The production ratio of α-alkylthioglycoside and β-alkylthioglycoside varies slightly depending on the reaction conditions and the like, but usually a β-alkylthio form is selectively produced.

以上のとおりのこの出願の発明の新規シアル酸供与体は、有機化合物や糖鎖にシアル酸を簡便に導入するために使用できるものである。具体的には、アルキルチオグリコシドと、シアル酸を導入したい化合物をモレキュラーシーブスの存在下に反応させることにより、該化合物にシアル酸を導入することができる。このとき、モレキュラーシーブスは反応系中に存在する水分を除去するものとして作用する。   The novel sialic acid donor of the present invention as described above can be used for simply introducing sialic acid into an organic compound or sugar chain. Specifically, sialic acid can be introduced into the compound by reacting an alkylthioglycoside with the compound into which sialic acid is to be introduced in the presence of molecular sieves. At this time, the molecular sieves act as removing water present in the reaction system.

また、このような反応においては、チオグリコシドを活性化する必要があるが、そのための試薬はとくに限定されない。例えば、N−ヨウドコハク酸イミドとトリメチルシリルトリフレートの組み合わせが適用できる。   Moreover, in such a reaction, although it is necessary to activate thioglycoside, the reagent for that is not specifically limited. For example, a combination of N-iodosuccinimide and trimethylsilyl triflate is applicable.

なお、アルキルグリコシドは、α体、β体のいずれであってもよく、アノマー混合体であってもよい。   The alkyl glycoside may be either α-form or β-form, or an anomeric mixture.

また、アルキルチオグリコシドと反応させる化合物は特に限定されず、各種のものが適用できる。シアル酸の導入は、保護されていないOH基でのアルキルチオグリコシドとの縮合反応により起こる。つまり、シアル酸残基は、化合物とO原子を介して結合する。したがって、アルキルチオグリコシドと反応させる化合物は、水酸基を有するものとすることが望ましい。具体的には、グルコースOH誘導体、ラクトースOH誘導体等の糖鎖や、シクロヘキサノール等のアルコール類が例示される。シアル酸を導入する化合物が糖鎖の場合、単糖であっても、オリゴ糖や多糖であってもよく、アルコールの場合、その分子量や構造はとくに限定されない。   Moreover, the compound made to react with alkylthioglycoside is not specifically limited, Various things are applicable. The introduction of sialic acid occurs by a condensation reaction with an alkylthioglycoside with an unprotected OH group. That is, the sialic acid residue is bonded to the compound via the O atom. Therefore, it is desirable that the compound to be reacted with the alkylthioglycoside has a hydroxyl group. Specific examples include sugar chains such as glucose OH derivatives and lactose OH derivatives, and alcohols such as cyclohexanol. When the compound for introducing sialic acid is a sugar chain, it may be a monosaccharide, an oligosaccharide or a polysaccharide, and in the case of an alcohol, its molecular weight and structure are not particularly limited.

以下、実施例を示し、この発明の実施の形態についてさらに詳しく説明する。もちろん、この発明は以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。   Hereinafter, examples will be shown, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail.

<実施例1> メチル(5-アセトアミド-4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-2-ラウリルチオ-α/β-D-グリセロ-D-ガラクト-2-ノヌロピラノシド)オネート(Methyl(5-acetoamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-lauryl thio-α/β-D-glycero-D-galacto-2-nonulopyranoside)onate)(以下、化合物2αおよび化合物2βと示す)の合成
以下の反応式(A)に従い、化合物2αおよび化合物2βを合成した。
Example 1 Methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-laurylthio-α / β-D-glycero-D-galacto-2-nonuropyranoside ) Onate (Methyl (5-acetoamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-lauryl thio-α / β-D-glycero-D-galacto-2-nonulopyranoside) onate) (Synthesis of Compound 2α and Compound 2β) Compound 2α and Compound 2β were synthesized according to the following reaction formula (A).

Figure 2005213195
Figure 2005213195

まず、アセトシアル酸メチルエステル体(メチル 5-アセトアミド-2,4,7,8,9-ペンタ-O-アセチル-3,5-ジデオキシ-D-グリセロ-D-ガラクト-2-ノヌロピラノソネート;化合物1:非特許文献6の方法により合成)(5.6 g, 10.5 mmol)をジクロロメタン(60 mL)に溶解させ、ドデカンチオール(10.1 mL, 42.0mmol, 4 eq)を加えて氷冷した。   First, acetosialic acid methyl ester (methyl 5-acetamido-2,4,7,8,9-penta-O-acetyl-3,5-dideoxy-D-glycero-D-galacto-2-nonuropyranosonate Compound 1: synthesized by the method of Non-Patent Document 6 (5.6 g, 10.5 mmol) was dissolved in dichloromethane (60 mL), dodecanethiol (10.1 mL, 42.0 mmol, 4 eq) was added, and the mixture was ice-cooled.

次に、三フッ化ホウ素ジエチルエーテル錯体(東京化成工業)(4.0 mL, 31.5 mmol, 3 eq)を滴下し、30分攪拌した。室温まで昇温させ、さらに3時間攪拌した。   Next, boron trifluoride diethyl ether complex (Tokyo Chemical Industry) (4.0 mL, 31.5 mmol, 3 eq) was added dropwise and stirred for 30 minutes. The mixture was warmed to room temperature and further stirred for 3 hours.

反応液をクロロホルムにより希釈し、有機層を冷水、冷飽和炭酸水素ナトリウム水溶液、飽和食塩水により順次洗浄した後、有機層を無水硫酸マグネシウムにより乾燥した。この有機層をろ過し、ろ液を濃縮した。残渣をシリカゲルクロマトグラフィー[トルエン−酢酸エチル(1:2)、600 mL]により精製し、β−ラウリルチオ体(化合物2β)(4.3g, 59.2%)とα−ラウリルチオ体(化合物2α)(1.9g, 26.2%)をそれぞれ単離した。   The reaction solution was diluted with chloroform, and the organic layer was washed successively with cold water, a cold saturated aqueous sodium hydrogen carbonate solution and saturated brine, and then the organic layer was dried over anhydrous magnesium sulfate. The organic layer was filtered and the filtrate was concentrated. The residue was purified by silica gel chromatography [toluene-ethyl acetate (1: 2), 600 mL] to obtain a β-laurylthio compound (compound 2β) (4.3 g, 59.2%) and an α-laurylthio compound (compound 2α) (1.9 g). , 26.2%).

化合物2αおよび2βの同定結果を表1に示した。   The identification results of compounds 2α and 2β are shown in Table 1.

Figure 2005213195
Figure 2005213195

<実施例2> メチル O-(メチル 5-アセトアミド-4,7,8,9-テトラ-O-アセチル3,5-デオキシ-D-グリセロ-D-ガラクト-2-ノヌロピラノシロネート)-(2→6)-2,3,4-トリ-O-ベンジル-α-D-グリコピラノシド(Methyl O-(Methyl 5-acetoamido-4,7,8,9-tetra-O-acetyl3,5-deoxy-D-glycero-D-galacto-2-nonulopyranosylonate)-(2→6)-2,3,4-tri-O-benzyl-α-D-glcopyranoside)(以下、化合物7αおよび7β)の合成
次の反応式(B)に従い、化合物7αおよび化合物7βを合成した。
Example 2 Methyl O- (Methyl 5-acetamido-4,7,8,9-tetra-O-acetyl 3,5-deoxy-D-glycero-D-galacto-2-nonuropyranosylate)- (2 → 6) -2,3,4-Tri-O-benzyl-α-D-glycopyranoside (Methyl O- (Methyl 5-acetoamido-4,7,8,9-tetra-O-acetyl3,5-deoxy -D-glycero-D-galacto-2-nonulopyranosylonate)-(2 → 6) -2,3,4-tri-O-benzyl-α-D-glcopyranoside) (compounds 7α and 7β) Compound 7α and Compound 7β were synthesized according to the reaction formula (B).

Figure 2005213195
Figure 2005213195

化合物2β(390 mg, 0.58 mmol)とグルコース6-OH誘導体(化合物3)(130 mg, 0.28 mmol)をアセトニトリル(2.6 ml)に溶解し、そこにMS3A(260 mg)を加え、室温にて数時間攪拌した。この反応混合物を-35℃に冷却し、N-ヨードコハク酸イミド(260 mg, 1.15 mmol)およびトリメチルシリルトリフレート(21 μL, 0.12 mmol)を順次加え、同温において3時間攪拌した。   Compound 2β (390 mg, 0.58 mmol) and glucose 6-OH derivative (compound 3) (130 mg, 0.28 mmol) are dissolved in acetonitrile (2.6 ml), and MS3A (260 mg) is added thereto, and several times at room temperature. Stir for hours. The reaction mixture was cooled to −35 ° C., N-iodosuccinimide (260 mg, 1.15 mmol) and trimethylsilyl triflate (21 μL, 0.12 mmol) were sequentially added, and the mixture was stirred at the same temperature for 3 hours.

反応液をクロロホルムにより希釈し、セライトろ過を行った。ろ液を、冷飽和炭酸水素ナトリウム水溶液、1 Mチオ硫酸ナトリウム水溶液、飽和食塩水により順次洗浄し、有機層を無水硫酸マグネシウムにより乾燥した。ろ過後、ろ液を濃縮し、残渣の精製をシリカゲルカラムクロマトグラフィー[トルエン−酢酸エチル(1:2), 60 mL]により行い、α-(2→6)結合した2糖誘導体(化合物7α)(160 mg, 61.1%)、β-(2→6)結合した2糖誘導体(化合物7β)(85 mg, 32.4%)をそれぞれ単離した。   The reaction solution was diluted with chloroform and filtered through celite. The filtrate was washed successively with a cold saturated aqueous sodium hydrogen carbonate solution, a 1 M aqueous sodium thiosulfate solution and saturated brine, and the organic layer was dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated, and the residue was purified by silica gel column chromatography [toluene-ethyl acetate (1: 2), 60 mL], and α- (2 → 6) linked disaccharide derivative (compound 7α). (160 mg, 61.1%) and β- (2 → 6) linked disaccharide derivative (compound 7β) (85 mg, 32.4%) were isolated, respectively.

同定結果を表2に示した。   The identification results are shown in Table 2.

Figure 2005213195
Figure 2005213195

<実施例3> メチル(シクロヘキシル5-アセトアミド-4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-D-グリセロ-D-ガラクト-2-ノヌロピラノシド)オネート(Methyl (cyclohexyl 5-acetoamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-D-galacto-2-nonulopyranoside) onate)(以下、化合物8αおよび化合物8βとする)の合成
以下の反応式(C)に従い、化合物8αおよび化合物8βを合成した。
Example 3 Methyl (cyclohexyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-D-galacto-2-nonuropyranoside) oneate -acetoamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-D-galacto-2-nonulopyranoside) onate) (hereinafter referred to as compound 8α and compound 8β) Compound 8α and Compound 8β were synthesized according to the following reaction formula (C).

Figure 2005213195
Figure 2005213195

化合物2β(180 mg, 0.27 mmol)をアセトニトリル(1.5 mL)に溶解し、さらにMS3A(120 mg)とシクロヘキサノール(化合物4)(14μL, 0.13 mmol)を加え、数時間攪拌した。反応混合物を-35℃に冷却し、N-ヨードコハク酸イミド(東京化成工業)(120 mg, 0.53 mmol)、トリメチルシリルトリフレート(9μL, 0.05 mmol)を順次加え、3時間、同温において攪拌した。   Compound 2β (180 mg, 0.27 mmol) was dissolved in acetonitrile (1.5 mL), MS3A (120 mg) and cyclohexanol (compound 4) (14 μL, 0.13 mmol) were further added, and the mixture was stirred for several hours. The reaction mixture was cooled to −35 ° C., N-iodosuccinimide (Tokyo Chemical Industry) (120 mg, 0.53 mmol) and trimethylsilyl triflate (9 μL, 0.05 mmol) were sequentially added, and the mixture was stirred at the same temperature for 3 hours.

反応液をクロロホルムにより希釈し、セライトろ過を行った。ろ液を、冷飽和炭酸水素ナトリウム水溶液、1 Mチオ硫酸ナトリウム水溶液、飽和食塩水により順次洗浄し、有機層を無水硫酸マグネシウムにより乾燥した。ろ過後、ろ液を濃縮し、残渣の精製をシリカゲルカラムクロマトグラフィーにより精製[トルエン−酢酸エチル(1:2)30 mL]により行い、α−シクロヘキシルグリコシド(化合物8α)(40 mg, 52%)、およびβ−シクロヘキシルグリコシド(化合物8β)(30 mg, 39%)をそれぞれ単離した。   The reaction solution was diluted with chloroform and filtered through celite. The filtrate was washed successively with a cold saturated aqueous sodium hydrogen carbonate solution, a 1 M aqueous sodium thiosulfate solution and saturated brine, and the organic layer was dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated, and the residue was purified by silica gel column chromatography [toluene-ethyl acetate (1: 2) 30 mL], α-cyclohexyl glycoside (Compound 8α) (40 mg, 52%) , And β-cyclohexyl glycoside (Compound 8β) (30 mg, 39%) were isolated, respectively.

同定結果を表3に示した。   The identification results are shown in Table 3.

Figure 2005213195
Figure 2005213195

<実施例4> ベンジル[メチル(5-アセトアミド-4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-D-グリセロ-D-ガラクト-2-ノヌロピラノシル)オネート]-(2→6)-O-(2,3,4-トリ-O-ベンジル-β-D-ガラクトピラノシル)-(1→4)-2,3,6-トリ-O-ベンジル-β-D-グルコピラノシド(Benzyl [Methyl (5-acetamido-4,7,8,9-tetra-O-acethyl-3,5-dideoxy-D-glycero-D-galacto-2-nonulopyranosyl)onate]-(2→6)-O-(2,3,4-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside(以下、化合物9αおよび化合物9β)の合成
次の反応式(D)に従い、化合物9αおよび化合物9βを合成した。
Example 4 Benzyl [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-D-galacto-2-nonuropyranosyl) onate]-(2 → 6) -O- (2,3,4-Tri-O-benzyl-β-D-galactopyranosyl)-(1 → 4) -2,3,6-tri-O-benzyl-β-D -Glucopyranoside (Benzyl [Methyl (5-acetamido-4,7,8,9-tetra-O-acethyl-3,5-dideoxy-D-glycero-D-galacto-2-nonulopyranosyl) onate]-(2 → 6 ) -O- (2,3,4-tri-O-benzyl-β-D-galactopyranosyl)-(1 → 4) -2,3,6-tri-O-benzyl-β-D-glucopyranoside (hereinafter, Synthesis of Compound 9α and Compound 9β) According to the following reaction formula (D), Compound 9α and Compound 9β were synthesized.

Figure 2005213195
Figure 2005213195

化合物2β(206 mg, 0.30 mmol)およびラクトース6'-OH誘導体(化合物5)(157 mg, 0.16 mmol)をアセトニトリル(1.5 mL)に溶解させ、そこにMS3A(150 mg)を加え、室温にて数時間攪拌した。この反応混合物を-35℃に冷却し、N-ヨードコハク酸イミド(137 mg、0.61 mmol)、トリメチルシリルトリフレート(11μL, 0.06 mmol)を順次加え、同温において三時間攪拌した。   Compound 2β (206 mg, 0.30 mmol) and lactose 6′-OH derivative (compound 5) (157 mg, 0.16 mmol) were dissolved in acetonitrile (1.5 mL), and MS3A (150 mg) was added thereto at room temperature. Stir for several hours. The reaction mixture was cooled to −35 ° C., N-iodosuccinimide (137 mg, 0.61 mmol) and trimethylsilyl triflate (11 μL, 0.06 mmol) were sequentially added, and the mixture was stirred at the same temperature for 3 hours.

反応液をクロロホルムにより希釈し、セライトろ過を行った。ろ液を、冷飽和炭酸水素ナトリウム水溶液、1 Mチオ硫酸ナトリウム水溶液、飽和食塩水により順次洗浄し、有機層を無水硫酸マグネシウムにより乾燥した。ろ過後、ろ液を濃縮し、残渣の精製をシリカゲルカラムクロマトグラフィー[トルエン−酢酸エチル(1:1), 40 mL]で精製し、α-(2→6)結合した3糖誘導体(化合物9α)(110 mg, 47.2%)およびβ-(2→6)結合した3糖誘導体(化合物9β)(84 mg, 36.1%)をそれぞれ単離した。   The reaction solution was diluted with chloroform and filtered through celite. The filtrate was washed successively with a cold saturated aqueous sodium hydrogen carbonate solution, a 1 M aqueous sodium thiosulfate solution and saturated brine, and the organic layer was dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated, and the residue was purified by silica gel column chromatography [toluene-ethyl acetate (1: 1), 40 mL] to obtain an α- (2 → 6) -linked trisaccharide derivative (Compound 9α). ) (110 mg, 47.2%) and a β- (2 → 6) linked trisaccharide derivative (Compound 9β) (84 mg, 36.1%) were isolated.

同定結果を表4に示した。   The identification results are shown in Table 4.

Figure 2005213195
Figure 2005213195

<実施例5> 2-(トリメチルシリル)エチル[メチル(5-アセトアミド-4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-D-グリセロ-α-D-ガラクト-2-ノヌロピラノシル)オネート]-(2→3)-O-(2,6-ジ-O-ベンジル-β-D-ガラクトピラノシル)-(1→4)-2,3,6-トリ-O-ベンジル-β-D-グルコピラノシド(2-(Trimethylsilyl)ethyl [Methyl (5-acetamido-4,7,8,9-tetra-O-acethyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosyl)onate]-(2→3)-O-(2,6-di-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside)(以下、化合物10)
次の反応式(E)に従い、化合物10を合成した。
Example 5 2- (Trimethylsilyl) ethyl [Methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2- Nonuropyranosyl) onate]-(2 → 3) -O- (2,6-di-O-benzyl-β-D-galactopyranosyl)-(1 → 4) -2,3,6-tri-O- Benzyl-β-D-glucopyranoside (2- (Trimethylsilyl) ethyl [Methyl (5-acetamido-4,7,8,9-tetra-O-acethyl-3,5-dideoxy-D-glycero-α-D-galacto -2-nonulopyranosyl) onate]-(2 → 3) -O- (2,6-di-O-benzyl-β-D-galactopyranosyl)-(1 → 4) -2,3,6-tri-O- benzyl-β-D-glucopyranoside) (hereinafter compound 10)
Compound 10 was synthesized according to the following reaction formula (E).

Figure 2005213195
Figure 2005213195

化合物2β(5.0 g, 7.2 mmol)とラクトース3', 4'-OH誘導体(3.2 g, 3.6 mmol)にMS3A(6.4 g)を加え、アセトニトリル(64 mL)に溶解して数時間攪拌した。反応液を-35℃に冷却し、N-ヨードコハク酸イミド(3.3 g, 14.5 mmol)とトリメチルシリルトリフレート(265 mL, 1.5 mmol)を順に加え、3時間攪拌した。   MS3A (6.4 g) was added to compound 2β (5.0 g, 7.2 mmol) and lactose 3 ′, 4′-OH derivative (3.2 g, 3.6 mmol), dissolved in acetonitrile (64 mL), and stirred for several hours. The reaction solution was cooled to −35 ° C., N-iodosuccinimide (3.3 g, 14.5 mmol) and trimethylsilyl triflate (265 mL, 1.5 mmol) were sequentially added, and the mixture was stirred for 3 hours.

反応液をクロロホルムで希釈し、セライトろ過を行った。ろ液を、冷飽和炭酸水素ナトリウム水溶液、1 Mチオ硫酸ナトリウム水溶液、飽和食塩水の順に抽出を行い、有機層を硫酸マグネシウムで乾燥した。ろ液を濃縮後、シリカゲルカラムクロマトグラフィー[トルエン−酢酸エチル(1:1→0:1), 500 mL]で精製し、α-(2→3)結合した3糖誘導体(2.7 g, 55.0 %)を得た。
<実施例6>
実施例1において合成された化合物2αを用いて、実施例2〜5のと同様の反応を行った。得られた生成物の収率および立体選択性を表5に示した。
The reaction solution was diluted with chloroform and filtered through celite. The filtrate was extracted in the order of cold saturated aqueous sodium hydrogen carbonate solution, 1 M aqueous sodium thiosulfate solution and saturated brine, and the organic layer was dried over magnesium sulfate. The filtrate was concentrated and purified by silica gel column chromatography [toluene-ethyl acetate (1: 1 → 0: 1), 500 mL], and α- (2 → 3) -linked trisaccharide derivative (2.7 g, 55.0% )
<Example 6>
The same reaction as in Examples 2 to 5 was performed using Compound 2α synthesized in Example 1. The yield and stereoselectivity of the obtained product are shown in Table 5.

Figure 2005213195
Figure 2005213195

以上より、この出願の発明の新規シアル酸供与体を用いることにより、化合物へのシアル酸の導入が、簡便に、収率および立体選択性高く進行することが確認された。   From the above, it was confirmed that by using the novel sialic acid donor of the invention of this application, the introduction of sialic acid into the compound proceeds easily and with high yield and stereoselectivity.

以上詳しく説明したとおり、この発明によって、強い悪臭を有する硫黄化合物を用いることなく、簡便な方法により高効率で糖鎖にシアル酸を導入する方法が提供される。   As described above in detail, the present invention provides a method for introducing sialic acid into a sugar chain with high efficiency by a simple method without using a sulfur compound having a strong malodor.

Claims (3)

次式(I)
Figure 2005213195
(ただし、Rは炭素数6〜15の長鎖アルキル基であり、R’は保護基を表す)
で表されることを特徴とする新規シアル酸供与体。
Formula (I)
Figure 2005213195
(However, R is a long-chain alkyl group having 6 to 15 carbon atoms, and R ′ represents a protecting group.)
A novel sialic acid donor represented by the formula:
請求項1の新規シアル酸供与体の製造方法であって、次式(II)
Figure 2005213195
(ただし、R’は保護基を表す)
で表されるシアル酸メチルエステル完全保護体と炭素数6〜15の長鎖アルキル基を有するアルカンチオールを反応させ、シアル酸メチルエステル完全保護体におけるアノメリックなR'O基をアルキルチオ基に変換することを特徴とする新規シアル酸供与体の製造方法。
A process for producing the novel sialic acid donor according to claim 1, wherein the formula (II)
Figure 2005213195
(Where R ′ represents a protecting group)
Is reacted with an alkanethiol having a long-chain alkyl group having 6 to 15 carbon atoms to convert the anomeric R′O group in the fully protected sialic acid methyl ester into an alkylthio group. And a method for producing a novel sialic acid donor.
次式(I)
Figure 2005213195
(ただし、Rは炭素数6〜15の長鎖アルキル基であり、R’は保護基を表す)
で表されるアルキルチオグリコシドを活性化させ、活性化されたアルキルチオグリコシドとシアル酸を導入したい化合物をモレキュラーシーブスの存在下に反応させることを特徴とする糖誘導体へのシアル酸の導入方法。
Formula (I)
Figure 2005213195
(However, R is a long-chain alkyl group having 6 to 15 carbon atoms, and R ′ represents a protecting group.)
A method for introducing sialic acid into a sugar derivative, wherein the activated alkylthioglycoside and a compound to which sialic acid is to be introduced are reacted in the presence of molecular sieves.
JP2004021766A 2004-01-29 2004-01-29 New sialic acid donor and method for producing the same and method for introducing sialic acid using the same Pending JP2005213195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021766A JP2005213195A (en) 2004-01-29 2004-01-29 New sialic acid donor and method for producing the same and method for introducing sialic acid using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021766A JP2005213195A (en) 2004-01-29 2004-01-29 New sialic acid donor and method for producing the same and method for introducing sialic acid using the same

Publications (1)

Publication Number Publication Date
JP2005213195A true JP2005213195A (en) 2005-08-11

Family

ID=34905301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021766A Pending JP2005213195A (en) 2004-01-29 2004-01-29 New sialic acid donor and method for producing the same and method for introducing sialic acid using the same

Country Status (1)

Country Link
JP (1) JP2005213195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081411A (en) * 2006-09-26 2008-04-10 Saitama Univ Sialic acid thioglycoside polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081411A (en) * 2006-09-26 2008-04-10 Saitama Univ Sialic acid thioglycoside polymer

Similar Documents

Publication Publication Date Title
Ress et al. Sialic acid donors: chemical synthesis and glycosylation
Geurtsen et al. Chemoselective glycosylations. 2. Differences in size of anomeric leaving groups can be exploited in chemoselective glycosylations
JP5738272B2 (en) Method for synthesizing 6&#39;-sialyl lactose salt and 6&#39;-sialyl lactose salt and other A-sialyl oligosaccharides
Pozsgay A new strategy in oligosaccharide synthesis using lipophilic protecting groups: synthesis of a tetracosasaccharide
Wang et al. Expedient synthesis of an α-S-(1→ 6)-linked pentaglucosyl thiol
JP3141693B2 (en) Ganglioside GM3 analogs in which 9-position of sialic acid is substituted by fluorine and intermediates thereof
De Meo et al. Thiomidoyl approach to the synthesis of α-sialosides
JP2016537349A (en) Disaccharide intermediate and synthesis method thereof
Fuse et al. Synthesis and enzymatic susceptibility of a series of novel GM2 analogs
Lourenço et al. Synthesis of potassium (2R)-2-O-α-d-glucopyranosyl-(1→ 6)-α-d-glucopyranosyl-2, 3-dihydroxypropanoate a natural compatible solute
Nishiyama et al. Synthesis of fluorescence-labeled Galβ1-3Fuc and Galβ1-4Fuc as probes for the endogenous glyco-epitope recognized by galectins in Caenorhabditis elegans
Suzuki et al. Synthetic study of 3-fluorinated sialic acid derivatives
JP5657567B2 (en) Method for 2-sulfation of glycosides
JP2005213195A (en) New sialic acid donor and method for producing the same and method for introducing sialic acid using the same
Kasuya et al. Fluorous-tagged compound: a viable scaffold to prime oligosaccharide synthesis by cellular enzymes
JP2014510781A (en) N-substituted mannosamine derivative, process for its preparation and use thereof
Kurimoto et al. Chemical approach for the syntheses of GM4 isomers with sialic acid to non-natural linkage positions on galactose
WO2007026675A1 (en) Process for production of lipid a analogue
Yashunsky et al. Parasite glycoconjugates. Part 12. 1 Synthesis of deoxy, fluorodeoxy and aminodeoxy disaccharide phosphates, substrate analogues for the elongating α-D-mannopyranosylphosphate transferase in the Leishmania
Zhang et al. Study of carbohydrate–carbohydrate interactions: total synthesis of 6d-deoxy Lewisx pentaosyl glycosphingolipid
Fekete et al. Synthesis of 3, 6-branched arabinogalactan-type tetra-and hexasaccharides for characterization of monoclonal antibodies
JP4813838B2 (en) O-linked sugar amino acid derivative having core 6 type structure and method for producing the same
Jaiswal et al. Recent advances in stereoselective intramolecular O-glycosylation
JP4890805B2 (en) O-linked sugar amino acid derivative having core 3 type structure and method for producing the same
Hou et al. Synthesis of 8-azidooctyl glycoside derivatives of the O-chain repeating unit of Escherichia coli O9a lipopolysaccharide and a methylated analog

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201